605 research outputs found

    Equalization of doubly selective channels using iterative and recursive methods

    Get PDF
    Novel iterative and recursive schemes for the equalization of time-varying frequency selective channels are proposed. Such doubly selective channels are shown to be common place in mobile communication systems, for example in second generation systems based on time division multiple access (TDMA) and so-called beyond third generation systems most probably utilizing orthogonal frequency division multiplexing (OFDM). A new maximum likelihood approach for the estimation of the complex multipath gains (MGs) and the real Doppler spreads (DSs) of a parametrically modelled doubly selective single input single output (SISO) channel is derived. Considerable complexity reduction is achieved by exploiting the statistical properties of the training sequence in a TDMA system. The Cramer-Rao lower bound for the resulting estimator is derived and simulation studies are employed to confirm the statistical efficiency of the scheme. A similar estimation scheme is derived for the MGs and DSs in the context of a multiple input multiple output (MIMO) TDMA system. A computationally efficient recursive equalization scheme for both a SISO and MIMO TDMA system which exploits the estimated MGs and DSs is derived on the basis of repeated application of the matrix inversion lemma. Bit error rate (BER) simulations confirm the advantage of this scheme over equalizers which have limited knowledge of such parameters. For OFDM transmission over a general random doubly selective SISO channel, the time selectivity is mitigated with an innovative relatively low complexity iterative method. Equalization is in effect split into two stages: one which exploits the sparsity in the associated channel convolution matrix and a second which performs a posteriori detection of the frequency domain symbols. These two procedures interact in an iterative manner, exchanging information between the time and frequency domains. Simulation studies show that the performance of the scheme approaches the matched filter bound when interleaving is also introduced to aid in decorrelation. Finally, to overcome the peak to average power problem in conventional OFDM transmission, the iterative approach is extended for single carrier with cyclic prefix (SCCP) systems. The resulting scheme has particularly low complexity and is shown by simulation to have robust performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Space-time processing for wireless mobile communications

    Get PDF
    Intersymbol interference (ISI) and co-channel interference (CCI) are two major obstacles to high speed data transmission in wireless cellular communications systems. Unlike thermal noise, their effects cannot be removed by increasing the signal power and are time-varying due to the relative motion between the transmitters and receivers. Space-time processing offers a signal processing framework to optimally integrate the spatial and temporal properties of the signal for maximal signal reception and at the same time, mitigate the ISI and CCI impairments. In this thesis, we focus on the development of this emerging technology to combat the undesirable effects of ISI and CCL We first develop a convenient mathematical model to parameterize the space-time multipath channel based on signal path power, directions and times of arrival. Starting from the continuous time-domain, we derive compact expressions of the vector space-time channel model that lead to the notion of block space-time manifold, Under certain identifiability conditions, the noiseless vector-channel outputs will lie on a subspace constructed from a set. of basis belonging to the block space-time manifold. This is an important observation as many high resolution array processing algorithms Can be applied directly to estimate the multi path channel parameters. Next we focus on the development of semi-blind channel identification and equalization algorithms for fast time-varying multi path channels. Specifically. we develop space-time processing algorithms for wireless TDMA networks that use short burst data formats with extremely short training data. sequences. Due to the latter, the estimated channel parameters are extremely unreliable for equalization with conventional adaptive methods. We approach the channel acquisition, tracking and equalization problems jointly, and exploit the richness of the inherent structural relationship between the channel parameters and the data sequence by repeated use of available data through a forward- backward optimization procedure. This enables the fuller exploitation of the available data. Our simulation studies show that significant performance gains are achieved over conventional methods. In the final part of this thesis, we address the problem identifying and equalizing multi path communication channels in the presence of strong CCl. By considering CCI as stochasic processes, we find that temporal diversity can be gained by observing the channel outputs from a tapped delay line. Together with the assertion that the finite alphabet property of the information sequences can offer additional information about the channel parameters and the noise-plus-covariance matrix, we develop a spatial temporal algorithm, iterative reweighting alternating minimization, to estimate the channel parameters and information sequence in a weighted least squares framework. The proposed algorithm is robust as it does not require knowledge of the number of CCI nor their structural information. Simulation studies demonstrate its efficacy over many reported methods

    Equalization of doubly selective channels using iterative and recursive methods

    Get PDF
    Novel iterative and recursive schemes for the equalization of time-varying frequency selective channels are proposed. Such doubly selective channels are shown to be common place in mobile communication systems, for example in second generation systems based on time division multiple access (TDMA) and so-called beyond third generation systems most probably utilizing orthogonal frequency division multiplexing (OFDM). A new maximum likelihood approach for the estimation of the complex multipath gains (MGs) and the real Doppler spreads (DSs) of a parametrically modelled doubly selective single input single output (SISO) channel is derived. Considerable complexity reduction is achieved by exploiting the statistical properties of the training sequence in a TDMA system. The Cramer-Rao lower bound for the resulting estimator is derived and simulation studies are employed to confirm the statistical efficiency of the scheme. A similar estimation scheme is derived for the MGs and DSs in the context of a multiple input multiple output (MIMO) TDMA system. A computationally efficient recursive equalization scheme for both a SISO and MIMO TDMA system which exploits the estimated MGs and DSs is derived on the basis of repeated application of the matrix inversion lemma. Bit error rate (BER) simulations confirm the advantage of this scheme over equalizers which have limited knowledge of such parameters. For OFDM transmission over a general random doubly selective SISO channel, the time selectivity is mitigated with an innovative relatively low complexity iterative method. Equalization is in effect split into two stages: one which exploits the sparsity in the associated channel convolution matrix and a second which performs a posteriori detection of the frequency domain symbols. These two procedures interact in an iterative manner, exchanging information between the time and frequency domains. Simulation studies show that the performance of the scheme approaches the matched filter bound when interleaving is also introduced to aid in decorrelation. Finally, to overcome the peak to average power problem in conventional OFDM transmission, the iterative approach is extended for single carrier with cyclic prefix (SCCP) systems. The resulting scheme has particularly low complexity and is shown by simulation to have robust performance

    CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra

    Full text link
    Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.Comment: Code available at https://github.com/wilson-labs/col

    Sparsity-Based Algorithms for Line Spectral Estimation

    Get PDF

    Low-Rank Channel Estimation for Millimeter Wave and Terahertz Hybrid MIMO Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) is one of the fundamental technologies for 5G and beyond. The increased number of antenna elements at both the transmitter and the receiver translates into a large-dimension channel matrix. In addition, the power requirements for the massive MIMO systems are high, especially when fully digital transceivers are deployed. To address this challenge, hybrid analog-digital transceivers are considered a viable alternative. However, for hybrid systems, the number of observations during each channel use is reduced. The high dimensions of the channel matrix and the reduced number of observations make the channel estimation task challenging. Thus, channel estimation may require increased training overhead and higher computational complexity. The need for high data rates is increasing rapidly, forcing a shift of wireless communication towards higher frequency bands such as millimeter Wave (mmWave) and terahertz (THz). The wireless channel at these bands is comprised of only a few dominant paths. This makes the channel sparse in the angular domain and the resulting channel matrix has a low rank. This thesis aims to provide channel estimation solutions benefiting from the low rankness and sparse nature of the channel. The motivation behind this thesis is to offer a desirable trade-off between training overhead and computational complexity while providing a desirable estimate of the channel

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Estimation of Radio Channel Parameters

    Get PDF
    Kurzfassung Diese Dissertation behandelt die SchĂ€tzung der Modellparameter einer Momentanaufnahme des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines generischen Datenmodells fĂŒr den gemessenen Funkkanal, welches fĂŒr die hochauflösende ParameterschĂ€tzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung eines robusten ParameterschĂ€tzers fĂŒr die Bestimmung der Parameter des entworfenen Modells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau dieser Arbeit. Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenoptischen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbreitungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (single-input-single-output)- Übertragungssystemen, also von Systemen mit einer Sendeantenne und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO- (single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme (multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthĂ€lt das entwickelte Modell keine Restriktionen bezĂŒglich der modellierbaren Antennenarrayarchitekturen. Dies ist besonders wichtig in Hinblick auf die möglichst vollstĂ€ndige Erfassung der rĂ€umlichen Struktur des Funkkanals. Die FlexibilitĂ€t des Modells ist eine Grundvoraussetzung fĂŒr die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Antennenelementen. Sie ist gut geeignet fĂŒr die Erfassung der rĂ€umlichen Struktur des Funkkanals (Azimut und Elevation) in so genannten Outdoor- Funkszenarien. Weiterhin wird im ersten Teil eine neue Komponente des Funkkanaldatenmodells eingefĂŒhrt, welche den Beitrag verteilter (diffuser) Streuungen zur FunkĂŒbertragung beschreibt. Die neue Modellkomponente spielt eine SchlĂŒsselrolle bei der Entwicklung eines robusten ParameterschĂ€tzers im Hauptteil dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen fĂŒr die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflösenden FunkkanalparameterschĂ€tzern, die in der Literatur etabliert sind. Das neue Datenmodell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten Streuungen wird mit Hilfe eines zirkularen mittelwertfreien Gaußschen Prozesses beschrieben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz ĂŒber aktuelle Konzepte fĂŒr FunkkanalmessgerĂ€te, so genannte Channel-Sounder, diskutiert. Im zweiten Teil dieser Arbeit werden in erster Linie AusdrĂŒcke zur Bestimmung der erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die untere Schranke fĂŒr die Varianz der geschĂ€tzten Modellparameter, das heißt der Messwerte, bestimmt. Als Grundlage fĂŒr die VarianzabschĂ€tzung wird das aus der ParameterschĂ€tztheorie bekannte Konzept der CramĂ©r-Rao-Schranke angewandt. Im Rahmen der Ableitung der CramĂ©r-Rao-Schranke werden außerdem wichtige Gesichtspunkte fĂŒr die Entwicklung eines effizienten ParameterschĂ€tzers diskutiert. Im dritten Teil der Arbeit wird ein SchĂ€tzer fĂŒr die Bestimmung der Ausbreitungspfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Übersicht ĂŒber existierende Konzepte zur hochauflösenden FunkkanalparameterschĂ€tzung wird die vorliegende SchĂ€tzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Voraussetzung, dass die Parameter der verteilten Streuungen bekannt sind, lĂ€sst sich zeigen, daß sich die SchĂ€tzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes kleinstes Fehlerquadratproblem auffassen lĂ€sst. Basierend auf dieser Erkenntnis wird ein generischer Algorithmus zur Bestimmung einer globalen Startlösung fĂŒr die Parameter eines Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-Squares (SLS)-Probleme Gebrauch gemacht, um die KomplexitĂ€t des SchĂ€tzproblems zu reduzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten robusten numerischen Algorithmen ein SchĂ€tzer zur genauen Bestimmung der Ausbreitungspfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraumbasierter SchĂ€tzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein speichereffizienter Algorithmus zur SignalraumschĂ€tzung entwickelt. Dieser Algorithmus ist eine Grundvoraussetzung fĂŒr die Anwendung von mehrdimensionalen ParameterschĂ€tzern wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-Funkkanalmessungen. Traditionelle Verfahren zur SignalraumschĂ€tzung sind hier im Allgemeinen nicht anwendbar, da sie einen zu großen Speicheraufwand erfordern. Außerdem wird in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur ParameterschĂ€tzung von Daten mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden können. Als Beispiel wird ein ESPRIT-basierter Algorithmus zur RichtungsschĂ€tzung in Verbindung mit multibeam-Antennenarrays (CUBA) abgeleitet. Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-SchĂ€tzer fĂŒr die neue Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausgehend vom Konzept des iterativen Maximum-Likelihood-SchĂ€tzers wird ein Algorithmus entwickelt, der hinreichend geringe numerische KomplexitĂ€t besitzt, so dass er praktisch anwendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schĂ€tzenden Kovarianzmatrix Gebrauch gemacht. Aufbauend auf dem SchĂ€tzer fĂŒr die Parameter der Ausbreitungspfade und dem SchĂ€tzer fĂŒr die Parameter der verteilten Streuungen wird ein Maximum-Likelihood-SchĂ€tzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Modells der Funkanalmessung im Verbund schĂ€tzt. Neben den geschĂ€tzten Parametern des Datenmodells liefert der SchĂ€tzer zusĂ€tzlich ZuverlĂ€ssigkeitsinformationen. Diese werden unter anderem zur Bestimmung der Modellordnung, das heißt zur Bestimmung der Anzahl der dominanten Ausbreitungspfade, herangezogen. Außerdem stellen die ZuverlĂ€ssigkeitsinformationen aber auch ein wichtiges SchĂ€tzergebnis dar. Die ZuverlĂ€ssigkeitsinformationen machen die weitere Verarbeitung und Wertung der Messergebnisse möglich.The theme of this thesis is the estimation of model parameters of a radio channel snapshot. The main focus was the development of a general data model for the measured radio channel, suitable for both high resolution channel parameter estimation on the one hand, and the development of a robust parameter estimator for the parameters of the designed parametric radio channel model, in line with this logical work flow is this thesis. In the first part of this work an algebraic representation of observed propagation paths is developed using a ray-optical model known from literature. The algebraic framework is suitable for the description of SISO (single-input-single-output) radio transmission systems. A SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx). The derived expression for the propagation paths is also suitable to describe SIMO (single-input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-multiple-output) radio channel measurements. In contrast to other models used for high resolution channel parameter estimation the derived model makes no restriction regarding the structure of the antenna array used throughout the measurement. This is important since the ultimate goal in radio channel sounding is the complete description of the spatial (angular) structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite for the optimisation of the antenna array structure with respect to the measurement task. Such an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical arrangement of antenna elements. This antenna array configuration is well suited for the measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-scenarios. Furthermore, a new component of the radio channel model is introduced in the first part of this work. It describes the contribution of distributed (diffuse) scattering to the radio transmission. The new component is key for the development of a robust radio channel parameter estimator, which is derived in the main part of this work. The ignorance of the contribution of distributed scattering to radio propagation is one of the main reasons why high-resolution radio channel parameter estimators fail in practice. Since the underlying data model is wrong the estimators produce erroneous results. The improved model describes the so called dominant propagation paths by a deterministic mapping of the propagation path parameters to the channel observation. The contribution of the distributed scattering is modelled as a zero-mean circular Gaussian process. The parameters of the distributed scattering process determine the structure of the covariance matrix of this process. Based on this data model current concepts for radio channel sounding devices are discussed. In the second part of this work expressions for the accuracy achievable by a radio channel sounder are derived. To this end the lower bound on the variance of the measurements i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the CramĂ©r-Rao lower bound is employed. On the way to the CramĂ©r-Rao lower bound for all channel model parameters, important issues for the development of an appropriate parameter estimator are discussed. Among other things the coupling of model parameters is also discussed. In the third part of this thesis, an estimator, for the propagation path parameters is derived. For the estimator the 'maximum-likelihood' approach is employed. After a short overview of existing high-resolution channel parameter estimators the estimation problem is classified. It is shown, that the estimation of the parameters of the propagation paths can be understood as a nonlinear weighted least squares problem, provided the parameters of the distributed scattering process are known. Based on this observation a general algorithm for the estimation of raw parameters for the observed propagation paths is developed. The algorithm uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to reduce the numerical complexity of the estimation problem. A robust estimator for the precise estimation of the propagation path parameters is derived. The estimator is based on concepts well known from nonlinear local optimisation theory. In the last part of this chapter the application of subspace based parameter estimation algorithms for path parameter estimation is discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal subspace estimation (economy size SVD, singular value decomposition) are not suitable since they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can also be employed for parameter estimation from data having hidden rotation invariance structure. As an example an ESPRIT algorithm for angle estimation using circular uniform beam arrays (circular multi-beam antennas) is derived. In the final part of this work a maximum likelihood estimator for the new component of the channel model is developed. Starting with the concept of iterative maximum likelihood estimation, an algorithm is developed having a low computational complexity. The low complexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance matrix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propagation paths and the parametric estimator for the covariance matrix of the process describing the distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX). The estimator is a 'maximum likelihood' estimator and uses the genuine SAGE concept to reduce the computational complexity. The estimator provides additional information about the reliability of the estimated channel parameters. This reliability information is used to determine an appropriate model for the observation. Furthermore, the reliability information i.e. the estimate of the covariance matrix of all parameter estimates is also an important parameter estimation result. This information is a prerequisite for further processing and evaluation of the measured channel parameters
    • 

    corecore