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Abstract

Line spectral estimation is a classical problem in signal processing. It has
found broad application in for example array processing, wireless communi-
cation, localization, radar, radio astronomy and audio. In the last decade we
have seen significant research into sparsity-based processing techniques. The
use of sparsity-based techniques has allowed for advances to both the design
and analysis of algorithms for line spectral estimation. In this thesis we study
the design of such algorithms.

The uniting theme of our contributions is the design of algorithms that
make sparsity-based line spectral estimation viable in practice. First, it is
demonstrated that these schemes can be applied to the estimation of wireless
channels of not only specular but also of diffuse nature. We attribute that
to a low-rank property of the channel covariance matrix, a concept that we
elaborate on.

The design of algorithms for sparsity-based line spectral estimation in a
general context is then considered. The obtained algorithms are computa-
tionally feasible for much larger problems than what concurrent algorithms
can practically deal with and show high estimation accuracy.

iii





Resumé

Linje spektral estimering er et klassisk problem indenfor signal behandling.
Det har fundet bred anvendelse indenfor for eksempel databehandling i lyd-
og antennegruppe systemer, trådløs kommunikation, lokalisering, radar og
radio astronomi. I det seneste årti har vi set en stor forskningsinteresse i
teknikker baseret på sparsommelighed. Ved brug af disse teknikker har man
opnået resultater vedrørende både designet og analysen af algoritmer til linje
spektral estimering. I denne afhandling undersøger vi designet af sådanne
algoritmer.

Det sammenfattende tema i afhandlingen er designet af algoritmer der
gør anvendelsen af sparsommeligheds-teknikker realistisk i praksis. Det
demonstreres først at disse metoder kan anvendes til estimering af trådløse
kanaler der ikke kun består af separate komponenter, som intuitionen fore-
slår, men også kanaler med diffuse komponenter. Dette fænomen tilskrives
en lav-rang egenskab af kanalens kovarians matrix. Der fremvises en uddy-
bende analyse af dette koncept.

Derefter betragtes designet af algoritmer til linje spektral estimering ba-
seret på sparsommeligheds-teknikker i en generel kontekst. Der fremvises
algoritmer der beregningsmæssigt er praktiske at anvende på langt større
problemer end nuværende algoritmer tillader. De fremviste algoritmer op-
når samtidigt stor nøjagtighed af estimaterne.
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Chapter 1

Introduction

One of the core interests in signal processing and machine learning is signal
analysis. In science and technology we seek to understand the world around
us by observing it. When the observations, or measurements, are taken in a
systematic way we refer to the outcome as a signal. The purpose of signal
analysis is to extract information and understanding about the world from
such signals.

A typical approach to signal analysis is via parametric modelling. A model
is a simplified mathematical description of how the world approximately
behaves. A parametric model is one which can be completely characterized
by a finite number of parameters. It is often, but not always, the case that
the parameters of such models have a direct meaning or interpretation in the
physical world. In these cases we can gain understanding about the physical
world by estimating the parameters of the parametric model. In this work we
focus on a special instance of signal analysis, namely parametric estimation
of line spectra.

1.1 Spike Recovery

Before going into the details of line spectral estimation, we take a small de-
tour to illustrate some key concepts. On an abstract level the estimation of
line spectra deals with the recovery of fine-scale details from only coarse-
scale and noisy observations of an object. In order to illustrate this task, we
consider a simple illustrative example of spike recovery in image processing.
In this analogy, the task is to locate spikes in an image from noisy and blurred
observations. In practical applications it is almost never known a-priori how
many spikes there are and so this number must also be estimated. The spikes
here illustrate the fine-scale details which must be recovered. Such a prob-
lem for example exists in astronomy, where the spikes are distant stars to be

3



Chapter 1. Introduction

identified.

Fig. 1.1: Spike recovery from noisy observations in image processing, with noise-free (left),
medium noise level (center) and high noise level (right).

Consider first the illustration of the recovery of spikes (black points) from
noisy observations in Fig. 1.1. The noise level in the noise-free and medium
noise level cases makes it easy to determine the number of spikes and their
location. In the case with high noise level, it is hard to determine with the
naked eye how many spikes there are; and even if it is known that there are
two, their location cannot easily be determined.

Fig. 1.2: Spike recovery from noisy and coarse-scale (blurred) observations in image processing,
with no blurring (left), medium blurring (center) and significant blurring (right).

As mentioned, only coarse-scale observations are available, i.e., the fine
details of the object under consideration are distorted by the observation pro-
cess. In the image processing analogy this effect could be caused by optical
distortions (out of focus, diffraction limit, etc.) or motion blur due to relative
motion between observed and observing entities [1]. These effects are mod-
elled as a blur filter as demonstrated in Fig. 1.2. It is clear that the amount of
blurring determines the ability to resolve closely located spikes.

Intuitively we solve the above tasks by identifying areas of the picture
that are relatively dark. Then, when is an area sufficiently dark to assert that
there is indeed one – or more! – spikes? This question essentially amounts to
that of model order selection and in this thesis we use sparse regularization
to (algorithmically) answer it.

4



1.2. Line Spectral Estimation

1.2 Line Spectral Estimation

We are now ready to introduce the problem of line spectral estimation (LSE).
An informal definition of spectral estimation is given by Stoica and Moses in
their seminal book on spectral analysis of signals [2]: “From a finite record
of a stationary data sequence, estimate how the total power is distributed
over frequency.” With this definition in mind consider a signal x(t) whose
spectrum (Fourier transform) X( f ) is a sum of spikes,

X( f ) =
L−1

∑
l=0

αlδ( f − fl), (1.1)

where δ(·) is the Dirac delta function. Spectra of the form (1.1) are known
as line spectra. The lth spike is located at frequency fl and has amplitude
given by the coefficient αl . In the image processing example the locations of
the spikes are analogous to the frequencies { fl}.

Since X( f ) is the spectrum of x(t) [3, 4], LSE must be about estimating
the parameters of the model (1.1). To be specific, the number of spikes (si-
nusoids) L, the frequencies { fl} and the coefficients {αl} must be estimated.
However, the definition of spectral estimation given by Stoica and Moses
rather suggests that the objective of LSE is to estimate L, the frequencies { fl}
and the powers E

[
|αl |2

]
of the coefficients {αl}. In this work we make no

distinction between these two definitions of LSE. The challenging task in LSE
is to estimate L and the frequencies { fl}. Once these are obtained the co-
efficients {αl} can easily be estimated with a least-squared approach. If the
powers of {αl} are of interest they can for example be estimated by taking
the magnitude-square of the entries in {αl}.

The observation process through which we can observe the object X( f ) is
obtained by taking a limited number of noisy time-domain samples, i.e., we
observe a vector y with entries

yn = x(n∆T) + wn, n = 0, . . . , N − 1, (1.2)

where ∆T is a sampling time and wn is a noise process. The vector y is the
“finite record” mentioned by Stoica and Moses. This observation process dis-
torts the fine details of the line spectrum because only a limited number of
time-domain samples are observed. Indeed, by discrete-time Fourier trans-
forming the observation vector y we get that the frequency-domain represen-
tation (1.1) has been blurred (specifically it has been circularly convolved with
a sinc-filter). Fig. 1.3 gives an example of a line spectrum (blue spikes) and
the corresponding frequency-domain representation of the observed samples
(red line). It is clear that the number of spikes and their location cannot be
immediately identified from the observation even though there is no noise
in this example. In this thesis we are concerned with algorithms that can
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Chapter 1. Introduction

Fig. 1.3: Recovery of line spectra (blue spikes) from only coarse-scale observations (red line).
Frequencies recovered by the superfast LSE algorithm (Paper B) are marked (black crosses).

solve this task. As an example we have run the superfast LSE algorithm (Pa-
per B) on the observation in Fig. 1.3. The algorithm correctly recovers both
the number of spikes and their location (black crosses).

In the image processing example, we concluded that the noise mainly af-
fects the detection of spikes, independently of their separation. On the other
hand, the degree to which the observation process distorts the fine details
dictates the resolution with which closely located spikes can be separated.
This intuition can to a large degree be transferred directly to the LSE prob-
lem and in our experience goes a very long way to explain the estimation
accuracy which can be achieved.

Now consider a scenario where a limited number of noisy samples of
the transfer function (i.e., frequency-domain) of a linear time-invariant filter
are observed. Also assume that the corresponding impulse response (i.e.,
time-domain) can be modelled as a sum of spikes analogously to (1.1). Let’s
assume that we are interested in estimating the impulse response from the
observed samples of the transfer function. Due to the time-frequency duality
of the Fourier transform such a problem is equivalent to that of LSE (ignoring
a few insignificant details).

There exists a multitude of estimation problems that, as above, can be
cast in a similar form as LSE and for this reason it is ubiquitous in signal
processing literature. Example applications include direction of arrival esti-
mation using sensor arrays [5, 6], bearing and range estimation in synthetic
aperture radar [7], estimation of Doppler shifts [8], carrier offset estimation
in communication systems [9] and simulation of atomic systems in molecular
dynamics [10]. The work in this thesis is motivated by an application for esti-
mation of wireless communication channels [11–13]; we introduce the details
of that application in Chapter 3. The algorithms we develop in the thesis are
generally applicable to both wireless channel estimation and other instances
of LSE.
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1.3 Focus of The Thesis

For the last decade, sparse processing has been a hot topic in the field of
signal processing. This interest in sparsity is in large parts due to its cen-
tral use in compressed sensing [14–16]. The application of sparsity-based
methods to LSE has also gained attraction. Sparsity-based approaches dis-
tinguish themselves by inherently estimating the number of sinusoids (the
model order) while classical methods require a separate methods to estimate
this number, for example using information-theoretic model order selection
criteria [17–23]. There are also other cases where the sparsity-based methods
have proven superior, for example when the coefficients {αl} are statistically
correlated [24].

The focus of the thesis is that of sparsity-based methods for LSE. Special
attention is paid to the computational and algorithmic aspects of this class
of methods. We first consider how this type of estimator can be used for es-
timation of wireless channels and incorporate the estimator into an iterative
receiver design. The focus is then shifted away from that particular applica-
tion and we develop general-purpose algorithms for LSE. These algorithms
distinguish themselves from the state of the art by having significantly lower
computational complexity while showing very high estimation accuracy.

1.4 Thesis Outline

The organization of the thesis is as follows.
In Part I we provide some introductory and background material to set the

stage of the work: Chapter 2 presents some classical methods for LSE along
with the motivation for continued research on this problem. The sparsity-
based approach to LSE is introduced and it is shown that methods in this
class can be understood in a unified framework of rank minimization. In
Chapter 3 we elaborate on the application to wireless channel estimation. It
is demonstrated that the rank minimization viewpoint gives some novel in-
sights into the applicability of parametric channel estimators. In particular
a rigorous argument is given for the applicability to channels that are not
purely specular. Chapter 4 gives an overview of the content and the scien-
tific contribution of each of the papers. We also look ahead and consider
the future use of the developed methods along with a review of promising
directions for future research.

Part II contains the research papers that have been produced during the
PhD study.
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Chapter 2

Context of the Work

2.1 Preliminaries

To begin our endeavours rewrite the signal model (1.2) into the form

y = x + w, x = A( f )α, (2.1)

where x is the signal vector and the frequencies and coefficients have been
collected in the vectors f = ( f0, . . . , fL−1)

T ∈ [0, 1)L and α = (α0, . . . , αL−1)
T ∈

CL. The vector w is a noise vector. Throughout the thesis it is assumed that
the entries of w ∈ CN are independent and identically distributed (i.i.d.)
with each entry having a zero-mean complex Gaussian distribution1 of vari-
ance σ2. Where applicable, the variance of αl is denoted γl and these vari-
ances are collected in the vector γ = (γ0, . . . , γL−1)

T ∈ (0, ∞)L. We de-
fine the vector a( f ) ∈ CN which has nth entry (a( f ))n = exp(−j2πn f ) for
n = 0, . . . , N− 1, i.e., it contains samples of a sinusoid with frequency f . The
matrix A( f ) ∈ CN×L is composed with the sinusoidal vectors as its columns,
i.e., A( f ) =

(
a( f0), . . . , a( fL−1)

)
.

The LSE problem is that of recovering from y the number of sinusoids L,
the frequencies f and either the coefficients α or their variances γ.

In some applications multiple (say M) observations of the form (2.1) are
available. That is known as the multiple measurement vector (MMV) case
[25–27]. Here the frequency vector f and the variances γ are common while
the coefficient vector α and the noise vector w may vary between each ob-
tained observation. If all the observation vectors are collected into a matrix
Y ∈ CN×M, the MMV model can be written as

Y = X + W, X = A( f )B, (2.2)

1 Throughout the thesis we assume circular symmetry of all complex Gaussian distributions.
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where B ∈ CL×M contains the coefficient vectors α as columns and W ∈
CN×M is a noise matrix.

A naïve, first approach to LSE could be to calculate the (magnitude-
square) Fourier transform of the observed signal. This approach is known
as the periodogram method. Simply detecting the peaks of the periodogram
suffers from the same resolution issue as is visible in Fig. 1.3. It is com-
monly asserted that the periodogram cannot resolve frequencies which are
located closer than about 1/N [28]. We are interested in methods that can
go significantly below this limit. Such methods are commonly known as
super-resolution methods [29].

2.2 Classical Methods for Line Spectral Estimation

Due to the many instances in which the estimation of line spectra has an ap-
plication, the problem has been attacked from many angles. The earliest work
goes all the way back to a 1795 paper by Prony [30]. As witnessed from the
list of references accompanying this introduction, much of the groundwork
for our current understanding was done in the 1980s and early 1990s. We
here shortly review some classical methods for LSE. By classical methods we
mean those methods that do not directly use the notion of sparse modelling.

It would be futile to try and give a complete overview of the literature on
LSE. We instead discuss two main classes of methods (subspace and maxi-
mum likelihood methods) with the intent to give an idea of the types of meth-
ods that have been considered along with some of their limitations. Among
other approaches we mention higher order Yule-Walker [31, 32], matrix pen-
cil [33, 34], maximum entropy [35–37], weighted subspace fitting [38, 39] and
filter-bank [40–42] methods. Stoica and Moses [2] dedicate a complete chap-
ter that provides an excellent description of many of the techniques for LSE.
We refer to [2, 43, 44] as a starting point for further reading.

2.2.1 Subspace Methods

As the name suggests subspace methods work by analysing the signal and
noise subspaces which can be obtained from an eigenvalue decomposition
of the signal covariance matrix. This class of methods include Pisarenko’s
method [45], MUltiple SIgnal Classification (MUSIC) [46], Estimation of Sig-
nal Parameters via Rotational Invariance Technique (ESPRIT) [47, 48] and the
min-norm method [49].

Assume that the coefficients in α are zero-mean random variables and
consider the covariance matrix of y in (2.1),

Σy = Σx + σ2I, Σx = A( f )ΓAH( f ), (2.3)

10
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where Γ = diag(γ) is a diagonal matrix with the entries of γ on the diagonal.
The eigenvalues {λn} of Σy (sorted in descending order) satisfy{

λn > σ2 for n = 0, . . . , L− 1,
λn = σ2 for n = L, . . . , N − 1.

(2.4)

We refer to the first L eigenvalues as the “signal eigenvalues” and the re-
maining N − L ones as the “noise eigenvalues”. Now write the eigenvalue
decomposition of Σy as

Σy = UsΛsUH
s + UnΛnUH

n , (2.5)

where Λs = diag(λ0, . . . , λL−1) and Λn = diag(λL, . . . , λN−1) contain the
signal and noise eigenvalues. The matrix Us ∈ CN×L has as columns the
eigenvectors associated to the signal eigenvalues and Un ∈ CN×N−L has as
columns the eigenvectors associated to the noise eigenvalues.

The key property, upon which all subspace methods are build, is that the
“noise subspace” spanned by the columns of Un is orthogonal to the columns
of A( f ). To see this we write

ΣyUn =
(

UsΛsUH
s + UnΛnUH

n

)
Un = σ2Un. (2.6)

But note that from (2.3) we also have

ΣyUn = A( f )ΓAH( f )Un + σ2Un (2.7)

and so A( f )ΓAH( f )Un = 0. Since A( f )Γ is full rank it follows that

AH( f )Un = 0, (2.8)

and so aH( f̃ )Un = 0 if f̃ is an entry in f . It can be shown that the condition
aH( f̃ )Un = 0 is not only necessary but also sufficient for f̃ to be an entry in
f [2].

To give a flavour of how subspace methods exploit the above property
to estimate the frequencies, we here describe how the MUSIC algorithm2

proceeds:

1. Estimate the covariance matrix Σy from the observed data.

2. Calculate the eigenvalue decomposition of the estimated covariance
matrix and extract the estimated noise eigenvectors in Ûn.

2 The variant presented here is sometimes referred to as spectral MUSIC to contrast it with
root MUSIC [2], which we do not discuss here.
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3. Estimate the frequencies f as the L locations of the peaks of the MUSIC
pseudo spectrum

Pmusic( f ) =
1

‖ÛH
n a( f )‖2

, f ∈ [0, 1). (2.9)

The last step above identifies those frequencies for which the Euclidean dis-
tance between ÛH

n a( f ) and the zero vector is smallest. It is never exactly zero
because an estimate of the noise eigenvectors are used.

The MUSIC algorithm and other subspace algorithms generally work very
well and are widely used in practice. They are able to resolve sinusoidal com-
ponents that have frequency separation much below 1/N, i.e., the resolution
limit of the periodogram. Numerical evidence also suggests that the accu-
racy of the estimates is close to the Cramér-Rao bound [2] which is the best
possible performance of the class of unbiased estimators. There are, however,
a few disadvantages to this class of methods:

• Their performance degrades if the statistical assumptions of white noise
and no statistical correlation between the coefficients {αl} are violated
[2, 50].

• They assume that the number of sinusoids L is known. That is usually
not the case in practical applications. This means that the subspace
methods must be used in conjunction with a method to estimate the
number of sinusoids, see [17–22] for a few examples of how that can be
done.

• The subspace methods require as their input an estimate of the signal
covariance matrix Σy. There are a number of ways to obtain such an es-
timate, see [43, 51–53]. In the MMV case the sample covariance matrix
may suffice. If only a few or just a single observation vector is available
the formation of the covariance matrix may require that the observa-
tion vector y is subdivided to artificially “create” multiple observation
vectors of shorter length. In such cases the subspace methods suffer a
degradation of estimation accuracy and resolution ability.

2.2.2 Maximum Likelihood Methods

Another class of classical approach to LSE is via maximum likelihood (ML)
estimation. The idea is to estimate the parameters as those which are most
likely to explain the observed data. There are two main formulations referred
to as deterministic ML and stochastic ML [6]. To simplify the discussion we
assume that the noise variance σ2 is known in this section.

In deterministic ML [54] the coefficient vector α is considered to be a
deterministic parameter to be estimated. Under the white Gaussian noise
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assumption the likelihood function p(y; f , α) is a multivariate complex Gaus-
sian probability density function (pdf) with mean A( f )α and covariance ma-
trix σ2I. The deterministic ML estimator then reads

( f̂ , α̂) = arg max
f ,α

ln p(y; f , α) (2.10)

= arg min
f ,α

‖y−A( f )α‖2. (2.11)

The estimation problem is reduced to a non-linear least squares (NLS) prob-
lem. For this reason (2.11) is also known as the NLS method.

The stochastic ML method [55] is obtained by considering the coefficients
in α as independent random variables. Specifically it is assumed that not
only the noise in w but also the coefficients in α follow a zero-mean complex
Gaussian distribution. The parameters of the model are then ( f , γ) and the
stochastic ML estimator reads

( f̂ , γ̂) = arg max
f ,γ

ln p(y; f , γ) (2.12)

= arg max
f ,γ

ln
∫

p(y|α; f )p(α; γ)dα (2.13)

= arg min
f ,γ

ln |Σx + σ2I|+ yH(Σx + σ2I)−1y, (2.14)

where Σx takes the form in (2.3).
Both the deterministic ML and stochastic ML can be extended to the MMV

case. We have not considered the details of those extensions here to limit the
length of the text.

The algorithms that are derived in Paper A and B are extensions of the
stochastic ML method and we therefore spend some time to discuss the prop-
erties of this class of methods (we do not wish to claim that the following
properties are necessarily valid for our algorithms). We start by discussing
the positive traits of the ML methods:

• The ML methods are known to be robust to violations of the statistical
assumptions of white noise and no statistical correlation between the
coefficients {αl} [2, 24, 54, 56]. Note that this does not mean that they
are optimal for these cases, just that their performance is not severely
degraded when these assumptions do not hold.

• Both the deterministic and stochastic ML methods are known to be
asymptotically consistent (estimate converges in probability to true val-
ue) and efficient (the estimator attains the Cramér-Rao bound) as N
tends to infinity [2, 50, 57].
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The asymptotic properties of the MMV extensions of the estimators
has also been thoroughly studied. It turns out that the stochastic ML
method is asymptotically consistent and efficient as M tends to infinity
[58, 59] while deterministic ML possesses neither of these properties
[50, 59]. This is due to the fact that as M→ ∞ the number of parameters
which must be estimated by deterministic ML also goes to infinity (the
matrix of coefficients B grows infinitely large).

For a given N and M it has been shown that the variances of the esti-
mates determined by stochastic ML are upper bounded by the variances
of the estimates obtained by deterministic ML [56]. In other words de-
terministic ML is statistically less efficient than stochastic ML.

• The ML methods do not require an estimate of the covariance matrix Σy
as their input as is the case with subspace methods. That is a significant
benefit in cases where only one or just a few measurement vectors are
available.

The ML methods also have some negative traits:

• The objective functions in (2.11) and (2.14) are highly multimodal with
many local minima [60]. This makes it hard to realize the ML estimators
in practice. The usual approach is to devise a suboptimal initialization
procedure which tries to find an estimate in the vicinity of the global
minimizer. A search algorithm (for example gradient descent) is then
used to refine the initial value. The estimation accuracy of such a pro-
cedure relies completely on the accuracy of the initialization and only
convergence to a local minimizer can be guaranteed. See for exam-
ple [61–63].

• As is also the case for the subspace methods, it is assumed that the
number of sinusoids is known or estimated with another method.

2.3 Sparsity-based Line Spectral Estimation

When the number of sinusoids is unknown a priori the classical methods
for LSE all require that another method is used to obtain an estimate of this
number. Such a two-stage procedure is disadvantageous. The information
theoretic approaches for model order estimation for example require that a
set of frequencies is estimated for each considered model order [17], thus
leading to large use of computational resources. To alleviate these issues the
sparsity-based approach to LSE inherently estimates the number of sinusoids.
A non-exhaustive list of prior work in this area is [5, 64–77].
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2.3.1 Compressed Sensing of Line Spectra

The interest in sparse estimation within the signal processing community
was revived in the mid-2000s with the appearance of compressed sensing [14–
16]. By assuming a certain signal structure compressed sensing allows for
a signal to be sampled at a rate below the Nyquist rate without any loss of
information. The complete Nyquist-sampled signal can be recovered from
the compressed measurements using sparse estimation techniques.

We here briefly give an overview of compressed sensing of line spectral
signals. In compressed sensing the focus is on the recovery of the signal x
from the observations y, rather than on the estimation of the signal parame-
ters (L, f ). There are three main cases considered in the literature:

1. Compressed sensing of line spectra: The recovery of the signal x from in-
complete observation of y is considered in [78–80]. By incomplete we
mean that either only a subset of the entries in y are available or that
a low-dimensional compressed version of x is observable through a
linear observation model. In the case of subsampled observation this
task amounts to that of interpolation of the unobserved samples. These
works answer questions like “What is the minimum number of samples
required for reconstruction of the vector x?”

2. Denoising of line spectra: The estimation of x from complete observation
of y is considered in [81, 82]. If a noisy observation y of the line spectral
signal x is observed, we can use sparse estimation methods to obtain
an estimate of x by denoising y. These works focus on questions like
“What is the mean-square error of the denoised estimate of x?”

3. Super-resolution of line spectra: The works [83–85] consider the extrapo-
lation of the vector x form observations y, i.e. the objective is to re-
cover the signal samples outside the observed time interval. That can
only realistically be achieved in very favorable conditions (frequencies
are well separated, low noise). This type of works answer questions
like “Considering a certain amount of samples to be extrapolated, what
is the smallest error with which that extrapolation can be achieved?”.
The name super-resolution arises from the fact that extrapolation in the
time domain corresponds to super-resolution of the fine details in the
frequency-domain. Some of these works are also directly interested in
the estimation of the frequencies { fl}.

A common trait to all above approaches is their reliance on sparse regular-
ization to perform the signal recovery. In many cases this signal recovery
stage also estimates the signal parameters (L, f ). In this work we consider
algorithms that can be applied in all of the above approaches.
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2.3.2 The Grid Approximation

The use of sparse regularization is not directly applicable in the LSE setting
because the frequencies are continuous-valued parameters. The first works
in the field [5, 12, 13, 65, 74, 78, 86–88] therefore proceeded to quantize the
vector f in the signal model (2.1) to obtain an approximated signal model

y = A( f̄ )ᾱ + w, (2.15)

where f̄ is a vector containing a grid of frequency values on [0, 1) and ᾱ is a
sparse vector (it has only a few non-zero entries). The location of the non-zero
entries in ᾱ then encodes the frequencies { fl}. The length of vectors f̄ and ᾱ
is much larger than L and this length determines the accuracy of the signal
model approximation. This approach reduces the LSE problem to a sparse
estimation problem with a linear observation model ( f̄ is fixed and known).
Such a problem can for example be solved by `1-norm regularization (which
gives the tightest convex relaxation of the `0-pseudo norm [89]) using the
least absolute shrinkage and selection operator (LASSO),

min
ᾱ
‖ᾱ‖1 + λ‖y−A( f̄ )ᾱ‖2

2, (2.16)

where λ > 0 is a parameter for selecting the tradeoff between sparsity and
fidelity of the signal recovery.

By solving (2.16) the number of sinusoids is inherently estimated (it is the
number of non-zero entries in the solution for ᾱ). However, the use of the ap-
proximate signal model (2.15) requires one to choose the number of points in
the quantization grid f̄ . Choosing this value too small leads to large approx-
imation errors, also known as basis mismatch [90]. Choosing this value large
implies that the dimensions of the problem (2.16) are large, leading to large
computational complexity of its solution. With many grid points the columns
of A( f̄ ) also become highly correlated, making the solution of (2.16) numer-
ically challenging. The presence of correlation also precludes a theoretical
analysis of recovery guarantees using the conventional discrete compressed
sensing setup.

2.3.3 Escaping the Grid

Due to the mentioned issues with the gridded approach there has been many
works which seek to forego the restriction to a grid. Early attempts include
grid refinement [64, 67] and interpolation methods [68, 69]. Later methods
completely forego the use of a grid [70–72, 75–77, 79, 81–84]. In this thesis we
work with two classes of methods for sparsity-based LSE which do not use a
grid, namely atomic norm soft thresholding and a Bayesian approach. These
two methods are shortly surveyed below and we refer to Papers B and C for
details.
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Atomic Norm Soft Thresholding

The atomic norm [79, 81–84, 91] provides a generalization of the `1-norm
to continuous parameter spaces. When applied to LSE using a formulation
similar to the LASSO its solution can be obtained by a semidefinite program,

minimize
v∈R, x∈CN , T∈CN×N

‖x− y‖2
2 + τv + 2τ

N tr(T)

subject to
(

T x
xH v

)
� 0,

T Hermitian Toeplitz,

(2.17)

where τ > 0 is a regularization parameter. Recall that a Toeplitz matrix is
one which has constant diagonals. The approach in (2.17) is known as atomic
norm soft thresholding (AST) [81]. In Paper C a fast primal-dual interior
point method for the solution of (2.17) is derived.

Bayesian Method

The Bayesian method proceeds as follows. We build an estimator which ef-
fectively estimates the number of sinusoids by starting with the model (2.1)
where L = Lmax is selected as an upper bound on the number of sinusoids to
be estimated3. The estimator is then designed to disable those components
which are not needed by selecting the corresponding coefficients or variances
to be zero (i.e., αl = 0, γl = 0). Bayesian methods for sparse estimation pro-
vide us with a multitude of ways to obtain such behaviour using a sparsity-
promoting prior on each αl . Examples include the sparse Bayesian learning
prior model [24, 72, 92–95] or the Bernoulli-Gaussian prior model [73, 96–99].
Not surprisingly, these Bayesian methods lead to optimization problems that
share some terms with those of deterministic and stochastic ML in (2.11) and
(2.14). For example, the evidence maximization [100] approach (also known
as Type-II inference [101] in the sparse Bayesian learning literature) proceeds
by marginalizing the coefficients α to obtain a marginal posterior probabil-
ity. Taking the maximum a-posteriori (MAP) estimate of ( f , γ) amounts to
solving the optimization problem

minimize
f∈[0,1)Lmax , γ∈RLmax

ln |Σx + σ2I|+ yH(Σx + σ2I)−1y + g(γ)

subject to γl ≥ 0 for l = 0, . . . , Lmax − 1,
(2.18)

3 While we do not know the number of sinusoids, it is not unrealistic to assume that some
upper bound is known. We can for example never expect to estimate more sinusoids that there
are observations available and so Lmax = N is an obvious choice.

17



Chapter 2. Context of the Work

where Σy is as in (2.3) and g(γ) is a regularization term4 that promotes each
entry of γ to be zero.

It is clear that the Bayesian approach endorses stochastic ML (2.14) with
a regularization term on the effective number of sinusoids. It is then rea-
sonable to think that (2.18) may inherit the good performance of stochastic
ML. In the numerical evaluation in Paper B that is indeed shown to be the
case. This does, however, also mean that the objective in (2.18) inherits the
very non-convex and highly multimodal behaviour that makes the solution
of stochastic ML hard to compute. In Paper B we propose an approach to
solving (2.18) that is guaranteed to converge to a local minimum of the ob-
jective. Convergence to the global minimum, as is the case with the convex
formulation (2.17), cannot be guaranteed. Despite of this we see in Paper B
that the local solution of (2.18) (it may be that the global solution is found,
but we have no guarantee of that) can outperform the global solution of (2.17)
in terms of estimation accuracy.

2.3.4 Rank Minimization Relaxation as a Unifying Frame-
work

To give a unified view of sparsity-based LSE methods we can view them as
methods that estimate the covariance matrix of x via relaxations of rank-
minimization problems. The rank minimization problems of interest are
known to be NP-hard (meaning that no known polynomial time algorithm
can solve them) [102, 103]. The rank term is therefore replaced with some
proxy and the choice of this proxy yields different algorithms for LSE.

First note that the entries of the signal vector x (2.1) constitute a wide-
sense stationary process. It then follows that the covariance matrix Σx has
Toeplitz structure. Since Σx is a covariance matrix it is also Hermitian. We
need these properties in the following.

Atomic Norm Soft Thresholding

Consider the AST method in (2.17) and note that using the pseudo Schur
complement [104] it can be rewritten in the form

minimize
x∈CN , T∈CN×N

‖x− y‖2
2 + τxHT+x + 2τ

N tr(T)

subject to T � 0,
T Hermitian Toeplitz,
x ∈ R(T),

(2.19)

4For the Bernoulli-Gaussian prior model used in Paper B, this regularization term reads
g(γ) = ∑Lmax−1

l=0 1[γl = 0] ln ζ + 1[γl 6= 0] ln(1− ζ), where ζ ∈ [0, 1/2] is a regularization pa-
rameter and 1[·] is the indicator function. Note that a change of variables is required to obtain
(2.18) from the optimization problem formulated in the paper.
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where T+ is the Moore-Penrose pseudo inverse of T and R(T) is the column
space of the matrix T. The matrix T in this optimization problem is an es-
timate of the signal covariance matrix Σx. Let’s decipher each term of the
problem (2.19):

• The first two constraints guarantee that T is a valid covariance matrix.

• The first term of the objective ‖x− y‖2
2 ensures that the estimate of the

signal vector x is consistent with the observation y. This term therefore
handles the noise.

• The second term τxHT+x together with the constraint x ∈ R(T) ex-
presses the “fit” between the signal vector x and the covariance matrix
T. Specifically it is the data dependent term of the negative log likeli-
hood function.5 The log-determinant term of the log likelihood is not
included because the size of the entries of the covariance matrix is reg-
ularized by the last term in (2.19).

• Since T is Hermitian the term tr(T) is equal to the nuclear norm of T,
which is the tightest convex relaxation of rank(T) [91, 106, 107]. There
is a strong relation to `1-norm minimization which is seen by letting λ
be a vector containing the eigenvalues of T. Then ‖λ‖1 = tr(T) is the
tightest convex relaxation of ‖λ‖0 = rank(T) [89]. This is not surprising
since the atomic norm is a generalization of the `1-norm to continuous
parameter spaces.

It is clear that AST estimates a signal vector x which is consistent with the
data along with a low-rank Hermitian Toeplitz matrix T that is a likely covari-
ance matrix of the estimated x. For more details on the low-rank viewpoint
we refer to [108], albeit that work considers the (simpler) case of noise-free
observations.

Bayesian Method

To interpret the Bayesian methods embodied in (2.18) as a rank minimization
method we need a result known as the Carathéodory parameterization [2,
109, 110] of a covariance matrix. It states that for any positive semidefinite
Hermitian Toeplitz matrix T ∈ CN×N of rank L < N there exists unique6

5 Recall that x is a zero-mean degenerate complex Gaussian random vector with covariance
Σx. The probability density function of such a random vector is defined on x ∈ R(Σx) and
reads [105, pp. 527–528]

p(x) = (πN |Σx|+)−1 exp(−xHΣ+
x x),

where | · |+ is the pseudo-determinant (product of non-zero eigenvalues).
6Uniqueness up to permutations of the entries in f and γ.

19



Chapter 2. Context of the Work

values f ∈ [0, 1)L and γ ∈ (0, ∞)L such that

T = A( f )ΓAH( f ), (2.20)

where Γ = diag(γ) ∈ RL×L and A( f ) ∈ CN×L is as described in the text
following (2.1).

We also know that the converse is true: For any choice of f ∈ [0, 1)L and
γ ∈ [0, ∞)L the matrix in (2.20) is positive semidefinite Hermitian Toeplitz.
If the entries in f are distinct, then the rank of T is equal to the number of
non-zero entries in γ.

Let’s assume that Lmax < N in (2.18)7 Then there is a one-to-one corre-
spondence between ( f , γ) and the Hermitian Toeplitz matrix T. That allows
us to reparameterize (2.18) in the form

minimize
T∈CN×N

ln |T + σ2I|+ yH(T + σ2I)−1y + g̃(T)

subject to T � 0,
T Hermitian Toeplitz,
rank(T) ≤ Lmax,

(2.21)

where g̃(T) = g(γ) with γ obtained from the Carathéodory parameterization
of T in (2.20)8.

Deciphering this optimization problem, we note that the first two con-
straints guarantee that T is a valid covariance matrix of x. The first two terms
of the objective function are the negative log-likelihood for observing y if x
has covariance matrix T. The last term g̃(T) regularizes the rank. We do not
expect the constraint rank(T) ≤ Lmax to affect the solution because Lmax by
assumption is an upper bound on the number of sinusoids to be estimated.

Despite the very different derivations that was used to obtain AST (2.19)
and the Bayesian method (2.21), we can now directly relate the two methods.
They are both composed of two types of terms. The first type of terms en-
forces consistency between the covariance T and the observed signal. These
terms also account for the observation noise. The second type of terms is the
rank regularization terms. The Bayesian method employs a non-convex rank
regularizer g̃(T) while AST employs a convex relaxation of the rank term,
namely the nuclear norm tr(T).

We note that it is possible to rewrite the problem (2.21) into a form that
has even stronger resemblance to the problem (2.19) (some terms of the two
problems become equal). That is done by considering a certain Type-I or dual

7 In Papers A and B we consider Lmax = N, but selecting for example Lmax = N − 1 would
not make any difference in practice. We assume Lmax < N as it greatly simplifies the analysis
here. Without this assumption the parameterization (2.20) is not unique.

8For the Bernoulli-Gaussian prior model used in Paper B (i.e., with g(·) mentioned in footnote
4) this regularization term reads g̃(γ) = rank(T) ln ζ + (Lmax − rank(T)) ln(1− ζ). Clearly this
term promotes low rank when ζ < 1

2 .
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space formulation [111–113]; see also [77]. To retain focus on the main issue,
we have not pursued this avenue here.

Other Methods

The above view also allows us to propose any number of new sparsity-based
LSE methods by choosing other rank regularizers or other ways to enforce
consistency with the observed data. That is indeed what the reweighted
atomic norm minimization approach [114] amounts to.

Even the classical methods for LSE can be seen as estimation of a low-rank
Toeplitz covariance matrix, where the model order selection method plays the
role of the rank regularization term. As an example, for a given model order,
we can think of the MUSIC algorithm (see Sec. 2.2.1) as an approach to find
a Hermitian Toeplitz covariance matrix that has column space approximately
equal to the signal subspace.

In the following chapter we see how the rank minimization viewpoint can
provide some insights into the application of LSE algorithms for parametric
channel estimation.
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Chapter 3

Application to Wireless
Channel Estimation

3.1 A Simple Model of Wireless Communication

As an example application of LSE, we consider the parametric approach to
wireless channel estimation. That is also the subject of Paper A. In the paper
the main focus is on algorithm design, specifically the design of an iterative
receiver implementing parametric channel estimation. Here we expand on
the assumptions made regarding the channel model and the relation to LSE.

Consider a simple model of a wireless communication system as depicted
in Fig. 3.1, where a single transmitter emits a signal intended to a single
receiver. Typically the radio waves propagate from the transmitter to the
receiver via multiple paths. Along these paths the waves may experience
reflection, diffraction and scattering when interacting with physical objects
along their way. At the receiver a superposition of contributions from each
of the propagation paths is observed. The process which takes as input the
signal emitted from the transmitter and gives as output the superposition of
signals that can be observed at the receiver is known as the wireless channel.

The wireless channel distorts the signal. In order to effectively communi-
cate information over the wireless channel, this distortion must be compen-
sated for. That is most commonly done by first estimating the effect of the
wireless channel followed by a correction stage (equalization). We focus on
the channel estimation stage and employ a parametric model to do so.
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Transmitter

Receiver

Fig. 3.1: A wireless communication system with multiple propagation paths.

3.2 Signal Model of an OFDM System

This section contains a few passages that have been reused from Paper A with minor
or no modifications.

To discuss the channel estimation task in detail the signal model of a typical
communication system is now introduced. An orthogonal frequency-division
multiplexing (OFDM) system is considered. OFDM is interesting to study
because a majority of modern communication standards are based on it. The
baseband signal model for such a system is derived below, making strong
(but common) assumptions regarding the behaviour of the transmitter and
receiver. Essentially it is assumed that the communication system has ideal
behaviour in all regards which do not directly relate to channel estimation.
These assumptions are made to allow us to focus solely on the aspects related
to channel estimation.

Consider a single OFDM symbol duration in a system with N subcarri-
ers. The (coded) bits to be transmitted are modulated to obtain the complex
symbols x0, . . . , xN−1 and the baseband processor in the transmitter emits

s(t) =

{
∑N−1

n=0 xn exp(j2π∆ f nt) t ∈ [−TCP; Tsym],
0 otherwise,

(3.1)

where ∆ f gives the subcarrier spacing, Tsym = ∆−1
f is the OFDM symbol

duration and TCP is the cyclic prefix length.
All filtering effects in the transmitter and receiver radio frequency (RF)

front-ends are modelled together by a linear time-invariant (LTI) filter with
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impulse response c(τ). The wireless channel is assumed to be constant for
the duration of an OFDM symbol, an assumption known as block fading. The
wireless channel is also modelled as an LTI filter with impulse response h(τ).
A common assumption in OFDM system design is that the compound re-
sponse of these two filters has excess delay no larger than TCP, i.e., that

(c ∗ h)(τ) = 0 for τ /∈ [0; TCP], (3.2)

where ∗ denotes convolution. The signal at the output of the receiver RF
front-end then reads1

r(t) = (c ∗ h ∗ s)(t) + w(t), (3.3)

where w(t) is a noise process. The receiver samples r(t), removes the cyclic
prefix and calculates the discrete Fourier transform to obtain the observed
vector ỹ. It can be shown [115] that

ỹ = XCh + w̃, (3.4)

where w̃ is a noise vector and X contains the symbols {xn} on the diagonal
and zeros elsewhere. The matrix C = diag(c) is diagonal with the entries of
c on the diagonal. The vectors h and c contain the frequency response of the
filters h(τ) and c(τ) at the subcarrier frequencies. Specifically, the entries of
h are samples of the (continuous) Fourier transform H( f ) of h(τ):

hn = H(n∆ f ) =
∫ Tsym

0
h(τ) exp(−j2π∆ f nτ)dτ, n = 0, . . . , N − 1. (3.5)

A similar definition holds for c.
It is commonly assumed that the RF front-ends have constant response

within the system bandwidth, such that C = I. This is supported by the fact
that some guard subcarriers are left unused at the edge of the transmission
bandwidth, thus lessening the design criteria of the bandlimiting filters in
the transmitter and receiver [115]. Here we make the weaker assumption
that C is known a priori. It is not currently clear in the literature if the
assumption C = I is appropriate when designing systems with parametric
channel estimation and, if not, how an estimate of C should be obtained. We
envision that it could be obtained through a calibration procedure, but this
question falls outside the scope of this work.

The receiver in an OFDM system makes inference about the information
communicated through {xn} from the observation ỹ. In order to do so, the
channel vector h must be estimated – a process called channel estimation. To

1We ignore numerous imperfections which exist and must be handled in wireless commu-
nication systems, such as (inter-symbol, inter-carrier, inter-cell) interference and (time-, phase-,
frequency-) synchronization offsets, etc.
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facilitate estimation of h a subset of the symbols {xn} are assigned as pilots.
This means that they are known a priori by both the transmitter and receiver.
Let P denote the indices of the pilots and let vP denote the vector composed
of the entries in vector v with indices in P . The channel estimator takes as
input the noisy observations of the compound channel frequency response at
the pilot subcarriers,

y = (X−1C−1ỹ)P = hP + wP , (3.6)

where w = X−1C−1w̃. We make the assumption that w is a vector of white,
zero-mean complex Gaussian noise with entrywise variance σ2. That is a
reasonable assumption when both the pilot symbols (that are found in X)
and the entries on the diagonal of C have approximately constant magnitude
across the subcarriers.

3.3 Linear Minimum Mean-Square Error Channel
Estimation

The usual approach in wireless receivers is to use a linear minimum mean-
square error (LMMSE) estimator of h based on y. Assuming that h has zero
mean (as is the case in practically all channel models), the LMMSE estimator
reads

ĥLMMSE = Σ ·,P
(

ΣP ,P + σ2I
)−1

y, (3.7)

where Σ = E
[
hhH] is the covariance matrix of h. Here ΣP ,P denotes rows

and columns selected according to the index set P and “·” denotes all rows
or columns.

Such an LMMSE estimator essentially interpolates the remaining entries
of h from noisy observations of hP . It can meaningfully do so if a Nyquist
sampling criterion2 is fulfilled, that is when the Fourier transform of h has
limited support. The assumption of excess delay limited to TCP in (3.2) pro-
vides such a Nyquist sampling criterion. If the indices in P are equispaced
and differ by ∆P the Nyquist criterion is fulfilled when

∆ f ∆PTCP < 1. (3.8)

Many communication standards operate far from this boundary to increase
resilience to noise. As an example in the 3GPP LTE specification [116] the
criterion is ∆P < 12.8 in normal operation, but the system uses ∆P = 6.

2The role of time and frequency is swapped from the usual definition of the Nyquist sampling
theorem.
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The estimation accuracy of the LMMSE estimator depends crucially on
the assumed covariance matrix Σ. The choice of this covariance matrix is
not straightforward as statistical information about the current propagation
channel must be available to calculate it. We now discuss how it can be
estimated using parametric channel estimation.

3.4 Parametric Channel Estimation

To characterize the channel covariance matrix we start with a fairly general
stochastic model of the wireless channel. In this model the impulse response
h(τ) is drawn from a zero-mean stochastic process with autocorrelation func-
tion

R(τ, τ′) = ρ(τ)δ(τ − τ′). (3.9)

Channels of this form are usually referred to as uncorrelated scattering chan-
nels. The function ρ(τ) is known as the power-delay profile (PDP) and it speci-
fies the second-order statistics of the channel impulse response.

Recall that the channel vector h contains samples of the Fourier trans-
form H( f ) of h(τ). It is fairly easy to show that (3.9) implies that H( f ) is a
wide-sense stationary random process. This in turn implies that the channel
covariance matrix Σ = E

[
hhH] is Toeplitz. For simplicity it is assumed in the

following that h has a complex Gaussian distribution.
We now assume that Σ has low rank3 (or at least that it is well approxi-

mated by a low rank matrix). Edfors et al. [117] make the same assumption.
We discuss it in further detail in Sec. 3.5. The parametric channel estimator
proceeds as informally described here:

1. Find a low-rank Toeplitz covariance matrix Σ that is consistent with the obser-
vation y.

2. Use this covariance matrix to obtain an estimate of the channel vector h.

3.4.1 Solution via Line Spectral Estimation

Recall from Sec. 2.3.4 that LSE algorithms actually solve the problem in Step
1 of the parametric channel estimator. This link explains the name “parame-
tric”. We find the connection between Step 1 and LSE to be very important
and now explore it in more detail.

Denote the rank of Σ as L and assume L < N (that follows from the low-
rank assumption). Then according to the Caratheódory parameterization of

3This implies that we allow the distribution of h to be degenerate, i.e., the set of possible
outcomes of h is a subspace of CN .
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the channel covariance matrix, it can be uniquely decomposed as (see (2.20))4

Σ = Ψ(τ)ΓΨH(τ), (3.10)

where the matrix Ψ(τ) ∈ CN×L has entries (Ψ(τ))n,l = exp(−j2π∆ f nτl) for
n = 0, . . . , N − 1, l = 0, . . . , L − 1. The number L denotes the number of
virtual multipath components. The vector τ ∈ RL contains the virtual multipath
delays and Γ = diag(γ) where γ ∈ RL is a vector of virtual multipath powers.
Note that 0 ≤ τl < ∆−1

f and γl > 0 for l = 0, . . . , L− 1.
The above implies that there is a one-to-one mapping between the Toeplitz

matrix Σ and the set of parameters (L, τ, γ). So we can replace estimation of
the low-rank Toeplitz covariance matrix with estimation of (L, τ, γ). It also
means that h lies in the subspace spanned by the columns of Ψ(τ) and it can
be written as

h = Ψ(τ)α. (3.11)

for some α ∈ CL. In fact, α is a zero-mean random vector with covariance
matrix Γ.

The equation (3.11) shows that h is a line spectral signal. Recall that our
observations are of the form (3.6). Inserting (3.11) into (3.6) we get

y = ΨP ,·(τ)α + wP . (3.12)

The estimation of τ and γ from y is then an LSE problem, cf. (2.1).
Denote the obtained estimates as L̂, τ̂ and γ̂. The channel vector can then

be estimated in (at least) two different ways: 1) by inserting (L̂, τ̂, γ̂) into
(3.10) to obtain an estimate of the channel covariance matrix Σ. This estimate
can then be used in the LMMSE estimator (3.7); 2) by using the estimated
variances γ̂ and the model (3.12) to obtain the LMMSE estimate5 α̂ of α.
Insert the estimate α̂ into (3.11). Since the LMMSE estimator commutes over
the linear transformation Ψ(τ̂) [118, p. 349] these two approaches give the
same result, namely

ĥparam = Ψ(τ̂)
(

ΨH
P ,·(τ̂)ΨP ,·(τ̂) + σ2Γ̂−1

)−1
ΨH
P ,·(τ̂)y. (3.13)

This also make the link between parametric and LMMSE channel estimation
clear: The former is a method to obtain a covariance matrix for use in the
latter.

4We have reparameterized the matrix A( f ) in (2.20) to the form Ψ(τ) as it simplifies the
relation to the model (3.14) introduced in Sec. 3.4.2

5The majority of the literature on parametric channel estimation uses a least-squares estimate
of the coefficients in α. We here instead use the LMMSE estimator as it provides a natural link
to (3.7). This difference in approach from the literature is minor and has no practical effect.
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3.4.2 Detour: The Usual Model

In the previous section we obtained a parametric channel estimator by as-
suming that the channel covariance matrix Σ is low-rank. In the literature
on parametric channel estimation [11, 13, 119, 120] and also in Paper A the
parametric channel model is derived from another assumption. Specifically it
is assumed that the wireless channel is composed of multiple distinct propa-
gation paths, each with their own multipath delay and multipath coefficient.
Such a model follows intuitively when we think of the wireless channel as
depicted in Fig. 3.1. This is mathematically modelled by the following para-
metric description of the channel impulse response:

h(τ) =
L̃−1

∑
l=0

α̃lδ(τ − τ̃l), (3.14)

Here, L̃ is the number of multipath components. The lth multipath coeffi-
cient is denoted as α̃l ∈ C with corresponding multipath delay τ̃l ∈ R. It is
assumed that α̃l is zero-mean complex Gaussian with variance γ̃l and that α̃l
is independent of α̃k for k 6= l. This model fulfills the uncorrelated scattering
assumption and it is a special case of the model (3.9).

Taking the Fourier transform (3.5) of (3.14) we recover a model for h of
the form (3.11) (with (τ, α) replaced by (τ̃, α̃)). Under this model the vector h
is also a zero-mean complex Gaussian vector with covariance matrix having
the form in (3.10) (with (τ, γ) replaced by (τ̃, γ̃)).

By identifying the values (L̃, τ̃, γ̃, α̃) with (L, τ, γ, α) it is seen that we
can obtain the parametric channel estimator by either assuming the low-rank
model associated with (3.9) or the model in (3.14). The former is actually a
generalization of the latter and it encompasses a much wider class of channels
(the model (3.14) is obtained by letting ρ(τ) be a sum of Dirac delta functions
in (3.9)). We have found it to be much more instructive to think in terms of
the low-rank model due to the following shortcoming of the model (3.14).

Cluster Model of the Channel Impulse Response

If parametric channel estimation is obtained from (3.14) the number of pa-
rameters to be estimated is proportional to L̃ and it is assumed that L̃ is small
(relative to N). There are a few examples of channels where such a criterion
may be fulfilled, for example in underwater acoustic communications [121].
It is, however, broadly accepted that such a criterion is not fulfilled for wire-
less channels in general [11, 119, 122]. This means that the model (3.14) in
many cases is invalid in practice. That issue is often circumvented with the
argument that each of the terms in the sum (3.14) actually represents a clus-
ter of multipath components [11, 119]. In this view each cluster consists of
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a large number of paths with approximately the same delay. The number L̃
then signifies the number of clusters and it may realistically be small.

The argumentation based on clusters has some shortcomings. It is not
clear how similar the delays of the multipath components must be for them
to belong to the same cluster. If this “cluster width” is selected too large, the
use of a Dirac delta function in (3.14) becomes increasingly inaccurate, while
a smaller cluster width leads to larger values of L̃. As a result it is not clear
which value L̃ takes even if a particular realization of the wireless channel
impulse response is provided.

Benefits of the Low-rank Viewpoint

Conversely, with the low-rank approach to obtain the parametric channel
estimator we do not need to make such arguments based on clusters. In this
view the rank of Σ directly gives the channel degrees of freedom (DoF). The
DoF is oftentimes introduced with heuristic arguments based on the channel
impulse response (see [11, 123]). In many ways the low-rank viewpoint gives
a rigorous approach that can replace the heuristic description of the channel
DoF via a cluster view of the model (3.14). In those cases where the wireless
channel is composed of such clusters, the channel covariance matrix is indeed
low rank for all practical purposes, as demonstrated in Sec. 3.5.

We also note that by considering the parametric channel estimator as an
approach to estimate a low-rank covariance matrix, the estimates (L̂, τ̂, γ̂)
can be interpreted as the parameters of a virtual channel impulse response
of the form (3.14) which is valid within the bandwidth of the communication
system. That follows immediately from the decomposition (3.10).

3.5 The Rank of the Channel Covariance Matrix

We still have not discussed whether the channel covariance matrix ever has
low rank and, if so, under which propagation conditions this is the case.
Edfors et al. [117] show that it is (under their modelling assumptions) and we
here conduct a numerical study to investigate some further details.

3.5.1 Setup

The channel covariance matrix and the PDP are intimately connected: The
channel covariance matrix is Hermitian Toeplitz with the autocorrelation se-
quence of the channel vector h as the first row (the first row specifies the
whole covariance matrix). This autocorrelation sequence is obtained by sam-
pling the Fourier transform of the PDP. To discuss the properties of the chan-
nel covariance matrix we must be very specific with respect to which area
(of movement of transmitter, receiver and other objects in the environment)
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the expectation that appears in the PDP is taken over. That is important
because it affects the amount of variation that is seen in the (temporal) dis-
persion profile of the channel. A clear specification of which type of PDP is
considered is not generally seen in the literature, something we find to be
a significant shortcoming. We consider three different specifications of the
PDP, depending on how strong statistical assumptions are made:

• Robust PDP [117]: This is the most general specification of the PDP
which makes the weakest assumptions regarding the channel. Specifi-
cally, in the spirit of (3.2), it is only assumed that the PDP is constant on
the interval [0, TCP] and zero outside this interval. This PDP is useful
when the receiver has no knowledge about the propagation environ-
ment. One may say that there are no limitations on the area over which
the entities (transmitter, receiver and other objects in the environment)
may move.

• Global PDP [124]: Here it is assumed that the general propagation en-
vironment is known. It could for example be known that the propaga-
tion environment is an urban macro cell. The entities may move freely
within this environment. If the channel model takes the form (3.14),
this corresponds to stochastic coefficients {αl} and delays {τl}. In other
words objects move such that the delay incidence pattern changes.

• Local PDP [124]: We finally consider a local PDP, where the entities
move over such small areas, that the delay incidence pattern is un-
changed. This means that the radius of movement is much smaller
than the distance the radio waves travel in the timespan of one delay
resolution bin. These radii must thus be much smaller than c

N∆ f
, where

c is the speed of light. If the channel model takes the form (3.14), this
corresponds to stochastic coefficients {αl} and fixed, deterministic de-
lays {τl}. The covariance matrix estimated by the parametric channel
estimator corresponds to a local PDP.

To gain some insight into the behaviour of the channel covariance matrix,
we perform a numerical investigation of its rank under two different propa-
gation scenarios with different channel models. These are the same scenarios
that are considered in Paper A and we refer to that paper for further details.
Here is a short summary of the channel models and system parameters:

• Scenario A: Uses the ITU-R M.2135 UMa NLOS channel model [125].
An OFDM system with N = 1024 subcarriers, subcarrier spacing ∆ f =
25 kHz and cyclic prefix length TCP = 5200 ns is considered.

• Scenario B: Uses the IEEE 802.15.a Outdoor NLOS channel model [126].
An OFDM system with N = 1024 subcarriers, subcarrier spacing ∆ f =
250 kHz and cyclic prefix length TCP = 800 ns is considered.
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While both of these scenarios use a channel model of the form (3.14), only
that in Scenario A has relatively small L. In Scenario B the value of L is so
large that we cannot hope to estimate each of the multipath components with
the parametric channel estimator.

3.5.2 Power-Delay Profiles and Eigenvalues

In Figs. 3.2 and 3.3 two realizations of the local PDP are shown alongside the
global and robust PDPs, for Scenario A and B, respectively. As a first obser-
vation, note how the effective support of the PDP (interval of delays where
it has significant power) becomes smaller as stronger statistical assumptions
are made. This means that the channel effectively has few DoFs and it is this
property we seek to exploit to increase channel estimation accuracy.

From each of the PDPs a corresponding frequency-domain autocorrela-
tion function can be calculated (using the Wiener-Khinchin theorem). Form-
ing a Toeplitz matrix from the autocorrelation function gives the correspond-
ing channel covariance matrix. We denote the covariance matrices corre-
sponding to the three PDP assumptions as Σrobust, Σglobal and Σlocal. Fig. 3.4
depicts the sorted eigenvalues of these matrices in both Scenario A and Sce-
nario B. Only up to the first 150 (Scenario A) or 250 (Scenario B) eigenvalues
are shown out of the total number N = 1024 of eigenvalues. Notice how
most of the eigenvalues are very small. This is again an indication that the
channel vector h effectively lies in a low-dimensional space.

It is also clear that while most of the eigenvalues are small, they are not
exactly zero (this not due to numerical precision). We therefore define a
method to neglect small eigenvalues which do not represent significant sig-
nal power. For that purpose the eigenvalues are normalized such that their
average value is 1. The eigenvalues below 10−4 are then set to zero. This
means that whenever the SNR is significantly below 40 dB, the removed sig-
nal power is neglectable in comparison to the noise power. Even in perfect
conditions wireless communication systems practically always operate sig-
nificantly below 40 dB SNR. For that reason we find this to be a conservative
approach to thresholding the eigenvalues. Taking the resulting number of
non-zero eigenvalues gives an effective rank. In the following we refer to this
effective rank simply as the rank.

3.5.3 Rank and Mean-Square Error

The distribution of the rank of Σlocal is investigated in Fig. 3.5 for both Sce-
nario A and B. It is presented as the empirical cumulative distribution func-
tion (CDF) obtained based on multiple realizations of the local PDP. In Ta-
ble 3.1 the corresponding ranks are given for the channel covariance matrices
Σrobust and Σglobal.
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Fig. 3.2: Power-delay profiles in Scenario A. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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Fig. 3.3: Power-delay profiles in Scenario B. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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Fig. 3.4: Sorted eigenvalues of the channel covariance matrices in Scenario A (left) and Scenario
B (right). The two realizations of Σlocal are computed from the local PDPs depicted in Figs. 3.2
and 3.3.
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Fig. 3.5: Empirical CDFs of rank of Σlocal when a threshold is applied to the eigenvalues. The
plot is obtained by estimating the CDF from 1, 000 realizations of the local PDP in each of the
scenarios.

Rank of Σrobust Rank of Σglobal N∆ f TCP

Scenario A 141 139 133
Scenario B 213 147 205

Table 3.1: Rank of the covariance matrices generated from the robust and global PDPs. The
smallest eigenvalues are set to zero such that up to −40 dB of the signal power is removed.

We first note that the rank of Σrobust is very close to N∆ f TCP. This fact
is clear from the following intuition: (N∆ f )

−1 is the width of the delay res-
olution bins associated to the periodogram. The number N∆ f TCP then gives
how many delay resolution bins the robust PDP is spanning over. This is
approximately equal to the channel DoF associated to the robust PDP and
therefore roughly coincides with the rank of Σrobust.

The rank is a measure of the channel DoF. Recall that the parametric chan-
nel estimator effectively is an approach for obtaining a covariance matrix for
use in a LMMSE channel estimator. The rank of this covariance matrix gives
the dimension of a subspace of which the channel vector h is assumed to be
an element. The lower the dimension of this subspace is, the better estima-
tion accuracy can be expected. The parametric channel estimator estimates
Σlocal and we wish to compare this estimator to an LMMSE estimator which
knowns either Σglobal or Σrobust.

To do that we depict in Fig. 3.6 the normalized mean-square error (NMSE)
that is achieved by the LMMSE estimator of h (3.7) when using different co-
variance matrices. The NMSE depicted in Fig. 3.6 is obtained as a Monte
Carlo simulation over channel realizations. In each trial a realization of Σlocal
is obtained from the channel model. In the channel models we use here it
follows that h is a zero-mean complex Gaussian random vector with covari-
ance matrix Σlocal. Let’s say that noisy observations at the pilot subcarriers
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Fig. 3.6: NMSE of the estimator (3.7) when using different channel covariance matrices. Both Sce-
nario A (left) and Scenario B (right) are considered. Results are averaged over 1, 000 realizations
of Σlocal. See the text for details.

are available of the form (3.6). The noise variance σ2 is selected according to
the SNR under consideration with the signal power given by the average of
the diagonal of Σlocal. The set of pilot subcarrier indices P is selected to be
equispaced with ∆P = 4. The LMMSE estimator of the vector h (both data
and pilot subcarriers) using different covariance matrices is then considered.
Specifically, three estimators are obtained by inserting Σrobust, Σglobal and the
rank-truncated version of Σlocal into (3.7). The NMSE of each of these three
estimators can be calculated in closed form based on the true covariance ma-
trix Σlocal (which has not been rank truncated). The normalization is relative
to the signal power given by the trace of Σlocal. The NMSE values depicted in
Fig. 3.6 are averaged over 1, 000 realizations of Σlocal.

We first consider Scenario A. In this case Σlocal has significantly lower rank
than both Σglobal and Σrobust (Fig. 3.5 and Table 3.1). This is not surprising
since the channel model in Scenario A is truly specular, i.e., it has the form
(3.14) with L relatively small (Fig. 3.2). This means that we expect the pa-
rametric channel estimator to perform significantly better than the LMMSE
estimator, which is also confirmed by Fig. 3.6 and the simulation results in
Paper A.

In Scenario B the rank of Σlocal is only marginally smaller than the rank
of Σglobal (Fig. 3.5 and Table 3.1) and so we do not expect that a parametric
channel estimator can give a significant improvement in estimation accuracy
over an LMMSE estimator which knows Σglobal. However, an improvement
over an LMMSE estimator which uses Σrobust is expected. These statements
are again confirmed by Fig. 3.6 and the simulation results in Paper A.

3.5.4 Summary

In conclusion, we can see that the above formalism based on the rank of
the channel covariance matrix gives a good understanding of the applica-

35



Chapter 3. Application to Wireless Channel Estimation

bility and behaviour of the parametric channel estimator in comparison to
an LMMSE estimator. It is clear that the prior knowledge available to the
LMMSE estimator through the covariance matrix is of crucial importance to
its performance.

Clearly we have assumed that the parametric channel estimator can per-
fectly estimate Σlocal. That is not the case in practice and so the above consid-
erations are to be understood as the best possible performance one can obtain
with a parametric channel estimator. From the simulation results of Paper A
it seems that the parametric channel estimator is able to obtain a reasonably
accurate estimate of Σlocal though.

The above discussion is based on a numerical investigation of the co-
variance matrices which are generated from two different channel models.
Transposition of the drawn conclusions to real channels thus stands on the
assumption that these models accurately reflect the behaviour of the rank of
the covariance matrix rank of these real channels. That is not necessarily the
case because the channel models have not been devised with this purpose in
mind. It would be interesting to investigate the channel covariance matrix
and its rank directly based on a set of measurements, but that falls outside
the scope of this work.
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Chapter 4

Contributions & Outlook

4.1 Contributions

The overall theme of this thesis is the design of algorithms for sparsity-based
LSE. We pay particular attention to the design of algorithms that are prac-
tically applicable. This for example means that the algorithms we design
inherently can estimate nuisance parameters such as the noise variance. It
also means that there is a strong focus on reducing the computational com-
plexity of the algorithms. We further demonstrate how sparsity-based LSE
algorithms can be incorporated into larger inference frameworks by consider-
ing their use for parametric channel estimation in an iterative receiver design.

In this section we give a short summary of each of the papers in the thesis
and the main contributions and findings of the papers are discussed.

Paper A: In view of the discussion in Chapter 3, it is clear that the parametric
approach provides a way to obtain channel estimators with high estimation
accuracy. Another very powerful approach to increasing channel estimation
accuracy is via joint channel estimation and decoding schemes. In this paper
the simultaneous application of these two ideas for wireless receiver design is
investigated. Special attention is paid to rigorous methodologies for the de-
sign of such receiver algorithms. The Bayesian method for sparsity-based LSE
is used to obtain the parametric channel estimator. It is shown that a mean-
field implementation of this channel estimator can naturally be merged with
belief propagation decoding in a variational Bayesian inference framework.

The proposed receiver algorithm is assessed using an extensive numerical
evaluation. It is shown that the proposed algorithm indeed increases the
channel estimation accuracy in comparison to a selection of state-of-the-art
joint channel estimation and decoding algorithms. It is also demonstrated
that the proposed receiver design can have lower bit-error rate (BER) than the

37



Chapter 4. Contributions & Outlook

baseline algorithms in scenarios with high SNR and large modulation orders.
Further, the proposed design may allow for the number of pilot signals to be
lowered (compared to the baseline algorithms) without incurring an increase
in BER.

Paper B: In the application of LSE for parametric channel estimation in a
receiver (Paper A) it is observed that the high computational complexity of
the algorithm precludes it from implementation in an actual wireless com-
munication system. Motivated by this limitation we study the computational
complexity of LSE algorithms in a general setting in Paper B. The Bayesian
method for sparsity-based LSE is investigated and it is shown that an algo-
rithm with low computational complexity can be obtained by appropriately
formulating an inference scheme using the Bernoulli-Gaussian prior model.
At the core of the algorithm lies a so-called superfast method (specifically the
generalized Schur algorithm) for decomposing the inverse of a Hermitian
Toeplitz covariance matrix along with a non-uniform fast Fourier transform.

The asymptotic per-iteration computational complexity of the obtained al-
gorithm scales as O(N log2 N) in the problem size N. That is a significant im-
provement over the O(N3) scaling of most of the state-of-the-art algorithms.
The proposed algorithm is also shown to outperform the selected baseline
algorithms in terms successful recovery of the line spectral frequencies.

Paper C: In this paper we consider the numerical solution of the convex
optimization problem that appears in atomic norm soft thresholding (AST).
Not surprisingly, this optimization problem has some of the same Toeplitz
structure that is exploited in the superfast LSE algorithm of Paper B. We
investigate how this structure can be exploited to obtain a fast algorithm for
solving AST.

Since AST is a convex optimization problem this work takes quite a dif-
ferent approach to algorithm design than Paper B. Specifically we propose a
novel primal-dual interior point method (IPM) to solve this problem. AST is
usually formulated as a semidefinite programming problem, but that form
precludes the derivation of a fast primal-dual IPM due to the presence of
O(N2) dual variables. We show that by reformulating AST as a non-symme-
tric conic programming problem only O(N) dual variables are needed. The
problem structure in the conic formulation depends crucially on a non-self-
dual convex cone. The derivation of the primal-dual IPM involves an analysis
of the dual of this cone. Specifically we show how membership of the dual
cone can approximately be determined in a fast manner.

A numerical investigation shows that the proposed primal-dual IPM ac-
curately solves AST and that it does so much faster than any other known
method.
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4.2 Outlook

Algorithmic Aspects

This thesis provides a selection of highly accurate sparsity-based LSE algo-
rithms that have low computational complexity. In particular, they are able to
tackle very large estimation problems with only small execution times. The
superfast LSE algorithm in Paper B can for example handle a signal of length
N = 16, 384 in less than 10 s on an average laptop. This significant reduc-
tion in estimation time when compared to state-of-the-art methods extends
the scope of problems for which it is practically feasible to employ sparsity-
based LSE.

From an algorithmic viewpoint there are a number of interesting exten-
sions. For the FastAST algorithm (Paper C) the extensions to incomplete
data [79] or multiple measurement vectors [127] appear fairly straightforward
(the superfast LSE algorithm of Paper B already incorporate these cases).
We also expect that the techniques used to obtain FastAST can be fruitfully
applied to a number of optimization problems involving related conic con-
straints, for example those listed in [128].

For both of the algorithms in Papers B and C a non-trivial extension is
to the multi-dimensional harmonic retrieval problem [129]. This extension
is non-trivial because the Toeplitz structure is replaced by a block-Toeplitz
structure. The work [130] may provide some helpful insights in this regard.

In Wireless Communication

While it is our hope that these fast algorithms will open applications in a
wide array of fields, we here mention a few examples in wireless commu-
nication. We have discussed the use of LSE algorithms for channel estima-
tion. In a search for higher data transmission rates, wireless systems tend
to utilize wider bandwidths of spectrum [131, 132]. For parametric channel
estimators that trend translates into LSE problems of larger dimensions that
must be solved. Wireless receivers are embedded real-time systems and only
very limited computational resources are available for the channel estimation
task. The reduction in computational requirements is therefore crucial to the
practical use of parametric channel estimators. The algorithms we have de-
veloped are therefore an important step towards the adoption of LSE in this
application.

We have introduced a low-rank formalism for understanding the applica-
bility of parametric channel estimation in channels that are not purely specu-
lar. The use of this formalism and its implications for channel modelling and
estimation is open to further enquiry.

Throughout the thesis we have used as a running example the application
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to parametric estimation of the delay-domain dispersion profile of a wire-
less channel. We have not discussed the related application to parametric
estimation of the angular-domain dispersion profile that arises when multi-
antenna systems are considered. The algorithms and the low-rank formalism
of this thesis have a similar application here. The low-complexity algorithms
may prove important in this application when considering so-called massive-
MIMO systems that are envisioned to employ a very large number of anten-
nas [133–135] (albeit there is a long way to N = 16, 384 antennas).
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A.1. Introduction

Abstract

In this work we design a receiver based on the turbo principle in the sense that it
iterates between channel estimation and data decoding. The receiver incorporates
sparsity-based parametric channel estimation. State-of-the-art sparsity-based turbo
receivers simplify the channel estimation problem by restricting the multipath delays
to a grid. Our receiver does not impose such a restriction. As a result it does
not suffer from the leakage effect, which destroys sparsity. Communication at near
capacity rates in high SNR requires a large modulation order. Due to the close
proximity of modulation symbols in such systems, the grid-based approximation is of
insufficient accuracy. We show numerically that a state-of-the-art turbo receiver with
grid-based sparse channel estimation exhibits a bit error rate floor in the high SNR
regime. On the contrary, our receiver performs very close to the “perfect channel
state information bound” for all SNR values. We also demonstrate that our receiver
design works well in diffuse channels, i.e., when the number of multipath components
is large and each individual component cannot be resolved.

A.1 Introduction

Achieving high data-rate wireless communication with large spectral effi-
ciency requires the use of higher-order modulation formats, e.g. up to 256-
QAM in 3GPP LTE [1]. Clearly using a high modulation order presuppose
a large signal-to-noise ratio (SNR), which will be supported by the envi-
sioned transition to small-cell operation. The availability of channel estima-
tion schemes which achieve high accuracy is crucial for receivers of systems
with large modulation order operating in the high-SNR regime.

To facilitate channel estimation, current systems embed pilot symbols
into the transmitted signal. In orthogonal frequency-division multiplexing
(OFDM) systems, a number of subcarriers are assigned to transmit pilot sym-
bols. The number of pilots is chosen to optimize throughput as a trade-off
between the amount of bandwidth and power allocated to pilot transmission
and fidelity of the channel estimate.

In this work we seek to improve upon this trade-off by designing a highly
accurate channel estimator while requiring a low pilot overhead. We propose
a unified receiver design that incorporates two main ideas: a) turbo architec-
ture and b) sparsity-based parametric channel estimation.

A.1.1 Turbo Receiver Design

Classical receiver design employs a functional splitting of the process in the
receiver into independent subtasks, as illustrated in Fig. A.1. Such a structure
is suboptimal, since the information learned from the received signal in any
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Fig. A.1: Flowchart of classical receiver design.

of the subtasks is only utilized in subsequent subtasks. To remedy this sub-
optimality feedback loops can be introduced between the functional blocks
in the receiver. This approach is known as the turbo principle [2, 3] due to its
resemblance to iterative decoding of turbo codes.

Application of the turbo principle has lead to many iterative receiver de-
signs, e.g. [2–4]. Common to these works is that each of the subtasks are
designed independently using traditional methods such as maximum like-
lihood (ML), maximum a-posteriori probability (MAP) or minimum mean
squared error (MMSE). The work [5] introduced receiver design from the per-
spective of inference in a factor graph. This allows for the receiver subtasks to
be designed jointly with a certain objective in mind; a common example is to
seek the MAP estimate of the information bits. Due to tractability and com-
putational constraints, approximate inference methods must be employed for
turbo receiver design. Examples of such methods are expectation propaga-
tion [6], belief propagation (BP) with approximated messages [7], combined
BP and mean-field (MF) [8, 9], relaxed BP [10] and generalized approximate
message-passing (GAMP) [11].

A.1.2 Parametric Channel Estimation

The compound channel impulse response (CIR) is often modelled as a sum
of distinct multipath components:

h(τ) =
L

∑
l=1

αlc(τ − τl), (A.1)

where c(τ) denotes the combined impulse response of the filters in the trans-
mitter and receiver RF front-ends. Here, L is the number of multipath com-
ponents. The lth channel multipath coefficient is denoted as αl ∈ C with
corresponding multipath delay τl ∈ R. We refer to propagation channels
with a small number of multipath components L as specular. In this case
the model (A.1) is parsimonious and it is advantageous to perform channel
estimation by estimating the parameters of this model, i.e., estimating L, αl
and τl for l = 1, . . . , L. We refer to this approach as parametric channel esti-
mation. We note that in this paper the specular channel assumption is used
only for deriving our algorithm. The numerical investigation is conducted
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using standardized and widely recognized channel models [12, 13]. It shows
that parametric channel estimation works well even for diffuse channels, i.e.,
when the number of multipath components is large, such that each individ-
ual component cannot be resolved. As detailed in Sec. A.5, our approach
performs well in this case by estimating a parsimonious representation of the
channel frequency response (CFR) based on the model (A.1) which is valid
within the system bandwidth.

Early works on parametric channel estimation address applications to
underwater communications [14] and ultra-wideband (UWB) communica-
tions [15, 16]. Another classical example is the rake receiver [17]. All of these
older works assume that the number of multipath components L is known a
priori or use heuristics to estimate it.

A sparsity-based (or compressed sensing-based) approach can be used to
allow for inherent estimation of the number of multipath components. Most
literature on sparsity-based channel estimation [18–24] employs a grid-based
approximation of the CIR model (A.1), where the multipath delays are con-
fined to a discrete set of possible values. When a baud-spaced grid1 is used,
we refer to the samples of the CIR (A.1) as channel taps. The grid-based
approximation results in a leakage effect [21, 25] and the vector of channel
taps is therefore only approximately sparse [11, 23, 24]. We demonstrate in
our numerical investigation that the grid-based approximation impairs the
performance of receivers for OFDM systems with large modulation order
operating in the high-SNR regime. From a compressed sensing point of view
the effect of the grid-based approximation can be understood as a basis mis-
match [26].

Recent works on off-grid compressed sensing have proposed methods that
could in principle be applied to sparsity-based channel estimation without
resorting to the grid approximation. These are based on atomic-norm mini-
mization [27–29], finite rate of innovation [30] or Bayesian inference [31–34].
While all these methods show good performance, the former two cannot eas-
ily be incorporated in a turbo receiver. In this paper we show how sparsity-
based parametric channel estimation can be incorporated in a turbo receiver
by using approximate Bayesian inference. Our channel estimation scheme
is sparsity-based in the sense that a sparsity-promoting prior model is used
to achieve inherent estimation of the number of multipath components (the
vector z associated with (A.8) is sparse) and it is parametric in the sense that
a parametric channel model is used to design the channel estimator.

1In the baud-spaced grid, the distance between adjacent grid points is the reciprocal of the
system bandwidth.
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A.1.3 Prior Art

Several prior works incorporate sparsity-based channel estimation in a turbo
receiver. Prasad et. al. [23, 24] propose a joint sparse channel estimation
and detection scheme for OFDM transmission. Channel decoding is not con-
sidered in the joint processing and the EM algorithm is used for channel
inference. A baud-spaced grid is used.

Turbo receiver design for OFDM systems via GAMP and relaxed BP is
proposed by Schniter in [10, 11]. The estimated multipath delays are re-
stricted to the baud-spaced grid. In the numerical evaluation of [10] the CIRs
fulfill this restriction, thus avoiding the leakage effect at the expense of in-
troducing an unrealistic channel model. In [11] a channel model generating
continuous-valued delays is assumed. It is shown that the channel taps follow
a super-Gaussian density which is modelled via a two-component Gaussian
mixture. Due to the baud-spaced grid the channel taps are correlated, which
is mimicked with a hidden Markov model. The resulting model has a large
number of parameters to be estimated, which cause systems with high-order
odulation format to exhibit a bit error rate (BER) floor when operating in the
high-SNR regime (see Sec A.5).

The problem of parametric channel estimation based only on pilots or in
the contrived case when the data symbols are given is equivalent to that of
line spectral estimation [22]. The work [32] proposes a variational Bayesian
approach to line spectral estimation. It is shown that the Bernoulli-Gaussian
prior [35] is a powerful and tractable sparsity-inducing model. Our sparsity-
based parametric channel estimator is inspired by [32] and uses the Bernoulli-
Gaussian prior model too. It differs from [32] in several aspects: a) at the data
subcarriers the observations are modulated with the unknown data symbols,
b) we impose that the estimate of the posterior probability density function
(pdf) of the multipath coefficients factorizes and c) to reduce computational
complexity we use a point estimate of the multipath delays.2

A.1.4 Contributions

The contributions of this paper are as follows:

1. We propose a method to incorporate sparsity-based parametric channel
estimation into a turbo receiver. Specifically we use the combined BP
and MF (BP-MF) framework [8] to derive such a turbo receiver within
a unified framework.

2. We show (numerically) that turbo-receivers for OFDM with high mod-
ulation order exhibit an error floor in the high-SNR regime when they

2By contrast, the scheme in [32] applied in our context computes estimates of the posterior
distribution of the delays.
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employ state-of-the-art sparse channel estimation based on the baud-
spaced grid approximation. Our turbo receiver design demonstrates
how this error floor can be avoided.

3. Our algorithm development demonstrates how the BP-MF framework
can be modified to provide approximate ML estimation of model pa-
rameters and how some latent variables can be estimated jointly to im-
prove convergence speed. We expect that these approaches will prove
useful in other applications of BP-MF.

Our receiver only uses a few parameters (specifically the noise variance and
the two parameters of the Bernoulli-Gaussian prior model, sparsity level
ρ and multipath coefficient variance η) to describe the statistical proper-
ties of the wireless channel and these are inherently estimated by appro-
priately modifying BP-MF. This is in contrast to, for example, the linear
MMSE (LMMSE) channel estimators, which require a-priori specification of
the second-order statistics of the channel transfer function [4, 36], and the
GAMP receiver [10], which relies on the second-order statistics of the chan-
nel taps and the transition probabilities of the hidden Markov model.

A.1.5 Notation and Outline

We denote column vectors as a and matrices as A. Transposition is denoted
as (·)T and conjugate (Hermitian) transposition as (·)H. The scalar ai or [a]i
gives the ith entry of vector a, while aS gives a vector containing the entries
in a at the indices in the integer set S . The set difference operator S\{i}
gives the index set S with index i removed; we abuse notation slightly and
write S\i for short. The notation [A]i,k gives the (i, k)th element of matrix A.
We denote the vector a with the ith element removed as a\i and use a similar
notation for matrices with columns and/or rows removed (e.g. [A]i,\k for the
ith row with kth entry removed). The notation diag(a) denotes a matrix with
the entries of a on the diagonal and zeros elsewhere. The indicator function
1[·] gives 1 when the condition in the brackets is fulfilled and 0 otherwise. The
notation a ∝e b denotes exp(a) ∝ exp(b), which implies a = b + const. The
multivariate complex normal probability density function (pdf) is defined as

CN(x; µ, Σ) , π−dim(x)|Σ|−1 exp
(
−(x− µ)HΣ−1(x− µ)

)
The notation unif(x; 0, T) gives the continuous uniform pdf on the interval
[0, T] and Bern(x; ρ) gives the Bernoulli probability mass function (pmf) for
x ∈ {0, 1} with probability of success ρ. We use ∗ to denote convolution and
δ(·) and δ[·] to denote the Dirac and Kronecker delta, respectively.

The paper is structured as follows: In Section A.2 we specify the observa-
tion model. In Section A.3 our approach to approximate Bayesian inference is
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discussed. The inference algorithm is derived in detail in Section A.4. Section
A.5 presents the numerical evaluation. Conclusions are given in Section A.6.

A.2 Modelling

We consider data transmission using a single-input single-output OFDM sys-
tem. Since we do not exploit any structure between consecutive OFDM sym-
bols, we model the sequence of transmitted OFDM symbols to be indepen-
dent and identically distributed (i.i.d.). The OFDM system transmits P pilot
subcarriers and D data subcarriers, such that the total number of subcarriers
per symbol is N = P + D. The sets P and D give the indices of the pilot
and data subcarriers, respectively. It follows that D ∪ P = {1, . . . , N} and
D ∩P = ∅.

A.2.1 OFDM System

The K (equi-probable) information bits to be transmitted are stacked in vector
u ∈ {0, 1}K. These bits are coded by a rate R encoder and interleaved to
get the length-K/R vector c = C(u). The interleaving and coding function
C : {0, 1}K → {0, 1}K/R can represent any interleaver and coder, e.g. a turbo
[37], low-density parity check (LDPC) [38] or convolutional code. We split
c into subvectors c(i) ∈ {0, 1}Q, i ∈ D, such that c(i) contains the Q bits
that are mapped to the ith subcarrier. The complex symbols xi = M(c(i)),
i ∈ D, are obtained via the 2Q-ary mapping M : {0, 1}Q → AD ⊂ C, where
AD is the data symbol alphabet. The pilots are selected in the pilot symbol
alphabet AP ⊂ C. In OFDM, AD is typically a 2Q-ary quadrature amplitude
modulation (QAM) alphabet and AP a quadrature phase shift keying (QPSK)
alphabet. The pilot and data symbols are stacked in vector x. Vector xD
contains the data symbols and xP contains the pilot symbols. We make the
usual assumption in OFDM of time-limited CIR:

h(τ) = 0 for τ /∈ [0; TCP], (A.2)

where TCP is the cyclic prefix duration.
By the assumption in (A.2) the OFDM system operates without inter-

symbol interference, so we can consider a single OFDM symbol. The OFDM
transmitter emits the baseband signal

s(t) =

{
∑N

n=1 xn exp(j2π∆ f nt) t ∈ [−TCP; Tsym],
0 otherwise,

(A.3)

where ∆ f gives the subcarrier spacing and Tsym = ∆−1
f is the OFDM symbol
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length. The signal at the output of receiver RF front-end reads

r(t) = h(τ) ∗ s(t) + w̃(t), (A.4)

where w̃(t) is low-pass filtered white Gaussian noise. The receiver then sam-
ples r(t), removes the cyclic prefix and calculates the discrete Fourier trans-
form to obtain the observed vector y. The assumption in (A.2) ensures that
orthogonality of the subcarriers is preserved. It can be shown [39] that

y = Xh + w, (A.5)

where X = diag(x). The Gaussian noise vector w is assumed3 white with
component variance β. The vector h contains the CFR at the subcarrier fre-
quencies. Its entries are samples of the (continuous) Fourier transform of
h(τ):

hn =
∫ Tsym

0
h(τ) exp(−j2π∆ f nτ)dτ, n = 1, . . . , N. (A.6)

Now, rewrite (A.1) as a convolution, insert it into (A.6) and use the convolu-
tion theorem to get

h = CΨ(τ)α, (A.7)

where C is a diagonal matrix with its diagonal made of samples of the
Fourier transform of c(τ) at the subcarrier frequencies (i.e., the diagonal en-
tries have a form similar to (A.6)). The matrix Ψ(τ) ∈ CN×L has (n, l)th
entry exp(−j2π∆ f nτl), n = 1, . . . , N, l = 1, . . . , L. For ease of notation,
we define ψ(τl) as the lth column of Ψ(τ). We have stacked the channel
multipath coefficients and delays into vectors α = [α1, . . . , αL]

T ∈ CL and
τ = [τ1, . . . , τL]

T ∈ [0, TCP]
L. In the following we make the common assump-

tion that C = I, i.e., that the combined response of the transmit and receive
filters is flat over the system bandwidth. If this is not the case, the effects
of the filters can easily be included in the dictionary matrix Ψ(τ), as shown
in [40].

We recognize from (A.7) that h is a superposition of complex sinusoids.
Thus, given the data symbols in X, the estimation of L, α and τ reduces to an
instance of line spectral estimation.

A.2.2 The Specular Channel Assumption

We say that the wireless channel modelled by (A.1) is specular when L �
dTCPN∆ f e and roughly speaking the multipath components are well sepa-
rated.4 The criterion L � dTCPN∆ f e indicates that the number of compo-
nents is much smaller than the number of degrees of freedom [18] of the CFR

3This assumption is fulfilled when the filter in the receive RF front-end has constant frequency
response within the system bandwidth.

4“Well separated” is here meant relative to the inverse of the system bandwidth 1/(N∆ f ).
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Fig. A.2: Factor graph representation of the probabilistic model describing the complete OFDM
system and channel model. The shaded areas indicate multiple copies of the nodes, as specified
by the index sets. The vector of observations y is included with a dotted line because it is known
at the time of inference. Variables of which a point estimate is obtained (as opposed to a full
variational estimate of the posterior pdf) are represented by circles with dashed line. The vertical
dashed line shows the separation between the BP and MF subgraphs.

vector h under the assumption in (A.2). On the other hand, when the num-
ber of components is much larger than the number of degrees of freedom
(L � dTCPN∆ f e) or when they are located closely together, we refer to the
channel as diffuse.

Empirical evidence suggests that the wireless channel in some propaga-
tion environments is specular to a large degree. In practice, specular chan-
nels are composed of a small number of dominant multipath components
and a remaining part with power below the noise floor. Examples include
the ultra-wideband channels that are considered for 5G wireless communi-
cations [41, 42] and underwater acoustic channels [43]. See also [18, 44] and
references therein.

In this paper we derive a receiver based on the specular channel assump-
tion. This may seem like a very restricting assumption. However, as demon-
strated in Sec. A.5, our algorithm performs very well with diffuse channels.
In particular we perform numerical experiments with a channel where the
multipath components appear in clusters with many components in each
cluster (L � dTCPN∆ f e), such that the individual components in (A.1) can
no longer be resolved. In this case the specular channel assumption forces
the algorithm to find a parsimonious representation of the CFR within the
system bandwidth.

A.2.3 Probabilistic Model of the OFDM System

We are now ready to present a probabilistic model which describes the com-
plete OFDM system. The model expresses the joint probability of all variables
in the system as a product of factors. This factorization of the joint probabil-
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ity is represented as the factor graph depicted in Fig. A.2. In the following
we introduce the variables and factors in the factor graph, moving from right
to left.5

The interleaving, coding and modulation of the data bits are described in
Sec. A.2.1. The subgraph characterizing the system implementing these tasks
involves the factors

fuk (uk) , p(uk) = 0.5 1[uk∈{0,1}], k ∈ K,

fC(c, u) , p(c|u) = 1[c=C(u)],

fMi (xi, c(i)) , p(xi|c(i)) = 1[xi=M(c(i))], i ∈ D,

where K = {1, . . . , K} is the index set of the information bits. The factor
fC(c, u) describes the interleaving and channel coding processes. By “zoom-
ing in” this factor can be expanded to a subgraph involving auxiliary vari-
ables and factors which describe the structure of the channel code and inter-
leaver.

The subgraph characterizing the observation process described by (A.5)
and (A.7) involves the following factors for pilot- and data subcarriers, re-
spectively:

fPj(α, τ, β) , p(yj|α, τ; β)

= CN(yj; xj[Ψ(τ)α]j, β), j ∈ P ,

fDi (xi, α, τ, β) , p(yi|xi, α, τ; β)

= CN(yi; xi[Ψ(τ)α]i, β), i ∈ D.

To model the specular channel assumption (i.e., that (A.1) is composed of a
small number of multipath components), we use a Bernoulli-Gaussian prior
which assigns large probability to the event {αl = 0}. We model Lmax mul-
tipath components of which only a subset is activated, i.e. has αl 6= 0. The
number Lmax is an upper bound on the number of multipath components that
can be estimated.6 This allows us to derive an algorithm which inherently
estimates the number of multipath components. Each component is assigned
an activation variable zl ∈ {0, 1}, which is 1 when said multipath compo-
nent is active and 0 otherwise. The sequence {z1, . . . , zLmax} is modelled i.i.d.
where each zl is assigned a Bernoulli prior with activation probability ρ:

fzl (zl , ρ) , p(zl ; ρ) = Bern(zl ; ρ), l ∈ L, (A.8)

5We abuse terminology and associate variables and factors with their respective nodes in the
factor graph.

6In our implementation we select Lmax = dTCP N∆ f e+ 1, which is the maximum number of
degrees of freedom under the assumption (A.2) [18]. It roughly corresponds to the number of
baud-spaced (spacing 1/(N∆ f )) components on the interval [0, TCP).
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where we have defined the set of multipath component indices L = {1, . . . ,
Lmax}. The prior density of the multipath coefficient αl is conditioned on zl ,
such that zl = 0 implies αl = 0 and zl = 1 gives a Gaussian density with
variance η:

fαl (αl , zl , η) , p(αl |zl ; η)

= (1− zl)δ(αl) + zl CN(αl ; 0, η), l ∈ L.

When performing inference in this model, the estimated number of active
multipath components is L̂ , ||α̂||0, where α̂ is a vector containing the esti-
mates of αl for all l ∈ L.

We finally need to impose a prior model on the multipath delays τl , l ∈ L.
The only prior information available is through the assumption that for all
l ∈ L we have 0 ≤ τl ≤ TCP, so an i.i.d. uniform prior is used:

fτl (τl) , p(τl) = unif(τl ; 0, TCP), l ∈ L.

A.3 Inference Method

The BER optimal receiver (assuming ρ, η and β known) computes the MAP
estimate

ûk = arg max
uk∈{0,1}

p(uk|y; ρ, η, β), k ∈ K. (A.9)

The pdf p(uk|y; ρ, η, β) ∝ p(uk, y; ρ, η, β) can ideally be found by marginaliz-
ing all variables but uk in the joint pdf

p(y, z, α, τ, xD , c, u; ρ, η, β) = p(y|xD , α, τ; β)

∏
l∈L

p(αl |zl ; η)p(zl ; ρ)p(τl) ∏
i∈D

p(xi|c(i))p(c|u) ∏
k∈K

p(uk).

Calculating the marginals of uk, k ∈ K, is intractable and we resort to approx-
imate Bayesian inference.

A.3.1 Combined Belief Propagation and Mean-Field

Our inference method is based on the merged belief propagation and mean-
field (BP-MF) framework of [8]. In this framework a so-called belief function
is found for each variable in the factor graph. The belief function is an ap-
proximation of the marginal posterior pdf or pmf of that variable. We abuse
notation and let q(a) denote the belief of variable a. When the set of belief
functions has been calculated, the MAP estimate of the kth data bit is found
as the mode of q(uk).
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For tractability we obtain a point estimate of the variables z and τ. This
is achieved as proposed in [8] by restricting their beliefs to be Kronecker and
Dirac delta functions, i.e., q(zl) = δ[zl − ẑl ] and q(τl) = δ(τl − τ̂l) for all l ∈ L.

At the heart of BP-MF lies the so-called region-based free energy approx-
imation (RBFE) [45]. The RBFE is obtained by splitting the factor graph into
a MF and a BP subgraph, as indicated in Fig. A.2. The RBFE is a func-
tion of7 the point estimates ẑ, τ̂ and the belief functions q(αl), q(xi), q([c(i)]m)
and q(uk) for indices l ∈ L, i ∈ D, k ∈ K and m = 1, . . . , Q. It is also a
function of the model parameter estimates (ρ̂, η̂, β̂), as justified below. The
expression of the RBFE is given in Appendix A. BP-MF seeks to minimize
the RBFE under a number of normalization and consistency constraints. The
messages of BP-MF are derived such that at convergence they satisfy the
Karush-Kuhn-Tucker conditions of the constrained RBFE minimization, i.e.,
a (possibly local) minimum of the constrained problem is found. See [8] for
a more detailed discussion of BP-MF.

The understanding of BP-MF as RBFE minimization allows us to make
a number of adaptations to the message-passing scheme to improve conver-
gence speed. Further, we will see that this understanding is useful when
analyzing convergence of the algorithm.

A.3.2 Model Parameter Estimation with BP-MF

The BP-MF framework [8] does not directly provide a method to estimate
the unknown model parameters (ρ, η, β). We propose to do so by letting
the RBFE be a function of these model parameters. The model parameter
estimates (ρ̂, η̂, β̂) are then obtained as the minimizers of the RBFE.

To justify this method we first note that the model parameters are located
in the MF subgraph. Then we follow an approach similar to [46] to obtain a
lower bound on the marginal log-likelihood function:

ln p(y; ρ̂, η̂, β̂) ≥ −FBP-MF + const., (A.10)

where FBP-MF is the RBFE (A.35) and the constant only depends on beliefs
of variables in the BP subgraph (including q(xi), for i ∈ D), i.e., it does not
depend on (ρ̂, η̂, β̂). It can then be seen that the values of (ρ̂, η̂, β̂) minimiz-
ing FBP-MF maximize the lower bound on the likelihood function in (A.10).
These minimizers are thus approximate ML estimates. We note that if the
above approach is applied in a pure MF context it simplifies to variational
EM estimation with all other variables treated as latent variables [8, 47].

7The RBFE is also a functional of the beliefs corresponding to the factors in the BP subgraph.
BP-MF enforces consistency between the variable beliefs and these factor beliefs. Since the latter
are not relevant to the derivation of the receiver, we omit them.
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A.3.3 Relation to Prior Art

To relate our receiver algorithm to current methods we note that the decoding
of many popular channel codes can be described as an instance of BP [48] in
a factor graph [49–51]. For example, BP decoding of a convolutional code
leads to the BCJR algorithm [52]. We see in Fig. A.2 that the merged BP-MF
algorithm employs BP in the subgraph which represents the channel code,
i.e., standard techniques are used for decoding.

Similarly, there are examples in the literature of MF inference where the
underlying factor graph resembles the MF subgraph of our receiver. The
work [32] uses a Bernoulli-Gaussian prior model similar to that in our work,
while [31], [33] use a gamma-Gaussian prior typical of sparse Bayesian learn-
ing.

The strength of the BP-MF framework is now clear: It allows us to merge
existing methods for channel decoding and sparsity-based estimation into
one unified receiver algorithm, which formally seeks to minimize the RBFE.

A.4 Parametric BP-MF Receiver

To minimize the RBFE, we apply the BP-MF algorithm given by Eq. (21)–(22)
in [8] on the factor graph of Fig. A.2. In the following we use the notation
〈·〉a to denote expectation with respect to the belief density q(a). We follow
the convention of [8] in naming the messages. In [9] a similar BP-MF receiver
is derived, which does not exploit channel sparsity.

A.4.1 Message Passing for Channel Estimation

Update of Coefficient Belief

We start by finding belief updates in the MF subgraph. To find the update of
q(αl), l ∈ L, we calculate the messages passed to the node αl :

mMF
fαl→αl

(αl) ∝

{
exp

(
−η̂−1|αl |2

)
if ẑl = 1,

δ(αl) if ẑl = 0

mMF
fDi
→αl

(αl) ∝ exp
(
−β̂−1

〈
|yi − xi[Ψ(τ̂)α]i|2

〉
xi ,α\l

)
mMF

fPj
→αl

(αl) ∝ exp
(
−β̂−1

〈
|yj − xj[Ψ(τ̂)α]j|2

〉
α\l

)
,
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which holds for all l ∈ L, i ∈ D and j ∈ P . Taking the product of all messages
going into the node αl gives its belief

q(αl) =

{
CN(αl ; µ̂l , σ̂2

l ) if ẑl = 1,
δ(αl) if ẑl = 0,

(A.11)

with the active component mean and variance

µ̂l = σ̂2
l ql (A.12)

σ̂2
l =

(
sl + η̂−1

)−1
. (A.13)

Here we have introduced

sl = β̂−1ψH(τ̂l)
〈

XHX
〉

xD
ψ(τ̂l) (A.14)

ql = β̂−1ψH(τ̂l)r (A.15)

r = 〈X〉HxD y−
〈

XHX
〉

xD
Ψ(τ̂Â\l)µ̂Â\l . (A.16)

Note that the belief of inactive components (ẑl = 0) becomes a point mass
at αl = 0, thus eliminating the influence of that component in the product
XΨ(τ̂)α. We have defined the set of currently active components as Â , {l :
ẑl = 1} and the vectors µ̂ = [µ̂1, . . . , µ̂Lmax ]

T, σ̂2 = [σ̂2
1 , . . . , σ̂2

Lmax
]T.

Joint Update of Delay and Coefficient Belief

We now turn our attention to the estimation of the multipath delays τl , l ∈ L.
To improve the convergence speed of the algorithm, we find the update of τ̂l
by minimizing the RBFE jointly with respect to the beliefs q(αl) and τ̂l . Due to
the selected prior p(τl), the following expressions are valid for τ̂l ∈ [0, TCP].
We are only concerned with active components, i.e., l ∈ Â and thus ẑl = 1.
Writing only the terms of the RBFE (A.35) which depend on q(αl) and τ̂l , we
get

FBP-MF(q(αl), τ̂l) ∝e
∫

q(αl) ln
q(αl)

Q(αl , τ̂l)
dαl (A.17)

with

Q(αl , τ̂l) = p(αl |ẑl ; η̂)p(τ̂l) exp
(〈

ln p(y|xD , α, τ̂; β̂)
〉

xD ,α\l

)
∝ CN(αl ; µ̂l , σ̂2

l ) exp
( |ql |2

sl + η̂−1

)
, (A.18)
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where σ̂2
l , µ̂l , sl and ql are given by (A.12) - (A.15) and thus implicitly are

functions of τ̂l . We need to minimize (A.17) under the normalization con-
straint

∫
q(αl)dαl = 1. To do so, define

gτl (τ̂l) , max
q̃(αl):

∫
q̃(αl)dαl=1

−FBP-MF (q̃(αl), τ̂l) (A.19)

∝e ln
∫

Q(αl , τ̂l)dαl (A.20)

∝e β̂−2

sl + η̂−1 |ψ
H(τ̂l)r|2. (A.21)

The result in (A.20) is easily obtained by noting that (A.17) can be rewritten
as

FBP-MF ∝e KL
[

q(αl)
∣∣∣∣∣∣ Q(αl , τ̂l)∫

Q(α̃l , τ̂l)dα̃l

]
− ln

∫
Q(α̃l , τ̂l)dα̃l ,

where KL[·||·] is the Kullback-Leibler divergence. The coefficient belief is
selected as the maximizer of (A.19), i.e., q(αl) = Q(αl , τ̂l)/

∫
Q(α̃l , τ̂l)dα̃l ,

which is easily shown to coincide with the result in (A.11).
Since sl is constant with respect to τ̂l , we find the delay update as

τ̂l = arg max
τ̃l∈[0,TCP]

gτl (τ̃l) = arg max
τ̃l∈[0,TCP]

|ψH(τ̃l)r|2. (A.22)

We recognize the objective function in (A.22) as the continuous peri-
odogram of the residual vector r. While it is possible to find the maximizer
of the periodogram, doing so has high computational cost. In our iterative al-
gorithm, we instead find an update of τ̂l which cannot increase the objective
in (A.22). Denote the updated delay estimate as τ̂

[t]
l and the previous delay

estimate as τ̂
[t−1]
l . Our scheme now reads:

1. Find initial step ∆ =
g′τ(τ̂

[t−1]
l )

|g′′τ (τ̂[t−1]
l )|

.

2. If gτ(τ̂
[t−1]
l + ∆) ≥ gτ(τ̂

[t−1]
l ), set τ̂

[t]
l = τ̂

[t−1]
l + ∆ and terminate. Oth-

erwise set ∆ = ∆
2 and repeat step 2.

Functions g′τ(τl) and g′′τ (τl) are the first and second derivatives of (A.21). The
scheme gives the Newton update of τ̂l if this value increases the objective
function and otherwise resorts to a gradient ascent with a backtracking line
search. We have the following lemma, which we will use in the convergence
analysis:

Lemma A.1. The procedure listed in Steps 1-2 above followed by an update of q(αl)
does not increasing the RBFE.
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Proof: First, note that the updated τ̂l , does not decrease gτl (τ̂l). It then
follows that by selecting the maximizer of (A.19), the RBFE is non-increasing.

Joint Update of Activation Variable and Coefficient Belief

We now turn our focus on the update of the activation variable ẑl . It is
again desirable to perform a joint update of ẑl and q(αl). We proceed in
a similar way as we did to compute the updates of the multipath delays.
The terms in the RBFE (A.35) which depend on q(αl) and ẑl are denoted as
FBP-MF(q(αl), ẑl). We then define

gzl (ẑl) , max
q̃(αl):

∫
q̃(αl)dαl=1

−FBP-MF(q̃(αl), ẑl) (A.23)

∝e


|µ̂l |2
σ̂2

l
+ ln σ̂2

l
η̂ + ln ρ̂ if ẑl = 1,

ln(1− ρ̂) if ẑl = 0.
(A.24)

This result is easily obtained by following steps analogous to (A.17) – (A.21).
The activation variable solves the decision problem ẑl = maxz̃l∈{0,1} gzl (z̃l).
Writing the “activation criterion” gzl (1) > gzl (0) we get

|µ̂l |2
σ̂2

l
> ln

η̂

σ̂2
l
+ ln

1− ρ̂

ρ̂
. (A.25)

If the above criterion is true we set ẑl = 1; otherwise we set ẑl = 0. The
corresponding update of q(αl) is the maximizer of (A.23), which remains as
in (A.11). The criterion in (A.25) is the same as that obtained in [32].

Update of Channel Parameter Estimates

The channel parameters (ρ, η, β) are estimated as the values which minimize
the RBFE. Writing only the terms of the RBFE (A.35) which depend on the
channel parameters we have

FBP-MF(ρ̂, η̂, β̂) ∝e −
〈

ln ∏
l∈L

p(ẑl ; ρ̂)p(αl |ẑl ; η̂)p(y|α, τ̂, xD ; β̂)

〉
xD ,α

∝e ||ẑ||0 ln ρ̂ + (Lmax − ||ẑ||0) ln(1− ρ̂)− N ln β̂− β̂−1u

− ||ẑ||0 ln η̂ − η̂−1 ∑
l:ẑl=1

(|µ̂l |2 + σ̂2
l ), (A.26)

where

u ,
〈
||y− XΨ(τ̂)α||2

〉
xD ,α

= ||y||2 + µ̂H
ÂΨH(τ̂Â)

〈
XHX

〉
xD

Ψ(τ̂Â)µ̂Â + ∑
l∈Â

σ̂2
l ψH(τ̂l)

〈
XHX

〉
xD

ψ(τ̂l)
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−2 Re
{

yH 〈X〉xD Ψ(τ̂Â)µ̂Â
}

. (A.27)

It is readily seen that FBP-MF(ρ̂, η̂, β̂) can be minimized independently with
respect to each of the parameters. By taking derivatives and equating to zero
we find the global minima (the second derivatives are all positive):

ρ̂ =
||ẑ||0
Lmax

(A.28)

η̂ =
∑l:ẑl=1(|µ̂l |2 + σ̂2

l )

||ẑ||0
(A.29)

β̂ =
u
N

. (A.30)

Iterating all Coefficient Beliefs Ad-Infinitum

In [33] it is demonstrated that iterating the updates of some variables ad-
infinitum is a powerful technique for increasing the convergence speed of MF
algorithms. We apply that idea to the beliefs of the multipath coefficients.

Since q(αl) = δ(αl) for all l ∈ L\Â, the following discussion is only
concerned with the beliefs of active components, i.e. for l ∈ Â. First note that
the variance (A.13) of an active multipath coefficient σ̂2

l does not depend on
the beliefs of the remaining coefficients q(αk), k 6= l. The mean (A.12) of the
lth coefficient, on the other hand, depends on the remaining mean values as

µ̂l = σ̂2
l︸︷︷︸

[Q]−1
l,l

(
β̂−1ψH(τ̂l)〈X〉HxDy︸ ︷︷ ︸

pl

− ∑
k∈Â\l

β̂−1ψH(τ̂l)〈XHX〉xDψ(τ̂k)︸ ︷︷ ︸
[Q]l,k

µ̂k

)
,

for all l ∈ Â. The matrix Q is of size |Â| × |Â| and we have abused notation
in using l, k as indices into this matrix, because 1 ≤ l, k ≤ Lmax, even though
|Â| ≤ Lmax. The above equation is recognized as the Gauss-Seidel [53] itera-
tion for solving the system of linear equations

Qµ̂Â = p (A.31)

with

p = β̂−1ΨH(τ̂Â) 〈X〉
H
xD y

Q = β̂−1ΨH(τ̂Â)
〈

XHX
〉

xD
Ψ(τ̂Â) + η̂−1I.

It follows that the updates of µ̂l , for all l ∈ Â, converge to the solution µ̂Â
found by solving (A.31).
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We note that in the hypothetical special case where the beliefs of X are
point estimates (or equivalently known) y = XΨ(τ̂Â)αÂ + w is a linear ob-
servation model with Gaussian noise. In this case, the estimator µ̂Â = Q−1 p
reduces to the LMMSE estimator of αÂ in the linear observation model under
the Bayesian model dictated by the current beliefs of the remaining variables.
The estimator µ̂Â = Q−1 p is, however, not the LMMSE estimator of αÂ when
the uncertainty of the estimate of X is considered.

A.4.2 Message-Passing for Decoding

In the previous subsections we derived the belief functions q(·) of the variables
whose factor neighbours are in the MF subgraph only. To perform inference
in the BP subgraph, i.e., detection, demapping, decoding and deinterleaving,
we need to calculate the messages that are passed along its edges.

We begin with the messages nxi→ fMi
(xi), i ∈ D, which constitute the

interface from the continuous-valued channel estimator to the discrete-valued
decoder. They are given as

nxi→ fMi
(xi) = mMF

fDi
→xi

(xi) ∝ CN

xi;
yi 〈hi〉∗α,τ〈∣∣hi
∣∣2〉

α,τ

,
β̂〈∣∣hi
∣∣2〉

α,τ

 , (A.32)

where hi , [Ψ(τ)α]i is the channel frequency response at subcarrier i. Its
mean and second moment are

〈hi〉α,τ = [Ψ(τ̂)µ̂]i〈∣∣hi
∣∣2〉

α,τ
=
[
Ψ(τ̂)(µ̂µ̂H + diag(σ̂2))ΨH(τ̂)

]
i,i.

Note that even though the above expression has the form of a Gaussian, the
messages are probability mass functions obtained by evaluating the above
Gaussian at the points of the symbol alphabet AD followed by appropriate
normalization.

The mean in (A.32) can be interpreted as the output of an LMMSE equal-
izer. Consider the observation model yi = hixi +wi where p(wi) = CN(wi; 0, β̂)

and hi = [Ψ(τ̂)α]i. Let q(αl) be the density of αl and impose a prior p(xi) =
CN(xi; 0, σ2

xi
) on xi. The LMMSE estimator of xi is now

x̂LMMSE
i =

yi 〈hi〉∗α,τ〈∣∣hi
∣∣2〉

α,τ
+ β̂σ−2

xi

.

By letting σ2
xi
→ ∞ to express that we have no prior information on xi, we

recover the mean in (A.32). Note that a similar analogy does not exists for
the variance in (A.32).
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All remaining messages passed in the BP subgraph, are functions of dis-
crete variables (i.e., coded or information bits). These messages are calculated
with the sum-product algorithm, see e.g. [49, 50]. Due to space constraints,
we do not give the details here.

When BP messages have been passed in the BP subgraph, the beliefs of
the data symbols xi, i ∈ D, are calculated from

q(xi) ∝ mMF
fDi
→xi

(xi)mBP
fMi
→xi

(xi). (A.33)

Since q(xi) is a probability mass function, we can use straightforward evalua-
tion of finite sums to obtain 〈X〉xD and

〈
XHX

〉
xD

, which are used in the belief
updates in the MF subgraph.

A.4.3 An Incremental Algorithm

Algorithm A.1 combines the derived belief update expressions into a turbo
receiver with sparsity-based parametric channel estimation. The algorithm is
split into two parts: channel estimation (lines 5 - 30) and decoding (line 32).
The outer loop alternates between these two steps until the information bit
estimates have not changed in 10 iterations or a maximum of 50 iterations is
reached.

The scheduling of the channel estimation is inspired by [31]. The basic
idea is to construct a representation of the CFR in (A.7) by sequential refine-
ment of the estimated multipath components. One component is determined
by the parameters (zl , αl , τl) for a particular index l. All multipath compo-
nents are initialized in the inactivated state, i.e., ẑ is the zero vector.

The channel estimation procedure alternates between two stages: In the
activation stage (at line 7) one of the inactive components is activated and its
multipath delay and coefficient are calculated. The activation criterion (A.25)
determines if the component should stay activated. In the second stage (start-
ing at line 20), all active components are sequentially refined. Again, the cri-
terion (A.25) determines if a component should be deactivated. The channel
estimation procedure thus iteratively adds, updates and possibly removes
components until the stopping criterion is fulfilled. The multipath delays are
tracked via the scheme in Sec. A.4.1 in a way that resembles the operation
of a rake receiver [17]. The approach presented here differs from that imple-
mented in a rake receiver in that it provides an integral criterion for inclusion
or exclusion of components (rake “fingers”) via (A.25). The multipath delay
of the newly activated component is found via a maximization over the grid
τ̃. The grid should have a sufficiently fine resolution, such that the initial es-
timate of the delay is close to the maximizer in (A.22). We choose the distance
between points in the grid as (N∆ f )

−1/8. As inner stopping criterion we use
|1/β̂[t] − 1/β̂[t−1]| < 10−3/β̂[t−1], where t is the inner iteration number. The
number of inner iterations is limited to 50.
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Algorithm A.1: Parametric BP-MF receiver.
Input: Observations y, pilot indices P and pilot symbols xP .
Output: Belief functions of data bits {q(uk)}k∈K .
Notes: Define the set of components as L = {1, . . . , Lmax} and the set of active

components as Â , {l ∈ L : ẑl = 1}.
1 τ̃ ← Vector with values from equispaced grid on [− 1/2

N∆ f
, TCP].

2 Initialize channel parameter estimates (ρ̂, η̂, β̂).
3 ẑ, τ̂, µ̂, σ̂2 ← Zero vectors of length N.
4 while Outer stopping criterion not met do
5 while Inner stopping criterion not met do
6 µ̂Â, σ̂2

Â ← Updates from (A.31) and (A.13).
7 Activate an inactive component:
8 if the inactive set L\Â is non-empty then
9 l ← Any index from the inactive set L\Â.

10 ẑl ← 1.
11 τ̂l ← Value from (A.22) calculated on the grid τ̃.
12 µ̂Â, σ̂2

Â ← Updates from (A.31) and (A.13).
13 τ̂l ← Update via the scheme in Sec. A.4.1.
14 µ̂l , σ̂2

l ← Updates from (A.12) and (A.13).
15 if activation criterion (A.25) is false then
16 ẑl ← 0.
17 Reset µ̂Â to the value calculated in line 6.
18 end
19 end
20 Update all components currently included in model:
21 for l ∈ Â do
22 τ̂l ← Update via the scheme in Sec. A.4.1.
23 µ̂l , σ̂2

l ← Updates from (A.12) and (A.13).
24 if activation criterion (A.25) is false then
25 ẑl ← 0.
26 end
27 end
28 µ̂Â, σ̂2

Â ← Updates from (A.31) and (A.13).

29 ρ̂, η̂, β̂← Updates from (A.28), (A.29) and (A.30).
30 end
31 Update the messages mMF

fDi→xi
(xi) from (A.32).

32 Iterate message-passing in the BP subgraph.
33 Update the beliefs q(xi) from (A.33).
34 end
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During the first outer iteration the decoder has not been used yet and
symbol beliefs q(xi) of the data subcarriers (indices i ∈ D) are not available.
During the first iteration the channel estimator therefore only uses the pilot
subcarriers (indices j ∈ P). To avoid any identifiability issue regarding the
multipath delays (see Sec. A.5.3) during the pilot-only iteration, the multipath
delays estimated in this iteration are restricted to the interval [0, 1/(∆ f ∆P)),
where ∆P is the pilot spacing.8

The active component prior variance is initialized to η̂ = 1 and the acti-
vation probability is initialized to ρ̂ = 0.5. We initialize the noise variance
to β̂ = ||y||2/N · 10−15/10 (i.e., assuming approximately 15 dB SNR). The ac-
tivation probability and noise variance is kept fixed during the first 3 outer
iterations, because these can only be accurately estimated when a reliable
estimate of the channel is available.

A.4.4 Convergence Analysis and Computational Complexity

We now wish to analyze the convergence properties of Algorithm A.1. First
recognize that the algorithm alternates between updates in the MF and BP
subgraphs of Fig. A.2. To analyze convergence, we discuss under which
conditions each of these sets of updates are guaranteed not to increase the
RBFE. If all updates give a non-increasing RBFE it can be concluded that the
algorithm converges, since the RBFE is bounded below.

We first discuss the updates in the MF subgraph, i.e., of belief functions
q(αl) (l ∈ L) and point estimates (ẑ, τ̂, ρ̂, η̂, β̂). During these updates the mes-
sages mBP

fMi
→xi

(xi) are kept fixed. The joint update of τ̂l and q(αl) gives a

non-increasing RBFE as per Lemma A.1. A similar conclusion can be drawn
regarding the joint update of ẑl and q(αl). The individual update of q(αl) is
found via the method of Lagrange multipliers applied to the RBFE with nor-
malization constraint

∫
q(αl)dαl = 1. The second-order functional derivative

of the RBFE δ2FBP-MF
δq2(αl)

= 1
q(αl)

is a positive semi-definite function; it follows that
the RBFE is convex in this argument. It can be concluded that the update
of q(αl) is the global minimizer of the RBFE and the objective is thus non-
increasing. A similar conclusion can be drawn regarding the update of the
channel parameters, cf. Eq. (A.26). All updates in the MF subgraph thus give
non-increasing RBFE.

We now analyze the convergence in the BP subgraph, i.e., the updates of
belief functions q(xi), q([c(i)]q) and q(uk). Considering the belief functions
of variables in the MF subgraph as fixed and ignoring scaling and constant
terms, the RBFE is equal to the Bethe free energy corresponding to the fac-

8We define the pilot spacing as ∆P = D + 1, where D is the number of data subcarriers
between any two neighboring pilot subcarriers.

76



A.4. Parametric BP-MF Receiver

torization (see [8, Appendix E])

∏
i∈D

mMF
fDi
→xi

(xi)p(xi|c(i))p(c|u) ∏
k∈K

p(uk).

Further, all messages in the BP subgraph are equal to the messages obtained
from BP applied to the above factorization. This means that we can ana-
lyze the behaviour of message-passing in the BP subgraph, by analyzing BP
applied to the above factorization. If the factor graph does not contain any cy-
cles it can be shown that BP globally minimizes the Bethe free energy [8, 45]
(which in this case is equal to the Gibss free energy) and convergence of
the complete BP-MF receiver algorithm is guaranteed. Recall that the factor
fC(c, u) = p(c|u) describes the channel code and may be replaced by a num-
ber of auxiliary variables and factors. The specific structure of the BP factor
graph is thus determined by the channel code. In the special case of convolu-
tional coding with binary or quadrature phase-shift keying (BPSK or QPSK)
modulation, the BP graph does indeed become a tree-graph and convergence
of Alg. A.1 is guaranteed. If the modulation order is higher than QPSK, loops
occur between fMi and fC and convergence can thus not be guaranteed.

For other common channel codes, such as Turbo and LDPC codes, the
subgraph represented by fC contains loops. However, BP has empirically
been shown to converge for decoding of many channel codes and it is a well
known practice to use BP even though convergence cannot be guaranteed
theoretically, see e.g. [49–52]. When BP does converge it has been shown to
be to a (local) minimum of the Bethe free energy [54], which further explains
why we do indeed obtain convergence of Alg. A.1 in our numerical investi-
gations. Conditions exist under which BP is guaranteed to converge in loopy
graphs, e.g. [55, 56]. These are, however, not applicable to our situation.

We now turn our attention to the computational complexity of the channel
estimator, i.e., the loop starting at line 5. The most demanding part of the
channel estimation in terms of computational complexity is the calculation of
µ̂Â via (A.31). We show in Appendix B that (under a conjecture) this update

can be calculated in time O
(

min(L̂2N, L̂N
√

N)
)

, where L̂ is the number of
components currently included in the model.

The grid search in line 11 is recognized as the maximization of the pe-
riodogram, which can be calculated via a fast Fourier transform in time
O(N log N) when the grid is assumed to be of size O(N).

The loop starting at line 21 necessitates the calculation of r in (A.16). Di-
rect computation has complexity O(L̂N) for each of the L̂ iterations in the
loop. By updating r with each change to µ̂, the direct evaluation can be
avoided and the complexity of each iteration in the loop becomes O(N),
which is the same as that of all other operations inside the loop. The overall
complexity of the loop is thus O(L̂N).
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With these remarks, we see that the overall complexity per iteration of the

channel estimator is O
(

min(L̂2N, L̂N
√

N)
)

.

A.5 Numerical Evaluation

In our numerical evaluation we consider an OFDM system as described in
Sec. A.2. We use a random interleaver and a rate–1/2 non-systematic con-
volutional channel code, decoded by the loopy BP implementation from the
Coded Modulation Library.9 The pilot signals are chosen at random from
a QPSK alphabet. The first and last subcarriers are designated as pilots.
The other pilot subcarriers are located equispaced with spacing ∆P, i.e., the
number of data subcarriers between two such neighbour pilot subcarriers is
∆P − 1.10 The SNR is defined based on the realization of the channel fre-
quency response as

SNR ,
E
[
|xi|2

]
||h||2

Nβ
, (A.34)

where E
[
|xi|2

]
is calculated under the assumption that the symbols in the

respective alphabets AD and AP are equiprobable.
We asses how the receivers behave in two different scenarios. The param-

eters considered in each scenario are listed in Table A.1. Scenario A uses the
channel model put forward by ITU for the evaluation of IMT-Advanced radio
interface technologies [12]. Specifically we use the model with the parameter
setting for urban macro (UMa) environment with non line-of-sight (NLOS)
conditions. The model generates CIRs typical of macro-cellular communica-
tion in an urban environment targeting continuous coverage for pedestrian
up to fast vehicular users [12]. The channel model [12] is specified for use
with up to 100 MHz bandwidth, while the system we are simulating uses
25.6 Mhz bandwidth. We are thus well within the specified bandwidth range.

Scenario B uses the standardized model proposed for the evaluation of
IEEE 802.15.4a UWB technologies [13]. Specifically we use the model with
the setting proposed for outdoor environments with NLOS conditions. The
model generates CIRs typical of micro-cellular communication in a suburban-
like environment with a rather small range [13]. Note that this model is also
used in [11].

Since our signal model (A.5) is not valid for CIRs longer than the cyclic
prefix duration TCP, we drop realizations with component delays larger than
TCP. Fig. A.3 shows 3 CIR realizations generated for each of scenarios A and

9Available from http://iterativesolutions.com/Matlab.htm
10We have also conducted experiments with random pilot patterns (not shown), but have seen

no significant benefit in doing so for the setup considered here.
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Parameter Scenario A Scenario B

Channel model ITU-R M.2135 IEEE 802.15.a
UMa NLOS [12] Outdoor NLOS [13]

Number of subcarriers (N) 1024 1024
Modulation format of data sub-
carriers

256-QAM 256-QAM

Convolutional code polynomial (561, 753)8 (561, 753)8
Subcarrier spacing (∆ f ) 25 kHz 250 kHz
Cyclic prefix duration (TCP) 5200 ns 800 ns
Number of equispaced pilots 172 256
Pilot spacing (∆P) (implied by
the above)

6 4

Table A.1: Simulation parameters.

B, along with an estimate of the power-delay profile (PDP). We observe that
in Scenario A the CIRs show a specular channel behaviour (L� dTCPN∆ f e),
while they show a diffuse behaviour (L� dTCPN∆ f e) in Scenario B.

We asses the performance of the considered receivers in terms of average
coded bit error rate (BER) and normalized mean squared error (MSE) of the
CFR, calculated as ||ĥ − h||2/||h||2. These averages are obtained from 500
Monte Carlo trials (≈ 1.5 · 106 information bits) for SNR < 20 dB, with one
OFDM symbol transmitted in each trial. To get reliable BER estimates we
use 3, 000 trials (≈ 107 information bits) for SNR = 20 dB and 15, 000 trials
(≈ 4.5 · 107 information bits) for SNR > 20 dB. The OFDM symbols and
channel realizations are generated i.i.d. according to the above.

A.5.1 Evaluation and Comparison with Other Algorithms

We evaluate our algorithm (Parametric BP-MF) and compare with the follow-
ing reference algorithms:

Turbo-GAMP [11]: The algorithm employs a baud-spaced grid in the delay
domain, i.e., the resolution of the grid is Ts = (N∆ f )

−1 ≈ 39 ns for Scenario
A and Ts ≈ 3.9 ns for Scenario B. For each channel tap a large-tap and small-
tap variance is provided along with tap-state transition probabilities (see [11]
for more details). These are estimated via the EM algorithm provided in [11]
from 50, 000 channel realizations. Turbo-GAMP is provided with significant
prior information on the CIR via these statistical values. We also provide
Turbo-GAMP with the true noise variance, as [11] does not give a way to
estimate this value.

LMMSE BP-MF [9]: The algorithm directly estimates the CFR h via the
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Fig. A.3: Three sample realizations of the CIR for Scenario A (top) and Scenario B (bottom). An
estimate of the power-delay profile is also shown, which is obtained by averaging the magnitude-
squared impulse responses of 50, 000 channel realizations.
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BP-MF framework. It is a turbo receiver with LMMSE channel estimation
which requires prior knowledge of the noise variance and the covariance
matrix E

[
hhH] (or, equivalently, the channel PDP). We provide the true noise

variance to the receiver and show results using covariance matrices calculated
based on a) the robust PDP assumption described in [36], which assumes
constant PDP within the interval [0, TCP), and b) with knowledge of the true
covariance matrix. Due to the complex structure of the channel models, the
true covariance matrix is not easy to obtain analytically. We therefore estimate
it as the sample covariance matrix obtained from 50, 000 channel realizations.
Similarly we compute an estimate of the PDP which is shown in Fig. A.3. We
identify these estimates with their true counterpart.

Perfect CSI: This oracle receiver has perfect channel state information (CSI),
i.e., it knows the true CFR h, and thus provides a lower bound on the achiev-
able BER. The Perfect CSI trace is only shown in the BER plots. To be specific,
it is implemented by computing the messages nxi→ fMi

(xi) for all i ∈ D (see
(A.32)), followed by 5 iterations in the BP subgraph of Fig. A.2.

Oracle LMMSE: This trace is only shown for channel MSE. It is obtained
as the LMMSE estimate of h with the knowledge of the noise variance β,
transmitted symbol vector x (i.e., both pilots and data are known), the vec-
tor of delays τ and the probability density function of the channel multipath
coefficients in α, i.e., the probability density function of h is known exactly.
In the channel model of Scenario A, the entries in α are complex normal and
the LMMSE estimator achieves the MMSE. In Scenario B the multipath coef-
ficients in α are not normal. However, by a central limit theorem argument,
the vector h is to a good approximation also normal in Scenario B and again
the LMMSE estimator achieves the MMSE.

A.5.2 Varying the Signal-to-Noise Ratio

Fig. A.4 shows performance results for varying SNR in Scenario A. We first
note that Parametric BP-MF performs very well in both BER and MSE. Its
BER is remarkably close to that of the Perfect CSI trace, indicating that there
is very little margin for improvement of the algorithm in this scenario. Both
versions of LMMSE BP-MF (known and robust PDP) show higher BER than
Parametric BP-MF, corresponding to a decrease in SNR of about 1 dB. They
show almost the same BER performance because the delay spread in Scenario
A is relatively large (cf. Fig. A.3) and the robust PDP assumption is therefore
realistic. Turbo-GAMP does not perform well and shows a BER floor at high
SNR. The reason is discussed below.

Fig. A.5 shows the corresponding results for Scenario B. We here observe
that Parametric BP-MF has a BER loss compared to the Perfect CSI trace cor-
responding to about 0.5 dB SNR difference. Parametric BP-MF is among the
best performing algorithms, even though the CIRs generated in Scenario B
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Fig. A.4: BER (top) and MSE of CFR estimate (bottom) vs. SNR in Scenario A.

are composed of a very large number of multipath components that the algo-
rithm cannot resolve individually (cf. Fig. A.3). Instead, the algorithm esti-
mates a CIR with significantly fewer components of which the corresponding
CFR approximates the true channel response within the system bandwidth.
We have observed that the estimated CIR “recovers the support” of the true
CIR, in the sense that an estimated multipath component is located wherever
the CIR contains significant power. Parametric BP-MF has a BER and MSE
performance equivalent to that of LMMSE BP-MF with known PDP. We stress
that Parametric BP-MF achieves this performance without using prior knowl-
edge of the channel. Since the true PDP is not known in a real propagation
environment, the LMMSE BP-MF receiver with known PDP cannot readily
be realized in practice.

In Scenario B we observe a significant difference between the LMMSE
BP-MF algorithms with known and robust PDP. To explain this difference
observe in Fig. A.3 that most of the mass of the PDP is located at small delays.
This significantly deviates from the evenly distributed mass on [0, TCP) that
underlies the robust PDP assumption.

In both Fig. A.4 and Fig. A.5 an error floor is observed for Turbo-GAMP at
high SNR.11 We conjecture that this error floor is caused by the restriction of

11In [11], where Turbo-GAMP is introduced, such an error floor is not observed even though
the setup in the numerical investigation is almost identical to that in Scenario B. The reason is
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Fig. A.5: BER (top) and MSE of CFR estimate (bottom) vs. SNR in Scenario B.

the delays to the baud-spaced grid. If the delays are generated to be located
on that grid, the performance of Turbo-GAMP is very close to that of the
Perfect CSI trace (not shown here). We have also conducted experiments with
random pilot patterns (not shown) as used in [11] (where Turbo-GAMP is
introduced) but did not see an improvement of Turbo-GAMP in that case. We
note that such error floors in BER and MSE have previously been observed for
other grid-based sparse channel estimation algorithms, see for example [21,
40]. In conclusion, the grid-based approximation is of insufficient accuracy
for communication with large modulation order in the high-SNR regime.

A.5.3 Varying the Number of Pilots

We now investigate if our receiver design improves the trade-off between
the number of pilots and estimator performance. To do so, we refer to Fig.
A.6 and A.7, which show the BER performance for varying number of pilot
subcarriers.

The first observation is that LMMSE BP-MF with robust PDP shows a

an error in the signal model in [11], which invalidates the numerical results obtained in that
paper. Specifically the error occurs when the “uniformly sampled channel taps” are defined as
rate 1/T samples of the compound CIR x(τ) , (gr ∗ h ∗ gt)(τ). However, since (gr ∗ gt)(τ) is a
raised-cosine filter with design parameter 0.5, x(τ) has bandwidth 1.5/T, leading to aliasing in
the sampling operation.
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Fig. A.6: BER vs. number of pilot subcarriers in Scenario A at 20 dB SNR.
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Fig. A.7: BER vs. number of pilot subcarriers in Scenario B at 20 dB SNR.

point at which the BER performance quickly transitions between high (50 %)
BER and low (< 10−3) BER. Under the robust PDP assumption, the channel
coherence bandwidth is approximately 1/TCP. As a rule of thumb there
should be at least one pilot subcarrier per coherence interval, which gives the
criterion P > N∆ f TCP, where P is the needed number of pilot subcarriers.
For Scenario A we have N∆ f TCP ≈ 133 and for Scenario B we have N∆ f TCP ≈
205, which exactly are the respective numbers of pilots at which LMMSE BP-
MF with robust PDP transitions between low and high BER.

All algorithms except LMMSE BP-MF with robust PDP can operate sig-
nificantly below the above-mentioned limit. Due to the turbo structure, the
number of pilots can be decreased significantly without incurring an increase
in BER. Parametric BP-MF is the only algorithm which performs well with
104 pilot subcarriers in both scenarios. LMMSE BP-MF with known PDP is
close to achieving the same performance as Parametric BP-MF, but we reiter-
ate that this receiver requires prior knowledge of the PDP.
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A.6 Conclusions

In this paper we proposed a turbo OFDM receiver which employs sparsity-
based parametric channel estimation. The iterative receiver is derived using
the BP-MF framework for approximate Bayesian inference. Unlike state-of-
the-art sparse channel estimators, our scheme does not restrict multipath de-
lays of the estimated channel impulse response to a grid. As a result it can
truly exploit parsimony of the channel impulse response, without resorting
to approximate sparsity (as in [11, 23, 24]).

We have presented a numerical evaluation that compares our algorithm
with state-of-the-art methods, i.e., Turbo-GAMP [11] and LMMSE BP-MF [9].
This study demonstrated that restricting the multipath delays to a baud-
spaced grid (e.g., as in Turbo-GAMP) is not a viable approach because the
resulting equivalent vector of channel taps is only approximately sparse.

The numerical evaluation also shows that our proposed scheme can effec-
tively exploit the structure of wireless channels. Even though our receiver is
derived assuming the channel to be specular (as in Scenario A), it also per-
forms very well in diffuse channels (Scenario B). Thus, we expect that it will
also perform well in any channel which shows a mixture of both characteris-
tics.

A The Region-Based Free Energy Approximation

At the heart of the derivation of our algorithm lies the RBFE as defined by [8,
Eq. (17)], [45]. In this paper we use the RBFE of the probability distribution
corresponding to the factor graph depicted in Fig. A.2. For convenience, we
give here the complete expression of the RBFE:

FBP-MF = FBP + FMF (A.35)

with

FBP = ∑
k∈K

∑
uk∈{0,1}

buk (uk) ln
buk (uk)

p(uk)
+ ∑

i∈D
∑

xi∈AD
c(i)∈{0,1}Q

bMi (xi, c(i)) ln
bMi (xi, c(i))

p(xi|c(i))

+ ∑
c∈{0,1}K/R

u∈{0,1}K

bC(c, u) ln
bC(c, u)
p(c|u) − ∑

k∈K
∑

uk∈{0,1}
q(uk) ln q(uk)

− ∑
i∈D

∑
m∈{1,...,Q}

∑
[c(i) ]m∈{0,1}

q([c(i)]m) ln q([c(i)]m),
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FMF = ∑
l∈L

∫
q(αl) ln q(αl)dαl −

〈
ln p(y|xD , α, τ̂; β̂)

〉
xD ,α

− ∑
l∈L
〈ln p(αl |ẑl ; η̂)p(ẑl ; ρ̂)p(τ̂l)〉αl

,

where bC(c, u), bMi (xi, c(i)) for i ∈ D and buk (uk) for k ∈ K are factor beliefs.
With abuse of notation we let q(·) denote variable beliefs and 〈·〉a denote
expectation with respect to the belief density q(a).

B Efficient Calculation of µ̂A When L̂ is Large

In this appendix we present a computationally efficient method for evaluating
µ̂Â as defined by (A.31). We first note that direct evaluation and inversion of
Q has time complexity O(L̂2N), where L̂ , |Â|. The method is iterative and
has complexity O(L̂N

√
N) provided Conjecture A.1 (below) holds. It is thus

beneficial to use it when L̂ grows faster than
√

N.
We first use the Woodbury matrix identity to write µ̂ as

µ̂ = β̂−1η̂
(

I− β̂−1η̂ΨH(τ̂Â)C
−1Ψ(τ̂Â)

)
ΨH(τ̂Â) 〈X〉

H
xD y,

where

C =
〈

XHX
〉−1

xD
+ β̂−1η̂Ψ(τ̂Â)Ψ

H(τ̂Â).

We immediately recognize that the computationally dominating part is to
solve a system of N linear equations of the form Cz = a. Since C is Hermitian
and positive-definite, we can solve this system via the conjugate-gradient
(CG) method (Alg. 2.1 in [57]), which is an iterative method for solving
systems of linear equations. In the following we show that the number of
iterations of the CG method is O(

√
N).

We first need a conjecture on the eigenvalues of the (Hermitian-Toeplitz)
matrix T = β̂−1η̂Ψ(τ̂Â)Ψ

H(τ̂Â).

Conjecture A.1. There exists an upper bound on the largest eigenvalue of T which
grows linearly with N, i.e.,

λmax(T) = O(N).

To justify this conjecture we refer to Fig. A.8, where the largest eigenvalue is
shown for varying N.

We also need a number of lemmas.

Lemma A.2. There exists constants c1 > 0 and c2 < ∞, such that c1 ≤
〈
|xi|2

〉
xD
≤

c2 for all i ∈ D ∪ P .
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Fig. A.8: Average of the largest eigenvalue of the matrix T encountered during one execution of
Parametric BP-MF for Scenario A (left) and B (right). Average obtained from 1000 Monte-Carlo
trials. Both plots were generated at 20 dB SNR. A dashed line depicts the least-squares linear fit.

Proof: Observe that the data and pilot modulation symbol alphabets
AD and AP only contain finite, non-zero values. We can thus take c1 =
minx∈AP∪AD |x|2 and c2 = maxx∈AP∪AD |x|2 to complete the proof.

Lemma A.3. Assume that Conjecture A.1 holds. The largest and smallest eigenval-
ues of C obey

λmax(C) = O(N), λmin(C) ≥ c−1
1 .

Proof: By the Weyl inequality for Hermitian matrices C, T and
〈
XHX

〉−1
xD

we have

λmax(C) ≤ λmax

(〈
XHX

〉−1

xD

)
+ λmax(T).

The first inequality follows directly from Conjecture A.1 and Lemma A.2.
Similarly by the dual Weyl inequality

λmin(C) ≥ λmin

(〈
XHX

〉−1

xD

)
+ λmin(T).

Since L̂ < N, the matrix T is singular and λmin(T) = 0. The second inequality
now follows from Lemma A.2.

By Theorem 2.2 in [57] the number of iterations required by the CG

method to achieve a desired accuracy in the solution of a = Cz isO
(√

λmax(C)
λmin(C)

)
.

By Lemma A.3 the number of iterations is thus O(
√

N). Each iteration has
time complexity O(L̂N) and the overall complexity of solving (A.31) via this
method is therefore O(L̂N

√
N).
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B.1. Introduction

Abstract

A number of recent works have proposed to solve the line spectral estimation problem
by applying off-the-grid extensions of sparse estimation techniques. These methods
are preferable over classical line spectral estimation algorithms because they inher-
ently estimate the model order. However, they all have computation times which
grow at least cubically in the problem size, thus limiting their practical applicability
in cases with large dimensions. To alleviate this issue, we propose a low-complexity
method for line spectral estimation, which also draws on ideas from sparse estima-
tion. Our method is based on a Bayesian view of the problem. The signal covariance
matrix is shown to have Toeplitz structure, allowing superfast Toeplitz inversion to
be used. We demonstrate that our method achieves estimation accuracy at least as
good as current methods and that it does so while being orders of magnitudes faster.

B.1 Introduction

The problem of line spectral estimation (LSE) has received significant atten-
tion in the research community for at least 40 years. The reason is that many
fundamental problems in signal processing can be recast as LSE; examples
include direction of arrival estimation using sensor arrays [1, 2], bearing and
range estimation in synthetic aperture radar [3], channel estimation in wire-
less communications [4] and simulation of atomic systems in molecular dy-
namics [5].

In trying to solve the LSE problem, classical approaches include subspace
methods [6] such as MUSIC [7] or ESPRIT [8] which estimate the frequencies
based on an estimate of the signal covariance matrix. These approaches must
be augmented with a method for estimation of the model order. Popular
choices include generic information theoretic criteria (e.g. AIC, BIC) or more
specialized methods, such as SORTE [9] which is based on the eigenvalues of
the estimated signal covariance matrix. Subspace methods typically perform
extremely well if the model order is known, but their estimation accuracy can
degrade significantly if the model order is unknown.

The stochastic maximum likelihood (ML) method is known to be asymp-
totically efficient (it attains the Cramér-Rao bound as the problem size tends
to infinity) [2]. Unfortunately it also requires knowledge of the model order.

Inspired by the ideas of sparse estimation and compressed sensing, many
papers on sparsity-based LSE algorithms have appeared in recent years, e.g.
[1, 10]. In particular, the LSE problem is simplified to a finite sparse re-
construction problem by restricting the frequencies to a grid. Such meth-
ods inherently estimate the model order, alleviating the issues arising from
separate model order and frequency estimation in classical methods. The
granularity of the grid leads to a non-trivial trade-off between accuracy and
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computational requirements. To forego the use of a grid, so-called off-the-
grid compressed sensing methods have been proposed [11–13]. These meth-
ods provably recover the frequencies in the noise-free case under a minimum
separation condition. They suffer from prohibitively high computational re-
quirements even for moderate problem sizes, see Sec B.6.

In [14–16] a Bayesian view is taken on the LSE problem. The model used
in stochastic ML is extended with a sparsity-promoting prior on the coeffi-
cients of the sinusoid components. Thereby inherent estimation of the model
order is achieved. These algorithms generally have high estimation accuracy.
Their per-iteration computational complexity is cubic in the number of sinu-
soidal components, meaning that their runtime grows rapidly as the number
of components increases.

In this work we introduce the Superfast LSE algorithm for solving the LSE
problem in scenarios where the full measurement vector is available (com-
plete data case). The modelling and design of the basic algorithm which we
present in Sec. B.2 is based upon the ideas in [14–16]. The main novelty
resides in the computational aspects of Superfast LSE. The derived method
is based upon several techniques: a so-called superfast Toeplitz inversion al-
gorithm [17, 18] (thereof the name of our algorithm), low-complexity Capon
beamforming [19], the Gohberg-Semencul formula [20] and non-uniform fast
Fourier transforms [21, 22]. The Superfast LSE algorithm has the following
virtues: It inherently estimates all model parameters such as the noise vari-
ance and model order and it has low per-iteration computational complexity.
Specifically it scales as O(N log2 N) where N is the length of the observed
vector. We show empirically that it converges after a few iterations (typi-
cally less than 20). This means that for large problem sizes our algorithm
can have computation time orders of magnitude lower than that of current
methods. It does so without any penalty in estimation accuracy. Our numeri-
cal experiments show that Superfast LSE has high estimation accuracy across
a wide range of scenarios, being on par with or better than state-of-the-art
algorithms.

Synergistically and computationally efficiently combining the steps in the
algorithm might appear easy after the fact. This is however not the case.
Some other LSE algorithms can benefit in terms of computational effort from
our approach, yet not to the extent achieved with the proposed algorithm.
For instance, the computational methods in Sec. B.3 can be embedded in
VALSE [16]. The resulting scheme will have high computational complexity
due to the variational estimation of the posterior on the frequencies. Note that
our algorithm performs on par with VALSE, but at a significantly reduced
computational effort.

For completeness we also present a semifast version of the algorithm
which works when only a subset of entries in the measurement vector are
available. The Semifast LSE algorithm has per-iteration complexity O(NK̂2 +
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N log N), where K̂ is the number of estimated sinusoids. Algorithms with
similar per-iteration complexity are derived in [14, 15, 23, 24]. We have ob-
served that our algorithm converges in a smaller number of iterations when
compared to the algorithm in [15], thus leading to lower total runtime.

Outline: In Sec. B.2 we present our modelling and algorithm for LSE. Our
low-complexity computational methods are presented in Sec. B.3 (complete
date case) and B.4 (incomplete data case). In Sec. B.5 the algorithm is ex-
tended to the case of multiple measurement vectors. Numerical experiments
are presented in Sec. B.6 and conclusions are given in Sec. B.7.

Notation: We write vectors as a and matrices as A. The ith entry of vector
a is denoted ai or [a]i; the i, jth entry of matrix A is denoted Ai,j. Let b be a
binary vector (containing only zeros and ones) of the same dimension as a,
then ab denotes a vector which contains those entries in a where the corre-
sponding entry in b is one. The Hadamard (entrywise) product is denoted
by �.

B.2 An Algorithm for Line Spectral Estimation

We now detail the observation model and the specific objective of the LSE
problem. The observation vector y ∈ CM contains time-domain samples and
is given by

y =
K

∑
k=1

Φψ(θ̃k)α̃k + w = ΦΨ(θ̃)α̃ + w, (B.1)

where the steering vector function ψ(θk) : [0, 1) → CN×1 gives a Fourier
vector, i.e., it has nth entry [ψ(θk)]n , exp(j2π(n − 1)θk) for n = 1, . . . , N.
We also define Ψ(θ) , [ψ(θ1), · · · , ψ(θdim(θ))]. The measurement matrix
Φ ∈ CM×N is either the identity matrix (M = N, complete data case) or made
of a subset of rows of a diagonal matrix (M < N, incomplete data case). The
vector w is a white Gaussian noise vector with component variance β. The
LSE problem is that of recovering the model order K along with the frequency
θ̃k ∈ [0, 1] and coefficient α̃k ∈ C of each component k = 1, . . . , K.

B.2.1 Estimation Model

The estimation model and inference approach we present in the following
are adaptions of ideas currently available in the literature. We have care-
fully combined these ideas to obtain an iterative scheme which can be im-
plemented with low complexity as described in Secs. B.3 and B.4, while
achieving a performance comparable to that of state-of-the-art algorithms.
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Our algorithm is based on Bayesian inference in an estimation model
which approximates (B.1). Specifically, to enable estimation of the model or-
der K, we follow [14, 16] and employ a model with Kmax ≥ K components1.
Each component has an associated activation variable zk ∈ {0, 1} which is
set to 0 or 1 to deactivate or activate it. The activation variables are collected
in the sparse vector z. The effective estimated model order is given by the
number of active components. Based on (B.1) we write our estimation model

y =
Kmax

∑
k=1

Φψ(θk)zkαk + w = A(θz)αz + w, (B.2)

where θk ∈ [0, 1) and αk ∈ C are frequencies and coefficients for k = 1, . . . , Kmax
and we have defined A(θ) , ΦΨ(θ).

Due to the Gaussian noise assumption we have

p(y|α, z, θ; β) = CN(y; A(θz)αz, βI), (B.3)

where CN(y; µ, Σ) denotes the probability density function of a circularly
symmetric complex normal random variable y with mean µ and covariance
matrix Σ. We assume β ∈ [εβ, ∞), where εβ > 0 is an arbitrarily small
constant which guarantees that the likelihood function is bounded below. A
Bernoulli prior is used to promote deactivation of some of the components:

p(z; ζ) =
Kmax

∏
k=1

ζzk (1− ζ)1−zk , (B.4)

where ζ ∈ [0, 1/2] is the activation probability. The restriction ζ ≤ 1/2
ensures that the prior is sparsity inducing. The coefficients are assumed to
be independent zero-mean Gaussian

p(α; γ) =
Kmax

∏
k=1

CN(αk; 0, γk), (B.5)

where γk ∈ [0, ∞) is the active-component variance. Sparsity-promoting pri-
ors have previously been used for both basis selection [25] and LSE [15]. The
Bernoulli-Gaussian prior structure that we have adopted above was first in-
troduced in [26] and used for LSE in [16].

Even though each αk is modelled as Gaussian in (B.5), the prior specifica-
tion is significantly more general than that because the variance of each com-
ponent is estimated through γk. In the numerical investigation we demon-
strate that our method works well even when the true density of each coeffi-
cient is not Gaussian.

1Since we can never expect to estimate more parameters than the number of observed obser-
vations, we select Kmax = M in our implementation.
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We finally use an independent and identically distributed (i.i.d.) uniform
prior on the entries in θ:

p(θ) =
Kmax

∏
k=1

p(θk) =
Kmax

∏
k=1

1 = 1. (B.6)

If further prior information about the frequencies is available, it can easily be
incorporated through p(θ).

B.2.2 Approach

By integrating the component coefficients we obtain the marginal likelihood

p(y|z, θ; β, γ) =
∫

p(y|α, z, θ; β)p(α; γ)dα

= CN(y; 0, C) (B.7)

with C , βI + A(θz)ΓzAH(θz) and Γz , diag(γz).
Based on the marginal likelihood we can write the objective

L(z,ζ, β, θ, γ) , − ln p(z, θ|y; β, γ, ζ)

= − ln p(y|z, θ; β, γ)p(z; ζ)p(θ) + const.

= ln |C|+ yHC−1y

−
Kmax

∑
k=1

(zk ln ζ + (1− zk) ln(1− ζ)) + const. (B.8)

The variables (z, θ) and model parameters (β, γ, ζ) are estimated by mini-
mizing (B.8), i.e., we seek the maximum a-posteriori (MAP) estimate of (z, θ)
and the ML estimate of (β, γ, ζ). Our algorithm employs a block-coordinate
descent method to find a local minimum (or saddle point) of (B.8).

For fixed z the first two terms in (B.8) are equal to the objective function
of stochastic ML [2], and our approach can therefore be viewed as stochastic
ML extended with a variable model order.

When the above estimates have been computed, the estimated model or-
der is given by the number of active components, i.e. K̂ = ||ẑ||0, and the
entries of θ̂ẑ are the estimated frequencies. The corresponding coefficients αẑ
can be estimated as follows. First, write the posterior of α as

p(α|y, ẑ, θ̂; β̂, γ̂) ∝ p(y|α, ẑ, θ̂; β̂)p(α; γ̂)

∝ CN(αẑ; µ̂, Σ̂) ∏
{k:ẑk=0}

CN(αk; 0, γ̂k), (B.9)
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where

µ̂ , β̂−1Σ̂AH(θ̂ẑ)y (B.10)

Σ̂ ,
(

β̂−1AH(θ̂ẑ)A(θ̂ẑ) + Γ̂−1
ẑ

)−1
. (B.11)

As expected the posterior of the coefficients corresponding to inactive com-
ponents (those for which ẑk = 0) coincides with their prior. These are not
of interest (they are inconsequential in the model (B.2)) and integrating them
out gives a Gaussian posterior over αẑ. If a point estimate of αẑ is needed,
the MAP (which is also the LMMSE) estimate α̂ẑ = µ̂ can be used2.

B.2.3 Derivation of Update Equations

As mentioned, our algorithm is derived as a block-coordinate descent method
applied on L in (B.8). The estimates are updated in the following blocks: ẑ, ζ̂,
β̂ and (θ̂ẑ, γ̂ẑ). Each update is guaranteed not to increase L. We note that the
frequencies and variances of inactive components (those for which ẑk = 0)
are not updated, as L does not depend on these variables.

Estimation of frequencies and coefficient variances

Even when all remaining variables are kept fixed, it is not tractable to find
the global minimizer of L with respect to the vector of active component
frequencies θẑ and variances γẑ. We therefore resort to a numerical method.
Writing only the terms of (B.8) which depend on θẑ, we have

L(θẑ, γẑ) = ln |C|+ yHC−1y + const.,

so we need to solve (θ̂ẑ, γ̂ẑ) = arg min
(θẑ ,γẑ)

L(θẑ, γẑ).

In [10] a similar optimization problem involving only the frequencies is
solved by Newton’s method. Directly applying that approach in our case
leads to high computational complexity. Methods based on gradient descent
have also been proposed [14], but we have observed that using this approach
leads to slow converge. As we are concerned with computational speed in
this paper, we instead use the limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm [27]. This algorithm only requires evaluation
of the objective function and its gradient. In the following we demonstrate
how these evaluations can be performed with low complexity. At the same
time the per-iteration of L-BFGS is linear in K̂, namely O(JK̂), where J is
the number of saved updates used in L-BFGS. In our implementation we

2Note that for computational convenience we write µ̂ = γ̂ẑ � q, where q is defined by (B.16).
See the text following (B.26).
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use J = 10. We have observed that L-BFGS converges in a small number of
iterations.

The L-BFGS algorithm requires an initial estimate of the Hessian of L(θẑ, γẑ),
which is subsequently updated in each iteration of the algorithm. Every up-
date of the activation variable ẑ results in a change in the dimension of the
Hessian (the number of variables in L(θẑ, γẑ) changes). This means that the
implicit estimate of the Hessian in the L-BFGS algorithm is reinitialized rather
frequently in our estimation scheme. As a result, the degree of accuracy of
the initialization of the Hessian has a significant impact on the convergence
speed of the algorithm. We therefore propose to initialize L-BFGS with a di-
agonal approximation of the Hessian. As shown below, the diagonal entries
of the Hessian can be obtained with low computational complexity.

The initial estimate of the Hessian must be positive definite. This is only
achieved when all diagonal entries are positive. Those entries of the diagonal
Hessian which are negative are therefore replaced with the following values:
For entries corresponding to frequency variables we use (50N)2 as the di-
agonal Hessian and for the entries corresponding to the variance of the kth
component we use [γ̂ẑ]

−2
k . These heuristic values have been determined by

considering a diagonally scaled version of the optimization problem (see [28,
Sec. 1.3]).

Here follows the required first- and second-order partial derivatives of
L(θẑ, γẑ) evaluated at the current estimates (θ̂ẑ, γ̂ẑ) (see [15] for some hints
on how these are obtained):

∂L
∂[θẑ]k

= 2[γ̂ẑ]k Im{tk − q∗k rk} (B.12)

∂L
∂[γẑ]k

= sk − |qk|2 (B.13)

∂2L
∂[θẑ]2k

= 2[γ̂ẑ]kRe
{

xk − vk + [γ̂ẑ]k(t2
k − xksk)

+ [γ̂ẑ]k(xk|qk|2 + sk|rk|2 − 2tkrkq∗k ) + (ukq∗k − |rk|2)
}

(B.14)

∂2L
∂[γẑ]2k

= 2sk|qk|2 − s2
k , (B.15)
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where we have defined vectors

q , ΨH(θ̂ẑ)Φ
HĈ−1y (B.16)

r , ΨH(θ̂ẑ)DΦHĈ−1y (B.17)

s , diag
(

ΨH(θ̂ẑ)Φ
HĈ−1ΦΨ(θ̂ẑ)

)
(B.18)

t , diag
(

ΨH(θ̂ẑ)DΦHĈ−1ΦΨ(θ̂ẑ)
)

(B.19)

u , ΨH(θ̂ẑ)D2ΦHĈ−1y (B.20)

v , diag
(

ΨH(θ̂ẑ)D2ΦHĈ−1ΦΨ(θ̂ẑ)
)

(B.21)

x , diag
(

ΨH(θ̂ẑ)DΦHĈ−1ΦDΨ(θ̂ẑ)
)

. (B.22)

The notation diag(·) denotes a vector composed of the diagonal entries of the
(matrix) argument. The matrix Ĉ is that in (B.7) evaluated at θ̂ẑ, γ̂ẑ and β̂. We
have defined the diagonal matrix D , diag

(
[0, 2π, 4π, . . . , (N − 1)2π]T

)
. In

Secs. B.3 and B.4 we discuss how the vectors (B.16)–(B.22) can be calculated
with low computational complexity.

Estimation of activation probability

With all other variables fixed, the objective (B.8) is a convex function of ζ ∈
[0, 1/2]

(
∂2L
∂ζ2 > 0

)
. The global minimizer is then found by differentiating and

setting equal to zero. Considering the constraints on ζ, we update it as

ζ̂ = min
(

1
2

,
||ẑ||0
Kmax

)
. (B.23)

Estimation of noise variance

Even when keeping all remaining variables fixed at their current estimate, the
globally minimizing noise variance β in (B.8) cannot be found in closed form.
An obvious alternative approach would be to incorporate the estimation of
β into L-BFGS together with the estimation of θẑ and γẑ. However, we have
observed this approach to exhibit slow convergence because the objective
function can be rather “flat” in the variable β (the gradient is small far away
from any stationary point).

In sparse Bayesian learning [25] a similar estimation problem is solved
successfully via the expectation-minimization (EM) algorithm. To use EM,
we need to reintroduce α into the estimation problem. In order to show
how EM is integrated into our coordinate-block descent method and that the
update of β̂ is guaranteed not to increase (B.8), it is the easiest to directly use
the upper bound associated with EM (see [29] for a derivation of EM which
takes a similar approach).
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The updated estimate of β is the minimizer of an upper bound on the
objective function (B.8). To obtain the upper bound we write the terms of the
objective function which depend on β, with all other variables kept fixed at
their current estimates:

L(β) = − ln p(y|ẑ, θ̂; β, γ̂) + const.

= − ln
∫

f (αẑ)
p(y, αẑ|ẑ, θ̂; β, γ̂)

f (αẑ)
dαẑ + const.

≤ −
∫

f (αẑ) ln
p(y, αẑ|ẑ, θ̂; β, γ̂)

f (αẑ)
dαẑ + const., (B.24)

where f (αẑ) ≥ 0 is a function which fulfills
∫

f (αẑ)dαẑ = 1. The inequality
follows from Jensen’s inequality.

Following EM, we select f (αẑ) = p(αẑ|y, ẑ, θ̂; β̂i−1, γ̂), where β̂i−1 denotes
the previous noise variance estimate. Denote the upper bound on the right-
hand side of (B.24) by Q(β; β̂i−1) and insert f (αẑ) to get

Q(β; β̂i−1) = M ln β + β−1 tr
(
Σ̂AH(θ̂ẑ)A(θ̂ẑ)

)
+ β−1||y−A(θ̂ẑ)µ̂||2 + const., (B.25)

where we have used (B.9) to evaluate expectations involving αẑ and µ̂ and Σ̂

are calculated from (B.10)–(B.11) based on β̂i−1. It is easy to show that the
upper bound has a unique minimizer, which is used as the updated estimate
of the noise variance:

β̂i = max

(
εβ,

tr
(
Σ̂AH(θ̂ẑ)A(θ̂ẑ)

)
+ ||y−A(θ̂ẑ)µ̂||2

M

)
. (B.26)

To allow low-complexity calculation of β̂i we use Woodbury’s matrix inver-
sion identity to show that µ̂ = γ̂ẑ� q and tr

(
Σ̂AH(θ̂ẑ)A(θ̂ẑ)

)
= ∑K̂

k=1(β̂i−1sk[γ̂ẑ]k).
The update (B.26) could be applied repeatedly since an improved upper

bound is used each time. Since we have not observed any advantages by
doing so, we simply perform the update (B.26) once for each pass in the
block-coordinate descent algorithm. We also note that even though EM is
known to be prone to slow convergence speed, we have observed empirically
that the estimate of β converges fast, typically within 10 iterations.

It can easily be shown that with the chosen f (αẑ), the inequality in (B.24)
holds with equality at β = β̂i−1. It then follows that the new estimate of β
does not increase the value of the objective function (see the proof of Lemma
B.4 in Appendix A).
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Deactivation of Components

We now describe the activation and deactivation of components, which is
performed by the single most likely replacement (SMLR) detector [26]. SMLR
has previously been demonstrated to perform well for LSE [14–16, 23].

First we write the terms of (B.8) which depend on the variables pertaining
to the kth component and fix all other variables at their current estimate.
Based on Woodbury’s matrix inversion identity and the determinant lemma
we get (see [24] for details)

L(zk, θk, γk) = zk

(
− |q∼k(θk)|2

γ−1
k + s∼k(θk)

+ ln

(
(1 + γks∼k(θk))

1− ζ̂

ζ̂

))
+ const., (B.27)

with

q∼k(θk) , ψH(θk)Φ
HĈ−1
∼ky (B.28)

s∼k(θk) , ψH(θk)Φ
HĈ−1
∼kΦψ(θk),

where Ĉ∼k , β̂I + A(θ̂ẑ∼k )Γ̂ẑ∼k AH(θ̂ẑ∼k ) and ẑ∼k is equal to ẑ with the kth
entry forced to zero. The matrix Ĉ∼k is thus the marginal covariance matrix
of the observation vector with the kth component deactivated.

To evaluate if an active component should be deactivated, we test if the
objective L is increased by doing so, i.e., we test if L(zk = 0, θ̂k, γ̂k) < L(zk =
1, θ̂k, γ̂k). This gives the deactivation criterion for the kth component:

|q∼k(θ̂k)|2
γ̂−1

k + s∼k(θ̂k)
− ln

(
1 + γ̂ks∼k(θ̂k)

)
< ln

(
1− ζ̂

ζ̂

)
. (B.29)

This criterion is evaluated for currently active components, i.e., for k which
has corresponding ẑk = 1.

For computational convenience we note that we can obtain q∼k(θ̂k) and
s∼k(θ̂k) from q and s with low complexity. First, write

Ĉ∼k = Ĉ− γ̂kΦψ(θ̂k)ψ
H(θ̂k)Φ

H

and use Woodbury’s identity to obtain

q∼k(θ̂k) =
qi

1− γ̂ksi

s∼k(θ̂k) =
si

1− γ̂ksi
,

where qi and si are the ith entries of (B.16) and (B.18) with i denoting the
index for which [θ̂ẑ]i = θ̂k.
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Component Activation

We now describe a method to decide if a deactivated component should be
activated. This also involves estimating the frequency and variance of this
component, because no meaningful such estimates are available before the
component is activated. Any of the deactivated components are equally good
candidates for activation. In the following k refers to an arbitrary value for
which ẑk = 0. If no such k exists all components are already activated and
the activation step is not carried out.

Our method is again based on the expression (B.27). Inspired by [16], let
γ̄ denote the average of the entries in γ̂ẑ. Define the change in the objective
obtained from setting ẑk = 1, θ̂k = θk, γ̂k = γ̄:

∆L(θk) = L(1, θk, γ̄)−L(0, θk, γ̄) (B.30)

= ln

(
(1 + γ̄s∼k(θk))

1− ζ̂

ζ̂

)
− |q∼k(θk)|2

γ̄−1 + s∼k(θk)

Note that the last term in (B.30) does not depend on θk or γ̄. Then the fre-
quency is found by maximizing the decrease in the objective, i.e.,

θ̂k = arg min
θk∈G

∆L(θk), (B.31)

where G is a grid of L equispaced values, i.e., G , {0, 1/L, . . . , 1− 1/L}. The
restriction of the estimated frequencies to a grid does not mean that the final
frequency estimates lie on a grid, because they are refined to be in [0, 1) in
subsequent updates of the frequency vector. For this reason, the choice of
L does not have any impact on the estimation accuracy, provided that it is
sufficiently large.3 In Sec. B.3 and B.4 we show how q∼k(θk) and s∼k(θk) can
be evaluated with low complexity for all θk ∈ G, such that the minimization
can be performed by means of an exhaustive search over G.

The activation procedure continues only if a decrease in the objective can
be obtained by activating a component at θ̂k, i.e., if ∆L(θ̂k) < −εL. The in-
clusion of the constant εL > 0 is purely technical, as it simplifies our conver-
gence analysis. It can be chosen arbitrarily small and we select it as machine
precision in our implementation.

After estimating the frequency, the component variance is selected as γ̂k =
arg min

γk

∆L(1, θ̂k, γk). Using an approach similar to [24], this minimizer can

3 A numerical investigation (not reported here) shows that the algorithm is invariant to the
choice of L, provided that L ≥ 2N. In our implementation we use L equal to 8N rounded to the
nearest power of 2.
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be shown to be

γ̂k =


|q∼k(θk)|2−s∼k(θk)

s2
∼k(θk)

if |q∼k(θk)|2
s∼k(θk)

> 1,

0 otherwise.
(B.32)

The component is only activated if4 γ̂k > 0.
It is instructive to explore the activation criterion ∆L(θ̂k) < −εL in detail.

Since εL is machine precision, we ignore it (εL = 0) for simplicity. The
activation criterion can be rewritten to the form

|q∼k(θ̂k)|2
s∼k(θ̂k)

>

(
1 +

1
γ̄s∼k(θ̂k)

)
ln

((
1 + γ̄s∼k(θ̂k)

) 1− ζ̂

ζ̂

)
. (B.33)

Denote the left-hand side of (B.33) as κk. This quantity can be interpreted as
the signal-to-noise ratio of the kth component [30, 31]. If the sparse Bayesian
learning (SBL) model is used for sparsity promotion, an activation criterion of
the from κk > 1 is obtained [30, 31]. Algorithms using the activation criterion
κk > 1 are known to be prone to the activation of “artefact” components
with very small γ̂k and α̂k at what seems to be arbitrary frequencies θ̂k. The
right-hand side of (B.33) is always larger than one and this helps reduce
the number of artefacts which are activated, as demonstrated in [16]. This
favorable phenomenon is caused by the use of the average γ̄ in the definition
of ∆L(θk) (as opposed to inserting γ̂k from (B.32), which resembles the SBL
approach).

Even still, we have observed the activation of a few artefact components
in our numerical investigations. We therefore follow the same idea as [30, 31]
and heuristically adjust the criterion (B.33) to obtain

|q∼k(θk)|2
s∼k(θk)

>

(
1 +

1
γ̄s∼k(θk)

)
ln

(
(1 + γ̄s∼k(θk))

1− ζ̂

ζ̂

)
+ τ, (B.34)

where τ ≥ 0 is some adjustment of the threshold. Specifically we select
τ = 5, cf. the numerical study in Sec. B.6.2. Our numerical experiments
show that this simple approach is very effective at avoiding the inclusion
of small spurious components. Since the heuristic criterion (B.34) is stricter
than the criterion ∆L(θ̂k) < −εL, it is guaranteed that the activation of a
component decreases the objective function.

B.2.4 Outline of the Algorithm and Implementation Details

The algorithm proceeds by repeating the following steps until convergence:

4When γ̂k = 0 the kth component is effectively deactivated because the corresponding coef-
ficient αk has a zero-mean prior with zero variance, see (B.5). The effective deactivation is also
seen in the definition of C in (B.7) and it further manifests itself as µ̂k = 0 in (B.10).
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1. Check if any components can be activated via the procedure described
in Sec. B.2.3.

2. Re-estimate the activation probability ζ via (B.23).

3. Re-estimate the noise variance via (B.26).

4. Repeat:

4a) Perform a single L-BFGS update of the estimated vectors of active
component frequencies θẑ and variances γẑ, as described in Sec.
B.2.3.

4b) Check if any components can be deactivated via (B.29).

The algorithm terminates when the change in the objective (B.8) between two
consecutive iterations is less than M10−7.

In step 1) and 4b) the check for component (de)activation is repeated un-
til no more components can be (de)activated. The updates in step 4) are
iterated until either the approximated squared Newton decrement of the L-
BFGS method is below M10−8 or at most 5 times.

The observant reader will have noticed that the minimization over (θẑ, γẑ)
must be constrained to γk ≥ 0 for all k. It turns out that this constraint can
be handled in a simple manner: Notice that the deactivation criterion (B.29)
is always fulfilled for γ̂k sufficiently small. The constraint is therefore never
active at the solution. We therefore simply need to restrict the line-search
performed in L-BFGS such that the no entry in γ̂ẑ ever becomes negative. If
any γ̂k approaches (or becomes equal to) zero, it is deactivated in step 4b).
Note that this approach resembles that of L-BFGS for box constraints [32],
except that the deactivation of variables for which the constraint is active
happens automatically in our algorithm.

The algorithm is initialized with all components in the deactivated stage
(i.e. ẑ = 0). The initial values of the entries in θ̂ and γ̂ do not matter,
since they are assigned when their corresponding component is activated (see
Sec. B.2.3). The noise variance is initialized to β̂ = 0.01||y||2/M (1 % of the
energy in y is assumed to be noise). The activation probability is initialized
to ζ̂ = 0.2.

In Appendix A we discuss in detail the convergence properties of our al-
gorithm. The findings are summarized here. We show that our algorithm
terminates in finite time and that the estimates of z, ζ and β are guaranteed
to converge. We denote the limit points as z̄, ζ̄ and β̄. When these estimates
have converged, our algorithm reduces to a pure L-BFGS scheme which esti-
mates (θz̄, γz̄). Due to the non-convexity of the objective function, we cannot
guarantee convergence of L-BFGS (see [33]). Despite of this, we have never
observed non-convergence of our algorithm. In our experiments it always
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converged to a local minimum of the objective function. We therefore rely
on the vast amount of experimental validation of the convergence of L-BFGS
and assume convergence to a stationary point. In particular, we have the
following theorem.

Theorem B.1. Assume that L-BFGS in step 4a) converges to a stationary point
of (θz̄, γz̄) 7→ L(z̄, ζ̄, β̄, θz̄, γz̄). Then the sequence of estimates obtained by our
algorithm converges. Further, the limit point is a stationary point of (ζ, β, θ, γ) 7→
L(z̄, ζ, β, θ, γ), in the sense that the Karush-Kuhn-Tucker necessary conditions for a
minimum are fulfilled.

Proof: See Appendix A.

B.2.5 Initial Activation of Components

When the number of sinusoids K in the observed signal (B.1) is high, the al-
gorithm spends significant computational effort activating components (step
1). This is because each time a component is activated, the values q∼k(θk) and
s∼k(θk) must be evaluated for all θk ∈ G to calculate (B.31). To alleviate the
computational effort of building the initial set of active components, we pro-
pose to let the first few iterations use an approximate scheme for activating
components in place of step 1). The approximate activation scheme proceeds
as follows:

1. Calculate q∼k(θ) and s∼k(θ) for all θ ∈ G, where k is the index of a
deactivated component.

2. Evaluate ∆L(θ) (B.30) for all θ ∈ G.

3. Find the local minimizers of ∆L(θ), i.e., find the values of θ for which
∆L(θ) ≤ ∆L(θ′) with θ′ being any of the two neighbouring grid-points
of θ. The local minimizers are candidate frequencies.

4. Activate a component at those candidate frequencies for which the fol-
lowing criteria are fulfilled:

• The component activation criterion (B.33) is fulfilled.

• The component variance (B.32) is non-zero.

• The decrease in the objective obeys ∆L(θ) ≤ ∆Lmin/5, where
∆Lmin is the largest decrease obtained from activating a compo-
nent at another candidate frequency (in the current iteration).

• All other currently active components have frequency estimates
located at least5 0.05N−1 apart from the candidate frequency.

5For the distance measure we use the wrap-around distance on [0, 1) defined as d(x, y) ,
min(|x− y|, 1− |x− y|) for x, y ∈ [0, 1).
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The above method is a heuristic scheme, which quickly builds a set of ac-
tivated components. Typically this set is close to the final result and only
a few (in our setup less than 15 in most cases) iterations are need before
convergence.

B.3 Superfast Method (Complete Observations)

The algorithm presented above has rather large computational complexity, in
particular due to the inversion of C and the calculation of q∼k(θ) s∼k(θ) for
all θ ∈ G. In this section we discuss how all updates of the algorithm can
be evaluated with low computational complexity by exploiting the inherent
structure of the problem. In particular we discuss how to evaluate ln |C|,
yHC−1y, q, r, s, t, u, v, x and q∼k(θ), s∼k(θ) for all θ ∈ G.

The method presented here is only applicable when the complete obser-
vation vector is available, i.e., when Φ = I, M = N and A(θ) = Ψ(θ). In
this case the observation vector y is a wide-sense stationary process and its
covariance matrix C is Hermitian Toeplitz. Low-complexity algorithms for
inverting such matrices are available in the literature. We also rely on fast
Fourier transform (FFT) techniques.

Our approach is based on the Gohberg-Semencul formula [17, 20], which
states that the inverse of the Hermitian Toeplitz matrix C can be decomposed
as

C−1 = δ−1
N−1

(
TH

1 T1 − T0TH
0

)
, (B.35)

where the entries of T0 and T1 are

[T0]i,k = ρi−k−1,

[T1]i,k = ρN−1+i−k

for i, k = 1, . . . , N. Note that ρi = 0 for i < 0 and i > N − 1; thus T0 is
strictly lower triangular and T1 is unit upper triangular (ρN−1 = 1). The val-
ues δi and ρi for i = 0, . . . , N − 1 can be computed with a generalized Schur
algorithm in time O(N log2 N) [17]. Alternatively, the Levinson-Durbin al-
gorithm can also be used to obtain the decomposition in time O(N2). The
latter algorithm is significantly simpler to implement and is faster for small
N. In [18] it is concluded that the Levinson-Durbin algorithm requires fewer
total operations than the generalized Schur algorithm for N ≤ 256.

B.3.1 Evaluating yHC−1y and ln |C|
To calculate the value of the objective function (B.8) we need to find yHC−1y
and ln |C|. Inspecting (B.35) it is clear that matrix-vector products involving
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T0 and T1 are convolutions. These can be implemented using FFT techniques.
The product yHC−1y can thus be calculated in O(N log N) time when {ρi}
and δN−1 are known.

The matrix C is Hermitian positive definite and can therefore be factorized
uniquely as

C = LBLH, (B.36)

with L being unit lower triangular. The diagonal matrix B is computed with
the generalized Schur algorithm. Its diagonal entries are given by δi for i =
0, . . . , N − 1 [17]. Since the determinant of a triangular matrix is the product
of its diagonal entries, we have

ln |C| =
N−1

∑
i=0

ln δi. (B.37)

It follows that once the generalized Schur algorithm has been executed, the
objective function (B.8) can easily be found.

B.3.2 Evaluating q, r and u

Note that C−1y can be evaluated with FFT techniques using (B.35). We rec-
ognize that matrix-vector products involving ΨH(θ̂ẑ) are Fourier transforms
evaluated off the equispaced grid. Such products are approximated to a very
high precision in time O(N log N) using the non-uniform fast Fourier trans-
form6 (NUFFT) [21, 22]. Then q, r and u are easily found in time O(N log N)
(assuming the decomposition (B.35) has already been calculated).

B.3.3 Evaluating s, t, v and x

Turning our attention to s, we follow [19] and note that (recall that we assume
Φ = I)

sk = [ΨH(θ̂ẑ)C−1Ψ(θ̂ẑ)]k,k

=
N−1

∑
i=−(N−1)

ωs(i) exp
(

j2πi[θ̂ẑ]k
)

(B.38)

6The NUFFT calculates the Fourier transform at arbitrary points (not lying on an equispaced
grid) by interpolation combined with an FFT. It is an approximation, which can be made ar-
bitrarily accurate by including more points in the interpolation. The NUFFT achieves a time
complexity of O(N log N + K), where K is the number of off-the-grid frequency points at which
it is evaluated. For K ≤ N this complexity is equal to that of the FFT, but the constant hidden
in the big-O notation is much higher for the NUFFT. We have found that for N ≥ 512 significant
speedups can be achieved by using the NUFFT over a direct computation of A(θ̂ẑ) and evalua-
tion of the matrix-vector products involving this matrix. In particular the speedup arises from
the fact that A(θ̂ẑ) no longer needs to be formed.
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for k = 1, . . . , K̂ where K̂ is the number of entries in θ̂ẑ. The function ωs(i)
gives the sum over the ith diagonal, i.e.,

ωs(i) =
min(N−1−i,N−1)

∑
q=max(0,−i)

[C−1]q+1,q+i+1. (B.39)

It is obvious that (B.38) can be calculated for all k = 1, . . . , K̂ via a NUFFT
when the values ωs(i) are available.

To evaluate t, v and x we follow a similar approach and note that the
entries of these vectors can be written as (B.38) with ωs(i) replaced by

ωt(i) =
min(N−1−i,N−1)

∑
q=max(0,−i)

[DC−1]q+1,q+i+1 (B.40)

ωv(i) =
min(N−1−i,N−1)

∑
q=max(0,−i)

[D2C−1]q+1,q+i+1 (B.41)

ωx(i) =
min(N−1−i,N−1)

∑
q=max(0,−i)

[DC−1D]q+1,q+i+1, (B.42)

respectively. In Appendix B we demonstrate how {ωs(i)}, {ωt(i)}, {ωv(i)}
and {ωx(i)} can be obtained through length-2N FFTs using the decomposi-
tion (B.35).

B.3.4 Evaluating q∼k(θ) and s∼k(θ) for all θ ∈ G
To calculate the frequency of the component processed in the activation stage,
q∼k(θ) and s∼k(θ) must be evaluated for all θ ∈ G, where G is a grid of L eq-
uispaced points. Defining the vector of gridded frequencies θG , [0, 1/L, . . . ,
(L− 1)/L]T, we need to find

qG , ΨH(θG)C−1y,

sG , diag
(

ΨH(θG)C−1Ψ(θG)
)

.

We have used the fact that in the beginning of the activation step the kth
component is deactivated and thus C∼k = C.

Since G is an equispaced grid, products with ΨH(θG) can be evaluated as
a length-L FFT. The vector qG is therefore easy to find. Rewriting sG in the
form (B.38), it is seen that sG can also be evaluated as a length-L FFT. These
computations have time-complexity O(L log L) (assuming the decomposition
(B.35) has already been calculated).
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B.3.5 Algorithm Complexity

In summary, the time complexity of each iteration in the algorithm described
in Sec. B.2 is dominated by either the calculation of {ρi} and δN−1 with
the generalized Schur algorithm or the calculation of qG and sG (we assume
K̂ ≤ M = N ≤ L). With our choice L = 8N we have complexity per iteration
of O(N log2 N).

Also note that all computations involving Ψ(θ̂ẑ) are performed using the
NUFFT. This matrix therefore does not need to be stored, so our algorithm
only uses a modest amount of memory.

B.4 Semifast Method (Incomplete Observations)

The method presented in Sec. B.3 is not applicable when an incomplete ob-
servation vector is available, i.e., when Φ 6= I. In the following we introduce
a computational method, which can be used when Φ is a subsampling and
scaling matrix, i.e., when Φ ∈ CM×N consists of M rows of a diagonal ma-
trix.7 With this method we can still obtain an algorithm with reasonable
computational complexity per iteration, assuming that K̂ is relatively small
(a K̂ × K̂ matrix must be inverted). We coin this algorithm as semifast. For
small K̂ the semifast algorithm is faster than the superfast algorithm of Sec.
B.3 and it may therefore be beneficial to even use it in the complete data case.

The semifast method is based on the following decomposition of C−1,
obtained using Woodbury’s matrix identity:

C−1 = β̂−1I− β̂−2A(θ̂ẑ)Σ̂AH(θ̂ẑ) (B.43)

with Σ̂ given by (B.11). We can evaluate Σ̂−1 by noting that[
AH(θ̂ẑ)A(θ̂ẑ)

]
i,k

=
[
ΨH(θ̂ẑ)Φ

HΦΨ(θ̂ẑ)
]

i,k

=
M

∑
m=1
|Φm,IM(m)|2 exp

(
j2π(IM(m)− 1)(θ̂k − θ̂i)

)
, (B.44)

which can be evaluated with a NUFFT in time O(N log N + K̂2). Forming
Σ̂−1 is then easy and an inversion8 in time O(K̂3) is needed to obtain Σ̂.

7LetM⊆ {1, . . . , N} denote the index set of the observed entries and IM : {1, . . . , M} →M
be an indexing. Then Φm,IM(m), m = 1, . . . , M, are the only nonzero elements of Φ.

8As is customary in numerical linear algebra, we would recommend not to explicitly evalu-
ate the inverse, but instead use the numerically stabler and faster approach of calculating the
Cholesky decomposition Σ̂−1 = LLH (a unique Cholesky decomposition exists because Σ̂−1 is
Hermitian positive definite). We need to evaluate matrix-vector products involving Σ̂ which
are easily evaluated from the decomposition by forward-backward substitution. We can also
calculate |Σ̂−1| directly from the Cholesky decomposition.
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The approach thus hinges on K̂ being sufficiently small, such that the inverse
(really, the Cholesky decomposition) can be calculated in reasonable time.

B.4.1 Evaluating yHC−1y, ln |C|, q, r and u

Notice that matrix-vector products involving Ψ(θ̂ẑ) and ΨH(θ̂ẑ) can be eval-
uated using a NUFFT. It then immediately follows that the values yHC−1y,
q, r and u can be evaluated using (B.43) with complexity O(K̂2 + N log N).

To evaluate the objective function (B.8) we need to calculate ln |C|. By
invoking the matrix determinant lemma we get

ln |C| = M ln β̂ + ∑
{k:ẑk=1}

ln γ̂k + ln |Σ−1|, (B.45)

which can be evaluated in time O(K̂) once the Cholesky decomposition of
Σ−1 is known.

B.4.2 Evaluating s, t, v and x

As an example, we demonstrate how to evaluate t. We note that s, v and x
can easily be obtained using the same approach. First, insert (B.43) into (B.19)
to get

t = β̂−1 diag
(

ΨH(θ̂ẑ)DΦHA(θ̂ẑ)
)

− β̂−2 diag
(

ΨH(θ̂ẑ)DΦHA(θ̂ẑ)Σ̂AH(θ̂ẑ)A(θ̂ẑ)
)

.

Using the same methodology as for computing Σ̂−1, the K̂ × K̂ matrices
AH(θ̂ẑ)A(θ̂ẑ) and ΨH(θ̂ẑ)DΦHA(θ̂ẑ) can be obtained in time O(N log N +
K̂2). Then, t is found by direct evaluation in time O(K̂3).

B.4.3 Evaluating q∼k(θ) and s∼k(θ) for all θ ∈ G
To calculate the frequency of the component processed in the activation stage
we must evaluate q∼k(θ) and s∼k(θ) for all θ ∈ G, where G is a grid of L
equispaced points. Using the fact that in the beginning of the activation step
the kth component is deactivated and thus C∼k = C, we obtain the required
quantities by inserting (B.43) into (B.16) and (B.18):

qG = β̂−1AH(θG)
(
y−A(θ̂ẑ)µ̂

)
sG = β̂−1 diag

(
AH(θG)A(θG)

)
− β̂−2 diag

(
AH(θG)A(θ̂ẑ)Σ̂AH(θ̂ẑ)A(θG)

)
.
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It is clear that qG can easily be found using FFT techniques.
To obtain sG we first note that the first term is a vector with all entries

equal to β̂−1 ∑M
m=1 |Φm,IM(m)|2. The second term is found by using a NUFFT

(see (B.44)) to form AH(θ̂ẑ)A(θG). Then by using the Cholesky decomposi-
tion of Σ̂−1 the second term can be calculated in time O(LK̂2).

B.4.4 Algorithm Complexity

The above computation is dominated by either the calculation of sG or the
length-L FFT involved in calculating qG . Again with L = 8N we have overall
complexity per iteration O(NK̂2 + N log N).

B.5 Multiple Measurement Vectors

The algorithm presented in Sec. B.2 assumes a single measurement vector
(SMV). We now discuss an extension to the case of multiple measurement
vectors (MMV) [34]. This case is of particular importance in array processing
where the number of observation points M is determined by the number of
antennas in the array.9 Typically M is small, which thus limits estimation
accuracy. On the other hand it is often easy to obtain multiple observation
vectors across which the entries in θ̃ (the true directions of arrivals) are prac-
tically unchanged. The MMV signal model reads

y(g) = A(θ̃)α̃(g) + w(g), (B.46)

where g = 1, . . . , G indexes the observation vectors.
To extend our SMV algorithm to the MMV case we again impose an esti-

mation model of the form (B.2) that contains Kmax components which can be
(de)activated based on variables zk, k = 1, . . . , Kmax. The likelihood for each
of the G observation vectors then reads

p(y(g)|α(g), z, θ; β) = CN(y(g); A(θz)α
(g)
z , βI). (B.47)

We impose the same prior as used in the SMV case (B.5) on each α(g):

p(α(g); γ) =
Kmax

∏
k=1

CN(α
(g)
k ; 0, γk). (B.48)

The vectors z and θ are assigned the same priors as in the SMV case, i.e.,
as given by (B.4) and (B.6). Similarly to the SMV case, the MMV model has
parameters γ, β and ζ.

9It is worth noting that in array processing the complete data case corresponds to the very
common situation of using a uniform linear array.
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The objective to be minimized is the marginal likelihood, which for the
MMV model reads

LMMV , − ln
G

∏
g=1

p(y(g)|z, θ; β, γ)p(z; ζ)p(θ) + const.,

=
G

∑
g=1

[
ln |C|+

(
y(g)

)H
C−1y(g)

]

−
Kmax

∑
k=1

(zk ln ζ + (1− zk) ln(1− ζ)) + const.,

where p(y(g)|z, θ; β, γ) = CN(y(g); 0, C) with C as in (B.7). The posterior
probabilities of the coefficient vectors α(g), g = 1, . . . , G, are given by (B.9)
with y and α replaced by y(g) and α(g).

The procedure to estimate the variables θ, z, γ, β and ζ follows straight-
forwardly from the method used in the SMV case. Here we provide a brief
discussion of the derivation of the update equations; refer to Sec. B.2 for
details.

To estimate θ and γ the first- and second-order derivatives of LMMV are
needed. Denote the derivative (B.12) with y replaced by y(g) as ∂L(g)

∂[θẑ ]k
. Then

we have

∂LMMV

∂[θẑ]k
=

G

∑
g=1

∂L(g)

∂[θẑ]k
.

A similar result follows for the second-order derivative and the derivatives
with respect to γẑ.

The estimate of ζ is unchanged from the SMV case (B.23).
To estimate the noise variance β, we write an upper bound of the same

form as (B.25) and find its minimizer to be

β̂ = max
(

εβ, M−1 tr
(
Σ̂AH(θ̂ẑ)A(θ̂ẑ)

)
+ (GM)−1

G

∑
g=1
||y(g) −A(θ̂ẑ)µ̂

(g)||2
)

,

where µ̂(g) is given by (B.10) with y replaced by y(g).
To write the activation and deactivation criteria for the MMV model we

rewrite the objective in terms of the parameters of a single component, anal-
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ogously to (B.27):

LMMV(zk, θk, γk) = zk

(
G ln

(
1 + γks∼k(θk)

)
−

G

∑
g=1

|q(g)
∼k (θk)|2

γ−1
k + s∼k(θk)

+ ln

(
1− ζ̂

ζ̂

))
+ const., (B.49)

where q(g)
∼k (θk) is given by (B.28) with y replaced by y(g). We omit the details

of the activation and deactivation stages, as they follow straightforwardly
from (B.49) and the description in Secs. B.2.3 and B.2.3.

The insightful reader may have noticed that the calculations required for
MMV are very similar to those required for SVM. In particular, the matrix
Ĉ is unchanged and the methods for calculating matrix-vector products in-
volving Ĉ−1 presented in Secs. B.3 and B.4 can be utilized. All expressions
involving y (i.e., q, r, u, qG and yĈ−1y) must be calculated for each obser-
vation vector y(g). This means that in the case of complete observations,
the generalized Schur algorithm can be used so that the MMV algorithm
has per-iteration complexity O(N log2 N + GN log N). With incomplete ob-
servations the semifast method can be used with per-iteration complexity
O(NK̂2 + GN log N).

B.6 Experiments

B.6.1 Setup, Algorithms & Metrics

In our experiments we use the signal model (B.1). In the following the
wrap-around distance on [0, 1) is used for all differences of frequencies (see
Footnote 5). Unless otherwise noted, the true frequencies are drawn ran-
domly, such that the minimum separation between any two frequencies is
2/N. Specifically, the frequencies are generated sequentially for k = 1, . . . , K
with the kth frequency, θ̃k, drawn from a uniform distribution on the set
{θ ∈ [0, 1) : d(θ, θ̃l) > 2/N for all l < k}.

The true coefficients in α̃ are generated i.i.d. random, with each entry
drawn as follows. First a circularly-symmetric complex normal random vari-
able ak with standard deviation 0.8 is drawn. The coefficient is then found
as α̃k = ak + 0.2 ej arg(ak). The resulting random variable has the property
|α̃k| ≥ 0.2, i.e., all components have significant magnitude. We use this speci-
fication to ensure that all components can be distinguished from noise. After
generating the set of K frequencies and coefficients, the noise variance β is
selected such that the desired signal-to-noise ratio (SNR) is obtained, with
SNR , ||ΦΨ(θ̃)α̃||2/(Mβ).
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We compare the superfast LSE algorithm10 with the following reference
algorithms: variational Bayesian line spectral estimation (VALSE) [16]; atomic
soft thresholding11 (AST) [12]; gridless SPICE12 (GLS) [35]; ESPRIT [6, 8]; and
a gridded solution obtained with the least absolute shrinkage and selection
operator (LASSO) solved using SpaRSA13 [36].

The solution to the primal problem of AST [12] directly provides an es-
timate of the signal vector h = Ψ(θ̃)α̃. This solution is known to be biased
towards the all-zero solution (as is also the case with the classical LASSO
solution). A so-called debiased solution can be obtained by recovering the
frequencies from the AST dual and estimating the coefficients α̃ via least-
squares. As in [12], we report here the debiased solution. If the frequencies
are separated by at least 2/N, the AST algorithm is known to exactly recover
the frequencies in the noise-free case [11–13]. In the noisy case no such recov-
ery guarantee exists, but a bound on the estimation error of the signal vector
h is known [12, 13]. Unfortunately this error bound does not apply to the
debiased solution we report herein.

We use the variant of GLS [35] which uses SORTE [9] for model order
estimation and MUSIC [7] for frequency estimation.

ESPRIT requires an estimate of the signal covariance matrix and of the
model order. The former is obtained as the averaged sample covariance ma-
trix computed from the signal vector split into N/3 signal vectors of length
2N/N using forward-backward smoothing. The model order is estimated
with SORTE [9].

The LASSO solution is obtained using a grid of size 8N. We have ob-
served that no improvement in performance is achieved with a finer grid.
The regularization parameter of LASSO is selected as proposed in [12] with
knowledge of the true noise variance. We use the debiased solution returned
by the SpaRSA solver.

In the evaluation of the signal reconstruction we have also included an
oracle estimator (denoted Oracle) which obtains a least squares solution for
α̃ with known θ̃.

Three performance metrics are used: normalized mean-squared error
(NMSE) of the reconstructed signal, block success rate (BSR) and component
success rate (CSR). The NMSE is defined as

NMSE ,
||Ψ(τ̂)α̂−Ψ(τ̃)α̃||2
||Ψ(τ̃)α̃||2 .

10We have published our code at github.com/thomaslundgaard/superfast-lse. It is based
on our own implementation of the generalized Schur algorithm and the NUFFT available at
cims.nyu.edu/cmcl/nufft/nufft.html.

11The code is available online at github.com/badrinarayan/astlinespec.
12The code has kindly been provided by the authors.
13The code is available online at lx.it.pt/∼mtf/SpaRSA.
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The BSR is the proportion of Monte Carlo trials in which the frequency
vector θ̃ is successfully recovered. Successful recovery is understood as cor-
rect estimation of the model order K and that ||d(θ̃, θ̂)||∞ < 0.5/N. The
association of the entries in θ̂ to those in θ̃ is obtained by using the Hungar-
ian method [37] (also known as Munkres assigment algorithm) minimizing
||d(θ̃, θ̂)||22.

The BSR can be misleading, since a trial is considered to be unsuccessful
if just a single component is misestimated; for example if a component is
represented in the estimate by two components with very close frequencies.
We therefore introduce the CSR, defined as follows:

CSR ,
∑K̂

k=1 S(θ̂k, θ̃) + ∑K
k=1 S(θ̃k, θ̂)

K̂ + K

with the success function S(x, a) , 1[min
k

d(x, ak) < 0.5/N], where 1[·] de-

notes the indicator function. The reported CSR is averaged over a number
of Monte Carlo trials. The CSR takes values in [0, 1]. A CSR of 1 is achieved
if, and only if, all estimated components are in the vicinity of one or more
true components and all true components are in the vicinity of one or more
estimated components.

B.6.2 Choosing the Activation Threshold

To determine a sensible value for the activation threshold τ in (B.34), the
following experiment is conducted. We consider the complete data case with
N = M = 128 and the number of components is fixed at K = 35, as there is a
larger tendency to activate artefact components for relatively large K/N. The
algorithm is provided with the knowledge of Kmax = 35 and the activation
probability is fixed at ζ̂ = 35/128. The algorithm is run with the activation
criterion (B.33). In this way, the algorithm in most cases successfully estimates
the frequencies without any artefacts. After the algorithm has terminated,
we test if θ̃ was successfully recovered (as defined above). If so, Kmax is
increased and the procedure for activating a component in Sec. B.2.3 is run
and the difference between the left-hand and right-hand sides of (B.33) is
saved. We refer to this difference as δ and the criterion (B.33) can be expressed
as δ > 0. In Fig. B.1 we show histograms of the value δ obtained from
5, 000 successful recoveries at three different SNR values At each SNR, the
experiment is repeated until the required number of successful recoveries are
obtained; trials without successful recovery are discarded. Cases where δ > 0
thus correspond to cases where an artefact would be activated using criterion
(B.33).

The heuristic criterion (B.34) corresponds to δ > τ. From Fig. B.1 it is
clearly seen that threshold τ = 5 is a sensible value, which precludes almost
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Fig. B.1: Histograms of δ values for different signal-to-noise ratios. Cases where δ > 0 corre-
spond to cases where an artefact component is activated if the criterion (B.33) is used.

all artefact components from being activated. It is seen that this threshold
works well for a large range of SNR values. We have not investigated whether
τ = 5 is so large that desired components are precluded from activation. The
results in the following investigations are all obtained with τ = 5 and the
good performance of our algorithm across this wide selection of scenarios
indicates that the selected τ is not too large.

B.6.3 Estimation with Complete Data

In Fig. B.2 we show performance results versus SNR. We first notice that Su-
perfast LSE is on par with or outperforms all other algorithms in the three
metrics shown here for all SNR values. In the low SNR region no algorithm
can reliably recover the correct model order and the frequencies. In the plots
of the CSR and NMSE, we see that Superfast LSE, VALSE and AST gener-
ally achieve the best approximation of the true frequencies. There is a small
performance gap in terms of NMSE between Oracle and all other evaluated
algorithms due to the uncertainty in frequency estimation (Oracle knows the
true frequencies).

ESPRIT and GLS are observed to have the weakest performance at low
SNR, especially in terms of CSR and NMSE. Both algorithms use SORTE
to estimate the model order from the eigenvalues of the signal covariance.
At low SNR it is hard to distinguish the signal eigenvalues from the noise
eigenvalues, leading to the observed deterioration in performance.

At medium to high SNR, BSR of AST is about 0.75. The algorithm tends
to slightly overestimate the model order (not shown here). We hypothesise
that such systematic overestimation of the model order can be avoided by ad-
justing the regularization parameter used in AST. Doing so would, however,
mean that AST would perform worse in other scenarios. This is exactly the
weakness of methods involving regularization parameters.

Finally note that LASSO is never able to successfully estimate the model
order, due to the use of a grid. In particular each true frequency component
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Fig. B.2: Simulation results for varying SNR with complete data (Φ = I). The signal length is
N = M = 128 and the number of components is K = 10. Results are averaged over 500 Monte
Carlo trials. The legend applies to all plots. Only the NMSE of Oracle is shown.

is estimated by a few non-zero entries at neighbouring gridpoints. It is visible
in the CSR that LASSO indeed estimates frequencies which lie in the vicin-
ity of the true frequencies. In some applications, e.g. channel estimation in
wireless communications, it is the reconstructed signal and not the frequen-
cies themself which are of interest. In this case LASSO may be preferable
because of its simplicity. Due to the grid approximation, LASSO performs a
little worse than the best gridless algorithms in terms of NMSE.

B.6.4 Super Resolution

The ability to separate components beyond the Rayleigh limit of 1/N is
known as super resolution. The results in Fig. B.3 illustrate the super res-
olution ability of the algorithms. In this experiment we generate 5 pairs of
frequencies with varying distance between the two frequencies in each pair.
The pairs are well separated (at least 2/N separation between frequencies
which are not in the same pair).

The NMSE performance of Superfast LSE, VALSE and LASSO is only
slightly worse at low separation when compared to the performance at large
separation. It is evident that the model order and the frequencies cannot be
recovered in every case (BSR below 1) when the separation is less than 1/N.
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Fig. B.3: Simulation results for closely23 located components with complete data (Φ = I). The
frequencies are generated as 5 pairs (i.e. K = 10) such that each pair has varying (deterministic)
intra-pair separation, while the location of the pairs are generated randomly with non-paired
frequencies at least 2/N apart (i.e., the location of the pairs are generated using a procedure
similar to the one described in Sec. B.6.1). The signal length is N = M = 128 and the SNR is
20 dB. Results are averaged over 500 Monte Carlo trials. The legend applies to all plots. Only
the NMSE of Oracle is shown.

Since the CSR is close to 1 and the NMSE is close to that of Oracle, these
three algorithms handle closely located components well, in the sense that a
good approximation of the frequencies is obtained.

AST, GLS and ESPRIT give a CSR below 1 and a rather large NMSE when
the separation is small. This is despite the fact that GLS and ESPRIT do
not show a significantly worse BSR compared to Superfast LSE. We have
observed that this is because these algorithms significantly underestimate
the model order in some cases, resulting in a large contribution to NMSE.

ESPRIT shows worse super resolution ability than Superfast LSE, VALSE
and GLS (lower BSR for separation below 0.7/N). This is because a covari-
ance matrix of size 2N/3 is formed, thus reducing the effective signal length.

B.6.5 Estimation with Incomplete Data

Fig. B.4 reports the performance in the incomplete data case. The measure-
ment matrix Φ is generated by randomly selecting M rows of the N × N
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Fig. B.4: Simulation results with incomplete data, i.e., Φ contains M rows of I selected at random.
The signal length is N = 128, the SNR is 20 dB and the number of components is K = 10. Results
are averaged over 500 Monte Carlo trials. The legend applies to all plots. Only the NMSE of
Oracle is shown.

identity matrix. The set of observation indices is chosen to include the first
and last indices, while the remaining M− 2 indices are obtained by uniform
random sampling without replacement. Only a subset of the algorithms are
applicable in this case. Our proposed algorithm is implemented using the
techniques described in Sec. B.4. We refer to it as Semifast LSE.

Semifast LSE and VALSE largely show the same performance, while GLS
has a slightly higher NMSE for M/N ≤ 0.5. The higher NMSE is caused by a
few outliers (less than 1% of the Monte Carlo trials) where GLS significantly
underestimates the model order. LASSO is again observed to have reasonable
NMSE and CSR while being unable to correctly estimate the set of frequencies
(i.e., BSR= 0).

B.6.6 Phase Transitions

Inspired by the concept of phase transitions in compressed sensing, we per-
form an experiment which shows a similar phenomenon for LSE. In particu-
lar we demonstrate that for each algorithm there is a region in the space of
system parameters where it can almost perfectly recover the frequencies and
a region where it cannot, with a fairly sharp transition between the two. The
results, in terms of BSR, are seen in Fig. B.5.
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Fig. B.5: Simulation results showing phase transitions with complete data (Φ = I). The plots
show block success rate. The set of frequencies are generated as closely located pairs, following
the methodology described in the caption of Fig. B.3. The number of pairs are selected such that
the specified ratio K/N is achieved as closely as possible. The signal length is N = M = 128 and
the SNR is 20 dB. Results are averaged over 120 Monte Carlo trials.
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We first note that AST has rather poor performance, which is consistent
with the observation in Fig. B.2 that its BSR is significantly below 1. Turn-
ing our attention to VALSE, GLS and ESPRIT, we see that these algorithms
generally do not deal well with a large number of components, in the sense
that the BSR is significantly below 1 for K/N ≥ 0.15. It is seen in Fig. B.5f
that Superfast LSE has the largest region with high probability of successful
recovery (BSR ≥ 0.75).

B.6.7 Computation Times

In Fig. B.6 and B.7 we show algorithm runtimes for varying problem sizes.
Our proposed method uses the superfast and semifast implementations in
Secs. B.3 and B.4, respectively. The results are obtained using MATLAB
on a 2011 MacBook Pro. To avoid differences in results originating from
the amount of parallelism achieved in each implementation, MATLAB is re-
stricted to only use a single computational thread. The part of the code
where each algorithm spends significant time is implemented as native code
via MATLAB’s codegen feature.
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Fig. B.6: Runtimes in seconds versus problem size N. We show for both complete (top) and
incomplete (bottom) data case. The number of components is K = 15 and the SNR is 20 dB.
Values are averaged over 20 Monte Carlo trials. In the incomplete data case we set M = 0.75N.
We also plot (solid black) the asymptotic per-iteration complexity of Superfast and Semifast LSE.

For varying N (Fig. B.6), we first observe that for small to moderate
problem sizes (N ≤ 210) the difference between LASSO and our proposed
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Fig. B.7: Runtimes in seconds versus number of components K. We show for both complete
(top) and incomplete (bottom) data case. The problem size is N = 4096 and the SNR is 20 dB.
Values are averaged over 20 Monte Carlo trials. We only show results for algorithms which has
runtime lower than 10 s at K = 4. In the incomplete data case we set M = 0.75N = 3072. We
also plot (solid black) the asymptotic per-iteration complexity of Superfast and Semifast LSE.

algorithms is small (less than 1 second). This difference is mainly due to im-
plementation details. In the large-N region, Superfast and Semifast LSE are
approximately an order of magnitude faster than LASSO. We observe that
the asymptotic per-iteration complexity of Superfast and Semifast LSE de-
scribes the scaling of the total runtime well for N ≥ 212, because the number
of iterations (not shown) stays practically constant. The state-of-the-art LSE
methods VALSE, AST and GLS all have O(N3) time complexity or worse,
which results in very large runtimes even when the problem size is moderate
(e.g. > 100 s for AST and GLS at N = 512). For large problem sizes, the
O(N3) time complexity of ESPRIT is evident and Superfast/Semifast LSE
and LASSO significantly outperform ESPRIT.

In Fig. B.7 we show results illustrating how the computation time scales
with K. In this analysis we assume K̂ = O(K). First we note that the runtime
of LASSO is practically constant with K. In the complete data case, the per-
iteration complexity of Superfast LSE scales linearly with K. In practice we
see a slower scaling with K, which means that the values of K we use here
are not large enough to reach the asymptotic region. Simulations with large
K cannot be run, because we need approximately K < N/4 for K̂ = O(K) to
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hold (cf. Fig. B.5).
In the incomplete data case, we see that the runtime of Semifast LSE in-

creases quickly with K, such that for K > 128 LASSO is faster than Semifast
LSE. We do, however, see that the asymptotic complexity of O(K3) is not
reached in our experiment, because the runtime is dominated by the calcula-
tion of sG , which has complexity O(LK2).

B.7 Conclusions

We have presented a low-complexity algorithm for line spectral estimation.
Computational methods for both the complete and incomplete data cases
have been presented, along with an extension to the case of multiple mea-
surement vectors.

The proposed algorithm falls in the category of Bayesian methods for line
spectral estimation. Bayesian methods are widely accepted due to their high
estimation accuracy, but a drawback of this class of methods has historically
been their large computational complexity. In that respect, this work makes
an important contribution in making Bayesian methods more viable in prac-
tice.

At the core of the computational method for the complete data case lies
the application of the Gohberg-Semencul formula to the Toeplitz signal co-
variance matrix. Many methods for line spectral estimation have Toeplitz
covariance matrices at their core and we conjecture that the computational
complexity of some of them can be drastically reduced by applying the tech-
niques we have demonstrated in this paper.

Our numerical experiments show that our Superfast LSE algorithm has
very high estimation accuracy. For example, in Fig. B.5 we see that Superfast
LSE attains high frequency recovery rates for a much larger set of scenarios
than any of the reference algorithms. At the same time our algorithm has so
low computation time that it makes highly-accurate LSE feasible for problems
with size much larger than methods currently available in the literature can
practically deal with.

A Convergence Analysis

We now discuss the convergence of our proposed block-coordinate descent
algorithm. To do so we introduce an iteration index i on all estimated vari-
ables. Our algorithm then produces sequences of blocks of estimates denoted
as {ẑi}, {ζ̂ i}, {β̂i} and {(θ̂i, γ̂i)}. We denote the value of the objective func-
tion at the end of the ith iteration as Li , L(ẑi, ζ̂ i, β̂i, θ̂i, γ̂i). We first note
that all updates of the estimates are guaranteed not to increase the objective,
so {Li} is a non-increasing sequence. Since β ≥ εβ it is also bounded below
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and thus it converges. Therefore, our proposed algorithm terminates in finite
time.

Unfortunately, convergence of {Li} does not imply convergence of the
sequences of estimates. Even with exact minimization in each block of vari-
ables, block-coordinate descent on non-convex functions can get stuck in an
infinite cycle [38]. This is further complicated by the fact that our algorithm
only approximately solves the minimization in some of the blocks.

Proposition 5 in [39] shows that with exact minimization in each block,
block-coordinate descent converges if the objective function is strictly qua-
siconvex in all but 2 blocks. The objective function L is strictly quasicon-
vex in ζ and β. There is thus hope that we can prove convergence of our
scheme which, in lieu of computing the exact minimizer, merely has a de-
scent property in each block. Our approach to show convergence shares the
same overall idea as that in [39], while many details differ.

To discuss the convergence properties, we first derive a number of lem-
mas. Theorem B.1 is proved at the end of the appendix. For notational
simplicity we take the convention that for each i the block-coordinate descent
algorithm cycles through the block updates in the following order: ẑi, ζ̂ i, β̂i

and finally (θ̂i, γ̂i), such that for example β̂i is found based on (ẑi, ζ̂ i, β̂i−1,
θ̂i−1, γ̂i−1). This is strictly speaking not how we have defined our algorithm,
but that does not affect the correctness of our analysis.

Lemma B.1. The sequence of estimates has at least one convergent subsequence, i.e.,
at least one limit point.

Proof: All variables but γ and β are defined to be in a closed and
bounded set. Since limβ→∞ L = ∞ we can restrict β to a closed and bounded
set determined by the (finite) initial value of the objective function. A similar
argument holds for each γk. The lemma then follows from the Bolzano-
Weierstrass theorem.

Lemma B.2. The sequence {ẑi} converges.

Proof: Each activation of a component gives a decrease in L of at least
εL. Since {Li} is lower bounded, there can only be finitely many activations.
Since there cannot be more deactivations than activations, also the number of
deactivations is finite. There is thus a finite number of changes to ẑ and {ẑi}
converges. We denote the limit point as z̄.

Lemma B.3. The sequence {ζ̂ i} converges. Further, the limit point ζ̄ is the unique
global minimizer of ζ 7→ L(z̄, ζ, β, θ, γ) for any β, θ and γ.

Proof: The first statement follows from Lemma B.2 since ζ̂ i (B.23) is
only a function of ẑi. The second statement results from the fact that ζ̂ i

is defined as the global minimizer of ζ 7→ L(ẑi, ζ, β̂i−1, θ̂i−1, γ̂i−1) and this
global minimizer does not depend on β̂i−1, θ̂i−1 and γ̂i−1.
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Lemma B.4. The sequence {β̂i} converges to the limit point β̄. Further, for every
limit point (z̄, ζ̄, θ̄, γ̄) of the remaining variables, the limit point β̄ is a local minimum
at the boundary εβ or a stationary point of β 7→ L(z̄, ζ̄, β, θ̄, γ̄).

Proof: To perform this proof we expand our previous notation and
denote the upper bound (B.25) as Q(β; ẑi, β̂i−1, θ̂i−1, γ̂i−1). Then,

L(ẑi, ζ̂ i, β̂i−1, θ̂i−1, γ̂i−1) = Q(β̂i−1; ẑi, β̂i−1, θ̂i−1, γ̂i−1)

≥ Q(β̂i; ẑi, β̂i−1, θ̂i−1, γ̂i−1) ≥ L(ẑi, ζ̂ i, β̂i, θ̂i−1, γ̂i−1).

Recalling that {Li} converges, we have

lim
i→∞

∣∣∣L(ẑi, ζ̂ i, β̂i−1, θ̂i−1, γ̂i−1)−L(ẑi, ζ̂ i, β̂i, θ̂i−1, γ̂i−1)
∣∣∣ = 0,

and thus

lim
i→∞

∣∣∣Q(β̂i−1; ẑi, β̂i−1, θ̂i−1, γ̂i−1)−Q(β̂i; ẑi, β̂i−1, θ̂i−1, γ̂i−1)
∣∣∣ = 0. (B.50)

Reasoning by contradiction, assume that the sequence of estimates {β̂i} has
two limit points β̄1 and β̄2, such that β̄1 6= β̄2. Let (θ̄, γ̄) be any limit point of
{θ̂i, γ̂i} (such a limit point exists due to Lemma B.1). Then by (B.50) we must
have

Q(β̄1; z̄, β̄1, θ̄, γ̄) = Q(β̄2; z̄, β̄1, θ̄, γ̄). (B.51)

Recalling the definition of β̂i, we have that β̄2 uniquely minimizes Q. Then,
since we assumed β̄1 6= β̄2, we get

Q(β̄1; z̄, β̄1, θ̄, γ̄) > Q(β̄2; z̄, β̄1, θ̄, γ̄),

which contradicts (B.51). So {β̂i} has only a single limit point which we
denote as β̄.

To prove the second statement, use (B.24) to show that

∂

∂β
Q(β; z̄, β̄, θ̄, γ̄)

∣∣∣
β=β̄

=
∂

∂β
L(z̄, ζ̄, β, θ̄, γ̄)

∣∣∣
β=β̄

.

If β̄ = εβ, we have that the derivatives of Q and thus of L are positive.
It follows that β̄ is a local or global minimum. If β̄ 6= εβ it is, by def-
inition, a stationary point of Q. It is therefore also a stationary point of
β 7→ L(z̄, ζ̄, β, θ̄, γ̄).

We can now give a proof of the main convergence result.
Proof of Theorem B.1: Convergence to a unique limit follows immedi-

ately from the assumption and Lemmas B.2, B.3 and B.4.
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To prove the second statement, we first note that L is constant with re-
spect to those entries of θ and γ for which z̄k = 0. It then follows from the
assumption that ∂L

∂θk
= 0 and ∂L

∂γk
= 0 for all k = 1, . . . , Kmax at the limit point.

Similarly from Lemma B.3 we have ∂L
∂ζ = 0 at the limit point. If β̄ 6= εβ we

have ∂L
∂β = 0 at the limit point and the result follows immediately.

If β̄ = εβ the result can be obtained by introducing a Lagrange multiplier
such that the limit point satisfies the Karush-Kuhn-Tucker conditions.

B Efficient Evaluation of ωs(i), ωt(i), ωv(i) and ωx(i)

We derive a low-complexity computation of ωs(i) by first inserting (B.35) into
(B.39) to get

ωs(i) = δ−1
N−1

(
min(N−1,N−1−i)

∑
q=max(0,−i)

q

∑
r=0

ρ∗N−1+r−qρN−1+r−q−i− ρq−r−1ρ∗q+i−r−1

)
(B.52)

for i = −(N − 1), . . . , N − 1. Then note that since C is Hermitian we have
ωs(−i) = ω∗s (i). We therefore restrict our attention to i ≥ 0 in the following.
We need the identity

N−1

∑
q=0

q

∑
r=0

zq,r =
N−1

∑
q=0

N−1−q

∑
k=0

zq+k,k, (B.53)

from which we get (recall that ρi = 0 for i < 0 and i > N − 1)

ωs(i) = δ−1
N−1

N−1−i

∑
q=0

(N − i− q)(ρ∗N−1−qρN−1−q−i − ρq−1ρ∗q−1+i).

Substituting q = N − 1− q̄− i in the first term and q = q̄ + 1 in the second
term we finally obtain

ωs(i) = δ−1
N−1

N−1

∑̄
q=0

cs(q̄, i)ρq̄ρ∗q̄+i, (B.54)

where cs(q̄, i) , (2− N + i + 2q̄). The above expression can be calculated
as the sum of two cross-correlations in time O(N log N) by using FFT tech-
niques.
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To evaluate ωt(i) (B.40) we again insert (B.35) and get

ωt(i) = δ−1
N−1

(
min(N−1,N−1−i)

∑
q=max(0,−i)

2πq
q

∑
r=0
−ρq−r−1ρ∗q+i−r−1

+ ρ∗N−1+r−qρN−1+r−q−i

)
(B.55)

for i = −(N − 1), . . . , N − 1. Be aware that we do not have ωt(i) = ω∗t (−i).
Applying (B.53), performing the same substitutions as above and following
tedious, but straight-forward, algebra we finally get

ωt(i) =
2π

δN−1

N−1

∑̄
q=0

ct(q̄, i)ρq̄ρ∗q̄+i (B.56)

with

ct(q̄, i) , −q̄(q̄ + i) + i
(

N − 3 + i
2

)
+ q̄2 + (N − 1)

(
q̄− N − 2

2

)
, (B.57)

which again can be evaluated using FFT techniques.
Omitting details, we use a similar approach to find

ωv(i) =
4π2

δN−1

N−1

∑̄
q=0

cv(q̄, i)ρq̄ρ∗q̄+i (B.58)

ωx(i) =
4π2

δN−1

N−1

∑̄
q=0

cx(q̄, i)ρq̄ρ∗q̄+i, (B.59)

where ωv(−i) = ω∗v(i). The expression giving ωv(i) is valid for i ≥ 0, while
that giving ωx(i) is valid for i = −(N − 1), . . . , N − 1. We have also defined

cv(q̄, i) = q̄(q̄ + i)2 + (3q̄− 2Nq̄− q̄2)(q̄ + i)

+
2
3

q̄3 + (N − 1)q̄2 +

(
N2 − 3N +

7
3

)
q̄

+
3
2
(i− N)2 +

1
3
(i3 − N3) +

(
13
6
−Mi

)
(i− N) + 1

cx(q̄, i) = (q̄2 + 2q̄− Nq̄)(q̄ + i)− 1
3

q̄3 +

(
N2 − 3N +

7
3

)
q̄− 1

6
i3

+

(
3N2 − 9N + 7

6

)
i− 1

3
N3 +

3
2

N2 − 13
6

N + 1.
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C.1. Introduction

Abstract

The atomic norm provides a generalization of the `1-norm to continuous parameter
spaces. When applied as a sparse regularizer for line spectral estimation the solution
can be obtained by solving a convex optimization problem. This problem is known as
atomic norm soft thresholding (AST). It can be cast as a semidefinite program and
solved by standard methods. In the semidefinite formulation there are O(N2) dual
variables and a standard primal-dual interior point method requires at least O(N6)
flops per iteration. That has lead researchers to consider alternating direction method
of multipliers (ADMM) for the solution of AST, but this method is still somewhat
slow for large problem sizes. To obtain a faster algorithm we reformulate AST as
a non-symmetric conic program. That has two properties of key importance to its
numerical solution: the conic formulation has only O(N) dual variables and the
Toeplitz structure inherent to AST is preserved. Based on it we derive FastAST which
is a primal-dual interior point method for solving AST. Two variants are considered
with the fastest one requiring only O(N2) flops per iteration. Extensive numerical
experiments demonstrate that FastAST solves AST significantly faster than a state-
of-the-art solver based on ADMM.

C.1 Introduction

It is well known that sparse estimation problems can be formulated as convex
optimization problems using the `1-norm. The `1-norm can be generalized
to continuous parameter spaces through the so-called atomic norm [1]. Con-
vex modelling of sparsity constraints has two highly attractive traits: convex
optimization problems can easily be solved both in theory [2] and in prac-
tice [3, 4], and, a number of recovery guarantees can be obtained with this
framework. Such recovery guarantees are studied in signal processing under
the name compressed sensing [5–7] and they generalize nicely to the atomic
norm minimization approach [8–12].

The most prominent example of estimation with the atomic norm is the
application to line spectral estimation [9, 11, 12], in which case it is known as
atomic norm soft thresholding (AST). The popularity of AST is, partly, due
to the fact that it can be cast as a semidefinite programming (SDP) problem
(we refer to Sec. C.2 for a review of atomic norm minimization and AST,)

minimizev,x,u ‖x− y‖2
2 + τ(v + wTu)

subject to
(

T(u) x
xH v

)
� 0,

(C.1)

where v ∈ R, x ∈ CN , u ∈ R2N−1 are the variables of the problem and
y ∈ CN , τ ∈ R, w ∈ R2N−1 are fixed (known) parameters. The function T(u) :
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R2N−1 → CN×N outputs a complex Hermitian Toeplitz matrix constructed
from u, such that the first row is (2u0, . . . , uN−1) + j(0, uN , . . . , u2N−2). To be
precise, AST is obtained by selecting w = 2e0 in (C.1), where e0 is a vector
with 1 in the first entry and zeros elsewhere.

The state-of-the-art method for solving (C.1) is via the alternating di-
rection method of multipliers (ADMM) and used in [9, 13–15]. While this
method is reasonably fast, it has some drawbacks. It requires the calculation
of an eigenvalue decomposition in each iteration at cost O(N3) floating-point
operations (flops). This means that for large N it is exceedingly slow. As is
often seen with proximal methods it also has slow convergence if a solution
of high accuracy is requested.

Da Costa et al. [16] apply a low-dimensional projection of the observation
vector to reduce the problem size and therefore the computational complexity
of AST. In the noise-free case and under certain regularity conditions, it is
shown that the estimation accuracy is not affected by doing so. However, it is
clear that this approach discards observed data and the estimation accuracy
will be degraded in the noisy case.

The formulation of AST in (C.1) casts it as an SDP problem. SDP prob-
lems have been subject to intensive research since the 1990’s and their so-
lution using primal-dual interior point methods (IPMs) is now understood
well [2, 3, 17–19]. The Lagrangian dual of (C.1) has O(N2) dual variables
due to the semidefinite matrix constraint. The direct application of a stan-
dard primal-dual IPM (using direct methods for solving linear systems of
equations) thus requires O(N6) flops per iteration at best. Compared to this
approach, proximal methods (such as ADMM) which require O(N3) flops
per iteration are preferable, even if they converge much slower than primal-
dual interior point methods. That explains why primal-dual IPMs have not
gained traction for the solution of (C.1). In this work we reformulate the
constraint in (C.1) as a conic constraint on the vector (v, xT, uT)T. This formu-
lation immediately reduces the number of dual variables to O(N) and sets
the scene for the formulation of a fast primal-dual IPM. As we will see, this
approach reintroduces primal-dual IPMs as a very competitive class of algo-
rithms for solution of the AST problem. Primal-dual IPMs have so far been
rejected for the solution of AST based on the performance of general purpose
solvers [9, 15] such as SeDuMi [18] and SDPT3 [19]. This work therefore also
demonstrates the difference in performance that can be observed between a
dedicated and a general purpose solver.

Primal-dual IPMs for conic programming typically rely on a symmetry
between the primal- and dual problems. The formulation of such symmetric
primal-dual IPMs require the existence of a self-scaled barrier function for
the cone involved in the constraint [20, 21]. Güler [22] showed that such
barrier functions exist only for the class of homogeneous and self-dual cones.
The cone in our formulation is not self-dual and so a symmetric primal-dual
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IPM cannot be formulated. Non-symmetric conic optimization has received
some attention [23–26]. These methods generally rely on the availability of
a barrier function for the dual cone and possibly evaluation of its gradient
and Hessian. An easy to calculate dual barrier is not available for the cone
associated to the constraint of our formulation; only an oracle which can
determine membership in the dual cone is available (part of our contribution
is to show how such an oracle can be constructed.)

To derive a non-symmetric primal-dual IPM which does not rely on evalu-
ating the dual barrier or its derivatives, we formulate the augmented Karush-
Kuhn-Tucker conditions and devise a dedicated approach to solving these.
This approach is shown to converge to a primal-dual feasible point. A lower
bound on the objective function is calculated in those iterations where a dual
feasible point (as determined by the oracle) is available. From the lower
bound a duality gap can be evaluated, thus providing a method for dynam-
ically updating the barrier parameter. We show that the proposed method
enjoys global convergence.

Our focus is on obtaining an algorithm which has fast runtime in practice,
i.e., it has both low per-iteration computational complexity and it exhibits
reasonably fast convergence. Theoretical statements regarding for example
convergence speed are left for future work. At the core of obtaining a prac-
tically fast algorithm lies the already mentioned conic formulation (which
brings the number of dual variables down to O(N)), along with techniques
for fast evaluation of linear algebra in each step of the algorithm. These evalu-
ations are based on fast algorithms [27–30] for inversion of Toeplitz matrices.
Related techniques are employed in [31–34].

We dub the algorithm FastAST. Both Newtons method and a quasi-New-
ton method are considered for evaluation of the search direction in FastAST.
When using Newtons method the algorithm requires O(N3) flops per iter-
ation, while the quasi-Newton variant only requires O(N2) flops per itera-
tion. The numerical experiments in Section C.6 show that if a solution of
medium accuracy is requested the quasi-Newton variant is faster in practice.
The quasi-Newton variant is not able to obtain a solution of very high accu-
racy due to numerical inaccuracies in the calculation of the search direction.
Solving (C.1) to high accuracy makes a difference with very large signal-to-
noise ratios and in these cases the variant of FastAST using Newtons method
should be used. Both the Newtons and quasi-Newton variants of FastAST
are significantly faster than the ADMM-based solvers for (C.1).

Along with the primal-dual IPM presented here, we have also experi-
mented with a primal-only version which is significantly simpler to derive.
The primal-only approach does not provide a good way to select the bar-
rier parameter (which we denote t, see Sec. C.3.2). This in turn forces the
primal-only approach to use either overly conservative short-step [35] up-
dates of the barrier parameter or it requires the barrier problem to be solved
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to high accuracy for each fixed t. Both scenarios lead to a significant increase
in the number of iterations required by the primal-only algorithm, resulting
in significantly increased runtime. On the contrary, the primal-dual version
presented in this paper allows for evaluation of a duality gap in each itera-
tion. The duality gap gives a natural way to select the barrier parameter and
also provides a very precise stopping criterion.

The paper is outlined as follows. In Section C.2 we begin with a brief
review of atomic norm minimization and its application to line spectral esti-
mation. Section C.3 details the formulation of (C.1) as a non-symmetric conic
optimization program along with the theory of its solution. In Section C.4
we present a numerical algorithm for the solution of (C.1) along with imple-
mentation details. The exploitation of Toeplitz structure for fast evaluation of
each step in the algorithm is discussed in Section C.5. Numerical experiments
which validate the practical efficacy of the proposed algorithm are presented
in Section C.6.

C.2 A Brief Review of Atomic Norm Minimization
for Line Spectral Estimation

C.2.1 Line Spectral Estimation

Consider an observation vector y ∈ CN ,

y = x + ζ, (C.2)

where ζ ∈ CN is a noise vector and x ∈ CN is a sinusoidal signal of interest,

x =
K−1

∑
k=0

cka(ωk), (C.3)

where K denotes the number of sinusoids (the model order) and ωk ∈ [0, 2π),
ck ∈ C denote the angular frequency and complex coefficient of the kth sinu-
soidal component. The steering vector a(ω) has entries (a(ω))n = exp(jnω)
for n = 0, . . . , N − 1 (we use the convention j =

√
−1). In line spectral esti-

mation the task is to estimate the values (K, c0, . . . , cK−1, ω0, . . . , ωK−1). The
crux of line spectral estimation lies in obtaining estimates of the model or-
der K and the frequencies {ωk}. When these are available the coefficients
{ck} can easily be estimated using a least-squares approach. The problem is
ubiquitous in signal processing; examples include direction of arrival estima-
tion using sensor arrays [36, 37], bearing and range estimation in synthetic
aperture radar [38], channel estimation in wireless communications [39] and
simulation of atomic systems in molecular dynamics [40].
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C.2.2 Modelling Sparsity With The Atomic Norm

The atomic norm [1, 8–10] provides a tool for describing notions of sparsity
in a general setting. It is defined in terms of the atomic set A. Each member
of A is referred to as an atom. The atoms are the basic building block of the
signal and so the atomic set defines the notion of sparsity. The atomic norm
induced by A is defined as

‖x‖A = inf{α > 0 : x ∈ α convA}, (C.4)

where convA is the convex hull of A.
For line spectral estimation the atomic set is selected as the set of complex

rotated Fourier atoms [8–10]

A = {a(ω) exp(jφ) : ω ∈ [0, 2π), φ ∈ [0, 2π)} (C.5)

and the atomic norm can then be described as

‖x‖A = inf
K,{ck ,ωk}

{
K−1

∑
k=0
|ck| : x =

K−1

∑
k=0

cka(ωk)

}
. (C.6)

It is clear that the atomic norm provides a generalization of the `1-norm to
the continuous parameter space ωk ∈ [0, 2π). Through the use of a dual poly-
nomial characterization, the atomic norm can be expressed as the solution of
an SDP,

‖x‖A = minimizev,u
1
2

(
v + 1

N tr T(u)
)

subject to
(

T(u) x
xH v

)
� 0.

(C.7)

C.2.3 Atomic Norm Soft Thresholding

Atomic norm soft thresholding is obtained by generalizing the least absolute
shrinkage and selection operator (LASSO) [41] to use the atomic norm instead
of the `1-norm. Specifically, AST [9] solves

minimizex ‖x− y‖2
2 + 2τ‖x‖A, (C.8)

where τ > 0 is a regularization parameter to be chosen. It is clear that AST
is recovered in (C.1) by selecting w = 2e0.

Estimates of the model order K and the frequencies {ωk} can be obtained
from the solution (v?, x?, u?) by examining a certain dual polynomial con-
structed from x?. This process determines the solution in (C.6) for the recov-
ered signal x?. Under a, somewhat restrictive, assumption concerning sep-
aration of the frequencies {ωk}, a number of theoretical statements can be
given regarding signal and frequency recovery using AST. We refer to [8–12]
for details.
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We now consider the selection of the regularization parameter τ. Clearly
the choice of τ crucially influences the estimation accuracy of AST. It is
this parameter which determines the trade-off between fidelity and sparsity
which is inherent in any estimator involving the model order K. With all else
being equal, selecting larger τ gives estimates with smaller values of K. Let
‖·‖∗A denote the dual norm of the atomic norm ‖·‖A. Then the theoretical
analysis in [9] requires τ ≥ E

[
‖ζ‖∗A

]
. For a white, zero-mean circularly sym-

metric complex Gaussian noise vector ζ with entry-wise variance σ2 such an
upper bound is given by [9],

τ = σ

(
1 +

1
log(N)

)√
N log(N) + N log(4π log(N)), (C.9)

where log() is the natural logarithm. This choice has been shown to perform
well in practice and we also use it in our simulation study.

C.2.4 Reweighted Atomic Norm Minimization

The matrix T(u) can be interpreted as a covariance matrix of the vector x.
The trace term in (C.7) expresses a convex relaxation of the rank of T(u):
The rank is given by the `0 pseudo-norm (number of non-zero entries) of
the vector of eigenvalues of T(u). If the `0 pseudo-norm is replaced by its
`1-norm convex relaxation, the trace of T(u) is obtained (the trace is the sum
of the eigenvalues). Assuming T(u) positive-definite, the constraint in (C.7)
together with the v term in expresses how plausible it is to observe x in a zero-
mean circularly symmetric complex Gaussian model with covariance matrix
T(u). These observations leads us to intuitively view the minimization in
(C.7) as an approach to find a low-rank covariance matrix T(u) under which
it is plausible to observe x. The value of the atomic norm then gives an
indication of how well this trade-off can be achieved for a given x.

The log determinant provides a better, but non-convex, relaxation of the
rank. Yang et al. [42] propose to replace the trace in (C.7) with a log deter-
minant term. It is reported that this results in an increased ability to resolve
closely spaced frequencies. It is known as reweighted atomic norm mini-
mization (RAM), because it in many ways generalizes reweighted `1-norm
minimization [43] to continuous parameter spaces. We now review that idea
in our setting. We take the freedom to reformulate the details of the formu-
lation in [42], but the main ideas are unchanged.

RAM is obtained by replacing ‖x‖A in (C.8) with the sparsity metric

Mκ(x) = minimizev,u
1
2

(
v + 1

N log |T(u) + κ I|
)

subject to
(

T(u) x
xH v

)
� 0,

(C.10)
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where κ > 0 is a parameter to be chosen. The log-determinant term is con-
cave as so the resulting problem is not convex. A majorization-minimization
approach can find a locally optimal point by repeatedly solving (C.1). In the
lth iteration the weighting vector w in (C.1) must be selected as

wl =
1
N

T∗
(

T−1(u?
l−1)

)
, (C.11)

where u?
l−1 is the solution obtained in the (l − 1)th iteration. The function

T∗ is the adjoint1 of the linear map T, i.e., T∗ : CN×N → R2N−1 is such
that tr(T(u)HB) = T∗(B)Tu for every Hermitian B ∈ CN×N . In conclusion
the formulation in (C.1) directly allows for solution of both AST and RAM
by appropriately selecting w. Note that a fast method to compute wl which
does not require explicit matrix inversion can be obtained using the methods
described in Section C.5.

C.3 Non-symmetric Conic Optimization

C.3.1 Primal- and Dual Cones

We now return to our main focus: That of numerically solving the conic
program (C.1). It can be written in the form

minimize f (µ)
subject to µ ∈ K,

(C.12)

where f (µ) = ‖x− y‖2
2 + τ(v + wTu) and K is the cone defined by

K ,

µ =

v
x
u

 :
(

T(u) x
xH v

)
� 0

 . (C.13)

As a precursor to deriving a primal-dual IPM, we explore the properties of K
and its dual. It is easy to show that K is a proper cone (convex, closed, solid
and pointed; see [17]). The dual cone K∗ of K is defined as

K∗ = {λ : 〈λ, µ〉 ≥ 0 ∀ µ ∈ K} . (C.14)

Since K is proper, so is K∗ [17].

1 T∗ is easy to calculate: Let B be Hermitian and let βn denote the sum over the nth upper
diagonal of B, i.e.,

βn =
N−1−n

∑
m=0

Bm,m+n,

for n = 0, . . . , N − 1. Then T∗(B) = (2β0, 2 Re(β1), . . . , 2 Re(βN−1), 2 Im(β1), . . . , 2 Im(βN−1))
T.

143



Paper C.

In this paper (primal) variables in the cone K are denoted by µ = (v, xT, uT)T.
The (dual) variables in the cone K∗ are denoted by λ = (ρ, sT, zT)T, with
ρ ∈ R, s ∈ CN and z ∈ R2N−1. The inner product between them is defined as
〈λ, µ〉 = ρv + Re(sHx) + zTu.

In our proposed method, we need to check for λ ∈ K∗. In order to
characterize the dual cone K∗, the cone of positive semidefinite Hermitian
Toeplitz matrices is needed:

C , {u ∈ R2N−1 : T(u) � 0}. (C.15)

This cone is also proper. The corresponding dual cone C∗ is defined analo-
gously to (C.14). We then have the following lemma.

Lemma C.1. The dual cone of K can be characterized as

K∗ =

λ =

ρ
s
z

 :
[

ρ > 0,
(

z− 1
4ρ

T∗(ssH)

)
∈ C∗

]
or [ρ = 0, s = 0, z ∈ C∗]


(C.16)

Proof. See the appendix.

It is clear that K is not self-dual (K 6= K∗) and so (C.12) is a non-symmetric
conic program.

The cone C and its dual are defined in terms of real-valued vectors be-
cause this description simplifies the derivation of the method in Sec. C.4.
These sets are, however, more naturally understood from their correspond-
ing complex-valued forms. We therefore define the vector uC = (u0, u1 +
juN , u2 + juN+1, . . . , uN−1 + ju2N−2)

T and use a similar definition of zC.
The dual cone C∗ turns out to be the set of finite autocorrelation se-

quences. An excellent introduction to this set and a number of characteri-
zations of it is given in [34] for the case of real-valued sequences. Here we
extend the definition to the complex-valued case.

Definition C.1. A vector zC is a finite autocorrelation sequence if there exists a
vector q ∈ CN such that2

(zC)k =
N−1−k

∑
n=0

q̄nqn+k, k = 0, . . . , N − 1. (C.17)

In other words, z is a finite autocorrelation sequence if

. . . , 0, 0, (z̄C)N−1, (z̄C)N−2, . . . , (z̄C)1, (zC)0, (zC)1, . . . , (zC)N−1, 0, 0, . . .
(C.18)

2 q̄ denotes the complex conjugate of q.
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is the autocorrelation sequence of some moving average process of order
N − 1 with filter coefficients q1, . . . , qN−1 and input variance |q0|2. It is well
known from the theory of linear time-invariant systems, that if (C.18) is a
valid autocorrelation, then it can be represented by a moving average process
(i.e., there exists a coefficient vector q such that (C.17) holds).

A sequence is a valid autocorrelation sequence if and only if its Fourier
transform is non-negative [44]. The Fourier transform of (C.18) is

Z(ω) = z0 + 2
N−1

∑
k=1

Re(zk exp(−jωk)), ω ∈ [0, 2π). (C.19)

Then z ∈ C∗ if and only if Z(ω) ≥ 0 for all ω ∈ [0, 2π). The fast Fourier
transform allows us to evaluate Z(ω) at a large number of points on [0, 2π)
in an efficient way. Using Lemma C.1 we therefore have a low-complexity
method of (approximately) determining if λ ∈ K∗.

We still haven’t shown that the dual of the cone C is indeed the set of
finite autocorrelation sequences. To that end, let C̃ be the set of finite autocor-
relation sequences and identify u with uC. Extending the approach of [34] to
the complex-valued case, a vector u is in the dual of C̃ if and only if zTu ≥ 0
for every z ∈ C̃, or, in other words, if and only if

zTu = Re(zH
C uC) =

N−1

∑
k=0

N−1−k

∑
n=0

(uC)kqn q̄n+k =
1
2

qTT(u)q̄ ≥ 0 (C.20)

for every q ∈ CN . We can therefore identify C with C̃∗. Since C̃ is a proper
cone, we have C∗ = C̃∗∗ = C̃.

C.3.2 Barrier Functions

Interior point methods are build on the idea of a barrier function F : intK →
R associated to the cone K (intK denotes the interior of K). The barrier
function must be a smooth and strongly convex function with F(µk) → ∞
for every sequence of points µk ∈ intK with limit point µ̃ ∈ bdK, where
bdK denotes the boundary of K. The typical approach to IPMs also assumes
that the barrier function is logarithmically homogeneous (LH). F is a LH
barrier function for the cone K if there exists a θF > 0 such that F(αµ) =
F(µ)− θF log(α) for all α > 0, µ ∈ intK. The value θF is called the degree of
the barrier.

We will use the following well-known properties of a LH barrier function
F for K [17, 20, 21]: If µ ∈ intK, then〈

−∇µF(µ), µ
〉
= θF, (C.21)

−∇µF(µ) ∈ intK∗. (C.22)
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The usefulness of barrier functions is clear when considering their role
in path-following methods. A primal-only path-following method finds a
solution to (C.12) by iteratively solving

minimize f (µ) + t−1F(µ)
subject to µ ∈ intK (C.23)

for an increasing sequence of values t > 0. In each step µ is initialized with
the solution of the previous step. This approach is desirable because each
step can be solved by an algorithm for unconstrained optimization such as
Newtons method.

In this paper we use the standard log-determinant barrier function for K:

F(µ) = − log
∣∣∣∣(T(u) x

xH v

)∣∣∣∣
= − log |T(u)| − log(v− xHT−1(u)x), for µ ∈ intK. (C.24)

It is easy to show that it is LH with degree θF = N + 1.

C.3.3 Solvability

We now consider conditions for the problem (C.1) to be solvable. An opti-
mization problem is solvable when a feasible point exists and its objective is
bounded below on the feasible set.

Lemma C.2. The function f (µ) is bounded below on µ ∈ K if and only if τ ≥ 0
and w ∈ C∗.
Proof. If τ < 0 or w /∈ C∗ there exists µ ∈ K with x = 0 such that τv+ τwTu <
0. Note that αµ ∈ K for any α ≥ 0 and that lim

α→∞
f (αµ) = −∞, so f (µ) is

unbounded below on µ ∈ K.
Conversely, if τ ≥ 0 and w ∈ C∗, we have τv ≥ 0 and τwTu ≥ 0 for every

µ ∈ K. So f (µ) ≥ 0 for µ ∈ K.

Since a primal feasible point always exists (take for example v = 1, x = 0, u =
e0), the problem (C.1) is solvable if and only if the conditions in Lemma C.2
are fulfilled. These conditions can easily be checked prior to executing the
algorithm and we assume that the problem is solvable in the following.

C.3.4 Optimality Conditions

With the conic modelling machinery in place, we can begin to analyze the
solution of (C.1) by considering the non-symmetric conic formulation (C.12).
The Lagrangian is

L(µ, λ) = ‖x− y‖2
2 + τ(v + wTu)− 〈λ, µ〉 (C.25)
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and the dual of the conic program (C.12) is

maximize − 1
4 ‖s‖

2
2 − Re(yHs)

subject to λ ∈ K∗, ρ = τ, z = τw.
(C.26)

Notice that by taking the dual of (C.12) instead of (C.1), the number of dual
variables is reduced from O(N2) to O(N) (see [9] for an explicit formulation
of the dual of (C.1)). This is the reason why, from a computational point
of view, it is beneficial to work with the form (C.12) instead of (C.1), as is
usually done in the literature.

Since f is convex, the Karush-Kuhn-Tucker (KKT) are necessary and suf-
ficient [17, Sec. 5.9] for variables (µ?, λ?) to be solutions of the primal and
dual problems (C.12) and (C.26). The KKT conditions are

∇µL(µ?, λ?) = 0
µ? ∈ K
λ? ∈ K∗
〈λ?, µ?〉 = 0

 , (C.27)

where the gradient operator is defined as ∇µ f = (∇v f ,∇x f T,∇u f T)T. The
gradient with respect to the complex vector x = a + jb is to be understood
as3 ∇x f = ∇a f + j∇b f .

Instead of directly solving the KKT conditions, our primal-dual interior
point algorithm finds solutions (µ(t), λ(t)) of the augmented KKT conditions
[17, 45] 

∇µL
(

µ(t), λ(t)
)
= 0

µ(t) ∈ intK
λ(t) ∈ intK∗
λ(t) = −t−1∇µF

(
µ(t)
)
 (C.28)

for an increasing sequence of values t > 0. It is easy to realize that
(

µ(t), λ(t)
)

solves (C.28) only if µ(t) is a solution of the barrier problem (C.23). This ob-
servation provides the link between primal-only barrier methods and primal-

dual interior point methods. The set of values
{(

µ(t), λ(t)
)

: t > 0
}

is known
as the primal-dual central path. The primal-dual central path converges to
the desired solution in the sense that lim

t→∞

(
µ(t), λ(t)

)
= (µ?, λ?) [17, 45].

The last condition in (C.28) is known as the augmented complementary
slackness condition. It follows from (C.22) that the second and fourth con-
dition in (C.28) together imply λ(t) ∈ intK∗, so the third condition can be
dropped.

3This definition is actually twice the Wirtinger derivative of f with respect to x̄.
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From (C.21) it follows that the duality gap for the primal-dual problems

(C.12) and (C.26) at a point on the primal-dual central path is
〈

λ(t), µ(t)
〉
=

θF/t [17, 20]. So solving the augmented KKT gives a primal feasible solution
µ(t) which is no more than (N + 1)/t suboptimal. Consequently, an arbitrar-
ily accurate solution can be obtained by solving (C.28) for sufficiently large
t.

C.3.5 Obtaining a Solution of the Augmented KKT Condi-
tions

We now define v(t), x(t), u(t), ρ(t), s(t) and z(t) as the entries of µ(t) and λ(t).
By solving the first condition in (C.28) (the stationarity condition), we get

ρ(t) = τ, z(t) = τw, s(t) = 2(x(t) − y). (C.29)

We continue by writing out the last condition of (C.28) which is known as
the augmented complementary slackness condition. Solving for v(t) and x(t)

and inserting the relations above, we get

v(t) = (τt)−1 +
(

x(t)
)H

T−1
(

u(t)
)

x(t) (C.30)

x(t) = T
(

u(t)
)

T−1
(

u(t) + 2−1τe0

)
y. (C.31)

Finally, solving z(t) = −t−1∇uF
(

µ(t)
)

for u(t) and inserting the above gives

τw− τT∗
(

φφH
)
− t−1T∗

(
T−1(u(t))

)
= 0, (C.32)

where φ = T−1
(

u(t) + 2−1τe0

)
y.

For a given t > 0 we can obtain the corresponding point on the primal-
dual central path as follows: First a solution u(t) of (C.32) that fulfills u(t) ∈
int C is found (existence of such a solution is shown below). Then the point(

µ(t), λ(t)
)

is obtained by inserting into (C.29), (C.30) and (C.31). It is easy to

show from u(t) ∈ int C that µ(t) ∈ intK and so
(

µ(t), λ(t)
)

solves (C.28) and
it is a primal-dual central point.

How can we obtain a solution u(t) ∈ int C of (C.32)? The left-hand side of
(C.32) is recognized as the gradient of ht(u) = g(u) + t−1G(u), with

g(u) = τwTu + τyHT−1
(

u + 2−1τe0

)
y (C.33)

G(u) = − log |T(u)|. (C.34)
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Now consider the barrier problem

minimize ht(u)
subject to u ∈ int C.

(C.35)

The gradient of ht vanishes at the solution of (C.35) because G is a LH barrier
function for C. So solving (C.32) with u(t) ∈ int C is equivalent to solving
(C.35). The problem (C.35) is always solvable if the problem (C.1) is solvable
(thus proving that there exists a u(t) ∈ int C that solves (C.32) if (C.1) is
solvable).

The idea of the primal-dual IPM presented in the following section is to
use an iterative algorithm for unconstrained optimization (either Newtons
method or a quasi-Newton method) to solve (C.35). However, we do not
need to exactly solve (C.35) for a sequence of values t > 0. In each iteration
of the solver the value of t can be updated in a dynamic manner based on the
duality gap.

C.4 The Primal-Dual Interior Point Method

We now propose a primal-dual IPM for the solution of (C.12). Let (µi, λi, ti)
denote (µ, λ, t) in iteration i. The proposed method is given in Algorithm
C.1. In the remainder of this section, each step of the algorithm is discussed
in detail.

Low-complexity evaluation of the steps in the above algorithm are pre-
sented in Sec. C.5. With these approaches, the computational complexity
is dominated by the evaluation of the search direction. For this step we
propose to use either Newton’s method or a quasi-Newton method. The
quasi-Newton method has much lower computational complexity per itera-
tion and is also faster in practice. It is, however, not able to obtain a solution
of high accuracy. If a highly accurate solution is required, Newtons method
is preferred. We refer to the numerical evaluation in Sec. C.6 for a detailed
discussion thereof.

C.4.1 Determining the Search Direction Using Newtons Met-
hod

Applying Newtons method to solve (C.35) we get the search direction

∆u = −
(
∇2

uhti (ui−1)
)−1
∇uhti (ui−1), (C.36)

where ∇2
uhti (ui−1) denotes the Hessian of hti evaluated at ui−1. As discussed

in Sec. C.5, the Hessian can be evaluated in O(N3) flops and the same cost is
required for solution of the system (C.36).
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Algorithm C.1: Primal-dual interior point method for fast atomic norm
soft thresholding (FastAST).

Parameters: γ > 1.
Input: Initial values u0 ∈ C and t1 > 0.

1 Set objective lower bound fLB = −∞.
2 for i = 1, 2, . . . do
3 Determine the search direction ∆u.
4 Perform a line search along ∆u to obtain the step size α.
5 Update estimate ui = ui−1 + α∆u.
6 Form primal-dual variables (µi, λi) using (C.29), (C.30) and (C.31).
7 if λi ∈ K∗ then
8 Update lower bound on objective

fLB = max
(

fLB,− 1
4 ‖si‖2

2 − Re(yHsi)
)

.

9 end
10 Evaluate duality gap ηi = f (µi)− fLB.
11 Terminate if the stopping criterion is satisfied.

12 Update barrier parameter ti+1 = max
(

ti, γ N+1
ηi

)
.

13 end
Output: Primal-dual solution (µi, λi).

C.4.2 Determining the Search Direction Using L-BFGS

In scenarios with large N the computation time for evaluation of the Newton
search direction can become prohibitively large. In these cases we propose to
use the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algo-
rithm [46] for the solution of (C.35). L-BFGS enjoys several properties which
are instrumental in obtaining an algorithm that has low computational re-
quirements in each iteration:

• L-BFGS uses only gradient information and the gradient of g and G can
be evaluated with low computational complexity,4 see Section C.5.

• We show that by appropriately modifying the L-BFGS two-loop recur-
sion, it can be used for the solution of (C.35) in a computational efficient
manner. Each iteration only requires a single computation of the gradi-
ents of g (C.33) and G (C.34), combined with simple level 1 Basic Lin-
ear Algebra Subroutine (BLAS) operation even though t is increased in
every iteration. It is this property, and not the limited memory require-
ments, that makes L-BFGS preferable over other quasi-Newton methods
(such as vanilla BFGS) for our purposes.

4To speed up convergence, our implementation also uses an approximation of the diagonal
of the Hessian of hti .
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Since ti 6= ti−1 6= . . . , the normal formulation of L-BFGS does not ap-
ply. We now demonstrate that a simple modification of the L-BFGS two-loop
recursion [46] overcomes this limitation. At the end of the ith iteration, the
following difference vectors are calculated and saved for use in later itera-
tions:

ri = ui − ui−1 (C.37)

qi = ∇ug(ui)−∇ug(ui−1) (C.38)

Qi = ∇uG(ui)−∇uG(ui−1). (C.39)

This set of vectors is retained for M iterations. The two-loop recursion in
Algorithm C.2 can then be use to calculate the search direction ∆u. This
algorithm calculates the normal L-BFGS search direction for minimization
of hti , as if ti = ti−1 = . . .. That can be achieved because L-BFGS only
depends on ti through the quantities ∇uhti (uk) = ∇ug(uk) + t−1

i ∇uG(uk),
for k = i− 1, . . . , i−M− 1. The gradients ∇ug(uk) and ∇uG(uk) need only
be calculated once to allow ∇uhti (uk) to be calculated for the current value
of ti.

Algorithm C.2: Calculating the search direction based on the L-BFGS
two-loop recursion.

Parameters: Number of saved difference vectors M.
Input: Current iteration number i and parameter ti. Saved difference

vectors rk, qk, Qk for k = i− 1, i− 2, . . . , max(i−M, 1). Current
gradient vector ∇uhti (ui−1) and initial Hessian approximation
Ĥi.

1 d← −∇uhti (ui−1)
2 for k = i− 1, i− 2, . . . , max(i−M, 1) do
3 ψk ← qk + t−1

i Qk

4 σk ←
rT

k d
rT

k ψk

5 d← d− σkψk
6 end
7 d← Ĥ−1

i d
8 for k = max(i−M, 1), max(i−M, 1) + 1, . . . , i− 1 do

9 βk ←
ψT

k d
ψT

k rk

10 d← d + rk (σk − βk)

11 end
Output: Search direction ∆u = d

In each iteration the “initial” Hessian Ĥi should be chosen as an approx-
imation of the Hessian of hti evaluated at ui−1. It is the matrix upon which
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L-BFGS successively applies rank-2 updates to form the Hessian approxima-
tion, which is used for calculating the search direction. An easy, and popular,
choice for the initial Hessian is the identity matrix Ĥi = I. Through numer-
ical experiments we have seen that this choice leads to slow convergence.
It turns out that the slow convergence is caused by the scaling of the Hes-
sian, leading to non-acceptance of a full Newton step (i.e., α is selected much
smaller than 1). Using a diagonal approximation of the true Hessian reme-
dies this, but, unfortunately, it cannot be calculated with low computational
complexity. (Our best attempt at devising a fast evaluation of the Hessian
diagonal yielded cubic complexity O(N3), the same as evaluation of the full
Hessian.) Instead our algorithm uses the following heuristic approximation
of the diagonal Hessian

Ĥi = diag
(

1,
N − 1

2N
, . . . ,

1
2N

,
N − 1

2N
, . . . ,

1
2N

)(
∇2

uhti (ui−1)
)

0,0
, (C.40)

where
(
∇2

uhti (ui−1)
)

0,0 is the (0, 0)th entry of the true Hessian evaluated at
ui−1. This approximation can be calculated with low computational com-
plexity as demonstrated in Section C.5. The approximation is motivated as
follows: The diagonal entries are scaled according to the number of times the
corresponding entry of u appears in T(u). This scaling resembles that in the
biased autocorrelation estimate (except for a factor of 2 caused by the scaling
of the diagonal in the definition of T(u)). In our numerical experiments, we
have observed the above approximation to be fairly accurate; each entry typ-
ically takes a value within ±50 % of the true value. To this end we note that
only a crude approximation is needed, since the role of Ĥi is to account for
the scaling of the problem. Our numerical investigation suggests that using
the approximation (C.40) leads to only marginally slower convergence, com-
pared to using a diagonal Hessian approximation using the diagonal of the
true Hessian.

A final note on our adaptation of L-BFGS is that the usual observations
regarding positive definiteness of the approximated Hessian remain valid.
First note that the objective upon which L-BFGS is applied (hti ) is a strictly
convex function for u ∈ int C. It follows that the initial Hessian approxima-
tion Ĥi is positive definite. Also, the curvature condition rT

k ψk > 0 is valid for
all k. Then the approximated Hessian is positive definite and the calculated
search direction ∆u is a descent direction [4, 46].

C.4.3 Line Search

The line search along the search direction ∆u is a simple backtracking line
search starting at α = 1. A step size is accepted if the new point is strictly
feasible, i.e., if ui−1 + α∆u ∈ int C. It is then easy to show that the primal
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solution µi calculated from inserting ui into (C.30) and (C.31) is strictly primal
feasible (µi ∈ intK).

To guarantee that the objective is sufficiently decreased, the Armijo rule
is also required for acceptance of a step size α:

hti (ui−1 + α∆u) ≤ hti (ui−1) + cα∆uT∇uhti (ui−1), (C.41)

where 0 < c < 1 is a suitably chosen constant.

C.4.4 The Duality Gap and Update of t

The line search guarantees that the primal solution is strictly feasible in all
iterations, i.e., that µi ∈ intK. Dual feasibility of a solution λi obtained from
(C.29) is not guaranteed. The algorithm therefore checks for λi ∈ K∗ using
the approximate approach described in Sec. C.3.1.

Let f ? denote the optimal value of the problem (C.12). If λi is dual fea-
sible, the objective of the dual (C.26) provides a lower bound on the optimal
value, i.e.,

f ? ≥ −1
4
‖si‖2

2 − Re(yHsi). (C.42)

The algorithm always retains the largest lower bound it has encountered in
fLB. From the lower bound, a duality gap ηi can be evaluated in each itera-
tion:

ηi = f (µi)− fLB. (C.43)

This value gives an upper bound on the sub optimality of the solution µi, i.e.,
f (µi)− f ? ≤ ηi.

Recall that the algorithm is “aiming” for a solution of the augmented KKT
conditions (C.28). At this solution, the duality gap is θF/ti+1. The next value
of t can then be determined so that the algorithm is aiming for a suitable (not
too large, not too small) decrease in the duality gap, i.e., we select ti+1 such
that ηi/γ = θF/ti+1 for some preselected γ > 1. Recall that the degree of the
barrier F is θF = N + 1. To guarantee convergence it is also imposed that ti
is a non-decreasing sequence.

C.4.5 Termination

The duality gap provides a natural stopping criterion. The proposed algo-
rithm terminates based on either the duality gap (ηi < εabs) or the relative
duality gap (ηi/ f (µi) < εrel). The relative duality gap is a sensible stopping
criterion because f (µ) ≥ 0 as is seen in the proof of Lemma C.2.

Algorithm C.1 is guaranteed to terminate at a point that fulfills either of
the two stopping criteria listed above. To see why that is the case, consider
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a scenario where ti converges to some finite constant t̃ as i → ∞. Then, as
i → ∞, the algorithm implements L-BFGS with a backtracking line search to
minimize ht̃. Thus ui converges to the minimizer u(t̃) of ht̃. Let (µ(t̃), λ(t̃))
denote the corresponding primal and dual variables calculated from (C.30),
(C.31) and (C.29).

Now, (µ(t̃), λ(t̃)) constitute a solution to (C.28) with t = t̃. Then λ(t̃) ∈
intK∗ follows from (C.22). Further, we have from (C.43), (C.29) and (C.21)
that the duality gap ηi converges to

〈
µ(t̃), λ(t̃)

〉
= θF/t̃ as i → ∞. However,

that implies ti+1 = γθF/ηi = γt̃ > t̃ in the limit, a contradiction to the
assumption that ti converges to t̃. This means that ti does not converge to
a finite value and, as it is non-decreasing, it must diverge to +∞. It is also
evident that the duality gap ηi → 0 as ti → ∞, and so either of the stopping
criteria are eventually fulfilled.

C.4.6 Initialization

The algorithm must be initialized with primal variable u0 ∈ C and barrier pa-
rameter t1 > 0. To determine a suitable value of the initial barrier parameter
t1 we first identify a primal-dual feasible point from which the duality gap
can be evaluated. A primal-dual feasible point can be obtained by assuming5

w ∈ int C∗ and iterating these steps:

1. Set u = (10‖y‖2
2)/N, 0, . . . , 0)T.

2. Calculate (µ, λ) from u based on (C.29), (C.30) and (C.31).

3. If λ ∈ K∗, terminate, otherwise double the first entry of u and go to
step 2.

The value of u in Step 1 has been chosen heuristically. It is easy to see that
u stays primal feasible throughout. The above scheme finds a primal-dual
feasible point (µ, λ). The corresponding duality gap is η0 = 〈µ, λ〉. We then
select t1 = γθF/η0. The corresponding value of u is used as the initial value
of the primal variable u0.

The above scheme is guaranteed to find a primal-dual feasible point be-
cause u → (∞, 0, . . . , 0)T. Then, following (C.31), we have x → y and so
s → 0. Considering the result in Lemma C.1 and the assumption w ∈ int C∗,
we get that λ converges to a point λ̃ ∈ intK∗.

5The problem (C.1) is solvable if and only if w ∈ C∗. The restriction to the interior has no
practical effect.
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C.5 Fast Computations

For brevity, iteration indices are dropped in the following. The computa-
tionally demanding steps of Algorithm C.1 all involve the determinant or
the inverse of Toeplitz matrices T(u) and T(u + 2−1τe0). In this section we
demonstrate how the Toeplitz structure can be exploited to significantly re-
duce the computationally complexity of these evaluations. The exploitation
of such structure for fast solution of optimization problems have previously
been seen [31, 32], including for evaluation of the gradient and Hessian of
the barrier function G [33, 34].

C.5.1 Fast Algorithms for Factorizing a Toeplitz Inverse

Our computational approach is based on the following factorizations of Toep-
litz inverses. The Gohberg-Semencul formula [27, 47] gives a factorization of
the inverse of a Toeplitz matrix T(u),

T−1(u) = δ−1
N−1(U

HU −VVH), (C.44)

where the entries of Toeplitz matrices U and V are

Un,m = ρN−1+n−m, (C.45)

Vn,m = ρn−m−1, (C.46)

for n, m = 0, . . . , N − 1. Note that ρn = 0 for n < 0 and n > N − 1; thus U is
unit upper triangular (ρN−1 = 1) and V is strictly lower triangular.

The values δn and ρn for n = 0, . . . , N− 1 can be computed with a general-
ized Schur algorithm in O(N log2 N) flops [27]. Alternatively, the Levinson-
Durbin algorithm can be used to obtain the decomposition in O(N2) flops.
The latter algorithm is significantly simpler to implement and is faster for
small N. In [28] it is concluded that the Levinson-Durbin algorithm requires
fewer total operations than the generalized Schur algorithm for N ≤ 256.

We will also use a Cholesky factorization of T−1(u), namely

T−1(u) = PDPH (C.47)

where P is unit upper triangular and D is diagonal. The diagonal matrix
D = diag(δ−1

0 , . . . , δ−1
N−1) is inherently computed when the generalized Schur

algorithm is executed [27]. The generalized Schur algorithm does not com-
pute the matrix P. The Levinson-Durbin algorithm inherently computes both
P and D, a property which we exploit for evaluation of the Hessian of the
barrier function G.

In the following we let ρ0, . . . , ρN−1 and δ0, . . . , δN−1 be the entries ob-
tained by executing the generalized Schur or Levinson-Durbin algorithm
with either T−1(u) or T−1(u + 2−1τe0); which one will be clear from the
context.
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C.5.2 Evaluating the Objective and the Primal Variables

We first discuss evaluation of the objective ht(u) = g(u) + t−1G(u). Since P
in (C.47) has unit diagonals, it is easy to obtain

G(u) = − log |T(u)| = −
N−1

∑
n=0

log δn. (C.48)

To evaluate g(u) insert (C.44) into (C.33) and realize that all matrix-vector
products involve Toeplitz matrices. Vector multiplication onto a Toeplitz ma-
trix can be performed using the fast Fourier transform (FFT) in O(N log N)
flops (such products are convolutions, see e.g. [34] for details). In conclusion,
the dominant cost of evaluating ht(u) is the execution of the generalized
Schur (or Levinson-Durbin) algorithm.

Evaluating the primal variables v(t) and x(t) in (C.30)–(C.31) similarly
amounts to vector products onto Toeplitz matrices and their inverses.

The line search in Algorithm C.1 must check for u ∈ C, i.e., if T(u) � 0.
The generalized Schur (or Levinson-Durbin) algorithm can again be used
here, as T(u) � 0 if and only if δn > 0 for n = 0, . . . , N − 1.

C.5.3 Evaluating the Gradients

The following gradients must be evaluated in each iteration of Algorithm C.1:

∇ug(u) = τw− τT∗
(

φφH
)

(C.49)

∇uG(u) = −T∗
(

T−1(u)
)

. (C.50)

We first consider the term T∗(φφH). The vector φ can be evaluated with
low complexity (confer the evaluation of primal variables, above). Let βn ∈ C

denote the sum over the nth upper diagonal of φφH for n = 0, . . . , N − 1, i.e.,

βn =
N−1−n

∑
m=0

(φφH)m,m+n =
N−1−n

∑
m=0

φmφ̄m+n. (C.51)

It is recognized that the values β0, . . . , βN−1 can be calculated as a correlation,
which can be implemented using FFTs in O(N log N) flops. Then T∗(φφH)
can be obtained by concatenating (and scaling) the real and imaginary parts
of β,

T∗(φφH) = (2β0, 2 Re(β1), . . . , 2 Re(βN−1), 2 Im(β1), . . . , 2 Im(βN−1))
T .

(C.52)

Now consider evaluation of the term T∗
(
T−1(u)

)
. Let ρ0, . . . , ρN−1 and

δN−1 denote the entries in the decomposition (C.44) obtained by applying
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the generalized Schur (or Levinson-Durbin) algorithm to T−1(u). The sum
over the diagonals of T−1(u) can then be rewritten as

β̃n =
N−1−n

∑
m=0

(T−1(u))m,m+n (C.53)

= δ−1
N−1

N−1

∑
k=0

(n− N + 2(k + 1))ρk ρ̄k+n , (C.54)

see [31, 32] for details. The above is recognized as two correlations, thus
allowing low-complexity evaluation. The vector T∗

(
T−1(u)

)
is found by

scaling and concatenating the real and imaginary parts of β̃, analogously
to (C.52).

C.5.4 Evaluating the Full Hessian

When Newtons method is used to determine the search direction, the Hessian
of ht must be evaluated. We now derive an approach to calculate the Hessians
of g and G, from which the required Hessian is easily found.

The (n, m)th entry of the Hessian of g is(
∇2

ug(u)
)

n,m
= 2τφH(En + EH

n )T−1(u + 2−1τe0)(Em + EH
m)φ, (C.55)

where

En =


I n = 0
Ẽn 1 ≤ n ≤ N − 1
−jEn−N+1 N ≤ n ≤ 2N − 1.

(C.56)

The matrix Ẽ is the lower shift matrix, i.e., it is has ones on the lower sub-
diagonal and zeros elsewhere. This means that T(en) = En + EH

n . The mth
column of the Hessian is then(

∇2
ug(u)

)
m
= τT∗

(
dmφH + φdH

m

)
, (C.57)

where we let dm denote a vector dm = T−1(u+ 2−1τe0)(Em +EH
m)φ. A column

of the Hessian can then be calculated in O(N log N) flops by using (C.44) and
writing out the sum over the upper diagonals of dmφH (similarly to (C.51)).
The full Hessian of g is then obtained in O(N2 log N) flops.

To evaluate the Hessian of the barrier function G we generalize the ap-
proach of [34] to the complex-valued case. The (n, m)th entry of the Hessian
is(
∇2

uG(u)
)

n,m
= tr

(
T−1(u)(En + EH

n )T−1(u)(Em + EH
m)
)

(C.58)

= Re
(

tr
(

2T−1(u)EnT−1(u)Em

))
+ Re

(
tr
(

2T−1(u)EnT−1(u)EH
m

))
.
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Define the N × N matrices A and B with entries

An,m = 2 tr
(

T−1(u)EnT−1(u)Em

)
(C.59)

Bn,m = 2 tr
(

T−1(u)EnT−1(u)ET
m

)
. (C.60)

Then the Hessian can be written in the form

∇2
uG(u) =

(
Re(A + B) Re(−jAJT)

Re(−jJA− jJB) Re(−JAJT + JBJT)

)
, (C.61)

where J is a matrix which removes the first row, i.e., J = (0, I), where 0 is a
column of zeros and I is the (N − 1)× (N − 1) identity matrix.

At this point, we need a fast way of evaluating matrices A and B. Define
the discrete Fourier transform matrix W ∈ CNFFT×N with entries

Wn,m = exp(−j2πnm/NFFT), (C.62)

where NFFT is chosen such that NFFT ≥ 2N − 1. Recall that the Levinson-
Durbin algorithm gives the decomposition T−1(u) = PDPH, from which
T−1(u) = RRH is obtained by calculating R = PD

1
2 . Let Sn denote the

discrete Fourier transform of the nth column of R (denote this column Rn),
i.e., Sn = WRn. Then by straight-forward generalization of the derivation
in [34] to the complex-valued case, we get that A and B can be written in the
forms

A =
2

N2
FFT

WT

((
N−1

∑
l=0

SlSH
l

)
�
(

N−1

∑
l=0

SlSH
l

))
W (C.63)

B =
2

N2
FFT

WT

((
N−1

∑
l=0

SlSH
l

)
�
(

N−1

∑
l=0

SlSH
l

))
W̄, (C.64)

with � denoting the Hadamard (entrywise) product. The forms (C.63)–(C.64)
show that the Hessian of G can be evaluated in O(N3) flops.

C.5.5 Evaluating the Diagonal Hessian Approximation

The L-BFGS approach uses the approximation of the Hessian diagonal (C.40)
which requires calculation of the first entry of the Hessian(

∇2
uht(u)

)
0,0

=
(
∇2

ug(u)
)

0,0
+

1
t

(
∇2

uG(u)
)

0,0
. (C.65)

An O(N log N) evaluation of the first term is easily obtained from (C.55). The
second term can be evaluated based on (C.61), but a more efficient way can
be found by proceeding as follows. From (C.58) we have(

∇2
uG(u)

)
0,0

= 4 tr
(

T−1(u)T−1(u)
)

. (C.66)
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The matrix T−1(u) can be formed explicitly in O(N2) flops using the Trench
algorithm [48, 49]. However, since the decomposition (C.44) is already avail-
able in our setting, it is much easier to form T−1(u) as follows: Based on
(C.44) we obtain for n = 0, . . . , N − 1 and m = 0, . . . , N − 1− n(

T−1(u)
)

m,m+n
= δ−1

N−1

(
m

∑
k=0

ρ̄N−1−kρN−1−(k+n) − ρk−1ρ̄k+n−1

)
, (C.67)

i.e., T−1(u) is “formed along the diagonals”. By implementing the above sum
as a cumulative sum, the complete matrix T−1(u) is formed in O(N2) flops.
Note that since T(u) is both Hermitian and persymmetric, then so is T−1(u).
This means that only one “wedge” of the matrix, about N/4 entries, must be
calculated explicitly [49].

The trace in (C.66) is evaluated by taking the magnitude square of all
entries in T−1(u) and summing them.

C.5.6 Analysis of Computational Complexity

To summarize the computational complexity of Algorithm C.1 based on the
low-complexity evaluations above, consider the two methods for determining
the search direction.

• Using Newtons method: The computation time is asymptotically dom-
inated by the evaluation and inversion of the Hessian, which takes
O(N3) flops.

• Using L-BFGS: The computation time is asymptotically dominated by
the O(MN) modified L-BFGS two-loop recursion in Alg. C.2 or by the
O(N2) evaluation of the diagonal Hessian approximation.

When using the Newton search direction, the decomposition (C.47) is re-
quired and the Levinson-Durbin algorithm must therefore be used to evalu-
ate the factorization of the Toeplitz inverse. When using the L-BFGS search
direction either the generalized Schur or the Levinson-Durbin algorithm can
be used. The choice does not affect the asymptotic computational complexity,
but one may be faster than the other in practice.

C.6 Numerical Experiments

C.6.1 Setup & Algorithms

In our experiments we use the signal model (C.2). The frequencies ω0, . . . , ωK−1

are drawn randomly on [0, 2π), such that the minimum separation6 between

6The wrap-around distance on [0, 2π) is used for all differences of frequencies.
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Variant L-BFGS Newton

Number of saved difference vectors M 2N − 1 -
Armijo parameter c 0.05 0.05
Barrier parameter multiplier γ 2 10
Absolute tolerance εabs 10−4 10−7

Relative tolerance εrel 10−4 10−7

Table C.1: Algorithm parameters.

any two frequencies is 4π/N. The coefficients c0, . . . , cK−1 are generated i.i.d.
random according to a circularly symmetric standard complex Gaussian dis-
tribution. After generating the set of K frequencies and coefficients, the vari-
ance of the noise vector ζ is selected such that the desired signal-to-noise
ratio (SNR) is obtained. The regularization parameter τ is selected from (C.9)
based on the true noise variance. We assess the algorithms based on their
ability to solve AST, which is obtained by selecting w = 2e0 in (C.1).

We dub our proposed algorithm as FastAST 7 and show results using both
L-BFGS and Newtons method to calculate the search direction. For N ≤ 512
our implementation uses the Levinson-Durbin algorithm for Toeplitz inver-
sion, while for N > 512 it uses the generalized Schur algorithm where appli-
cable. The parameters of the algorithm are listed in Table C.1. It is worth to
say a few words about the number of saved difference vectors M in L-BFGS.
On the one hand, selecting larger values of M can also decrease the total
number of iterations required by improving the Hessian approximation, but
on the other hand doing so increases the number of flops required per iter-
ation. In our numerical experiments we have found that setting it equal to
the size of u (M = 2N − 1) provides a good trade-off. Loosely speaking this
choice allows L-BFGS to perform a full-rank update of the Hessian approxi-
mation, while it does not increase the asymptotic per-iteration computational
complexity. With this choice the algorithm asymptotically requires O(N2)
flops per iteration.

Performance of the ADMM algorithm8 [9] is also shown along with that
of CVX [50] using the SeDuMi backend [18].

C.6.2 Solution Accuracy Per Iteration

For this investigation a ground-truth solution of (C.1) is obtained using CVX
with the precision setting set to “best”. We denote this value as µ?. Fig. C.1
shows the normalize squared error between µ? and the solution in each iter-
ation of the algorithms. The algorithms ignore the stopping criteria and run

7We have published our implementation at github.com/thomaslundgaard/fast-ast.
8We use the implementation from github.com/badrinarayan/astlinespec.
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Fig. C.1: Solution accuracy per iteration. The signal length is N = 64, the number of sinusoids
is K = 6 and the SNR is 20 dB.

until no further progress can be made towards the solution.
FastAST Newton converges very fast and a solution of very high accuracy

is obtained within 25 iterations. This is due to the well-known quadratic con-
vergence of Newtons method. While FastAST L-BFGS converges significantly
slower it requires only O(N2) flops per iteration versus the O(N3) flops per
iteration of FastAST Newton. We therefore cannot, at this point, conclude
which version of FastAST is faster in practice. Note that ADMM on the other
hand requires O(N3) flops per iteration, the same as FastAST Newton, but
requires significantly more iterations.

It is seen that FastAST L-BFGS cannot progress more after iteration 440.
This happens due to numerical challenges in evaluating the L-BFGS search
direction. It is well-known that Woodbury’s matrix identity, upon which
L-BFGS is based, has limited numerical stability. For this reason FastAST
L-BFGS is unable to obtain a solution of the same accuracy as CVX. Despite
of this, as seen in the following sections, the solution accuracy of FastAST L-
BFGS is sufficiently high in all cases but those with very high SNR. The toler-
ance values of FastAST L-BFGS are selected larger than for FastAST Newton
(Table C.1) because of the mentioned numerical issues with obtaining a high-
accuracy solution.

FastAST Newton does not suffer from this problem and can obtain a solu-
tion of about the same accuracy as CVX. ADMM can also obtain a solution of
high accuracy but, as can be seen in Fig. C.1, it has slow convergence starting
around iteration number 175. It therefore takes a large number of iterations
to obtain a solution of the same accuracy as CVX or FastAST Newton.

C.6.3 Metrics

In the following we perform a Monte Carlo simulation study. Four metrics
of algorithm performance and behaviour are considered: normalized mean-
square error (NMSE) of the reconstructed signal x; mean-square error (MSE)
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of the frequencies conditioned on successful recovery; number of iterations
and algorithm runtime. The NMSE of the reconstructed signal is obtained
by estimating the frequencies from the dual polynomial as described in [9]
and using these to obtain the least-squares solution for the coefficients. An
estimate of x is then obtained by inserting into (C.3). This estimate is also
known as the debiased solution and it is known to have smaller NMSE than the
estimate of x directly obtained as the solution of (C.1) [9]. In the evaluation
of the signal reconstruction the performance of an Oracle estimator is also
shown. The Oracle estimator knows the true frequencies and estimates the
coefficients using least-squares.

To directly assert the accuracy with which the frequencies are estimated
we present the MSE of the frequency estimates obtained from the dual poly-
nomial. The MSE of the frequency estimates is only calculated based on these
Monto Carlo trails in which the set of frequencies has been successfully re-
covered. Successful recovery is understood as correct estimation of the model
order K and that all frequency estimates are within a distance of π/N from
their true value. The association of the estimated to the true frequencies is
obtained by minimizing the frequency MSE using the Hungarian method [51]
(also known as Munkres assignment algorithm).

The simulations are performed on a 2011 MacBook Pro using MATLAB
R2016b. MATLAB is restricted to only use a single CPU core, such that the
runtime of the algorithms can be compared without differences in the par-
allelism achieved in the implementations. The computationally heavy steps
of both FastAST and ADMM are implemented in native code using the auto-
matic code generation (“codegen”) feature of MATLAB.

C.6.4 Performance Versus Problem Size

The performance versus problem size N is shown in Fig. C.2. We first note
that all algorithms give the same estimation accuracy at all problem sizes,
providing strong evidence that they correctly solve (C.1). The number of
iterations of FastAST L-BFGS increases with N. It is then expected that the
total runtime asymptotically scales at a rate above the per-iteration cost of
O(N2) flops. Even still, the runtime for N up to 2, 048 scales at a rate of
about O(N2).

The number of iterations of FastAST Newton is practically independent
of N. We therefore expect the total runtime to scale asymptotically as O(N3).
In practice it scales a little better for the values of N considered here. The
number of iterations of ADMM increases significantly with N (doubling N
roughly doubles the number of iterations). This in turn means that the run-
time scales faster than the asymptotic per-iteration cost of O(N3) flops.

In conclusion both variants of FastAST are faster than ADMM already at
N = 128 and their runtime scales at a rate much slower than ADMM. This

162



C.6. Numerical Experiments

16 32 64 128 256 512 1,024 2,048

10−3

10−2

N

N
M

SE

FastAST L-BFGS
FastAST Newton
ADMM
CVX+SeDuMi
Oracle

16 32 64 128 256 512 1,024 2,048
10−10

10−9

10−8

10−7

10−6

10−5

N

C
on

di
ti

on
al

Fr
eq

.M
SE

16 32 64 128 256 512 1,024 2,048

102

N

It
er

at
io

ns

16 32 64 128 256 512 1,024 2,048
10−1

100

101

102

N

R
un

ti
m

e
(s

)

O(N2)
O(N3)

Fig. C.2: Simulation results for varying problem size N. The SNR is 20 dB and the number of
sinusoids K is selected as N/10 rounded to the nearest integer. Results are averaged over 100
Monte Carlo trials. The legend applies to all plots. Only the NMSE of Oracle is shown. In the
figure with runtime the asymptotic per-iteration computational complexity is also plotted.
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means that they are significantly faster than ADMM for large values of N.
In large N it is also clear that the L-BFGS variant of FastAST is significantly
faster than the Newton variant.

C.6.5 Performance Versus Signal-to-Noise Ratio

Fig. C.3 shows performance versus the SNR level. Note that the conditional
MSE of the frequency estimates is not shown for 0 dB SNR because there are
no Monte Carlo trials with successful recovery of the frequencies at this SNR.

At SNR up to 30 dB all the algorithms perform the same in terms of
NMSE of x and conditional MSE of the frequency estimates. This means that
all algorithms have found a sufficiently accurate solution of (C.1) (relative
to the SNR). In SNR larger than 30 dB FastAST L-BFGS shows a degraded
solution accuracy compared to the remaining algorithms. This is because
of the mentioned numerical issues and the consequently larger tolerances
selected (cf. Table C.1).

In terms of number of iterations and runtime note that both variants of
FastAST show roughly unchanged behaviour with different SNR. ADMM on
the other hand requires much larger number of iterations and larger runtime
for large SNR. In large SNR it is evident that FastAST Newton is preferred
due to lower runtime than ADMM and higher estimation accuracy than Fas-
tAST L-BFGS.

C.7 Conclusions

The FastAST algorithm presented in this paper provides a fast approach to
solving the atomic norm soft thresholding problem (C.1). The L-BFGS variant
provides a reasonably accurate solution and is much faster than any other al-
gorithm for large problem size N. If a solution of high accuracy is requested,
which may be desirable in very high SNR, a variant of FastAST based on
Newtons method is also provided. This variant can find a solution of high
accuracy in a small number of iterations. While it is slower than FastAST
L-BFGS, it is significantly faster than the state-of-the-art method based on
ADMM.

The FastAST algorithm is obtained by reformulating the semidefinite pro-
gram (C.1) as a non-symmetric conic program (C.12). This reformulation is
of key importance in obtaining a fast algorithm. This work has provided an
example of an optimization problem where it is beneficial to formulate it as a
non-symmetric conic program instead of the standard, and much better un-
derstood, formulation as a symmetric conic program. We have also provided
an implementation of a non-symmetric conic solver, thereby demonstrating
the practical feasibility of this class of methods.
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Fig. C.3: Simulation results for varying SNR. The signal length is N = 64 and the number of
sinusoids is K = 6. Results are averaged over 100 Monte Carlo trials. The legend applies to all
plots. Only the NMSE of Oracle is shown.

165



Paper C.

In one of the variants of FastAST the L-BFGS method is used for the so-
lution of the barrier problem (C.35). We have demonstrated that L-BFGS can
be used to obtain a quasi-Newton method for the barrier method despite the
fact that the barrier parameter is updated in every iteration. This approach
can directly be applied in other solvers based on the barrier method.

Finally note that there are many examples of optimization problems of
practical interest which involve a constraint in either the cone of finite auto-
correlation sequences C∗ or the cone K. An example is the gridless SPICE
method [15] for line spectral estimation; or frequency-domain system identi-
fication and filter design as summarized in [34]. We expect that equally fast
primal-dual interior point methods can be derived for all of these problems
using the techniques of this paper. We also expect that it is fairly straight-
forward to extend FastAST to atomic norm minimization with partial obser-
vations [8] or multiple measurement vectors [14]. An interesting, but less ob-
vious, extension is to the multi-dimensional harmonic retrieval problem [52];
for that purpose the work [53] may contain some useful insights.

Acknowledgements

We would like to thank Lieven Vandenberghe and Martin Skovgaard An-
dersen for providing valuable input to the work and pointing us to some
important references.

The work of T. L. Hansen is supported by the Danish Council for Inde-
pendent Research under grant id DFF–4005–00549.

A Characterization of K∗

To characterize the dual cone K∗, a number of lemmas are needed.

Lemma C.3. Let K by a proper cone and assume λ 6= 0. If 〈λ, µ〉 ≥ 0 for every
µ ∈ intK, then 〈λ, µ〉 ≥ 0 for every µ ∈ K.

Proof. Let µ̃ ∈ K and let {µi} be a sequence which converges to µ̃ with
µi ∈ intK. Then 〈λ, µi〉 ≥ 0 and so 〈λ, µ̃〉 = lim

i→∞
〈λ, µi〉 ≥ 0, completing the

proof.

Lemma C.4. Let K be a proper cone. The interior of its dual is given by

intK∗ = {λ : 〈λ, µ〉 > 0 ∀ µ ∈ K}. (C.68)

Proof. See [17], exercise 2.31.
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To formulate the next lemma, the dual barrier of F is introduced:

F∗(λ) = sup {− 〈λ, µ〉 − F(µ) : µ ∈ intK}. (C.69)

This function is a slight modification (− 〈λ, µ〉 replaces 〈λ, µ〉) of the convex
conjugate of F. It turns out that F∗ is a LH barrier function for the dual cone
K∗ [17, 20]. Its usefulness for our purposes lies in the following property.

Lemma C.5. Assume λ 6= 0 and let K be a proper cone with corresponding LH
barrier function F. Then λ ∈ intK∗ if and only if F∗(λ) < ∞ (i.e., F∗ is bounded
above.)

Proof. We first prove the direct implication. Reasoning by contradiction, as-
sume that F∗(λ) < ∞ and that there exists a µ ∈ intK such that 〈λ, µ〉 < 0.
Then αµ ∈ intK for all α > 0. But lim

α→∞
−〈λ, αµ〉− F(αµ) = lim

α→∞
− α 〈λ, µ〉−

F(µ) + θF log(α) = ∞, a contradiction, so 〈λ, µ〉 ≥ 0 for every µ ∈ intK. By
Lemma C.3 we have 〈λ, µ〉 ≥ 0 for every µ ∈ K, thus λ ∈ K∗. Since F∗ is a LH
barrier function for K∗, it is easy to show that F∗(λ) < ∞ implies λ /∈ bdK∗,
so λ ∈ intK∗.

To prove the converse assume λ ∈ intK∗. Then by Lemma C.4, we have
〈λ, µ〉 > 0 for all µ ∈ K. It follows that there exists an ε > 0 such that
〈λ, µ̃〉 ≥ ε for every µ̃ ∈ K with ‖µ̃‖2 = 1. By continuity of F it can also be
shown that there exists a δ such that F(µ̃) ≥ δ for every µ̃ ∈ K with ‖µ̃‖2 = 1.
With µ̃ = µ/ ‖µ‖2, the objective in (C.69) obeys

− 〈λ, µ〉 − F(µ) = −‖µ‖2 〈λ, µ̃〉 − F(‖µ‖2 µ̃) (C.70)

= −‖µ‖2 〈λ, µ̃〉 − F(µ̃) + θF log(‖µ‖2) (C.71)

≤ −‖µ‖2 ε− δ + θF log(‖µ‖2). (C.72)

The second equality follows from logarithmic homogeneity of F. This func-
tion is bounded above and so F∗(λ) < ∞.

We are now ready to give the desired proof.

Proof of Lemma C.1. It is easy to show the following:

1. If ρ < 0, then λ /∈ K∗.

2. If ρ = 0 and s 6= 0, then λ /∈ K∗.

3. If ρ = 0 and s = 0, then λ ∈ K∗ if and only if z ∈ C∗.

The first and second property are shown by constructing a µ ∈ K such that
〈λ, µ〉 < 0. The third property is shown by writing 〈λ, µ〉 = zTu ≥ 0 for all
µ ∈ K if and only if zTu ≥ 0 for all u ∈ C.
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The only case we have not considered so far is ρ > 0. By Lemma C.5 and
(C.24), we have λ ∈ intK∗ if and only if F∗(λ) < ∞, i.e., when

h(µ) = −ρv− Re(sHx)− zTu + log |T(u)|+ log(v− xHT−1(u)x) (C.73)

is bounded above on the domain µ ∈ intK. The function h is concave and by
setting the gradient equal to zero we get optimal points

v? = ρ−1 + (2ρ)−2sHT(u)s

x? = −(2ρ)−1T(u)s.

It is easy to show that if u ∈ int C, then (v?, x?, u)T ∈ intK. Inserting into
h(µ) we obtain

h(µ) ≤ −zTu +
1

4ρ
sHT(u)s− 1− log(ρ) + log |T(u)|

= −cTu− 1− log(ρ) + log |T(u)|,

with c(λ) = z− 1
4ρ T∗(ssH). For each u ∈ int C there exists some correspond-

ing µ ∈ intK such that the above holds with equality.
If c(λ) = 0, the function h(µ) is unbounded above on the domain µ ∈

intK and so λ /∈ intK∗. If c(λ) 6= 0 we can use Lemma C.5 because
− log |T(u)| is a LH barrier function for C. So h(µ) is bounded above on
the domain µ ∈ intK if and only if c(λ) ∈ int C∗. Tracing back our steps
above we have (for ρ > 0) that λ ∈ intK∗ if and only if c(λ) ∈ int C∗. Since
both of the dual cones are closed sets and c(·) is a continuous function, we
have λ ∈ K∗ if and only if c ∈ C∗. That completes the proof.
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Line spectral estimation is a classical problem in signal processing. It has 
found broad application in for example array processing, wireless commu-
nication, localization, radar, radio astronomy and audio. In the last decade 
we have seen significant research into sparsity-based processing techniques. 
The use of sparsity-based techniques has allowed for advances to both the 
design and analysis of algorithms for line spectral estimation. In this thesis 
we study the design of such algorithms.

The uniting theme of our contributions is the design of algorithms that make 
sparsity-based line spectral estimation viable in practice. First it is demon-
strated that these schemes can be applied to the estimation of wireless chan-
nels of not only specular but also of diffuse nature. We attribute that to a 
low-rank property of the channel covariance matrix, a concept that we elab-
orate on.

The design of algorithms for sparsity-based line spectral estimation in a gen-
eral context is then considered. The obtained algorithms are computation-
ally feasible for much larger problems than what concurrent algorithms can 
practically deal with and show high estimation accuracy.
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