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Abstract

Massive multiple-input multiple-output (MIMO) is one of the fundamental tech-

nologies for 5G and beyond. The increased number of antenna elements at both

the transmitter and the receiver translates into a large-dimension channel matrix.

In addition, the power requirements for the massive MIMO systems are high, espe-

cially when fully digital transceivers are deployed. To address this challenge, hybrid

analog-digital transceivers are considered a viable alternative. However, for hybrid

systems, the number of observations during each channel use is reduced. The high

dimensions of the channel matrix and the reduced number of observations make the

channel estimation task challenging. Thus, channel estimation may require increased

training overhead and higher computational complexity.

The need for high data rates is increasing rapidly, forcing a shift of wireless com-

munication towards higher frequency bands such as millimeter Wave (mmWave)

and terahertz (THz). The wireless channel at these bands is comprised of only a

few dominant paths. This makes the channel sparse in the angular domain and the

resulting channel matrix has a low rank. This thesis aims to provide channel esti-

mation solutions benefiting from the low rankness and sparse nature of the channel.

The motivation behind this thesis is to offer a desirable trade-off between training

overhead and computational complexity while providing a desirable estimate of the

channel.
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Abstract

Firstly, this thesis presents a narrowband channel estimation solution for hybrid

MIMO systems. The channel is estimated by a three-stage approach with the first

stage exploiting the low-rankness of the channel matrix, the second and third stages

exploiting the angular sparsity of the channel. The low-rank estimate of the channel

is obtained in the first stage by solving an inductive matrix completion (IMC) prob-

lem. Then using the low-rank estimate, the sample covariance matrices (SCMs) for

the AoAs and AoDs are obtained. Then spectrum estimation techniques are applied

to separately estimate the angles of arrival (AoAs) and angles of departure (AoDs)

from the respective SCMs. Finally, channel path gains are estimated by solving the

sparse recovery problem.

Secondly, this thesis proposes a channel estimation solution for the intelligent

reflective surfaces (IRS)-aided hybrid MIMO systems. By adopting a two-stage

approach, the proposed solution progressively estimates the channel parameters.

The training for both stages is performed separately. In the first stage of training,

the IRS phase shifts are fixed and the precoder/combiners are varied to obtain the

training data. The low-rankness of the effective channel between the transmitter-

IRS-receiver is exploited by formulating the problem as low-rank matrix recovery and

solving it using IMC. Then capitalizing on the low-rank estimate, the transmitter

AoDs and receiver AoAs are estimated by utilizing spectrum estimation techniques.

During the second stage of training, hybrid precoders/combiners are aligned towards

the estimated AoDs/AoAs and the IRS phase shifts are varied. Using the second

stage training data the angle difference between the IRS AoAs and AoDs is estimated

by applying the least squares (LS) and spectrum estimation. Finally, the composite

path gains of the channel are estimated using the estimated angles and second-stage

training data.

Thirdly, this thesis presents a channel estimation solution for wideband hybrid

MIMO systems. The proposed solution exploits the low-rank nature of the multi-

tap wideband channel matrix and the problem is formulated as a low-rank matrix

sensing (LRMS) problem. The LRMS formulation offers flexibility in regards to
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Abstract

precoder/combiner design and training symbol transmission but requires additional

computational efforts as compared to IMC. To reduce the computational effort, two

low-complexity implementations of LRMS are presented. The first implementation

adopts an iterative approach to solve the pseudo-inverse problems within LRMS

and the second implementation adopts a very sparse sensing matrix. Furthermore,

two different performance enhancement approaches are presented. As LRMS suffers

performance loss when the channel matrix is either tall or fat, the first performance

enhancement approach addresses this problem by adopting matrix reshaping to ben-

efit from the shift-invariance property of uniform arrays. The second performance

enhancement approach benefits from the knowledge of the array response. The

AoAs/AoDs and channel path gains are estimated using spectrum estimation and

sparse recovery, respectively.

IV



Acknowledgments

Any successful journey in this world requires support and sacrifices from those

around you. I would like to thank and acknowledge the people without whom I

would have not completed this journey.

First of all, I would like to thank my principal supervisor, Dr. Jun Tong, for

his endless support and guidance throughout my Ph.D. journey. I consider myself

extremely lucky that I was able to complete my Ph.D. under Dr. Jun Tong’s super-

vision. Since day one he has believed in my abilities and encouraged me to challenge

myself. Throughout the difficult times, he has shown support and guided me in the

right direction. I would like to thank my co-supervisors, Professor Jiangtao Xi and

Associate Professor Qinghua Guo for their support and encouragement.

I would like to thank my group members for their valuable input into my work.

Specially, Dr. Rui Hu and Dr. Tainle Liu for their valuable time and for sharing their

knowledge with me. During this journey, I have found lifelong friends including Mr.

Muhammad Ayoub, Mr. Faizan Shoaib, Mr. Rasikh Habib, Mr. Shabbir Ahmad,

Mr. Mairaj Soomro, Mr. Muhammad Safdar, Mr. Muhammad Abid, and last but

not the least Mr. Mubashir Alam.

I would like to thank HEC Pakistan and UOW for their joint scholarship to

fund my Ph.D. degree. I would like to thank COMSATS university of science and

technology for allowing me to grow in my field.

V



Abstract

Finally, I would like to thank my family members. The sacrifice they have made

to see me excel in my field can not be expressed in words. My late mother (Ami)

always prayed for me and took care of me. She passed away during the fourth year

of my Ph.D. and I will always miss her. I wish she was here to see me achieve my

goals. My father (Abu), has been the rock of our family and he has taken care of us

all through thick and thin. He is my role model and my decisions in life are based

on the moral values he taught me. I would like to thank my Aunt for always keeping

me in her prayers and supporting me through the journey. I would like to thank my

brother for always guiding me and being there for me through the ups and downs

of life. I am grateful to my sisters for their love and support. I am also thankful to

my sister-in-law and my cute nieces and nephews including Hasham, Ayan, Hania,

Musa, and Shanzy.

VI



Contents

Abstract II

Abbreviations XIV

1 Introduction 1

2 Literature Review 5

2.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1.1 Digital and Analog Structures . . . . . . . . . . . . 6

2.1.1.2 Hybrid Analog-Digital Structure . . . . . . . . . . . 6

2.1.2 Communication in mmWave and THz Bands . . . . . . . . . . 7

2.1.3 Intelligent Reflective Surfaces . . . . . . . . . . . . . . . . . . 10

2.2 Existing Channel Estimation Solutions for Hybrid MIMO Systems

and Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Narrowband mmWave and THz Channels . . . . . . . . . . . 12

2.2.2 IRS-Aided mmWave and THz Channels . . . . . . . . . . . . 14

2.2.3 Wideband mmWave and THz Channels . . . . . . . . . . . . . 17

2.3 Thesis Motivation and Contribution . . . . . . . . . . . . . . . . . . . 20

2.3.1 Channel Estimation for Narrowband Hybrid MIMO Systems. . 20

VII



Contents

2.3.2 Channel Estimation for IRS-Assisted Hybrid MIMO Systems . 21

2.3.3 Channel Estimation for Wideband Hybrid MIMO Systems . . 22

3 A Low-Complexity Three-Stage Estimator for Low-Rank mmWave

Channels 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Hybrid Transceiver . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The Three-Stage Channel Estimator . . . . . . . . . . . . . . . . . . 30

3.3.1 Stage 1: Low-Rank Channel Estimation . . . . . . . . . . . . 31

3.3.2 Stage 2: AoA and AoD Estimation . . . . . . . . . . . . . . . 32

3.3.3 Stage 3: Path Gain Estimation . . . . . . . . . . . . . . . . . 37

3.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Inductive Matrix Completion and Root-MUSIC-Based Channel Es-

timation for Intelligent Reflecting Surface (IRS)-Aided Hybrid MIMO

Systems 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The Proposed Channel Estimator . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Parametric Representation of the Cascaded Channel . . . . . . 57

4.3.2 Stage 1: Estimation of Outer Angles . . . . . . . . . . . . . . 59

4.3.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2.2 Estimation of Outer Angles . . . . . . . . . . . . . . 61

4.3.3 Stage 2: Estimation of IRS Angles and Composite Path Gains 66

4.3.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3.2 Estimation of IRS Angles . . . . . . . . . . . . . . . 69

VIII



Contents

4.3.3.3 Estimation of Composite Path Gains . . . . . . . . 69

4.3.4 Extension to UPA at IRS . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . 74

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 ULA at the IRS . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 UPA at the IRS . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Low-Rank Matrix Sensing-Based Wideband Channel Estimation

for mmWave and THz Hybrid MIMO Systems 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 LRMS-Based Wideband MIMO Channel Estimation . . . . . . . . . . 86

5.3.1 Wideband Channel Training and LRMS-Based Channel Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Complexity Reduction via PCG Implementation . . . . . . . . 92

5.3.3 Complexity Reduction via LRMC . . . . . . . . . . . . . . . . 95

5.3.4 Performance Enhancement via Matrix Reshaping . . . . . . . 97

5.3.5 Performance Enhancement via Spectrum Denoising (SD) . . . 101

5.3.5.1 Estimation of Path Angles . . . . . . . . . . . . . . . 101

5.3.5.2 Estimation of Path Gains . . . . . . . . . . . . . . . 103

5.4 Performance of the Proposed Estimators . . . . . . . . . . . . . . . . 105

5.4.1 Complexity Comparison With Alternative Estimators . . . . . 105

5.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Conclusions and Future Works 117

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

IX



List of Figures

2.1 Hybrid analog-digital structure with networks of fully connected phase

shifters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An IRS-assisted MIMO system with direct link between the trans-

mitter and receiver blocked. . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Channel estimation performance versus PNR at a sampling ratio of

r = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 AoA/AoD estimation performance versus PNR at a sampling ratio of

r = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Computational complexity at different PNR levels corresponding to

NMSE performance in Fig. 3.2. . . . . . . . . . . . . . . . . . . . . . 43

3.5 Channel estimation performance versus sampling ratio at PNR = 5

dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Average sparsity level (number of paths recovered) versus PNR at a

sampling ratio of r = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Channel estimation performance versus the number of paths at PNR =

5 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 System model for IRS-aided hybrid MIMO system. . . . . . . . . . . 55

X



List of Figures

4.2 Flowchart of the proposed scheme for estimating the cascaded channel

of IRS-aided MIMO systems. . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 System model for the case with UPA at the IRS and ULAs at the

transmitter and receiver. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 An example of IRS with an L-shaped subarray switched on, Ny =

Nz = 6, Jy = Jz = 2, NI = 36 and D = 20. . . . . . . . . . . . . . . . 74

4.5 Performance of the path angle, gain and cascaded channel estimation

with LF = 1, LG = 2, ULAs at the transmitter, receiver, and IRS,

NT = NR = 16, NI = 32, QR = QT = 2. . . . . . . . . . . . . . . . . 76

4.6 Performance of the path angle, gain and cascaded channel estimation

for the system same as that in Fig. 5 except LF = 2, T = 96. . . . . 78

4.7 Channel estimation performance versus training overhead T = S +

LFD at PNR = 10 dB with LF = LG = 2, ULAs at the transmitter,

receiver and IRS, NT = NR = 16, NI = 32, and QR = QT = 2. The

proposed method and the ANM-based method apply the two-stage

training with S = 64 fixed for Stage 1 and D varying from 12 to 32

for Stage 2, while the LS estimator has a fixed training overhead of

TLS = 4096. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Performance of the path angle, gain and cascaded channel estimation

for a system with a UPA at the IRS, ULAs at the transmitter and

receiver, and LF = 2, LG = 2. NT = NR = 32, NI = 256, QR = QT =

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Transmission Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Flowchart of the proposed LRMS-SD-based scheme. . . . . . . . . . . 102

5.3 Channel estimation performance versus PNR with different training

schemes for a wideband hybrid MIMO system with NT = 8, NR =

32, QR = 4, QT = 2, L = 3, NC = 4,M = 40. . . . . . . . . . . . . . . 109

XI



List of Figures

5.4 Channel estimation performance versus PNR for NT = 8, NR =

32, QR = 4, QT = 2, L = 3, NC = 4,M = 40,MLS = 64. . . . . . . . . 110

5.5 Channel estimation performance versus the number of training sub-

frames M for a wideband hybrid MIMO system with NT = 8, NR =

32, QT = 2, QR = 4, L = 3, NC = 4,PNR = 15 dB. . . . . . . . . . . . 112

5.6 Channel estimation performance versus number of paths L for a wide-

band hybrid MIMO system with NT = 8, NR = 32, QT = 2, QR =

4, NC = 4,M = 40,MLS = 64,PNR = 15 dB. . . . . . . . . . . . . . . 113

5.7 Channel estimation performance versus PNR for a wideband hybrid

MIMO system with NT = 64, NR = 8, NC = 4, QT = 4, QR = 2, L =

3,M = 128,MLS = 256,H ∈ C8×256,H ∈ C32×64, KT = 4,MT = 16. . 113

5.8 The influence of matrix reshaping on the rank estimation and con-

dition number for NT = 64, NR = 8, NC = 4, QT = 4, QR = 2, L =

3,M = 128,H ∈ C8×256,H ∈ C32×64, KT = 4,MT = 16. . . . . . . . . 114

5.9 Channel estimation performance versus PNR for the ray-cluster chan-

nel model with L = LcLr, Lc ∼ max(Poisson(1.8), 1), Lr ∼ U [1, 20],

NC = 4. Scenario 1: NT = 8, NR = 32, QT = 2, QR = 4,M =

40,MLS = 64. Scenario 2: NT = 64, NR = 8, QT = 4, QR = 2,M =

128,MLS = 256,H ∈ C8×256,H ∈ C32×64, KT = 4,MT = 16. . . . . . . 116

XII



List of Tables

3.1 Computational Complexity of the Three-Stage Estimator. The expo-

nent parameter q = 2, r represents the sampling ratio, oversampling

parameter g = 10, l ∈ {1, 2, · · · , L̂} represents the number of the

GCG iteration, Q is the number of updates of the alternate mini-

mization (ALTMIN) process, and m ∈ {1, 2, · · · , L̂} represents the

number of the OMP iteration in Stage 3. . . . . . . . . . . . . . . . . 51

3.2 Computational Complexity of Several Existing Estimators. NX and

NY : the numbers of the transmitted and received beams, respectively;

GR and GT : the size of the grid for the AoA and AoD, respectively;

m ∈ {1, 2, · · · , Q}: the number of the OMP iteration; L̂a: the spar-

sity level predicted by the ADMM algorithm; L̂s: the sparsity level

predicted by SVD preconditioning of the IR-SR estimator. . . . . . 52

3.3 Run-time comparison for different algorithms. System specifications:

Windows 10, Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz Processor,

16 GB RAM and Matlab R2019b. . . . . . . . . . . . . . . . . . . . 53

XIII



Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

4G the 4-th generation

5G the 5-th generation

6G the 6-th generation

ADC analog-to-digital converter

AoA angle of arrival

AoD angle of departure

CSI channel state information

dB decibel

DFT discrete Fourier transform

EE energy efficiency

EVD Eigenvalue decomposition

FBSS forward-backward spatial smoothing

flops floating point operations

i.i.d independent identical distributed

IMC inductive matrix completion

IRS intelligent reflective surface

XIV



Abbreviations

KPI key performance indicator

LoS line of sight

LRMC low-rank matrix completion

LRMS low-rank matrix sensing

LS least squares

MIMO multiple-input multiple-output

MMSE minimum mean square error

mmWave millimeter wave

MSE mean square error

NMSE normalized mean square error

NP non-deterministic polynomial-time

OFDM orthogonal frequency division multiplexing

PNR pilot to noise ratio

QAM quadrature amplitude modulation

QoS quality of service

RF radio frequency

RIP restricted isometry property

Rx receiver

SCM sample covariance matrix

SE spectral efficiency

SVD singular value decomposition

THz terahertz

TR Toeplitz rectification

Tx transmitter

ULA uniform linear array

UPA uniform planner array

XV



Chapter 1

Introduction

This chapter provides a general introduction to future wireless communications and

an outline of the thesis. The comprehensive literature review is provided in Chapter

2.

The growing demands of high data rates, low latency, high energy efficiency,

extended coverage area, etc. are steering the research community toward new tech-

nologies. The 5G technology is in the deployment phase in many countries and the

foundations of the future technology, 6G, are being laid out. The requirements for

5G were released in International Mobile Telecommunications 2020 (IMT-2020) by

the International Telecommunications Union Radio-communication sector (ITU-R).

The key performance indicators (KPIs) for the IMT-2020 include peak data rates

≥ 10 Gb/s, user data rates ≥ 100 MB/s, 3 times the spectral efficiency (SE) as

compared to 4G, 100 times energy efficiency (EE) as compared to 4G, 1 ms latency

over the air, support for mobility up to 500 km/h and greater than 100 Mb/s cell

edge throughput [1–3]. Although 5G is still being deployed, it may lack the support

for several future wireless applications such as augmented reality (AR), virtual re-

ality (VR), mixed reality (MR) and industrial automation, etc. [4]. Foreseeing the

future needs, ITU has started a focus group on Technologies for Network 2030 (FG

NET-2030) as an early step towards 6G [5]. The KPIs suggested for 6G include,

1



peak data rates ≥ 1 Tbs, user experience data rates ≥ 1Gb/s, 5 times more SE as

compared to 5G, 100 times EE as compared to 5G, 10− 100µs latency over the air

and mobility support up to 1000 km/h [6–8].

To achieve the performance goals of future wireless systems the key candidate

technologies include communication at higher frequency bands, massive multiple-

input multiple-output (MIMO), hybrid beamforming, and the use of passive reflec-

tive surfaces. Communications at higher frequency bands such as millimeter wave

(mmWave) bands and terahertz (THz) bands offer large unused bandwidth to cater

the needs of higher data rates. However, waves at higher frequency bands incur

higher path losses and are more prone to blockage and absorption [2, 9–13]. To

compensate for these losses massive MIMO can be used to benefit from beamform-

ing gains due to the increased number of antennas [14–16]. Massive MIMO can also

benefit from the small antenna size at higher frequencies and antenna arrays having

large antenna elements can be easily deployed. A fully digital massive MIMO system

requires a dedicated radio frequency (RF) chain for each antenna element, increasing

the energy requirements of the system. To cater energy needs of the massive MIMO,

hybrid analog-digital systems with a reduced number of RF chains are considered

as a potential solution by the research community [17]. Another technology that

will be crucial to ensure the quality of service (QoS) for future wireless networks

is intelligent reflective surfaces (IRS) (also referred to as large intelligent surfaces

(LIS) and reflective intelligent surfaces(RIS) [18–20]). IRS-aided systems can offer

strong propagation paths via IRS in case the direct channel between the transmitter

and receiver is blocked.

To fully benefit from the fruits of 5G/6G, all or some of these technologies will

be used collectively. From the signal processing perspective, tasks like beamforming

[21], MIMO data detection [22], interference alignment [23] etc. require reliable

channel state information (CSI). However, the technologies discussed above when

combined can make the channel estimation task challenging. For instance, the use

of massive MIMO and IRS increases the channel matrix dimensions. This increases

2



the computational complexity requirements for channel estimation. Also, when the

hybrid systems are deployed, the time required for training is increased due to the

reduced number of baseband observations. The silver lining here is that at higher

frequency bands the channel is sparse in the angular domain and this sparsity results

in a low-rank channel matrix. This thesis aims to exploit the sparse and low-rank

nature of the channel to provide channel estimation solutions at low complexity and

low training overhead.

The remaining of the thesis is organized as follows:

• In Chapter 2, a detailed literature review and thesis motivation are presented.

• In Chapter 3, the narrowband channel estimation solution for the hybrid

MIMO systems is discussed. The contributions of this chapter have been pub-

lished as a journal paper: K. F. Masood, R. Hu, J. Tong, J. Xi, Q. Guo, and

Y. Yu, “A Low-Complexity Three-Stage Estimator for Low-Rank mmWave

Channels,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp.

5920–5931, 2021.

• In Chapter 4, the channel estimation approach to estimate the IRS-aided hy-

brid MIMO systems is presented. The work reported in this chapter has been

published as journal paper. K. F. Masood, J. Tong, J. Xi, J. Yuan and Y.

Yu, ”Inductive Matrix Completion and Root-MUSIC-Based Channel Estima-

tion for Intelligent Reflecting Surface (IRS)-Aided Hybrid MIMO Systems,” in

IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2023.3257138.

• In Chapter 5, the proposed wideband channel estimation solution for hybrid

MIMO systems is presented. The proposed work in this chapter has been sub-

mitted to IEEE Journal of Selected Topics in Signal Processing with the title

K. F. Masood, J. Tong, J. Xi, J. Yuan, Q. Guo, and Y. Yu, “Low-Rank Ma-

trix Sensing-Based Channel Estimation for mmWave and THz Hybrid MIMO

Systems”, minor revision, May. 2023.
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• Chapter 6 concludes the contributions of the thesis and discusses the potential

future work.
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Chapter 2

Literature Review

This chapter presents an extensive literature review on channel estimation schemes

for hybrid MIMO systems. The background on the system and channel model is

presented in Section 2.1. The details on the existing channel estimation solutions

are presented in Section 2.2 and the thesis motivation and contribution are discussed

in Section 2.3.

2.1 Research Background

This section is aimed to provide an overview of the key technologies considered in

this thesis. Those include massive MIMO, communication at mmWave and THz

frequency bands, and IRS-aided systems.

2.1.1 Massive MIMO

For massive MIMO, different transmitter (receiver) architectures can be used, namely,

analog structure, digital structure, and hybrid-analog digital structure. The overviews

of these architectures are given below.
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2.1.1.1 Digital and Analog Structures

For a fully digital structure, each antenna requires a dedicated RF chain. This

means that QT = NT and QR = NR, where QT and QR denote the number of RF

chains at the transmitter and receiver, respectively and NT and NR are the number

of antennas at the transmitter and receiver, respectively. So, for a fully digital

structure up to NT (NR) symbols can be processed at the transmitter (receiver). As

suggested by the name the fully digital structure lacks an analog beamformer. A

fully digital system can offer the best signal processing capabilities at the cost of

increased power requirements.

For analog beamforming, only a single RF chain is shared by all the transmit

(receive) antennas i.e. QR = QT = 1. Although this requires low power, the signal

processing capabilities are greatly affected due to the reduced number of RF chains.

Therefore, for practical systems hybrid analog-digital systems are more viable to

reduce the power requirements. Next, we discuss the hybrid structure that combines

analog and digital structures.

2.1.1.2 Hybrid Analog-Digital Structure

A hybrid analog-digital structure offers a trade-off between the processing capabili-

ties and power requirements. For hybrid structures, the number of RF chains is less

than the number of antennas at the transmitter and receiver, i.e., QR < NR and

QT < NT , respectively. This reduces power consumption due to the reduced num-

ber of RF chains. An RF chain is composed of analog to digital/digital to analog

converters and mixers that are in general power hungry. A hybrid structure with

networks of fully connected phase shifters is considered for massive MIMO systems

in [24, 25]. The term “fully connected” means that each RF chain is connected with

all antennas. Other hybrid structures include switch-based and partially connected

structures. This thesis focuses on the fully connected hybrid structure. This is moti-

vated by the flexibility offered for beamforming design as compared to switch-based
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or partially connected hybrid structures. Hybrid analog-digital structure are consid-

ered for both the transmitter and receiver thus making the RF chain requirements

considerably less. For illustration, a transmitter and receiver equipped with a fully

connected hybrid structure are shown in Fig. 2.1. The total number of phase shifters

required for such a structure is QTNT and QRNR for the transmitter and receiver,

respectively. The baseband precoder is denoted by PBB and the RF precoder is

denoted by PRF. Similarly, the baseband combiner is denoted by WBB, and the RF

combiner is denoted by WRF. The hybrid transceiver can provide data rates close

to that of fully digital but the channel estimation is more challenging due to the

reduced number of baseband measurements [9, 26].

𝑄𝑅

𝐖BB𝐖RF

𝑁𝑅
𝑄𝑇

𝐏BB 𝐏RF

𝑁𝑇

Analog Part

Digital Part

Phase shifter

Transmitter with Hybrid Analog-Digital Precoder Receiver with Hybrid Analog-Digital Combiner 

RF Chain

Figure 2.1: Hybrid analog-digital structure with networks of fully connected phase shifters.

2.1.2 Communication in mmWave and THz Bands

Communication at higher frequencies such as mmWave and THz bands has gained

significant interests due to their rich spectrum resources. The mmWave band ranges

from 30 to 300 GHz and the THz band ranges from 0.1 to 10 THz [27, 28]. It is

possible to achieve the peak data rates of requirements of 5G and 6G by utilizing

large unused bandwidth available at these frequency bands. Along with large unused
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bandwidth, the mmWave/THz signals have shorter wavelengths to enable the use of

large antenna arrays lending support for the implementation of massive MIMO sys-

tems [29]. Due to large antenna arrays with compact sizes, the beamwidth becomes

narrow and this offers security against jamming and eavesdropping.

There are certain challenges for mmWave/THz communication along with the

benefits mentioned above. Such high-frequency bands face higher penetration and

path loss [2, 11, 30] compared to the sub-6 GHz bands. The path loss for free space

is given by Friis transmission formula [11] as

PR(D) = PTGTGR(
λc
4π

)2D−2, (2.1)

where PR(D), PT , GT , GR, and λc represent the received signal power at a distance D,

transmit power, transmit antenna gain, receive antenna gain, and carrier wavelength,

respectively. Due to the shorter wavelength, mmWave/THz bands suffer from a

greater path loss as compared to lower frequency bands. The path loss is also

affected by the rain attenuation and air conditions [31]. Penetration loss is also

higher at higher frequencies, e.g. the penetration loss for brick and tinted glass at

28 GHz is around 40 dB [32]. Forced by these losses there exist only a few dominant

paths between the transmitter and receiver [33, 34]. To compensate for these losses

at higher frequencies hybrid massive MIMO and IRS-aided systems can be used

along with mmWave/THz communications.

This thesis assumes the widely used geometric representation of the mmWave/THz

channel. The geometric representation of the narrowband channel is given as [26, 35]

H =
L∑
l=1

γlaR(θR,l)a
H
T (φT,l), (2.2)

where θR,l, φT,l and γl represent the angle of arrival (AoA) at the receiver, the angle

of departure (AoD) from the transmitter and the complex path gain for the l-th path,

respectively, and L denotes the total number of paths between the transmitter and
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receiver. Also, aT (φT,l) and aR(θR,l) denote the array response for the transmitter

and receiver for the l-th path.The array response vector for N -element uniform linear

arrays (ULA)s for angle θ is given as

a(θ) =
1√
N

[
1, ej

2π
λc
β cos(θ), · · · , ej(N−1) 2π

λc
β cos(θ)

]T
, (2.3)

where the antenna spacing is β = λc/2. The transmitter and receiver array response

vectors corresponding to the respective angles are based on (2.3). Alternatively,

(2.2) can be rewritten as

H = AR(θR)ΓAH
T (φT ), (2.4)

where the columns of AR(θR) ∈ CNR×L and AT (φT ) ∈ CNT×L are the array re-

sponses at the receiver and transmitter, respectively, and Γ is a diagonal matrix

whose diagonal elements are γl.

This thesis also extends to the wideband scenario using a geometric mmWave/THz

wideband multi-tap channel model, where the channel model for the d-th delay tap

is given as [36–38]

Hd =
L−1∑
l=0

γlp(dTs − τl)ar(θl)aHt (φl), (2.5)

where the impulse response of the pulse shaping filter at τ is given as p(τ) and Ts

is the sampling period. Furthermore, (2.5) can also be written as

Hd = AR(θR)ΓdA
H
T (φT ), (2.6)

where Γd is a diagonal matrix whose diagonal elements are γlp(dTs − τl).

Due to a limited number of scatters at higher frequency bands the number of

dominant paths is low, for instance, L ∈ [3, 5] for mmWave channels [34]. This

thesis also focuses on the THz channels. The sparsity level further increases when

the frequency range changes from mmWave to THz bands. This is due to increased

path loss and penetration loss at higher frequency. The THz channels are mostly
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dominated by the LOS rays and in the absence of LOS, up to three NLOS paths are

dominant [39]. Apart from reduced number of paths due to higher losses at THz

frequencies the remaining channel characteristic are similar to mmWave channels.

Therefore, the channel models in (2.2) and (2.5) are applicable to mmWave and THz

bands. The channel is constructed using channel parameters like AoAs, AoDs, and

channel gains and the task of channel estimation can be accomplished by estimating

these parameters instead of estimating directly the overall channel matrix.

2.1.3 Intelligent Reflective Surfaces

Due to reduced channel paths at the higher frequency bands as compared to the sub-

6 GHz bands [11], mmWave and THz channels are more susceptible to the blockage

of propagation paths, which can affect the coverage and QoS of the system. Conse-

quently, IRS has emerged as a potential solution to provide improved coverage and

QoS. IRS is usually constructed using passive reflective surfaces or meta-surfaces.

They can programmably alter the phase and/or amplitude of the incident signals

consuming very low power [4, 40]. This offers a new degree of freedom for more

controllable wireless environments and thus improves the communication perfor-

mance [41]. For example, in the absence of line-of-sight (LOS) paths between the

transmitter and receiver, IRS can provide LOS paths from transmitter to IRS and

IRS to receiver with strong gains to boost the coverage. A MIMO system with the

direct path between the transmitter and the receiver unavailable due to blockage

is depicted in Fig 2.2. The first element is turned on (reflection mode) and the

remaining elements are turned off (absorption mode).

Although the IRS-assisted system can provide strong paths between the trans-

mitter and receiver via IRS, this significantly increases the channel dimension as

compared to that of the direct channel between the transmitter and receiver. This

dimension increase depends on the number of elements used in the IRS. The effective

channel between the transmitter and receiver can be now written as H = GΩF ∈
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𝑁𝑅

Rx

𝑁𝑇

Tx

IRS

Direct Link  Blocked

Figure 2.2: An IRS-assisted MIMO system with direct link between the transmitter and
receiver blocked.

CNR×NT . With F ∈ CNI×NT and G ∈ CNR×NI denoting the transmitter (Tx)-IRS

channel and IRS-receiver (Rx) channel, respectively, Ω ∈ CNI×NI is a diagonal ma-

trix containing the amplitude and phase of IRS elements and NI denotes the number

of IRS elements.

The individual channels F and G can be estimated at the IRS when IRS is

equipped with baseband processing capabilities and such IRS elements are termed

as active IRS. However, active IRS will increase the cost and power requirements

of the system. This thesis only considers passive IRS and the channel estimation is

performed at the receiver.

2.2 Existing Channel Estimation Solutions for Hy-

brid MIMO Systems and Research Challenges

In this section, a review of the existing channel estimation strategies for hybrid

MIMO systems is presented. Those include the channel estimation solutions for nar-

rowband mmWave/THz channels, IRS-assisted mmWave/THz channels, and wide-
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band mmWave/THz channels.

2.2.1 Narrowband mmWave and THz Channels

Acquiring the CSI is crucial for optimizing the performance of mmWave/THz mas-

sive MIMO. However, channel estimation is challenging due to the increased dimen-

sionality of the channel matrix, and the hybrid structure further limits the number

of observations. On the other hand, the mmWave/THz channels are sparse in the

angular domain with a limited number of dominant paths due to sparse scattering at

higher frequencies [42]. This can be exploited to reduce the training overhead. Com-

pressive sensing (CS) techniques have been used to estimate the mmWave channel by

jointly finding the AoA, AoD, and channel gain for the dominant paths [35, 43, 44].

There are also solutions that iteratively estimate the AoAs/AoDs and path gains

[45], [46]. In [45], an iterative algorithm is proposed for sparse signal recovery and

applied to mmWave channel estimation. Sparse message passing (SMP) is used to

find the locations of the non-zero entries (corresponding to the AoAs/AoDs) and

linear minimum mean squared error (LMMSE) estimation is applied to estimate

non-zero entries (path gains). A similar approach is proposed in [46], which com-

bines SMP and least square (LS) to estimate the mmWave channel. In general,

CS-based estimators require a dictionary enumerating the candidate AoA and AoD

pairs, whose size equals the product of the grid sizes of the AoA and AoD. To

tackle the issue of grid mismatch, high-resolution dictionaries of large sizes may be

adopted [43]. This, however, may lead to a substantial computational complexity

for the sparse recovery process. Beam tracking techniques that exploit the sparse

nature of the mmWave MIMO channel and the correlation of AoAs/AoDs for mul-

tiple channel realizations are proposed in [47] and [48], where the training beams

and transmitting power are optimized to enhance performance.

Low-rank matrix sensing methods that leverage the low-rank nature of massive

MIMO channels have been considered in [49–53]. In [50], matrix completion (MC)

12



2.2. Existing Channel Estimation Solutions for Hybrid MIMO Systems and
Research Challenges

and inductive MC (IMC)-based training and estimation schemes are proposed for

mmWave MIMO with hybrid transceivers. A recovery algorithm based on the gen-

eralized conditional gradient with alternating minimization (GCG-ALTMIN) is de-

signed, which is shown to exhibit lower complexity and also provide more robustness

against model mismatch than the CS estimators that often involve high-dimensional

dictionaries. However, such MC estimators do not exploit the knowledge of the ar-

ray response and do not directly provide estimates of the AoAs, AoDs, and gains

of the paths. Therefore, they may under-utilize the available a priori information

about the channel and face challenges when the CSI needs to be fed back to the

transmitter. Schemes exploiting both the low-rankness and array responses of the

mmWave channel have also been proposed. In [51], a two-stage estimator is proposed

to first apply low-rank matrix recovery and then refine the estimation using CS with

the assumption of known array response. In [52], the low-rankness and knowledge

about the array response are exploited simultaneously and an alternating direction

method of multipliers (ADMM)-based approach is used for estimating the channel.

Both approaches utilize predefined grids of the angles and high-dimensional dictio-

naries, whose performance and complexity depend on the grid employed. In [53], a

MC-based semi-blind approach is proposed, which exploits payload data to reduce

the training requirement and recovers the channel by using regularized alternating

least squares and bilinear generalized approximate message passing. In [33], the

iterative reweighted super-resolution (IR-SR) estimator is proposed to address the

issue of grid mismatch. Initial estimates of the AoAs/AoDs are obtained first and

then a gradient descent method is used to iteratively refine the estimates such that

super-resolution estimation is achieved.

Traditional spectrum estimation techniques have also been successfully applied

to massive MIMO channel estimation [54–59]. In [55], the AoAs and AoDs are jointly

estimated using two-dimensional (2D) beamspace multiple signal classification (MU-

SIC). For frequency-selective channels, [56] proposes to jointly estimate the AoAs,

AoDs, and delays for the propagation paths using three-dimensional (3D) rotational
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invariant techniques (ESPRIT) in the discrete Fourier transform (DFT) beamspace.

This approach is extended in [57] to a two-stage training scheme which first obtains

coarse estimates of the direction sectors of interests and then refines the parameter

estimates. In [58], specially optimized precoders and combiners are utilized to find

the mainbeam, then the peak of the mainbeam is regarded as the LOS path within

quantization error, and finally, two approaches are presented to mitigate the quan-

tization error. In [59], a multi-stage training scheme with optimized beamformer

design for AoA/AoD estimation followed by angle pairing is proposed, where train-

ing data spanning multiple channel realizations are involved. In general, the above

spectrum estimation-based estimators need to tailor the precoder and combiner for

the hybrid MIMO transceivers and search over high-dimensional parameters.

2.2.2 IRS-Aided mmWave and THz Channels

The channels of IRS-aided systems may be estimated in different manners, depend-

ing on whether the IRS possesses baseband signal processing capabilities. With

separate channel estimation, the Tx-to-IRS and IRS-to-Rx subchannels are both

estimated explicitly. This often requires a certain number of active elements to be

deployed at the IRS, leading to semi-passive IRS, so that digital observations can

be captured at the IRS. A relatively low training overhead may suffice but this

costs increased complexity and power consumption of the IRS. Various schemes for

separate channel estimation have been proposed, see [60–63] for examples.

In this thesis, we focus on fully passive IRS-aided MIMO systems with hybrid

transceivers. This requires cascaded channel estimation based only on the observa-

tions at the hybrid receiver. Due to the high dimensionality, the training overhead

can be significantly increased using classical estimators such as the LS. Tremen-

dous efforts have been made to address this crucial challenge, such as [64–76], and a

thorough survey can be found in [4]. For example, [64] exploits a bilinear matrix fac-

torization model for the training data. Capitalizing on the sparsity and low-rankness
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of the factor matrices, they develop a two-stage estimator by using iterative sparse

matrix factorization based on the bilinear generalized approximate message passing

(BiG-AMP) algorithm followed by low-rank matrix completion via Riemannian gra-

dient. A two-timescale approach is studied in [65] to reduce the training overhead by

exploiting the quasi-static nature of the base station (BS)-to-IRS subchannel. This

may require the BS operating in the full-duplex mode capable of self-interference

mitigation. In [66], the redundancy in the multi-user cascaded channels is leveraged

and a three-phase estimator using LS and LMMSE estimation is designed. Anchor-

based solutions are investigated, e.g., in [67]. There are also solutions exploiting

machine learning (ML). For example, [68–70] propose to denoise the (interpolated)

LS estimates of the cascaded channel using neural networks. Their pilot overhead

depends on the requirement of the LS estimation, which in turn depends on the

dimensionality and the number of RF chains at the receiver. A conditional gen-

erative adversarial network-based solution is also proposed in [71]. Many of the

above solutions assume a single antenna at the users and employ single-stage train-

ing, which may incur a substantial training overhead due to the lower beamforming

gains achievable. Furthermore, they generally do not utilize the knowledge of the

array responses at the transmitter, receiver, or IRS, but aim to directly estimate the

entries of the channel matrices.

For IRS-aided mmWave and THz MIMO systems, it may also be beneficial to

exploit knowledge about the array responses for channel estimation. The associated

parametric representations of the cascaded channel may then be employed to reduce

the dimensionality of the signal processing problems. Instead of directly estimating

the cascaded channel matrix or its factors, parameters such as the AoAs, AoDs, and

path gains can be estimated for acquiring the CSI. For example, in [72], the cas-

caded channel estimation is formulated as a sparse recovery problem, which is then

solved using on-grid CS algorithms including orthognal matching pursuit (OMP)

and generalized approximate message passing (GAMP). With this scheme, a multi-

dimensional dictionary accounting for multiple path directions is used, which may
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have a big size that affects the computational complexity. In [73], a similar sparse

recovery formulation is developed while a two-stage approach is applied to solve the

problem for achieving a lower complexity. First, the AoAs at the Rx and AoDs at

the Tx are jointly estimated using 2D CS or super-resolution spectrum estimation

techniques (e.g., the beamspace ESPRIT). With such angle information generated,

the angles related to the IRS are next estimated using similar techniques. By decou-

pling the angle estimation into two stages, the complexity can be reduced but 2D CS

or spectrum estimation is still required. In [74], multiuser MIMO systems are consid-

ered and the channel estimation problem is formulated as a matrix-calibration-based

matrix factorization task. The channel sparsity over a predefined dictionary of the

path angles and slow variations of the IRS-to-BS channel is exploited to develop

a message-passing-based algorithm for channel recovery. In [75], another two-stage

estimator based on an iterative reweighted solution to a CS problem is proposed,

which can address the grid errors to enhance performance. Note that [72–75] all

employ a single-stage training without exploiting prior knowledge of the path direc-

tions. By contrast, in a recent work [76], two-stage training is introduced, where the

first stage aims to recover the AoAs and AoDs at the Rx and Tx, respectively, and

the second stage exploits those angle information to optimize the training scheme.

Gridless spectrum estimation based on atomic norm minimization (ANM) is adopted

at both stages to recover the angles of interest. This scheme can benefit significantly

from the gleaned angle information for achieving beamforming gains at a low feed-

back overhead. The parameters of the cascaded channel are estimated progressively,

reducing the complexity as compared to approaches adopting joint parameter esti-

mation. However, the overall complexity is influenced by the algorithms for solving

the multiple semidefinite programming (SDP) problems involved.
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2.2.3 Wideband mmWave and THz Channels

In general, the mmWave and THz channels have fewer dominant paths due to higher

path loss and penetration loss. This leads to a sparse representation of the channel

in the angular domain. Exploiting the sparsity, the channel estimation problem

can be formulated as a sparse recovery problem that can be solved by using CS

algorithms. For wideband cases, [36] provides three CS-based solutions using the

OMP algorithm, in the time domain, frequency domain, or both domains. In [38],

the block sparsity in the angular domain is exploited for different channel taps of the

wideband channel using the block OMP algorithm. Systems equipped with few-bit

ADCs are also considered in [77] and the joint sparsity in the time and angle domains

is exploited. The resulting CS problem is solved using the approximate message

passing (AMP) algorithm. The beam squint effect at THz bands is considered

in [78] and a CS-based channel estimator with hybrid combining is designed for

MIMO-OFDM. In [79], a two-step time-domain channel estimator is proposed for

wideband hybrid MIMO systems. LS estimation is first applied to provide an initial

estimate of the effective channel, then CS is applied to refine the estimate. In [80],

the group sparsity between the sub-carriers is exploited by sparse Bayesian learning

(SBL). Also, in [81], the sparsity in the delay and angle domains is exploited and

an OMP-based solution is proposed for doubly selective channels. Due to the usage

of predefined dictionaries, on-grid CS-based schemes are generally prone to power

leakage issues caused by grid mismatch.

There have been significant efforts in addressing the grid mismatch issue of CS.

For multi-user MIMO-OFDM systems, [82] exploits distributed CS for the initial es-

timation of the LOS AoA/AoD and then refines the estimates using grid matching

pursuit and adaptive measurement matrices. In [83], the common channel sparsity

between sub-carriers is exploited for hybrid MIMO-OFDM systems, where initial

angle estimation from on-grid CS is refined by using a local search in their neigh-

borhood. A mixed CS-ML (maximum likelihood) approach is proposed in [84],
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where the simultaneous weighted (SW)-OMP algorithm is used to provide initial

estimates of the AoAs/AoDs, then the estimates are refined by a sparsity-adaptive

gradient approach. Deep learning (DL)-CS is utilized in [85] for MIMO-OFDM

channels, where offline-trained denoising convolution neural networks (DnCNN) is

applied to denoise a correlation matrix of the received signal and the measurement

matrix, based on which refined angle estimation can be achieved using CS. SBL is

applied in [86] to frequency-domain channel estimation to obtain coarse estimates

of the AoDs/AoDs, followed by an iterative refinement using the distributed com-

pressed sensing simultaneous orthogonal matching pursuit (DCS-SOMP) algorithm.

Though these methods can alleviate the power leakage issues of on-grid CS, they

induce extra online or offline complexity.

Tensor-based channel estimation schemes are also studied for mmWave and THz

MIMO-OFDM systems. For example, in [87], the received training data is arranged

in an order-3 tensor. Exploiting the low-rankness of the tensor, alternate least

squares (ALS) is applied to find the CANDECOMP/PARAFAC (CP) decomposi-

tion of the tensor, based on which the AoAs, AoDs, and the delays of the paths

are estimated using a correlation approach. A similar formulation of the received

training data is adopted in [88], and the structural property of the uniform arrays

along with tensor unfolding is utilized to sequentially estimate the path parameters.

Both [87] and [88] rely on the knowledge of the array responses to retrieve the path

parameters such that the overall channel can be reconstructed. Furthermore, a grid

search of the path parameters is required. In [89], tensor-based minimum mean

squared error (MMSE) and tensor-based OMP schemes are introduced in order to

reduce the complexities as compared to the traditional vector-MMSE and vector-

OMP solutions. They either require statistical knowledge of the channel correlation

in the different domains or utilize grid search for the path parameters.

Spectrum estimation techniques provide another effective tool for wideband mmWave

MIMO channel estimation. In [59], high-resolution estimators exploiting the ES-

PRIT (estimating signal parameters via rotational invariance techniques) are pro-
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posed for MIMO-OFDM systems. To utilize ESPRIT to estimate the AoAs and

AoDs separately (followed by angle pairing), a specially tailored multi-stage training

scheme is employed. A two-stage gridless approach based on 3-D Unitary Tensor-

ESPRIT in the DFT beamspace is developed in [90, 91] for MIMO-OFDM. This

approach can exploit a priori knowledge about the path directions for refining the

training and estimation process. The above ESPRIT-based solutions can achieve

super-resolution estimation of the path parameters. Meanwhile, they also require

the shift-invariance property of ULAs to hold true.

Most of the above sparsity-exploiting wideband MIMO channel estimators rely

on prior knowledge of the array responses. Furthermore, discrete or continuous

dictionaries are required, either explicitly or implicitly. In fact, exploiting the low-

rankness of the mmWave or THz channel contributes an alternative mechanism for

low-overhead channel estimation, which does not necessarily require knowledge of

the array responses. This has been demonstrated in several low-rank matrix com-

pletion (LRMC)-based estimators/detectors for MIMO channels, such as [49, 50, 53]

where robustness against the non-idealities of the array responses can also be ob-

served. Furthermore, LRMC can be used as a building block for constructing more

sophisticated channel estimators when knowledge of the array response is also avail-

able. Interesting studies include [52, 92], where the low-rankness of the element-

domain channel matrix and the sparsity in the beam space are simultaneously in-

corporated in the channel estimation formulation. The resulting problem is solved

iteratively using alternating direction method of multipliers (ADMM), which alter-

nately projects the intermediate estimates onto distinct low-dimensional subspaces

spanned, respectively, by the singular vectors and array response vectors. Being

powerful in exploiting both the low rankness and sparsity, the solutions still utilize

discrete grids of the path angles and require a significant number of iterations to

converge.
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2.3 Thesis Motivation and Contribution

In this section, we present the motivation and contributions of the thesis. Most

of the existing solutions discussed above are unable to fully exploit the sparsity

and low rankness of the channels with an acceptable trade-off between estimation

performance, computational complexity, and training overhead. This thesis aims to

provide channel estimation solutions exhibiting better trade-offs between estimation

accuracy, computational effort, and training overhead. Since the channel is sparse

and low-rank, this is achieved by estimating the channel parameters. In the follow-

ing, we discuss the channel estimation solutions for the narrowband, IRS-aided, and

wideband systems.

2.3.1 Channel Estimation for Narrowband Hybrid MIMO

Systems.

For narrowband channel estimation, we propose a three-stage mmWave massive

MIMO channel estimator that exploits both the low-rankness of the mmWave chan-

nel and the knowledge of the array response.

• IMC [50] is first applied to provide an initial estimate of the high-dimensional

channel matrix. Then the AoAs and AoDs of the propagation paths are re-

trieved separately by utilizing the subspace-based spectrum estimation algo-

rithm root-MUSIC [93–95]. Finally, the path gains are estimated by solving

a sparse recovery problem using OMP [43, 96], which also automatically pairs

the AoAs and AoDs for the paths.

• Compared with the MC estimators [50], the proposed estimator achieves en-

hanced performance by further exploiting the knowledge of the array response,

which also yields a sparse representation of the channel estimate, supporting

low-overhead feedback. It does not rely on a predefined dictionary, hence

avoiding the grid mismatch issue often encountered in CS estimators. Though
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also employing traditional spectrum estimation techniques, in contrast to [55–

59], the proposed estimator exploits the denoised estimate of the full channel

matrix and one-dimensional (1D) spectrum estimation. Each stage is imple-

mented using a low-complexity algorithm and thus the overall complexity is

kept low.

• The simulation results suggest that the proposed estimator provides an effec-

tive approach for estimating low-rank mmWave MIMO channels.

2.3.2 Channel Estimation for IRS-Assisted Hybrid MIMO

Systems

This thesis then proposes a low-complexity, two-stage cascaded channel estimator for

IRS-aided MIMO with hybrid transceivers. This approach has a similar two-stage

training scheme as [76] but we aim to achieve a different tradeoff among estimation

accuracy, training overhead, and computational complexity. Our contributions can

be summarized as follows:

• We propose low-cost, multi-step solutions to progressively estimate the cas-

caded channel parameters including the transmitter AoDs, receiver AoAs, IRS

angles (the differences between the AoDs and AoAs at the IRS), and composite

path gains. Those include the IMC and LS approaches for obtaining samples

sharing the subspaces spanned by the array responses, forward-backward spa-

tial smoothing (FBSS) for addressing coherence issues, and angle estimation

based on root-MUSIC. The multiple parameters are estimated separately, each

with low complexity. They are finally automatically associated by solving a

small-size CS problem for reconstructing the overall cascaded channel. The

proposed solution can achieve super-resolution estimation of the channel pa-

rameters to address the grid mismatch issue of schemes employing grid-based

sparse recovery. Compared to the ANM-based gridless solution [76], our ap-

proach can improve the performance by jointly estimating the IRS angles at
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Stage 2 and meanwhile reduces the complexity by avoiding multiple uses of

SDP.

• We introduce training schemes that are suitable for the proposed estimator.

At Stage 1, we adopt the hybrid precoders and combiners that are compatible

with IMC, such that an effective channel matrix made of the subchannels and

IRS phase shifts can be reconstructed with a low training overhead. This

facilitates the estimation of the outer angles (i.e., the transmitter AoDs and

the receiver AoAs). For Stage 2, we apply subarray sampling at the IRS while

performing training for estimating the IRS angles. This effectively reduces the

dimensionality of the LS estimation involved and hence alleviates the training

requirement. For the case with uniform planner array (UPA) at the IRS, an L-

shaped subarray structure is suggested to enable low complexity, and separate

estimation of the azimuth and elevation angles, while maintaining high spatial

resolution at the same time.

• Simulation studies are performed to compare the proposed estimator with sev-

eral recently proposed estimators. It is shown that high-accuracy estimation

of the channel parameters can be achieved by the proposed solution, which

may yield better performance when there are multiple paths in the channel

and the numbers of antennas and training overhead are limited. We also carry

out a detailed analysis of the computational complexity.

2.3.3 Channel Estimation for Wideband Hybrid MIMO Sys-

tems

This thesis finally investigates low-rank matrix sensing (LRMS)-based estimators

for wideband channels in hybrid MIMO systems. By exploiting the low-rankness of

the channel matrix, we develop the training schemes, recovery algorithms, and tech-

niques for complexity reduction and performance enhancement. The contributions

can be summarized as follows:
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• We propose to formulate the channel estimation problem for wideband hy-

brid MIMO systems as a LRMS problem. The time-domain training schemes

based on hybrid transceivers are introduced, which can operate under inter-

symbol interference and allow flexible training schemes. Then the generalized

conditional gradient-alternating minimization (GCG-ALTMIN) algorithm is

adapted to jointly recover the channel tap matrices. In order to reduce the

computational complexity arising from the channel matrix’s high dimensional-

ity in wideband cases, we propose a preconditioned conjugate gradient (PCG)

implementation of the LRMS solution, which features a low-complexity pre-

conditioner and an effective scheduling of the computation process. We also

introduce a LRMC scheme for the wideband case, as a low-complexity, spe-

cial instance of the LRMS solution. These LRMS estimators do not require

knowledge of the array responses, in contrast to many existing solutions.

• We further propose techniques for enhancing the performance of the LRMS

channel estimators using partial or full knowledge of the array responses. For

cases with a very tall or fat concatenated channel matrix, which often arise in

wideband channels with the numbers of the transmitter and receiver antennas

differing significantly, we propose to apply rank-preserving reshaping of the

channel matrix. This requires only the shift invariance property of the an-

tenna arrays and can effectively reduce the training complexity of the LRMS

estimators. For cases with full knowledge of the array responses, we introduce

a spectrum denoising (SD) approach to exploit the array responses shared

by the channel taps to enhance the performance at low computational over-

head. Treating the outputs from the LRMS/LRMC estimators as noisy sam-

ples at the receiver and transmitter arrays, subspace-based super-resolution

algorithms, such as the root-MUSIC algorithm for ULAs, are employed to

estimate the AoAs/AoDs of the channel paths. Finally, the wideband chan-

nel estimate is refined by using the angle information, without extra training
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overhead.

• The proposed estimators are compared with several alternative solutions via

complexity analysis and simulation studies. We show that the proposed es-

timators can achieve better estimation accuracy and complexity-performance

tradeoffs as compared to the alternative solutions.
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Chapter 3

A Low-Complexity Three-Stage Estimator

for Low-Rank mmWave Channels

3.1 Introduction

This chapter investigates channel estimation for low-rank mmWave MIMO systems.

Hybrid MIMO transceivers equipped with ULAs and phase shifter networks are

considered. We propose a novel three-stage channel estimator by exploiting the low-

rankness of the channel matrix and knowledge of the array response: We first obtain

a low-rank estimate of the channel matrix using IMC; then estimate the AoA and

AoD for the propagation paths by solving two 1-D spectrum estimation problems

using Toeplitz rectification (TR) and the root-MUSIC algorithm, and finally pair the

AoAs and AoDs and estimate the channel gains by solving a sparse recovery problem.

Each stage is implemented at low complexity and thus the overall complexity is kept

low. A priori knowledge about the channel is exploited progressively to enhance

the performance. The simulation results suggest significant gains in the channel

estimation performance along with sparse representations of the estimated channel.

The rest of the chapter is organized as follows. The system model is introduced
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in Section 3.2. The proposed solution is presented in Section 3.3. The simulation

results are shown in Section 3.4 and the chapter is summarized in Section 3.5.

3.2 System Model

3.2.1 Hybrid Transceiver

Following [43], we consider a hybrid MIMO system with NT transmitter antennas

and NR receiver antennas equipped with fully connected networks of phase shifters as

shown in Fig. 3.1. The numbers of phase shifters are QTNT and QRNR, respectively,

at the transmitter and receiver, where QT and QR are the numbers of radio frequency

(RF) chains at the transmitter and receiver, respectively. We assume ULAs for both
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Figure 3.1: System model.

the transmitter and receiver. The channel is modeled as [33], [34]:

H =

√
NTNR

ρ

L∑
l=1

γlaR(θR,l)a
H
T (φT,l), (3.1)

where L represents the number of paths, ρ denotes the average path loss, γl repre-

sents the small-scale channel gain of the l-th path, aT (φT,l) and aR(θR,l) denote the

array response vectors of the transmitter and receiver for the l-th path, respectively.

Here θR,l and φT,l represent the AoA and AoD for the l-th path, respectively. The
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array response vector for θR,l is given as

aR(θR,l) =
1√
NR

[
1, ej

2π
λc
β cos(θR,l), · · · , ej(NR−1) 2π

λc
β cos(θR,l)

]T
, (3.2)

where λc is the carrier wavelength and β = λc/2 is the antenna spacing. The array

response vector corresponding to φT,l is similar. The angles φT,l and θR,l are modeled

to be uniformly distributed in [0, π]. As L is small [33], the rank of H is low relative

to the dimensionality of the channel matrix in mmWave MIMO systems with large

numbers of antennas.

3.2.2 Training Scheme

We consider a training scheme that is compatible with the hybrid transceiver in Fig.

3.1. There are in total M training stages, each with S steps. At the s-th step of the

m-th training stage, the received signal is given as

ym,s = WH
m,sHpmsm,s + WH

m,snm,s, (3.3)

where the hybrid precoder pm remains fixed during the S steps of each training

stage, whereas the hybrid combiner Wm,s changes for every step. The number of

stages is set equal to the number of transmit antennas, whereas the number of steps

within each stage depends on the number of RF chains. Here we assume S > 1.

One symbol sm,s is transmitted and QR signals are received. The hybrid precoder

for the m-th stage is given as pm = PRFmpBBm , with PRFm ∈ XNT×QT as the

RF precoder and pBBm ∈ CQT×1 as the baseband precoder, where X represents

the set of phase shifts. Similarly, the hybrid combiner for the s-th step of the

m-th stage is given as Wm,s = WRFm,sWBBm,s with WRFm,s ∈ XNR×QR as the RF

combiner and WBBm,s ∈ CQR×QR as the baseband combiner. The noise vector at the

receiver array is assumed to having i.i.d entries distributed as CN (0, σ2
n). Without

loss of generality, we assume sm,s =
√
P , ‖fm‖2

F = 1 and the total transmit
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power ‖fmsm,s‖2
F = P . After completing the S steps of the m-th training stage,

the baseband received signal can be written as

ym =
√
PWH

mHpm + nm, (3.4)

where

ym = [yTm,1,y
T
m,2, . . . ,y

T
m,S]T ,

Wm = [Wm,1,Wm,2, . . . ,Wm,S],

nm = [nTm,1W
∗
m,1,n

T
m,2W

∗
m,2, . . . ,n

T
m,SW∗

m,S]T .

The received signal once M training stages are completed is given as

Y = [y1,y2, . . . ,yM ]. (3.5)

The number of stages is set to M = NT and during each stage, Ns/NT distinct ob-

servations are acquired. In total, Ns scalar observations are obtained at the receiver

and the sampling ratio is defined as r = Ns/(NTNR). Alternatively, each training

stage provides SQR observations and the total number of distinct observations is

equal to MSQR.

The hybrid precoder and combiner are designed in such a way that (noisy) ob-

servations of the entries of a transformed channel matrix

C = XH
RHXT (3.6)

are obtained using the uniform spatial sampling scheme (USS) [97]. In (3.6), the

matrices XR ∈ CNR×NR and XT ∈ CNT×NT are the receiver and transmitter feature

matrices, respectively. In order to guarantee the performance of recovering C and H,

they can be chosen to approximate unitary matrices satisfying certain incoherence

properties by using the matrix decomposition method in [50, Section D]. When
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the feature matrices are given, the precoder pm and combiner Wm,s can be set as

randomly chosen subsets of the columns of XT and XR, respectively, to realize the

USS sampling. For instance, the first two entries of the first column of C with noise

C̃ can be written as[C̃]1,1

[C̃]2,1

 = ym,s = WH
m,sHpmsm,s + WH

m,snm,s, (3.7)

where the combiner for the s-th step of the m-th stage is given as Wm,s = XR(:, 1 : 2)

and the precoder for the m-th stage is given as pm = XT (:, 1). The precoder pm

and combiner Wm,s can be implemented using the hybrid system in Fig. 3.1. For

the combiner, the following optimization problem can be formulated:

minimize
WRFm,s ,WBBm,s

∥∥Wm,s −WRFm,sWBBm,s

∥∥2

F

subject to WRFm,s ∈ XNR×QR ,

(3.8)

where WRFm,s and WBBm,s denote the RF and baseband combiner, respectively. In

order to approximately solve this problem, we can adapt the PE-ALTMIN algorithm

[98] to update WRFm,s and WBBm,s iteratively until convergence. In particular, at

each iteration, the discrete phase shift constraint on WRFm,s is relaxed first to the

unit-modulus constraint as in [98] and then the analog combiner coefficients obtained

are projected onto the set X using the nearest distance rule. Once the hybrid

combiners are designed, XR is updated as the effective combiner WRFm,sWBBm,s .

The precoder pm is implemented similarly, followed by a normalization step to ensure

‖pm‖2
F = 1, i.e., to meet the transmission power constraint. The precoder/combiner

design is summarized in Algorithm 1.

The training process probes a subset of the entries of the transformed channel

matrix C. The resulting sampling pattern is recorded as a sampling operator PΩ(.).
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After training, the noisy sample of the transformed matrix C is denoted by

[PΩ(C̃)]i,j =


[C̃]i,j, (i, j) ∈ Ω

0, otherwise

, (3.9)

where [C̃]i,j denotes the (i,j)-th entry of C̃ and Ω represents the sampling domain.

The training scheme is also included in Algorithm 1 for ease of implementation.

With the above training scheme, each sample in PΩ(C̃) is a rank-1 sample of

the original channel matrix H. We can recover C first by using MC techniques and

then compute H. This IMC approach is an instance of low-rank matrix sensing.

When the feature matrices are set to XT = INT and XR = INR , we have C = H

and IMC reduces to MC where the entries of the original channel matrix are sensed.

IMC can be more easily incorporated into the hybrid transceiver than MC. This

is because the latter requires that only a subset of the transmitting or receiving

antennas can be switched on at each training step, which requires special design

of the precoder and combiners for phase shifter-based transceivers [50]. The IMC

approach allows all antennas to be activated simultaneously, which leads to a lower

dynamic range of the transmission power of different antennas. Therefore, we adopt

the IMC approach in this chapter, but other matrix sensing approaches can be used

alternatively.

3.3 The Three-Stage Channel Estimator

We introduce in this section the three-stage estimator for estimating the channel

H in the system described in Section 3.2. We aim to achieve low-complexity, high-

performance estimation with a low training overhead by exploiting both the low-

rankness and array response knowledge of the mmWave channel. The proposed

estimator successively employs low-rank matrix sensing, spectrum estimation, and

sparse recovery at the three stages to exploit various a priori knowledge about
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the channel. Low-complexity techniques, i.e., the GCG-ALTMIN algorithm, the

root-MUSIC algorithm, and the OMP algorithm are used. The integration of these

algorithms addresses their respective limitations and hence results in improved per-

formance. In particular, the array response knowledge, which is missed in Stage 1,

is exploited in Stage 2 to learn the path angles. Meanwhile, the initial low-rank es-

timate of the channel matrix from Stage 1 provides Stage 2 with denoised inputs for

applying 1D root-MUSIC for super-resolution AoA and AoD estimation. In Stage

3, the high complexity and grid mismatch challenge generally encountered in OMP

estimators are addressed by the estimates of the path angles obtained from Stage 2.

The rank knowledge gleaned from Stage 1 also facilitates the recovery of the path

information in the subsequent stages.

3.3.1 Stage 1: Low-Rank Channel Estimation

With full-rank XR and XT in (3.6), C is a low-rank matrix sharing rank with H.

This is exploited to recover C from its sampled entries in (3.9) by formulating the

following low-rank matrix sensing problem:

min
Ĉ

rank(Ĉ), s.t. ‖PΩ(Ĉ)− PΩ(C̃)‖2
F ≤ δ2, (3.10)

where δ2 is a tolerance to account for the noise and ‖ · ‖F represents the Frobenius

norm. The above problem is NP-hard. We can adopt nuclear norm regularization

to reformulate the problem and estimate the transformed channel matrix as [50]

Ĉ? , arg min
Ĉ

1

2
‖PΩ(Ĉ)− PΩ(C̃)‖2

F + µ‖Ĉ‖∗, (3.11)

where µ > 0 is the regularization parameter and ‖ · ‖∗ represents the nuclear norm.

Various algorithms can be used to solve the above problem. We adopt the

GCG-ALTMIN algorithm [50] which is based on the generalized conditional gradient

framework. The GCG-ALTMIN algorithm iteratively refines the low-rank estimate
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of C by using the top singular vectors of the residual error matrix and alternately

updating the small-size bilinear factors for local minimization. The algorithm fea-

tures low complexity at each iteration and fast convergence, as demonstrated in [50].

Once the transformed matrix Ĉ? is estimated, the low-rank channel matrix can be

estimated as

Ĥ = (XH
R )−1Ĉ?(XT )−1. (3.12)

In summary, this stage applies IMC to produce an estimate of the full channel

matrix H from partial observations of the transformed channel matrix C, addressing

the challenge of training shortage in hybrid MIMO systems. It does not exploit

array response or angle grids and can thus be used alone as a low-complexity robust

mmWave channel estimator [50]. However, this scheme may perform worse than

channel estimators that exploit the knowledge of the channel response. The rank L̂

of the estimate Ĥ equals to the number of GCG iterations, which is typically low.

3.3.2 Stage 2: AoA and AoD Estimation

Stage 1 exploits the low-rankness of the channel to obtain an initial channel estimate

Ĥ. Based on Ĥ, this stage exploits the knowledge of the array response to further

estimate the AoAs θR = {θR,1, θR,2, . . . , θR,L} and AoDs φT = {φT,1, φT,2, . . . , φT,L}

of the propagation paths. This will be used in Stage 3 to improve the channel estima-

tion accuracy and also produce a parametric representation of the channel matrix.

There are various spectrum estimation techniques [93–95, 99–102]. Among those,

root-MUSIC has a low computational complexity for ULAs as it does not require

spectrum search and only relies on polynomial roots. We thus consider 1D root-

MUSIC [93–95] here. The standard 1D root-MUSIC algorithm for angle estimation

requires highly precise knowledge of the ‘signal subspace’ for the observation of an

array, which is typically obtained from training samples of an abundant number or

low noise level. This knowledge, however, is not directly available at the hybrid

receiver when the training scheme in Section 3.2 is applied. In the following, we
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discuss an approach exploiting Ĥ.

The channel estimate Ĥ in (3.12) can be written as

Ĥ = H + E, (3.13)

where E represents the estimation error in Stage 1. Note that (3.1) can be rewritten

as

H = AR(θR)ΓAH
T (φT ), (3.14)

where the columns of AR(θR) ∈ CNR×L and AT (φT ) ∈ CNT×L are the array re-

sponses at the receiver and transmitter, respectively, and Γ is a diagonal matrix

whose diagonal elements are
√

NTNR
ρ

γl. Replacing H with (3.14), we have

Ĥ = AR(θR)ΓAH
T (φT ) + E. (3.15)

We now estimate the AoAs and AoDs of the channel paths separately from the

above channel estimate, utilizing the knowledge of the array response. When the

channel estimation is perfect, i.e., E = 0, it can be easily seen that the subspaces

spanned by the columns and rows of Ĥ are the same as those spanned by the array

response vectors corresponding to the AoAs and AoDs, respectively. Classical sub-

space methods such as root-MUSIC can be applied to recover these angles. However,

they are sensitive to estimation errors. To see this, let us consider the AoA estima-

tion. We treat the columns of Ĥ as samples of the received signal of an imagined

ULA:

xn = AR(θR)λn + en, n = 1, 2, . . . , NT , (3.16)

where λn is the n-th column of ΓAH
T (φT ) that serves the source for generating the

observation xn. The root-MUSIC algorithm utilizes the signal and noise subspaces
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estimated from the sample covariance matrix (SCM) of xn:

R̂θR =
1

NT

NT∑
n=1

xnx
H
n =

1

NT

ĤĤH

=AR(θR)∆AH
R (θR) + Σ,

(3.17)

where the covariance matrix of the source is given by

∆ ,
1

NT

ΓAH
T (φT )AT (φT )ΓH , (3.18)

and the error of covariance matrix estimation is

Σ ,
1

NT

(
HEH + EHH + EEH

)
. (3.19)

From the above, when the estimation error E vanishes, the signal and noise subspaces

can be correctly estimated from the eigenvectors of R̂θR . However, the non-vanishing

E can significantly degrade the estimation of the subspaces: With a small number

of samples NT , Σ is generally far from (scaled) identity matrix and the subspace

methods can break down [103, 104]. There are also, however, a number of useful

observations. First, when NT → ∞ and the entries of E are i.i.d. with zero mean,

Σ becomes a (scaled) identity matrix. Furthermore, ∆ becomes diagonal. In this

case, R̂θR becomes a Toeplitz matrix whose principal eigensubspace corresponds

to the signal subspace. This is because as NT → ∞, the spectral resolution of

the ULA becomes infinitely high and the steering vectors in AT (φT ) corresponding

to different AoAs become nearly orthogonal. In order to compensate for the non-

vanishing errors and finite number of samples, inspired by the above observations,

we exploit the asymptotic characteristic of R̂θR and apply TR, which has been

successfully applied to address similar issues [104–107], to improve the estimation

of the covariance matrix and also the subspaces. The TR of SCM can be obtained
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using

T (R̂θR) =

NR−1∑
m=−(NR−1)

1

NR − |m|
Tr (R̂θRQ

m
)Q−m, (3.20)

where Q ∈ CNR×NR is a shift matrix having superdiagonal entries equal to 1 and

all other entries equal to 0 and Tr(·) represents the matrix trace operation. Here

Q−m = (QT )m and Q0 = INR . In other words, TR refines the estimate of the

covariance matrix by averaging the diagonal and subdiagonal entries of the SCM.

After obtaining the TR of SCM, root-MUSIC is applied to T (R̂θR) to estimate the

AoAs. This can be done by using the eigenvalue decomposition (EVD) of T (R̂θR)

given as

T (R̂θR) = UΛUH , (3.21)

where U represents the eigenvector matrix and Λ is diagonal with eigenvalues in

the descending order as the diagonal entries. Let the rank of Ĥ be L̂, Us ∈ CNR×L̂

consist of the eigenvectors of T (R̂θR) that correspond to the L̂ largest eigenvalues,

and Un ∈ CNR×(NR−L̂) correspond to the remaining NR − L̂ eigenvalues. It can be

seen that when E = 0, AR(θR), Us and the columns of Ĥ span the same ‘signal’

subspace. Let the correlation matrix be

V , UnU
H
n . (3.22)

Then a pseudo-spectrum used for locating the AoAs can be written as [94], [95]:

P (θ) =
1

|aH(θ)Va(θ)|
. (3.23)
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Clearly, when θ is the AoA of a propagation path and E = 0, P (θ) tends to infinity

and P (θ) exhibits a peak. Meanwhile, we can rewrite the denominator of (3.23) as

aH(θ)Va(θ) =

NR−1∑
k=0

NR−1∑
m=0

e−jkucos(θ)V(k,m)e
jmucos(θ)

=

NR−1∑
q=−NR+1

vqe
−jqucos(θ),

(3.24)

where u = 2π
λc
α, V(k,m) denotes the (k,m)-th entry of V and

vq =
∑

{k,m:k−m=q}

V(k,m)

is the sum of entries of the qth diagonal of V. It can be verified that vq = v∗−q. Note

that v0 corresponds to the main diagonal of V. We can further rewrite (3.24) as a

polynomial

B(z) =

NR−1∑
q=−NR+1

vqz
q, (3.25)

where z , e−jucos(θ). There are 2(NR − 1) roots of B(z). The L̂ roots, denoted by

{z1, z2, · · · , zL̂}, that are closest to the unit circle, are chosen to yield the AoAs of

the paths as

θ̂R,l = cos−1

(
1

u
∠zl

)
, l = 1, 2, · · · , L̂, (3.26)

where ∠zl is the phase angle of zl.

Similarly, the SCM for estimating the AoD can be written as

R̂φT =
1

NR

ĤHĤ, (3.27)

and the AoDs for the paths φ̂T can be estimated by applying the TR to R̂φT followed

by the root-MUSIC algorithm.

In summary, this stage estimates θ̂R and φ̂T separately from an initial channel
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estimate using the standard 1D root-MUSIC procedure involving knowledge of the

receiver array and transmitter array, respectively. Compared to the CS-based chan-

nel estimators such as [43] that jointly estimate the AoA and AoD for each path,

the angle estimation here has reduced dimensionality and thus can be implemented

with low complexity. Furthermore, root-MUSIC does not rely on a predefined angle

grid and is able to achieve super-resolution for angle estimation. The 1D spectrum

estimation here also distinguishes the proposed estimator from the treatments in

[55–59], where 2D or 3D spectrum estimation is used.

3.3.3 Stage 3: Path Gain Estimation

The sets of the AoA estimates θ̂R and AoD estimates φ̂T obtained from Stage 2 are

now used together with the initial estimate Ĥ obtained from Stage 1 to refine the

channel estimation. We model the channel matrix as

Ĥ = AR(θ̂R)ΓAH
T (φ̂T ). (3.28)

Assuming perfect estimates of the angles, Γ is a sparse channel gain matrix. Since

the correspondence between θ̂R and φ̂T is unknown yet, the matrix Γ is not neces-

sarily diagonal but is assumed to have L̂ nonzero entries, where L̂ is the rank of Ĥ.

After vectorization we have

ĥ , vec(Ĥ) =
(
A∗T (φ̂T )⊗AR(φ̂R)

)
vec(Γ)

=
(
A∗T (φ̂T )⊗AR(φ̂R)

)
γ

, Ψγ,

. (3.29)

where Ψ = A∗T (φ̂T ) ⊗ AR(φ̂R) ∈ CNTNR×L̂2
, γ ∈ CL̂2×1 and ⊗ represents the

Kronecker product. We estimate the channel gain vector by solving the following
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3.3. The Three-Stage Channel Estimator

sparse recovery problem:

γ? = arg min
γ
||vec(Ĥ)−Ψγ||2, ||γ||0 = L̂. (3.30)

In this chapter, we use OMP [43, 96] to solve the above problem but other sparse

recovery methods can also be used. The sparsity pattern of γ? also reveals the

correspondence of the AoAs, AoDs, and path gains. Finally, the channel matrix is

reconstructed as

Ĥ = vec−1(Ψγ?). (3.31)

The above OMP estimator, though in the same form as in [43], generally exhibits

a low complexity because the dictionary Ψ here has a much smaller size L̂2 as com-

pared to the size of NTNR in the OMP estimator with non-redundant dictionaries

in [43]. This is attributed to the super-resolution estimates of the AoAs and AoDs

already obtained from Stage 2. The OMP algorithm is set to terminate after L̂

iterations according to the rank knowledge available from Stage 1. The three-stage

channel estimator is summarized in Algorithm 2 for completeness.

3.3.4 Complexity Analysis

We here analyze the complexity of the proposed three-stage channel estimator. The

main steps contributing to the complexity of all the stages and the numbers of float-

ing point operations of real numbers (flops) required are given in Table 3.1. Note that

each complex number multiplication requires six flops and each complex number ad-

dition requires two flops. For the GCG-ALTMIN algorithm used in Stage 1, the main

steps include finding the top singular vectors in Step 4 and computing the step size

in Step 6 of the GCG algorithm as in[50, Algorithm 1]. The main steps contributing

to the ALTMIN process include [50, Eq. (61), (64)]. Overall, the complexity of

Stage 1 is O(NRNT ) per iteration, which is lower than many MC algorithms and CS

algorithms such as the OMP, as it works on the transformed channel matrix directly
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3.3. The Three-Stage Channel Estimator

rather than a large dictionary and avoids full singular value decomposition (SVD).

In Stage 2, the root-MUSIC algorithm requires an eigenvalue decomposition (EVD)

of the Toeplitz-rectified covariance matrices T (R̂θR) and T (R̂φT ) followed by find-

ing the roots of polynomials. The TR only requires O(N2
R + N2

T ) operations. The

root-MUSIC applied to find the AoAs and AoDs has a complexity of O(N3
R +N3

T ).

In Stage 3, the complexity is mainly due to the application of the dictionary in

Step 3 and solving the least square problem in Step 5 of the OMP algorithm of [43,

Algorithm 1]. Note that the dictionary Ψ admits a Kronecker product representa-

tion. Thus, by exploiting the identity (BT ⊗A)vec(C) = vec(ACB), Stage 3 has

a complexity O(L̂2NR(NT + L̂)) which is low because L̂ is small. Therefore, the

overall complexity of the proposed three-stage estimator is low.

The computational complexity of several existing estimators considered in this

chapter is analyzed and summarized in Table 3.2. Similar to Stage 3 of the pro-

posed estimator, the identity (BT ⊗ A)vec(C) = vec(ACB) has been used while

analyzing the complexity of relevant operations which require the application of the

Kronecker-structured dictionary. The OMP estimator [43] requires an overall com-

plexity of O(NXGR(NY + GT )) per iteration, where NX and NY are the numbers

of the transmitted and received beams, respectively, and GR and GT represent the

size of the grid for the AoA and AoD, respectively. Note that as min{GT , GR} � L̂,

directly applying OMP as in [43] exhibits a higher complexity as compared to Stage

3 of the proposed estimator. Furthermore, the number of iterations Q is gener-

ally higher than the actual sparsity level due to grid mismatch. This leads to the

increased complexity of the OMP estimator.

For the ADMM estimator [52], which jointly estimates the low-rank channel and

its sparse beamspace representation, the main contribution to complexity is the SVD

in [52, Step 2 of Algorithm 1] for each iteration and the application of large dictionary

matrices. The overall complexity per iteration of the ADMM estimator is cubic in

the size of the channel matrix. The computational complexity of the IR-SR estimator

[33] depends mainly on its gradient step in [33, Step 5 of Algorithm 1]. Additionally,
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the IR-SR estimator requires SVD for the initial estimate of the number of paths.

As IR-SR iteratively refines the angle estimates for super-resolution performance,

the number of iterations is relatively high, hence further adding to the complexity.

Numerical results will be provided in Section 3.4 to demonstrate the difference in

the complexity of different estimators.

3.4 Simulation Results

In this section, we present simulation results to demonstrate the performance of

the proposed three-stage estimator. The channel estimators employing the OMP

algorithm [43], the GCG-ALTMIN algorithm [50], the ADMM algorithm1 [52], and

the IR-SR algorithm2 [33] are also included. The channel model follows [33], i.e.,

the number of paths L = 3, the average path loss ρ = 1, the path gains {γl} are

Gaussian-distributed, the AoAs are AoDs are uniformly distributed in [0, π] and the

line-of-sight (LOS) channel has a Rician K-factor of 20 dB. The pilot-to-noise ratio

(PNR) is defined as PNR = P
σ2
n
. The number of samples acquired per training step

is equal to QR for the GCG-ALTMIN, OMP, IR-SR estimators, and the proposed

estimator, and is QR − 1 for the ADMM estimator. Therefore, to achieve the same

sampling ratio, the ADMM estimator3 requires longer training time. The sampling

ratio r gives the ratio of the total scalar observations obtained at the receiver and the

total number of entries NRNT of the channel matrix. The normalized mean square

error (NMSE) for channel estimation is defined as the mean of
||Ĥ−H||2F
||H||2F

. Similarly, the

NMSE for angle estimation is defined as the mean of
||φ̂−φ||2F
||φ||2F

, where the subscripts

for the AoA/AoD are omitted for brevity. When the number of estimated paths is

less than the actual number of paths, 0◦ is assumed for the AoAs and AoDs of the

1Simulation codes used are available online:
https://github.com/vlaxose/spl18

2Simulation codes used are available online:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html

3The ADMM-based estimator [52] is a MC-based scheme. For the phase shifter-based hybrid
MIMO, a training scheme designed in [50] is adopted here to achieve the sampling for ADMM-
based estimator. The proposed estimator uses a different training process devised for the IMC
approach [50].
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Figure 3.2: Channel estimation performance versus PNR at a sampling ratio of r = 0.25.
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Figure 3.3: AoA/AoD estimation performance versus PNR at a sampling ratio of r = 0.25.
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Figure 3.4: Computational complexity at different PNR levels corresponding to NMSE
performance in Fig. 3.2.
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missing paths in φ̂.

We consider two cases for the hybrid transceivers, with NT = NR = 64, QT =

QR = 8, and NT = 128, NR = 32, QT = 16, QR = 4, respectively. Six-bit phase

shifters are used at both the transmitter and receiver. The OMP estimator uses grid

sizes of GT = NT and GR = NR for the AoD and AoA, respectively. Fig. 3.2 shows

the channel estimation performance for a sampling ratio r = 0.25. The proposed

three-stage estimator shows significant gains at different PNR levels as compared to

the alternative estimators. This is because the GCG-ALTMIN estimator at Stage

1 achieves a good initial estimate of the channel matrix while the estimation of the

AoAs and AoDs of the channel paths at Stage 2 provides further refinements with

a low increase of computational complexity. In contrast to the grid-based schemes

such as the OMP and ADMM estimators, the proposed approach does not rely

on predefined grids and thus avoids the potential issue of grid mismatch. Also,

though not improving the performance when NT = NR, TR becomes critical when

NT = 128, NR = 32 because of the limited number of snapshots when estimating

the AoDs using root-MUSIC. The performance of estimating AoAs/AoDs is shown

in Fig. 3.3. In Fig. 3.3b there is a degradation in the AoD estimation when TR

is not used because the number of snapshots NR = 32 used to generate the SCM

for root-MUSIC is significantly smaller than the number of transmitter antennas

NT = 128.

Fig. 3.4 shows the computational effort required for different estimators, which

correspond to the NMSE results in Fig. 3.2. As described in Section 3.3.4, the least

expensive is the GCG-ALTMIN estimator. The three-stage estimator has higher

complexity than the GCG-ALTMIN, mainly due to the root-MUSIC algorithms

employed in Stage 2. TR adds little to the computational complexity and thus

the difference in the complexity of the proposed estimator with and without TR is

negligible in Fig. 3.4. Overall the proposed estimator achieves the lowest NMSE with

low computational complexity. The OMP estimator exhibits moderate complexity

but the performance is limited. The ADMM and IR-SR estimators can achieve good
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Figure 3.5: Channel estimation performance versus sampling ratio at PNR = 5 dB.

45



3.4. Simulation Results

estimation accuracy as they simultaneously exploit the low rankness of the channel

and knowledge of the array response. However, apart from higher per iteration cost,

both these estimators converge in a relatively large number of iterations. Therefore,

their overall complexity is higher than other alternatives. Additionally, the run time

for different algorithms, for the settings in Fig. 3.4a and PNR = 20dB are shown

in Table 3.3. The run time for the proposed solutions is way less than the existing

algorithm, with ADMM-based solution being the most expensive.

The performance of the proposed estimator with different sampling ratios at

PNR = 5 dB is shown in Fig. 3.5. It can be seen that the proposed estimator

shows more than 2 dB gains with different sampling ratios as compared to the

ADMM estimator. Note that the latter simultaneously exploits the low rankness

and sparsity of the channel while our proposed estimator exploits them at different

stages with a lower implementation complexity. The IR-SR approaches the proposed

estimator at higher sampling ratios at a higher computational complexity.

Fig. 3.6 shows the sparsity level of the estimated channel, i.e., the number of

channel paths recovered. The results are compared with those of the OMP and

IR-SR estimators which also provide path information. It is seen that the proposed

estimator provides a more sparse solution while achieving similar or lower MSE.

This indicates that the proposed estimators are able to more accurately estimate

the dominant paths of the channel, which may allow efficient CSI feedback when

needed.

Fig. 3.7 shows the channel estimation performance for typical number of paths

(L ∈ [1, 5]) for mmWave channels [35] at r = 0.25 and PNR = 5 dB. The pro-

posed estimator performs best when the number of paths is less. As the number of

paths increases, the performance degrades due to the degradation of the estimation

performance by the GCG-ALTMIN estimator at Stage 1. Therefore, the proposed

estimator is more suitable for low-rank channels where IMC can perform effectively.

Meanwhile, stages 2 and 3 of the proposed solution may still be applied when other

estimators are used at Stage 1.
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Figure 3.6: Average sparsity level (number of paths recovered) versus PNR at a sampling
ratio of r = 0.25.
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Figure 3.7: Channel estimation performance versus the number of paths at PNR = 5 dB.
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3.5 Summary

We have presented a three-stage approach to estimate low-rank mmWave MIMO

channels, which benefits from the low-rankness of the channel and the knowledge

of the array response. The estimator also yields a sparse representation of the

channel which may be desired when CSI feedback is required. Low-complexity tech-

niques are employed at each stage to exploit their strengths such as low training

overhead and super-resolution spectrum estimation. Consequently, the overall com-

putational complexity of the proposed estimator is low. Meanwhile, the integration

of the adopted techniques addresses their respective challenges such as the under-

exploitation of the array response knowledge with matrix sensing, compatibility of

one-dimensional spectrum estimation with hybrid MIMO transceivers, and grid mis-

match with compressive sensing. Consequently, the proposed estimator can achieve

lower estimation error for the channel matrix at low complexity.
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Algorithm 1: Precoder/Combiner Design and Training Scheme.

Input: NR, NT , QR and S
1 Precoder/combiner design:
2 Generate initial feature matrices XR and XT following [50, Section D].
3 Set E = NR/QR and Z = {1, 2, · · · , NR}.
4 for e = 1, 2, · · · , E do
5 Set Ze ⊂ Z be a size-QR random subset of Z.
6 Set We = XR(:,Ze).
7 Find Ŵe = WRF eWBBe from We by solving (3.8) using the

PE-ALTMIN algorithm [98].

8 Set XR(:,Ze) = Ŵe.
9 Set Z = Z − Ze.

10 end
11 for m = 1, 2, · · · , NT do
12 Set pm = XT (:,m).
13 Find p̂m = PRFmpBBm from pm using the PE-ALTMIN algorithm

similar to (3.8).
14 Set XT (:,m) = p̂m.

15 end
16 Training Process:
17 Set Ω = {}.
18 PΩ(C̃) = 0NR×NT
19 for m = 1, 2, · · · , NT do
20 Set pm = XT (:,m).
21 Set E = {1, 2, · · · , E}.
22 for s = 1, 2, · · · , S do
23 Set e as a random entry of E .
24 Set Wm,s = XR(:,Ze).
25 Obtain ym,s using (3.3).
26 for n = 1, 2, · · · , QR do
27 Set Ω = {Ω, {Ze(n),m}}.
28 Set [PΩ(C̃)]Ze(n),m = ym,s(n).

29 end
30 Set E = E − {e}.
31 end

32 end

Output: XR, XT and PΩ(C̃).
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Table 3.1: Computational Complexity of the Three-Stage Estimator. The exponent
parameter q = 2, r represents the sampling ratio, oversampling parameter g = 10,
l ∈ {1, 2, · · · , L̂} represents the number of the GCG iteration, Q is the number of up-
dates of the alternate minimization (ALTMIN) process, and m ∈ {1, 2, · · · , L̂} represents
the number of the OMP iteration in Stage 3.

Stage Algorithms Main steps Flops per itera-
tion

Total

1 GCG (L̂ it-
erations)

Step 4 Algorithm
1[50]

8(2q + 3)(g +
1)NTNR

8L̂BNTNR +
1
3
QL̂(L̂ +

1)
(
rNRNT (16L̂

Step 6 Algorithm
1[50]

(4r + 16)NTNR +32) + (NT +

NR)(3L̂2 + 19L̂+
18)
)

ALTMIN
(Q it-
erations
per GCG
iteration)

Eq. (61) [50] 8l2rNRNT +
4l3NT + 16l2NT +
8lrNRNT

where B = (2q +
3)(g + 1) + (4r +
16)

Eq. (64) [50] 8l2rNRNT +
4l3NR + 16l2NR +
8lrNRNT

2 Root-
MUSIC
(AoA)

SCM Eq.(17) and
TR Eq. (20)

NT (NT +
1)(4NR − 1) +
2NTNR + 2N2

R

209
3

(N3
R +

N3
T ) − (N2

R +

N2
T )(4L̂ + 123) −

(NR + NT )(2L̂ −
4NRNT − 134)+

(1 itera-
tion)

EVD and EV
multiplication
Eq. (21) and (22)

23N3
R + (NR −

L̂)(NR − L̂ +
1)(4NR − 1)

8NRNT −2L̂(L̂+
1)− 316

3

Polynomial root
finding for Eq.
(25)

16
3

(2NR − 2)3 +
2(NR − 1)2 +
6(2NR − 2)

Root-
MUSIC
(AoD)

SCM and TR NR(NR +
1)(4NT − 1) +
2NRNT + 2N2

T

(1 itera-
tion)

EVD and EV
multiplication

23N3
T + (NT −

L̂)(NT − L̂ +
1)(4NT − 1)

Polynomial root
finding

16
3

(2NT − 2)3 +
2(NT − 1)2 +
6(2NT − 2)

3 OMP(L̂ it-
erations)

Step 3 Algorithm
1 [43]

8L̂NT (NR + L̂) −
2L̂(NT + L̂)

L̂
(
8L̂NT (NR +

L̂)−2L̂(NT+L̂)+

Step 5 Algorithm
1 [43]

24mNTNR −
10NTNR−4m+2

12L̂NTNR +
2NTNR − 2L̂

)
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Table 3.2: Computational Complexity of Several Existing Estimators. NX and NY : the
numbers of the transmitted and received beams, respectively; GR and GT : the size of the
grid for the AoA and AoD, respectively; m ∈ {1, 2, · · · , Q}: the number of the OMP
iteration; L̂a: the sparsity level predicted by the ADMM algorithm; L̂s: the sparsity level
predicted by SVD preconditioning of the IR-SR estimator.

Algorithms Main Steps Flops per iteration Total
OMP (Q it-
erations)

Step 3, Algo-
rithm 1 [43]

8GRNX(NY + GT ) −
2GR(NX +GT )

Q
(
8GRNX(NY +

GT ) − 2GR(NX +
GT )+

Step 5 Algo-
rithm 1 [43]

24mNXNY − 10NXNY −
4m+ 2

12QNTNR +
2NXNY − 2Q

)
ADMM (Q
iterations)

Step 2, Algo-
rithm 1 [52]

29N3
T + 16N2

RNT +

24NRN
2
T + 2L̂aNR +

8L̂aNRNT − 2NRNT

Q
(
29N3

T +40N2
TNR+

48N2
RNT +

8L̂aNRNT +2NRL̂a+
2NRNT

)
Step 3 Algo-
rithm 1 [52]

8NRNT (NT + NR) +
6NRNT

Step 4 Algo-
rithm 1 [52]

8NRNT (NT + NR) +
2NRNT

Step 5 Algo-
rithm 1 [52]

8NRNT (NT + NR) −
4NRNT

IR-SR (Q Step 1 Algo-
rithm 2 [33]

29N3
X + 16N2

YNX +
24N2

XNY

Q
(
16NXNY L̂

2
s −

4NXL̂
2
s +

24NRNY L̂s+

iterations for
Algorithm 1,
1 iteration

Step 4, 5, Algo-
rithm 2 [33]

8L̂sNRNY − 2L̂sNY +
5L̂sNY log2NY +

8L̂sNTNX − 2L̂sNX +
5L̂sNX log2NX

24NTNXL̂s +
64NXNY L̂s + 8L̂3

s −
12NXL̂s − 6NY L̂s +
110L̂2

s − 2L̂s − 4
)

+
29N3

X + 16N2
YNX

for Algo-
rithm 2)

Step 5, Algo-
rithm 1 [33] (Q
iterations)

12NXNY L̂
2
s −

3NXL̂
2
s + 16NRNY L̂s +

16NTNXL̂s +
46NXNY L̂s + 4L̂3

s −
9NXL̂s − 4NY L̂s +
88L̂s − 4

+24N2
XNY +

8L̂sNRNT −2L̂sNY +
5L̂sNY log2NY +

8L̂sNTNX−2L̂sNX+
5L̂sNX log2NX

Step 6, Algo-
rithm 1 [33] (Q
iterations)

4NXNY L̂
2
s +

8NYNRL̂s + 8NXNT L̂s +
18NXNY L̂s + 4L̂3

s −
NXL̂

2
s − 2NY L̂s −

3NXL̂s + 22L̂2
s − 2L̂s
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Algorithm 2: Three-Stage Estimator

Input: PΩ(C̃),XR and XT .
1 Stage 1:

2 1. Find Ĉ? by solving (3.11) using [50, Algorithm 1].

3 2. Obtain the low-rank estimate Ĥ using (3.12).
4 Stage 2:

5 3. Construct R̂θ for θ̂R using (3.17).

6 4. Find T (R̂θR) by applying TR on R̂θ using (3.20).

7 5. Find θ̂R using root-MUSIC (3.21)-(3.26) on T (R̂θR).

8 6. Construct R̂φT for φ̂T using (3.27).

9 7. Find T (R̂φT ) by applying TR on R̂φT similar to (3.20).

10 8. Find φ̂T using root-MUSIC (3.21)-(3.26) on T (R̂φT ).
11 Stage 3:

12 9. Construct dictionary Ψ = A∗T (φ̂T )⊗AR(θ̂R) using φ̂T and θ̂R.
13 10. Estimate γ? by solving (3.30) using the OMP Algorithm.

14 11. Construct the estimated channel matrix Ĥ using (3.31).

Output: Ĥ, θ̂R, φ̂T and γ?

Table 3.3: Run-time comparison for different algorithms. System specifications: Windows
10, Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz Processor, 16 GB RAM and Matlab
R2019b.

Name of the Algorithm Run-Time (Seconds)
GCG-ALTMIN 0.1864
3-Stage without TR 0.2449
3-Stage with TR 0.3059
OMP 0.6523
IR-SR 3.1519
ADMM 12.12
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Chapter 4

Inductive Matrix Completion and

Root-MUSIC-Based Channel Estimation

for Intelligent Reflecting Surface

(IRS)-Aided Hybrid MIMO Systems

4.1 Introduction

This chapter studies the estimation of cascaded channels in passive IRS-aided MIMO

systems employing hybrid precoders and combiners. We propose a low-complexity

solution that estimates the channel parameters progressively. The AoDs and AoAs

at the transmitter and receiver, respectively, are first estimated using IMC followed

by root-MUSIC-based super-resolution spectrum estimation. Forward-backward

spatial smoothing (FBSS) is applied to address the coherence issue. Using the es-

timated AoAs and AoDs, the training precoders and combiners are then optimized
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4.2. System Model

and the angle differences between the AoAs and AoDs at the IRS are estimated

using the LS method followed by FBSS and the root-MUSIC algorithm. Finally,

the composite path gains of the cascaded channel are estimated using on-grid sparse

recovery with a small-size dictionary. The simulation results suggest that the pro-

posed estimator can achieve improved channel parameter estimation performance

with lower complexity as compared to several recently reported alternatives, thanks

to the exploitation of the knowledge of the array responses and low-rankness of the

channel using low-complexity algorithms at all the stage

The rest of the Chapter is organized as follows. Section 4.2 introduces the

system model. Section 4.3 presents the proposed solution. The simulation results

are discussed in Section 4.4 and the chapter summary is presented in Section 4.5.

RF 

Chain

RF 

Chain

RF 

Chain

RF 

Chain

Transmitter
Direct link blocked

IRS

Receiver

𝑁𝐼

𝑁𝑇 𝑁𝑅
𝑄𝑇 𝑄𝑅

Figure 4.1: System model for IRS-aided hybrid MIMO system.

4.2 System Model

As illustrated in Fig. 4.1, we consider a point-to-point MIMO system equipped

with hybrid transceivers aided by a fully passive IRS. The transmitter, receiver, and

IRS employ ULAs with NT , NR and NI array elements, respectively1. There are

QT ≤ NT and QR ≤ NR RF chains at the transmitter and receiver, respectively.

1The techniques proposed by this chapter can be extended to multiple-user systems with ULA
and UPA applied at the transmitter, receiver, and IRS. In Section 4.3.4 we will discuss the treat-
ment for UPA at the IRS.
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Fully connected phase shifter networks are assumed for the transmitter and receiver

but the techniques can also be easily extended to other hybrid transceivers [108].

The direct channel between the transmitter and receiver is assumed to be blocked for

simplicity, but there exist many viable solutions including Chapter 3 and [43, 50, 52]

to estimate it.

The channel between the transmitter and the IRS is geometrically modeled as

[73, 76]

F =

√
NTNI

LF

LF∑
l=1

γF,laI(θI,l)a
H
T (φT,l) = AI(θI)ΓFAH

T (φT ) ∈ CNI×NT , (4.1)

where θI,l, φT,l and γF,l represent the AoA at the IRS, the AoD at the transmitter

and the complex path gain for the l-th path, respectively, and LF denotes the total

number of paths between the transmitter and IRS. Furthermore, AI(θI), AT (φT )

and ΓF denote the IRS array response matrix, transmitter array response matrix,

and diagonal path gain matrix, respectively. Similarly, the channel between the IRS

and the receiver is modeled as

G =

√
NINR

LG

LG∑
l=1

γG,laR(θR,l)a
H
I (φI,l) = AR(θR)ΓGAH

I (φI) ∈ CNR×NI (4.2)

where notation similar to those in (4.1) is used. In the above, the array response

vector for a ULA with N elements can be written as

a(θ) =
1√
N

[1, ej
2π
λc
β cos(θ), . . . , ej(N−1) 2π

λc
d cos(θ)]T (4.3)

where λc is the wavelength, β = λc/2 is the inter-element spacing, and θ is the

steering angle. We focus on mmWave and THz bands where the number of paths

LF and LG are typically small.
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The effective channel between the transmitter and receiver via IRS is given as

H = GΩF ∈ CNR×NT , (4.4)

where Ω = diag(ω) and ω contains the phase shifts for all the IRS elements:

ω = [Υ1e
jζ1 ,Υ2e

jζ2 , . . . ,ΥNIe
jζNI ]T ∈ CNI×1,

where Υi and ζi denote the reflection coefficient and the phase shift for the i-th IRS

element, respectively. Setting Υi = 1 or 0 suggests that the i-th element is turned

on or off, respectively.

Let � denote the Khatri-Rao product. By using the identity vec(Adiag(b)C) =

(CT �A)b, the effective channel can be rewritten as

vec(H) = vec(GΩF) = (FT �G)ω = Hω, (4.5)

where H , FT �G ∈ CNRNT×NI is the cascaded channel. During data transmissions,

the precoder, combiner, and IRS phase shifts need to be optimized according to H.

However, it is challenging to estimate H due to its high dimensionality and limited

observations at the hybrid receivers. In order to address this problem, we propose

below a solution with low training overhead and low computational complexity.

4.3 The Proposed Channel Estimator

4.3.1 Parametric Representation of the Cascaded Channel

Let ⊗ denote the Kronecker product. By using the identities (AB) � (CD) =

(A⊗C)(B �D) and (A⊗B)(C⊗D) = (AC)⊗ (BD), the cascaded channel from
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4.3. The Proposed Channel Estimator

(4.5) can be modeled as

H = (AI(θI)ΓFAH
T (φT ))T �

(
AR(θR)ΓGAH

I (φI)
)

= (A∗T (φT )ΓFAT
I (θI)) � (AR(θR)ΓGAH

I (φI))

= ((A∗T (φT )ΓF )⊗ (AR(θR)ΓG))
(
AT
I (θI) �AH

I (φI)
)

= ATR(φT ,θR)ΓAH
I (ψI)

(4.6)

where

Γ = ΓF ⊗ ΓG = diag(γ), (4.7)

with γ ∈ CLFLG×1 containing the composite of the channel path gains of G and F,

ATR(φT ,θR) = A∗T (φT )⊗AR(θR), (4.8)

and

AI(ψI) =
(
AH
I (θI) �AT

I (φI)
)T

= [aI(ψI,1,1), . . . , aI(ψI,i,j), . . . , aI(ψI,LF ,LG)] (4.9)

with

ψI,i,j = cos−1(cos(φI,j)− cos(θI,i)) (4.10)

being the effective angle difference between the i-th AoA and j-th AoD at the IRS.

From (4.6), though the cascaded channel H may have a very large dimension, it can

be parameterized with a small number of path directions and gains. This can be

exploited to reduce the training overhead and computational complexity. However,

joint estimation of these parameters may involve high computational complexities.

We, therefore, propose a low-complexity multi-stage solution below.

As shown in Fig. 4.2, the proposed solution estimates the outer angles φT and

θR in the first stage using varying hybrid precoder/combiners at the transmitter and

receiver but fixed phase shifts at the IRS. IMC and spectrum estimation using the
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Stage-I 

Training
IMC

Root-MUSIC 

with FBSS

Beamformer 

Design

Stage-II 

Training
Least squares

Root-MUSIC 

with FBSS

OMP

Figure 4.2: Flowchart of the proposed scheme for estimating the cascaded channel of
IRS-aided MIMO systems.

root-MUSIC algorithm is applied to estimate the angles. In the second stage, the IRS

angles ψI are estimated using fixed hybrid precoders/combiners constructed using

the estimated outer angles and varying IRS phase shifts. Similarly, the root-MUSIC

algorithm is applied at this stage. Finally, the estimated angles are associated by

solving a small-size on-grid CS problem using OMP, which also yields the composite

path gains. The proposed solution has similarities to [76] in terms of two-stage

training and progressive estimation of the channel parameter. However, different

training and estimation schemes are deployed, which can improve the complexity-

performance tradeoff.

4.3.2 Stage 1: Estimation of Outer Angles

4.3.2.1 Training

In order to estimate the outer angles (θR,φT ), the IRS phase shifts are randomly

chosen as Ω0 = diag(ω0) from the feasible set and remain unchanged. This gives

the effective channel

H0 = GΩ0F ∈ CNR×NT . (4.11)

For mmWave and THz channels, G and F are generally low-rank due to the sparsity

in the angular domain. Therefore, H0 is also low-rank with rank no higher than
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min(rank(F), rank(G)). Furthermore, H0 can be modeled as

H0 = AR(θR)ΓGAH
I (φI)Ω0AI(θI)ΓFAH

T (φT ). (4.12)

From (4.12), if H0 is known, then subspace methods such as the root-MUSIC may

be used to estimate the angles (θR,φT ), similar to the treatments in Chapter 3. In

order to reduce the training overhead for estimating H0 using the hybrid receiver,

we propose to estimate H0 using low-rank matrix recovery methods. We adopt the

IMC scheme [50] for its low complexity and high performance.

We now describe the training scheme. Assume a training length of S channel

uses. During the s-th channel use, the transmitter sends a single pilot symbol xs.

The receiver observes QR symbols through its RF chains:

ys = WH
s H0psxs + WH

s ns ∈ CQR×1, (4.13)

where ps = PRF,spBB,s ∈ CNT×1 is the hybrid precoder with the RF precoder PRF,s ∈

CNT×QT and baseband precoder pBB,s ∈ CQT×1. Similarly, the hybrid combiner

Ws = WRF,sWBB,s ∈ CNR×QR with WRF,s ∈ CNR×QR as the RF combiner and

WBB,s ∈ CQR×QR the basedband combiner. Without loss of generality, we assume

xs = 1, ||ps||2F = 1 and ||Ws||2F = QR. The noise ns ∈ CNR×1 ∼ CN (0, σ2
nI), where

σ2
n is the average noise power. The received signal after S training steps is given as

y0 = [yT1 ,y
T
2 , . . . ,y

T
S ]T ∈ CSQR×1. (4.14)

We apply the IMC approach that first estimates the following transformed matrix

C0 = XH
RH0XT ∈ CNR×NT , (4.15)

and then recover H0 as H0 = (XH
R )−1C0(XT )−1 where XT and XR are the feature

matrices. The hybrid precoders and combiners are designed in a way such that
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4.3. The Proposed Channel Estimator

entries of C0 are observed from the above training process. This is implemented

by selecting Ws and ps from the columns of XR ∈ CNR×NR and XT ∈ CNT×NT ,

respectively, following the uniform spatial sampling [97]. Discussion on the coherence

properties of XR and XT can be found in [50, Section D] and the implementation

of the precoders/combiners follows Section 3.2.2 of Chapter 3 .

4.3.2.2 Estimation of Outer Angles

Rewrite the received signal by Y0 = PΩ(C̃0), where PΩ denotes the sampling operator

with a sampling pattern Ω and C̃0 is a noisy version of C0 i.e. C̃0 = C0 + XH
RN,

where N ∈ CNR×NT is the noise matrix. We can now estimate (φT ,φR) from

Y0 = PΩ(C̃0) using IMC followed by spectrum estimation. The transformed matrix

C0 = XH
RH0XT is low-rank as H0 is low-rank. Therefore, C0 can be estimated first

by solving the following low-rank matrix recovery problem

min
C0

rank(C0), s.t. ‖PΩ(C0)−Y0‖2
F ≤ δ2, (4.16)

where δ2 is a tolerance to account for the noise and ‖ · ‖F represents the Frobenius

norm. Nuclear norm regularization is applied to reformulate the NP-hard problem

above to estimate C0 as

Ĉ0 , arg min
C0

1

2
‖PΩ(C0)−Y0‖2

F + µ‖C0‖∗, (4.17)

where µ > 0 is a regularization parameter and ‖·‖∗ represents the nuclear norm. By

using a Frobenius norm characterization of the nuclear norm, we can let C0 , UVH

and recover C0 by solving

min
U,V

1

2
‖PΩ(UVH)−Y0‖2

F +
1

2
µ(‖U‖2

F + ‖V‖2
F ). (4.18)

This is a regularized least squares problem if the sizes of U and V are fixed according

to the rank of C0. However, this rank is unknown in practice. We adopt the
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GCG-ALTMIN algorithm [50] that progressively increases the sizes of U and V

and exhibits a low complexity and fast convergence. The GCG-ALTMIN iteratively

refines the rank and estimate of C0 by using the top singular vectors of a residual

error matrix and alternately updating U and V using local minimization.

Once the transformed matrix Ĉ0 is estimated, the low-rank channel matrix can

be estimated as

Ĥ0 = (XH
R )−1Ĉ0(XT )−1. (4.19)

We can then estimate the outer angles φT and θR. Following, [108] we estimate

them separately to reduce the computational cost. In this chapter, we apply the

root-MUSIC algorithm [93–95], which avoids peak search and offers high-resolution

estimates of the angles with low complexity. Note that the channel estimate Ĥ0 in

(4.19) can be modeled as

Ĥ0 = H0 + E = AR(θR)Γ0A
H
T (φT ) + E, (4.20)

where E represents the estimation error and Γ0 , ΓGAH
I (φI)Ω0AI(θI)ΓF . It is

clear that the row and column subspaces of H0 are spanned by the receiver and

transmitter steering vectors. This can be utilized to estimate the AoAs and AoDs

separately by using subspace methods.

We first estimate the AoAs θR at the receiver. The estimation of the AoDs φT at

the transmitter is similar. We model the columns of Ĥ0 as samples of the received

signal of an NR × 1 ULA as

xn = AR(θR)λn + en, n = 1, 2, . . . , NT , (4.21)

where λn is the n-th column of Γ0A
H
T (φT ) that serves as the “source” for generating

the observation xn at the receiver array. The root-MUSIC algorithm can be applied

using the signal and noise subspaces estimated from the sample covariance matrix
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(SCM) of xn:

R̂θR =
1

NT

NT∑
n=1

xnx
H
n =

1

NT

Ĥ0Ĥ
H

0 = AR(θR)∆AH
R (θR) + Σ, (4.22)

where the “source” covariance matrix is given by

∆ ,
1

NT

Γ0A
H
T (φT )AT (φT )ΓH

0 , (4.23)

and the error of the covariance matrix estimation is

Σ ,
1

NT

(
H0E

H + EHH
0 + EEH

)
. (4.24)

Eigenvalue decomposition of R̂θR can be used to find the signal and noise subspaces

required by root-MUSIC.

In general, the “source” covariance matrix ∆ in (4.22) is non-diagonal. This

suggests that the “source” signals in the model of (4.21) are correlated. It is known

that with correlated sources, standard subspace methods based on the SCM may

perform poorly. We thus adopt the FBSS [109–111] here to improve angle estimation.

In order to estimate L angles using the NR-element array (4.21), the FBSS

constructs U = L + 1 forward and backward uniform sub-arrays, each with S =

NR − L elements. Neighboring subarrays differ by only one element. Consider a

reference ULA subarray with S antennas. Its array response matrix can be written

as

ÃR(θR) = [ãR(θR,1), ãR(θR,2), . . . , ãR(θR,L)] ∈ CS×L, (4.25)

with array response for the l-th “source” given as

ãR(θR,l) =
1√
NR

[1, ej
2π
λc
β cos(θR,l), . . . , ej(S−1) 2π

λc
β cos(θR,l)]T . (4.26)
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Let D be a diagonal matrix with entries

D = diag{ej
2π
λc
β cos(θR,1), ej

2π
λc
β cos(θR,2), . . . , ej

2π
λc
β cos(θR,L)}. (4.27)

Then the received signals of the u-th forward subarray, whose array response vectors

are shifted versions of those of the reference subarray, can be written as

xfn,u , [xn,u, xn,u+1, . . . , xn,u+S−1]T = ÃR(θR)D(u−1)λn + efn,u, (4.28)

where xn,i denotes the i-th entry of xn in (4.21) and efn,u denotes the corresponding

subvector of en. Letting the covariance matrices of the “sources” λn and “errors”

efn,u be Σs and Σf
e,u, respectively, we have

R̃f,u
θR

,E[xfn,ux
fH

n,u] = ÃR(θR)D(u−1)Σs(D
(u−1))∗ÃH

R (θR) + Σf
e,u. (4.29)

Define the forward covariance matrix as

R̃f
θR

,
1

U

U∑
u=1

R̃f,u
θR

= ÃR(θR)Σf
s Ã

H
R (θR) + Σf

e (4.30)

with

Σf
s ,

1

U

U∑
u=1

D(u−1)Σs(D
(u−1))∗, Σf

e ,
1

U

U∑
u=1

Σf
e,u.

In general, Σf
s has a higher rank than Σs when the “sources” are correlated. This

is beneficial for applying subspace methods for finding the angles. Similarly we can

construct the u-th backward subarray as

xbn,u ,
[
x∗n,NR−u+1, x

∗
n,NR−u, · · · , x

∗
n,NR−u−S

]T
= ÃR(θR)D−NR+uλ∗n + ebn,u.

(4.31)

64



4.3. The Proposed Channel Estimator

Following the same assumption as for the forward subarray, we can verify

R̃b,u
θR

,E[xbn,ux
bH

n,u]

=ÃR(θR)D(−NR+u)Σ∗s(D
(−NR+u))∗ÃH

R (θR) + Σb
e,u

(4.32)

where Σb
e,u denotes the covariance matrix of ebn,u. The backward covariance matrix

can be defined similarly as

R̃b
θR

,
1

U

U∑
u=1

R̃b,u
θR

= ÃR(θR)Σb
sÃ

H
R (θR) + Σb

e (4.33)

with

Σb
s =

1

U

U∑
u=1

D(−NR+u)Σ∗s(D
(−NR+u))∗, Σb

e ,
1

U

U∑
u=1

Σb
e,u.

Inspired by that (4.30) and (4.33) share the same signal subspace in the error-free

case, the SCM smoothed by applying FBSS can be used to estimate a subarray

covariance matrix from the samples as

R̂SS
θR

,
1

2NTU

NT∑
n=1

U∑
u=1

(
xfn,ux

fH

n,u + xbn,ux
bH

n,u

)
. (4.34)

Let J be the anti-diagonal identity matrix. Then the received signals of the u-th

forward and (U − u+ 1)-th backward subarrays can be related as

xbn,U−u+1 = J(xfn,u)
∗,∀u,

and

xbn,U−u+1(xbn,U−u+1)H =J(xfn,u)
∗(xfn,u)

TJ

=J[(xfn,u)(x
f
n,u)

H ]∗J,∀u.

This suggests that the FBSS covariance matrix can be alternatively obtained from
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(4.22) as

R̂SS
θR

=FBSS(R̂θR)

,
1

2U

U∑
u=1

(
R̂θR(u : u+ S − 1, u : u+ S − 1)

+ JR̂∗θR(u : u+ S − 1, u : u+ S − 1)J
)
.

(4.35)

After that, the root-MUSIC algorithm is applied on R̂SS
θR

to estimate θR. Though

FBSS sacrifices the array aperture and the resolution of angle estimation, the overall

accuracy is generally improved, especially in large arrays. For estimating φT using

root-MUSIC, the construction of the required covariance matrix R̂SS
φT

follows the

same way as R̂SS
θR

based on Ĥ
H

0 and the discussion is omitted for brevity.

4.3.3 Stage 2: Estimation of IRS Angles and Composite

Path Gains

4.3.3.1 Training

We next estimate the IRS angles ψI and the composite path gains of the cascaded

channel in (4.6). The estimates (θ̂R, φ̂T ) of the outer angles are used here to con-

struct the hybrid precoder and combiner, respectively, for achieving beamforming

gains. The desired precoder and combiner are given as

Ŵ = AR(θ̂R) ∈ CNR×LG , P̂ = AT (φ̂T ) ∈ CNT×LF . (4.36)

They are implemented approximately as P and W using the fully connected hybrid

transceivers and the PE-Altmin algorithm [98].

Without loss of generality, we assume LG ≤ QR, but the treatment can be

extended for LG > QR. For the cases when LG > QR, for each precoding vector

multiple combiner matrices Ŵ are used for the AoAs. For example, for LG = 4

and QR = 2, there will be two different combiner matrices, Ŵ1 = AR:,1:QR
(θ̂R) and

Ŵ2 = AR:,QR+1:LG
(θ̂R). This will double the total number of channel uses for Stage-

66



4.3. The Proposed Channel Estimator

2 training. Therefore, the training overhead for LG > QR is higher than LG ≤ QR.

There are in total D steps in IRS angle training and each step spans LF channel

uses. The precoder P, combiner W and also the IRS phase shifts Ωd remain fixed

for each step. The resulting effective channel Hd = GΩdF. During the l-th channel

use of the d-th step, the received signal is given as

yd,l = WHHdPsd,l + WHnd,l ∈ CLG×1, (4.37)

where sd,l ∈ CLF×1 is the training symbol. We choose {sd,l, l = 1, 2, · · · , LF} as

columns of an LF ×LF unitary matrix and without loss of generality, as the identity

matrix. Furthermore, we assume ||W||2F = LG, ||P||2F = LF and ||Psd,l||2F = 1. As

a result, the observation at the receiver at the d-th step is equivalent to

Yd = [yd,1,yd,2, · · · ,yd,LF ] = WHHdP + N′d ∈ CLG×LF . (4.38)

Let yd = vec(Yd). It can be verified that

yd = vec(WHHdP) + n′d

=
(
(FP)T � (WHG)

)
ωd + n′d

= Zωd + n′d,

(4.39)

where

Z = ΨΓAH
I (ψ) ∈ CLFLG×NI , (4.40)

Ψ =
(
PTA∗T (φT )

)
⊗
(
WHAR(θR)

)
∈ CLFLG×LFLG . (4.41)

Recall that Γ in (4.40), defined in (4.7), is diagonal. In the ideal case with infinite

numbers of antennas, perfect outer angle estimation, and infinite resolution of the

transceiver phase shifters, Ψ is an identity matrix. In this case, the IRS angles

can be separately estimated from the corresponding rows of Z, as in [76]. However,

Ψ is not identity or diagonal in practical systems. We therefore consider the joint
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estimation of the IRS angles based on Z, which may improve performance.

Variable phase shifts {Ωd} at the IRS are used during the D training steps,

yielding the overall observation

Y = [y1,y2, . . . ,yD]

= ZΩ̄ + N′ ∈ CLGLF×D,

(4.42)

where Ω̄ = [ω1,ω2, . . . ,ωD] ∈ CNI×D. If D ≥ NI , we can apply the LS method

to estimate Z, based on which the IRS angles ψI can be estimated using subspace

methods. However, this may require substantial training when NI is large. In order

to alleviate the training overhead, we choose Ω̄ as

Ω̄ =

Θ

0

 ∈ CNI×D, (4.43)

where Θ ∈ CD×D is a DFT matrix with entries of unit magnitude and 0 denotes an

all-zero matrix. This is equivalent to turning off NI −D elements of the IRS during

the IRS angle training and sampling only D elements of the IRS. For simplicity,

we set the remaining IRS elements to form a smaller ULA of size D. This reduces

the aperture of the IRS and sacrifices the spatial resolution but may provide an

economic way for training. A similar training design is used in [112] to reduce the

training overhead. In general, the resolution of angle estimation techniques improves

when the array aperture is larger. Turning off elements of IRS decreases the spatial

resolution specially for small arrays. However, for small arrays, the training overhead

is already low and such strategies are not required. For larger arrays, turning off

some of the elements does not greatly effect the angle estimation accuracy but can

be beneficial in reducing the training overhead.
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4.3.3.2 Estimation of IRS Angles

In order to estimate ψI we first obtain

Z̃ =
1

D
YΘH = ΨΓÃH

I (ψI) + Ñ ∈ CLFLG×D, (4.44)

where ÃI(ψI) ∈ CD×LFLG contains the steering matrix for the sub-array of the IRS

corresponding to its D switched-on elements and Ñ = 1
D

N′ΘH . Now the IRS angles

can be estimated based on

R̂ψI =
1

LFLG
Z̃HZ̃. (4.45)

Similarly to the outer angle estimation in Stage 1, in order to alleviate the issue

of coherence of the “source”, FBSS can be applied to produce R̂SS
ψI

= FBSS(R̂ψI )

before applying root-MUSIC to produce the IRS angle estimate ψ̂I , where FBSS(·)

follows (4.35).

4.3.3.3 Estimation of Composite Path Gains

Once θR, φT , and ψI are estimated, the composite path gains Γ can be estimated

by fitting the received training signal to the model

y , vec(Y) = Φγ + n′ (4.46)

using least squares, where

Φ =
(
Ω̄TA∗I(ψI)

)
⊗
(
PTA∗T (φT )

)
⊗
(
WHAR(θR)

)
γ , vec(Γ).

(4.47)

Note that W, P and Ω̄ are known from IRS angle training, and the estimates of ψI ,

φT and θR are also available. However, we have estimated the path angles separately

for low complexity and thus they are not associated, which leads to an unknown
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sparsity pattern of γ. For associating the angles and also for obtaining the composite

path gains, we resort to a CS approach. Since γ ∈ CL2
FL

2
G×1 is a sparse vector and

has only LGLF non-zeros entries, the above problem can be solved efficiently using

OMP as

γ̂ = arg min
γ
||y − Φ̂γ||2, ||γ||0 = LGLF . (4.48)

where the “dictionary” Φ̂ is obtained by replacing the angles in (4.47) by their

estimates. Once the gains are estimated, we can obtain the estimate of the cascaded

channel matrix (4.6) as

Ĥ = (A∗T (φ̂T )⊗AR(θ̂R))Mat(γ̂)AH
I (ψ̂I). (4.49)

Note that the estimated Mat(γ̂) is not necessarily diagonal due to random permuta-

tion. The overall channel estimation process for the ULA case discussed in Section

4.3.1-4.3.3 is summarized in Algorithm 3.

4.3.4 Extension to UPA at IRS

In the above, we have assumed ULA at the transmitter, receiver, and IRS. We now

extend the scheme to IRS equipped with UPA. When an Ny×Nz UPA is located on

the yz plane, as illustrated in Fig. 4.3, the steering vector for a path with azimuth

angle αa and elevation angle αe is given by

a(αa, αe) =ay(αa, αe)⊗ az(αe),

where

ay(αa, αe) =
1√
Ny

[1, ej
2π
λc
β sin(αa) sin(αe), . . . , ej(Ny−1) 2π

λc
β sin(αa) sin(αe)]T , (4.50)
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Algorithm 3: Cascaded channel estimation for IRS-aided hybrid MIMO
systems employing ULAs at the transmitter, IRS, and receiver.

1 Stage 1:
Input: Y0,XT , and XR.

2 1. Find Ĉ
?

0 by solving (4.17) using the GCG-ALTMIN algorithm [50,
Algorithm 1].

3 2. Obtain the low-rank estimate Ĥ0 using (4.19).

4 3. Construct R̂SS
θR

from Ĥ0 using (4.22) and (4.35).

5 4. Find θ̂R from R̂SS
θR

using root-MUSIC.

6 5. Construct R̂SS
φT

from Ĥ
H

0 similar to (4.22) and (4.35).

7 6. Find φ̂T from R̂SS
φT

using root-MUSIC.

Output: φ̂T , θ̂R.
8 Stage 2:

Input: Y,W,P, and Ω̄.
9 7. Obtain Z̃ using (4.44).

10 8. Construct R̂SS
ψI

from Z̃ using (4.45) and FBSS.

11 9. Find ψ̂I from R̂SS
ψI

using root-MUSIC.

12 10. Find γ̂ using (4.48).

13 11. Construct the cascaded channel Ĥ using (4.49).

Output: ψ̂I , γ̂ and Ĥ.

and

az(αe) =
1√
Nz

[1, ej
2π
λc
β cos(αe), . . . , ej(Nz−1) 2π

λc
β cos(αe)]T . (4.51)

Let

u = sin(αa) sin(αe), v = cos(αe). (4.52)

Then the steering vector can be rewritten as

a(u, v) =ay(u)⊗ az(v), (4.53)

where

ay(u) =
1√
Ny

[1, ej
2π
λc
βu, . . . , ej(Ny−1) 2π

λc
βu]T ,

az(v) =
1√
Nz

[1, ej
2π
λc
βv, . . . , ej(Nz−1) 2π

λc
βv]T .

(4.54)
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4.3. The Proposed Channel Estimator

Figure 4.3: System model for the case with UPA at the IRS and ULAs at the transmitter
and receiver.

Denote by (θI,a,l, θI,e,l) the pair of the azimuth and elevation components of the AoA

for the l-th path impinging on the IRS and similarly for those of the AoD of the

l-th path departing the IRS by (φI,a,l, φI,e,l). Following the change of variables as in

(4.52), we can rewrite the steering matrix in (4.40) for the UPA as

AI(u,v) =
(
AH
I (uF ,vF ) �AT

I (uG,vG)
)T

=[a(u1,1, v1,1), . . . , a(ui,j, vi,j), . . . , a(uLF ,LG , vLF ,LG)],

where

ui,j = sin(φI,a,i) sin(φI,e,i)− sin(θI,a,j) sin(θI,e,j),

vi,j = cos(φI,e,i)− cos(θI,e,j).

(4.55)

In this case, the estimation of the outer angles follows that for the ULA case in

Section 4.3.2. The IRS angle estimation now amounts to estimating (u,v). In

order to achieve high accuracy with low training overhead and low computational

complexity, we propose to switch on only an L-shaped subarray as illustrated in

Fig. 4.4 during the IRS angle estimation. The same DFT phase shifts matrix Ω̄ as

in (4.43) is applied to the subarray. The observation after completing the Stage-2
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4.3. The Proposed Channel Estimator

training can then be modeled similarly to (4.44) as

Z̃ = ΨΓÃH
I (u,v) + Ñ ∈ CLFLG×D, (4.56)

where ÃI(u,v) ∈ CD×LFLG is the array response matrix of the L-shaped subarray.

It is clear that the IRS angle information is embedded in the row subspace of Z̃.

Note that the L-shaped subarray consists of partially overlapped ULAs along

the y and z axes. Denote by Iy,j the indices of the IRS elements of the j-th ULA

parallel to the y-axis in Fig. 4.4. We choose the observations in Z̃ corresponding to

the Jy ULAs and stack them as

Z̃y =



Z̃(:, Iy,1)

Z̃(:, Iy,2)

...

Z̃(:, Iy,Jy)


∈ CJyLFLG×Ny . (4.57)

In order to estimate u, we first compute

Ru =
1

JyLFLG
Z̃H
y Z̃y, (4.58)

then obtain FBSS(Ru) and finally apply root-MUSIC. We can apply a similar pro-

cedure to find v by using the observations corresponding to the ULAs parallel to

the z axis at the IRS. The adopted L-shaped subarray, which has been examined in

[113–115], achieves a larger spatial aperture along the y and z axis, in contrast to

rectangular subarrays with the same number of elements. Unlike joint 2D spectrum

estimation [116], we here estimate u and v separately for reduced computational

complexity. This, however, does not give associated estimates of u and v.

Again the estimation of the composite path gains and association of the estimates

of the path angles can be achieved by solving the CS problem in (4.48), with the
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Figure 4.4: An example of IRS with an L-shaped subarray switched on, Ny = Nz = 6, Jy =
Jz = 2, NI = 36 and D = 20.

dictionary updated for the UPA case as

Φ̂ =
(
Ω̄TA∗I(û, v̂)

)
⊗
(
PTA∗T (φ̂T )

)
⊗
(
WHAR(θ̂R)

)
. (4.59)

Finally, the cascaded channel is reconstructed as

Ĥ = (A∗T (φ̂T )⊗AR(θ̂R))Mat(γ̂)AH
I (û, v̂). (4.60)

Treatments the same as this subsection can be applied to the case with UPA at the

transmitter and/or receiver. The details are omitted for conciseness.

4.3.5 Computational Complexity

The computational cost of the proposed estimator is kept low. For Stage 1 (outer

angle estimation), the GCG-ALTMIN algorithm has a complexity of O(IL3
mNTNR+

L2
m(NT+NR)+LmNTNR) where Lm = min(LF , LG) and I is the number of iterations

of the alternate minimization step of GCG-ALTMIN, which is low when the channel

is low-rank with small LF and LG. In large systems, the overall complexity is
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dominated by the root-MUSIC algorithm with complexity O(NR
3 +NT

3). Since Ω̄

is constructed using the DFT matrix, (4.44) has a low cost.

In Stage 2, the inner angle estimation with ULA at the IRS using root-MUSIC

has a complexity of O(D3). The path gains are estimated using the OMP algorithm

with a complexity of O(L3
FL

3
GD) which is also low when the channel has a small

number of paths. For the case with UPA at the IRS, the proposed estimator has a

complexity of O(N3
v +N3

u) for estimating the IRS angles in Stage 2. The composite

path gain estimation involves a larger dictionary for the OMP algorithm due to

the increased number of angles, but still requires the same order of complexity

O(L3
FL

3
GD).

4.4 Simulation Results

This section presents the simulation results. For the case with a ULA at the IRS,

the path gains γF,l and γG,l in (4.1) and (4.2) follow CN (0, 1) while all the AoAs

and AoDs are uniformly distributed in [30◦, 150◦]. For the case with a UPA at the

IRS, the azimuth angles and elevation angles are uniformly distributed in [−90◦, 90◦]

and [30◦, 150◦], respectively. Define the pilot-to-noise-ratio as (PNR) = 10 log10( 1
σ2
n
).

The normalized mean squared error (NMSE) for estimating the cascaded channel

is evaluated as the average of
||H−Ĥ||2F
||H||2F

. The mean squared error (MSE) for angles

θR, φT , ψI and gains γ are estimated, respectively, by averaging
|| cos(θR)−cos(θ̂R)||2F

LG
,

|| cos(φT )−cos(φ̂T )||2F
LF

,
|| cos(ψI)−cos(ψ̂I)||2F

LFLG
, and

||γ−γ̂||2F
LFLG

. For the UPA case,
||u−û||2F
LFLG

and

||v−v̂||2F
LFLG

are averaged to measure the MSE of estimating u and v, respectively. The

proposed approach applies

T = S +DLF (4.61)

channel uses for training, with S channel uses for estimating the outer angles in

Stage 1 and DLF channel uses for estimating the IRS angles in Stage 2.
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Figure 4.5: Performance of the path angle, gain and cascaded channel estimation with
LF = 1, LG = 2, ULAs at the transmitter, receiver, and IRS, NT = NR = 16, NI =
32, QR = QT = 2.
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4.4.1 ULA at the IRS

We first consider the case with ULAs at the transmitter, receiver, and IRS. We

compare the proposed estimator with the following two alternatives:

• The ANM-based two-stage estimator of [76] : At stage 1, randomly generated

precoding and combining matrices P̃ and W̃ are applied to produce the train-

ing observation Ỹ0 = W̃HGΩ0FP̃ + N ∈ C
SQR
NT
×NT for a fixed, randomly

generated Ω = diag(ω0), followed by ANM for estimating θR and φT . In

order to compare under the same training overhead, we set P̃ ∈ CNT×NT and

W̃ ∈ CNR×
SQR
NT at Stage 1. The estimation accuracy of φT and θR depends

on the numbers of precoder and combiner vectors, respectively. At Stage

2, the precoder and combiner are redesigned using θ̂R and φ̂T in the same

way as in Section 4.3.3.1. However, the IRS phase shifts vary randomly at

D steps with all the IRS elements switched on. ANM is applied to estimate

each IRS angle separately. This ANM-based estimator has a complexity of

O((max{NT + SQR/NT , NR + NT , NI + 1})3.5) when semidefinite program-

ming (SDP) is applied to solve the ANM problems. This is generally more

complex than the proposed estimator, especially for large systems.

• The LS estimator : Approximately unitary precoders P̃ ∈ CNT×NT and com-

biners W̃ ∈ CNR×NR are implemented using the PE-Altmin algorithm for

the hybrid transmitter and receiver, and the IRS phase shifts are selected

as the columns of the DFT matrix Ω̄ ∈ CNI×NI . The training overhead is

TLS = NTNINR/QR channel uses.

Fig. 4.5 compares the performance for LF = 1, LG = 2. The proposed and

the ANM-based methods apply the two-stage training with S = 64, D = 16 and

T = S +DLF = 80 while the LS estimator uses a much higher training overhead of

TLS = 4096. It can be seen that the proposed estimator achieves good accuracies for

estimating the channel parameter and the overall cascaded channel. FBSS effectively
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Figure 4.6: Performance of the path angle, gain and cascaded channel estimation for the
system same as that in Fig. 5 except LF = 2, T = 96.
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improves the angle estimation, especially when there are multiple paths, as in the

case for θR with LG = 2. Compared with the ANM-based estimator, the proposed

estimator achieves a significantly more accurate estimation of the inner angles ψI

and path gains. This is because the ANM-based estimator assumes both AH(φ̂F )P

and WHA(θ̂G) as identity matrices and then solves separate ANM problems to find

the IRS angles. As mentioned in Section 4.3.3.1, this requires perfect outer angle

estimation and infinite sizes for the transmitter and receiver arrays. The proposed

estimator does not rely on such an assumption and thus achieves a more robust

performance. This also translates into the improvement of the performance of the

cascaded channel estimation. Both the proposed and the ANM-based estimators

significantly outperform the LS estimator. The latter requires a much higher training

overhead but does not benefit from the channel sparsity and the knowledge of the

array responses. Fig. 4.6 shows the performance for a multi-path scenario with

LF = LG = 2. It is seen that the proposed estimator with FBSS shows the best

performance among the candidate estimators. Furthermore, more significant gains

are observed for the proposed estimator when LF is increased from that of Fig. 4.5.

The channel estimation performance versus training overhead T is demonstrated

in Fig. 4.7, where T is varied by varying D in Stage 2. The results suggest that the

performance of the proposed method generally improves when T increases. When

FBSS is used, around 4dB gain can be achieved for the proposed solution when T

varies from 88 to 128. The ANM method shows a more stable performance with

respect to T because the separate estimation of the inner angles is influenced by the

leakage between the paths which can not be effectively mitigated by increasing the

training data.

4.4.2 UPA at the IRS

A case with UPA at the IRS is demonstrated in Fig. 4.8 where a 16 × 16 UPA

with NI = 256 is employed at the IRS. For comparison with the proposed esti-
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Figure 4.7: Channel estimation performance versus training overhead T = S + LFD at
PNR = 10 dB with LF = LG = 2, ULAs at the transmitter, receiver and IRS, NT = NR =
16, NI = 32, and QR = QT = 2. The proposed method and the ANM-based method apply
the two-stage training with S = 64 fixed for Stage 1 and D varying from 12 to 32 for Stage
2, while the LS estimator has a fixed training overhead of TLS = 4096.

mator, we consider the LS estimator and the CS-based TRICE estimator of [73].

For the proposed estimator, S = 128, D = 31, Ny = Nz = 16, Jy = Jz = 1 and

T = S + LFD = 190. For the TRICE estimator N̄T = N̄R = 16, N̄ = 32,

TTRICE = 2048, Gt = Gr = 64, G = 128 × 128. For the LS estimator, TLS = 65536.

Similarly to the proposed estimator, the TRICE estimator first estimates the outer

angles followed by estimating the IRS angles and composite path gains using CS.

However, it has a single stage of training and does not exploit the estimated outer

angles while designing the training precoder and combiner. Due to the lower beam-

forming gains, the TRICE estimator requires a higher training overhead. Denote

by P̄ ∈ CNT×N̄T , W̄ ∈ CNR×N̄R and the IRS phase shift matrix Ω̄ ∈ CNI×N̄I , where

N̄T , N̄R and N̄I represent the numbers of precoders, combining vectors and IRS

states, respectively. They are used by the TRICE estimator to produce N̄T N̄RN̄I

observations using N̄T N̄RN̄I/QR channel uses. The TRICE estimator has a com-

plexity of O(LGLF (N̄T N̄RGrGt + N̄IG)), where Gt, Gr and G represent the grid

sizes for the AoD, AoA and IRS angle, respectively. In our simulations, P̄ and W̄

are taken from approximated unitary matrices (randomly constructed in the same

way as XT and XR in (4.15)) and the IRS phase shift matrix Ω̄ has phase shifts
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uniformly distributed over [0, 2π). From Fig. 4.8, the outer angle estimation with

the proposed estimator has a similar performance as for the case with ULA at the

IRS. High accuracy for estimating u and v is also achieved, and the FBSS is effective

for improving the performance with the L-shaped array adopted at the IRS. With

FBSS, the proposed estimator achieves an overall performance of cascaded channel

estimation significantly better than the alternative estimators, even at a much lower

training overhead. This is due to the two-stage training which benefits from the

beamforming gains at Stage 2, and the super-resolution estimation of the outer and

IRS angles.

4.5 Summary

In summary, we have presented a parametric method for estimating the cascaded

channel for fully passive IRS-aided MIMO systems with hybrid transceivers. The

proposed estimator benefits from the low-rank nature of the channel and the knowl-

edge of the array responses. It provides a low-complexity, multiple-stage solution us-

ing simple yet effective tools, including IMC, FBSS, and the root-MUSIC algorithm.

This solution can progressively obtain the channel parameters and the training and

estimation process adapts to the knowledge generated, which not only provides bet-

ter estimation performance but also reduces the training overhead. As seen from

the simulation results, the proposed estimator outperforms several recently stud-

ied solutions in estimation accuracy. The overall computational complexity of the

proposed estimator is also kept low.
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Figure 4.8: Performance of the path angle, gain and cascaded channel estimation for a
system with a UPA at the IRS, ULAs at the transmitter and receiver, and LF = 2, LG = 2.
NT = NR = 32, NI = 256, QR = QT = 4.
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Chapter 5

Low-Rank Matrix Sensing-Based

Wideband Channel Estimation for

mmWave and THz Hybrid MIMO Systems

5.1 Introduction

This chapter studies the channel estimation for wideband hybrid MIMO systems.

We present solutions exploiting the low rankness of the concatenated channel ma-

trix of the delay taps. The channel estimation problem is formulated as a low-rank

matrix sensing (LRMS) problem and solved using a low-complexity GCG-ALTMIN

algorithm. This LRMS-based solution can accommodate different channel dimen-

sions, precoder/combiner, and training structures. Furthermore, it can be applied

without knowledge of the array responses of the transceiver arrays. A precondi-

tioned conjugate gradient (PCG) algorithm-based implementation and a low-rank

matrix completion (LRMC) formulation are also introduced to further reduce the

computational complexity. To enhance the performance of fat and tall channel ma-
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trices, we introduce a matrix reshaping strategy that can preserve the channel rank

by exploiting the shift-invariance property of uniform arrays. This can effectively

enhance the performance at a given training overhead. We also introduce spectrum

denoising (SD) approach for further improving the performance when knowledge of

the array response is available. Simulation results suggest that the proposed solu-

tions can improve the channel estimation performance and reduce the computational

complexity as compared to several representative channel estimation schemes.

The remaining chapter is organized as follows. The system model is introduced

in Section 5.2. The proposed LRMS-based channel estimation techniques are pre-

sented in Section 5.3. Computational complexity analysis and simulation results are

presented in Section 5.4 and conclusions are drawn in Section 5.5.

5.2 System Model

The system model is the same as shown in Fig. 3.1, we consider a single-carrier

hybrid wideband MIMO system with NT transmitter antennas and NR receiver

antennas. which operates in the mmWave/THz bands. Similar to [81], hybrid

beamforming with fully connected networks of phase shifters is utilized at both

the transmitter and receiver to achieve better energy efficiency. The numbers of

RF chains at the transmitter and receiver are given by QT ≤ NT and QR ≤ NR,

respectively. ULAs are assumed for both the transmitter and receiver1.

Following [36, 38, 52, 87, 117–120] , a geometric wideband multi-tap channel

model with Nc delay taps is considered, where the d-th tap matrix of the sampled

channel model is given as

Hd =

√
NTNR

L

L−1∑
l=0

γlp(dTs − τl)aR(θR,l)a
H
T (φT,l), (5.1)

1The proposed training and channel estimation solutions can also be easily extended for trans-
mitters and receivers equipped with uniform planer arrays (UPAs) and/or switches-based hybrid
transceivers.
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where Ts is the sampling period,γl represents the complex channel gain, τl the path

delay, φT,l and θR,l the AoD and AoA, respectively, and aT (φT,l) and aR(θR,l) are

the transmitter and receiver array responses, respectively, all for the l-th path.

There are in total L propagation paths with randomly distributed delays {τl}. The

impulse response p(·) accounts for the joint effect of the transmitter pulse shaping

and receiver matched filtering and it can lead to the spread of a path l to multiple

delay taps {Hd} within the support of p(dTs− τl) as τl/Ts is generally not integer in

practice. Without loss of generality, we assume that p(·) is a raised-cosine function.

In contrast to the narrowband channel model considered in Chapters 3 and 4, the

introduction of path delays further complicates the channel estimation process for

wideband channels. The channel of different delay taps can be very different from

each other. This is due to the fact that channel paths contributing to different

delay taps can be different. Hence the concatenated channel matrix becomes NC

times large as compared to narrowband channel matrix. The receiver array response

vector for the AoA θR,l is given as

aR(θR,l) =
1√
NR

[
1, ej

2π
λc
β cos(θR,l), · · · , ej(NR−1) 2π

λc
β cos(θR,l)

]T
, (5.2)

where the carrier wavelength is λc and the antenna spacing is β = λc/2. The

transmitter array response vector corresponding to φT,l is similar. The channel

matrix for the d-th delay tap can be rewritten as

Hd = AR(θR)GdA
H
T (φT ) ∈ CNR×NT (5.3)

where

Gd = diag(gd,1, gd,2, . . . , gd,L) ∈ CL×L (5.4)

is a diagonal matrix containing the channel path gains scaled with the impulse
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response of the pulse shaping filter for the d-th tap, with entries

gd,l =

√
NTNR

L
αlp(dTs − τl).

Furthermore, AT (φT ) ∈ CNT×L and AR(θR) ∈ CNR×L represent the array response

matrices for the transmitter and receiver, respectively, consisting of the correspond-

ing steering vectors.

This thesis focuses on the single-carrier wideband systems. However, extension

of the proposed frameworks to the multi-carrier systems can be done with additional

steps. The channel model for multi-carrier wideband system for the k-th sub-carrier

can be written as [121] H[k] =
∑NC−1

d=0 Hde
−j 2πkd

K , where K is the total number of

sub-carriers. From the above it can be seen when the channels for all delay taps are

estimated, the channel for the multi-carrier system can be estimated.

The above channel model applies to both mmWave and THz bands when the

bandwidth and the size of the transceiver antenna arrays are moderate. For THz

bands, due to higher path losses the channel is mostly dominated by the line-of-sight

(LOS) component with very few non-LOS components [117, 120, 122]. Therefore,

THz channels are generally sparser in the angular domain as compared to mmWave

channels. The treatments for ultra-large arrays and ultra-wideband systems, which

may face the challenges of spatial wideband effects and beam squint [78, 122, 123],

are left for future work.

5.3 LRMS-Based Wideband MIMO Channel Es-

timation

Accurate channel estimation is essential for optimizing the transceivers for MIMO

communication systems. This section presents the proposed LRMS-based wideband

channel estimation solutions. First, the training scheme for the proposed chan-

nel estimators is introduced, followed by the recovery method based on the GCG-
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s1 s2 … s𝑚 … s𝑀

𝑠𝑚(0) 𝑠𝑚(1) … 𝑠𝑚(𝑁𝑐 − 1)

…

Data TransmissionTraining Frame

s𝑚

Figure 5.1: Transmission Structure

ALTMIN algorithm. Then PCG and LRMC-based techniques are introduced for

computational complexity reduction. Finally, the matrix reshaping and spectrum

denoising approaches are reported for performance enhancement.

5.3.1 Wideband Channel Training and LRMS-Based Chan-

nel Estimation

We consider time-invariant wideband MIMO channels in this chapter. The training

frame consists of M subframes and each is transmitted over NC time instances,

where NC equals the number of channel taps. Similar to [81], the precoder and

combiner are assumed to remain unchanged within a single subframe. During the

n-th time instance within the m-th subframe, a single symbol sm(n) is transmitted

through the hybrid precoder and QR symbols are observed from the output of the

hybrid combiner. The received signal for the n-th time instance within the m-th

subframe is written as

ym(n) = WH
m

NC−1∑
d=0

Hdxm(n− d) + WH
mnm(n) ∈ CQR×1, (5.5)

where the hybrid combiner for the m-th subframe is given as Wm = WRFmWBBm

with the RF combiner WRFm ∈ XNR×QR and baseband combiner WBBm ∈ CQR×QR ,

where X represents the set of feasible phase shifts. The noise nm(n) ∈ CNR×1

follows the complex Gaussian distribution CN (0, σ2
nI), with σ2

n being the average
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noise power. In (5.5), the transmitted signal is defined as

xm(n) =

 pmsm(n), 0 ≤ n ≤ NC − 1,

pm−1sm−1(n+NC), n < 0,
(5.6)

where the hybrid precoder for the m-th subframe is given as pm = PRFmpBBm

with PRFm ∈ XNT×QT as the RF precoder and pBBm ∈ CQT×1 as the baseband

precoder. The received signal for the n-th time instance of the m-th subframe can

be alternatively written as

ym(n) = WH
mHξm,n + WH

mnm(n) ∈ CQR×1, (5.7)

where

H , [H0,H1, . . . ,HNC−1] ∈ CNR×NCNT (5.8)

is the channel matrix with the coefficients of all the delay taps concatenated together,

and

ξm,n , [xTm(n),xTm(n− 1), . . . ,xTm(n−NC + 1)]T ∈ CNCNT×1. (5.9)

The received signal of the M subframes can be written as Y = [Y1,Y2, . . . ,YM ] ∈

CQR×NCM where Ym , [ym(0),ym(1), . . . ,ym(NC − 1)].

The training structure is shown in Fig. 5.1, where MNC time instances are

allocated for training. Without loss of generality, we assume ‖pmsm‖2
F = 1 and

‖Wm‖2
F = QR to fix the transmit and receive power for the m-th subframe, where

‖ · ‖F denotes the Frobenius norm and sm , [sm(0), sm(1), . . . , sm(NC − 1)].

From (5.1), the AoAs and AoDs are shared by all delay taps and so {Hd} and

H share the same column subspace. We thus have

rank(Hd) ≤ rank(H) ≤ L,∀d.

The number of paths, L, for the mmWave and THz bands is typically low [92, 124].
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This suggests that the concatenated channel matrix consisting of all the delay taps

is low-rank. We exploit such low-rankness of the channel matrix and formulate the

channel estimation problem as a low-rank matrix sensing (LRMS) problem as

min
Ĥ

rank(Ĥ), s.t. ‖A(Ĥ)− vec(Y)‖2
F ≤ δ2, (5.10)

where δ2 is a threshold accounting for the noise and the sensing operator

A(Ĥ) , Kvec(Ĥ) (5.11)

with the sensing matrix given as

K ,



ΞT
1 ⊗WH

1

ΞT
2 ⊗WH

2

...

ΞT
M ⊗WH

M


∈ CMNCQR×NCNRNT , (5.12)

where

Ξm = [ξm,0, ξm,1, · · · , ξm,NC−1] ∈ CNCNT×NC . (5.13)

Remark 1: An impulsive structure may be adopted for the training symbols by

choosing sm = [1, 0, . . . , 0],∀m, following [81]. Such zero padded training symbols

can mitigate inter-subframe-interference, which may reduce the channel estimation

complexity since it leads to a simplified transmitted training block

Ξm = I⊗ pm. (5.14)

Note that, however, more general training sequences can be used for the proposed

LRMS-based channel estimator.

The problem in (5.10) is NP-hard. We relax the problem to estimate the channel
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matrix H from the received signal by solving

arg min
Ĥ

f(Ĥ) + µ‖Ĥ‖∗, (5.15)

where

f(Ĥ) ,
1

2
‖Kvec(Ĥ)− vec(Y)‖2

F (5.16)

and µ > 0 is a regularization parameter. We propose to solve the problem in (5.15)

using the GCG-ALTMIN algorithm [125] to exploit its low complexity in solving

similar problems. For completeness, we first outline the GCG-ALTMIN algorithm.

We will then study the low-complexity implementations of LRMS and performance

improvement by using matrix reshaping and SD.

The GCG-ALTMIN algorithm iteratively refines the channel estimate by rank-

one updates and alternate minimization. At the l-th iteration, rank-one update via

the GCG operation is applied to a rank-(l − 1) solution to produce a higher-rank

initialization. The ALTMIN algorithm is then used to refine the solution. Let Ĥl

denote the estimate of H after the l-th GCG iteration. Following [125], the GCG

algorithm first updates the solution as follows:

Ĥl = (1− ηl)Ĥl−1 + ζlRl, (5.17)

where ηl ∈ [0, 1] is the step size, Rl = ulv
H
l denotes the outer product of the top

singular vector pair of vec−1(−∇f(Ĥl)), and ∇ denotes the gradient. Then

∇f(Ĥl) = KHKvec(Ĥl−1)−KHvec(Y). (5.18)

Furthermore,

ζl =
R
(
kHl vec(Y)− (1− ηl)kHl Kvec(Ĥl)

)
− µ

kHl kl
(5.19)

where R(·) denotes the real part of the number and kl = Kvec(Rl). The direct

calculation of KHKvec(Ĥl−1) and KHvec(Y) can be computationally expensive.
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As will be discussed shortly in Section III-B, we can exploit the factored form of K

in (5.12) to significantly reduce the computational effort.

Based on the initial rank-l estimate provided by the GCG algorithm, Ĥl is further

refined by a local search using the ALTMIN algorithm. Exploiting a Frobenius norm

characterization of the nuclear norm, the ALTMIN algorithm solves iteratively the

following regularized least squares problem

min
U,V

1

2
‖Kvec(UlV

H
l )− vec(Y)‖2

F +
1

2
µ(‖Ul‖2

F + ‖Vl‖2
F ), (5.20)

by assuming Ĥl = UlV
H
l with Ul ∈ CNR×l and Vl ∈ CNCNT×l. Let Ui

l and Vi
l

denote the refinement of Ul and Vl during the i-th ALTMIN iteration. We can

refine Vl as Vi
l = vec−1(vil) with

vil =
((

U i−1
l

)H U i−1
l + µIlNTNC

)−1 (
U i−1
l

)H
vec(Y) (5.21)

and

U i−1
l = K(INTNC ⊗Ui−1

l ) ∈ CMNCQR×lNTNC . (5.22)

Similarly we can update Ui
l as Ui

l = vec−1(uil) with

uil =
((

V i
l

)H V i
l + µINRl

)−1 (
V i
l

)H
vec(Y) (5.23)

and

V i
l = K

(
(Vi

l)
∗ ⊗ INR

)
∈ CMNCQR×lNR . (5.24)

The final estimate is obtained by iteratively updating Ui
l and Vi

l . The above GCG-

ALTMIN algorithm has the advantage that only the factored forms of {Ĥl} are

updated, which results in low computation and storage requirements. A stopping

criterion can be used to terminate its iterations [125].
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5.3.2 Complexity Reduction via PCG Implementation

Computation of the high-dimensional Gramian matrices and inverses in (5.21) and

(5.23) can incur a high computational complexity ofO(l3N3
R+l3N3

TN
3
C+l2N2

RMNCQR+

l2N2
TN

3
CMQR), which can be challenging for real-time applications. In order to ad-

dress this challenge, we apply the iterative preconditoned conjugate gradient (PCG)

algorithm [126–128] to calculate (5.21) and (5.23). Although PCG has been widely

used for solving large linear equations, its effectiveness depends on the preconditioner

used to accelerate the convergence and also the scheduling of the matrix-vector mul-

tiplications which affect its per-iteration complexity. In the following, we introduce

solutions to enable PCG-based, low-cost LRMS estimators. .

We focus on the computation of (5.21) and note that (5.23) can be treated in

the same way. For conciseness, let us drop the subscripts and let

B = UHU + µI,

d = UHy.

(5.25)

We can then write (5.21) as the solution of

Bv = d. (5.26)

Since B is positive-definite, Hermitian, PCG can be applied to solve (5.26). For

simplicity, we propose to apply the diagonal Jacobi precondtioner P = (diag(B))−
1
2 ,

which is computationally efficient. This preconditioner can significantly reduce the

condition number of PBPH and hence improve the convergence of the conjugate

gradient (CG) algorithm. Applying preconditioning, instead of (5.26) we solve

B̃ṽ = d̃, (5.27)
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with B̃ = PBPH , d̃ = PHd and ṽ = (PH)−1v. The PCG algorithm updates the

estimate of ṽ during each iteration as

ti =

 r0, i = 1,

ri−1 +
rHi−1ri−1

rHi−2ri−2
ti−1, i > 1,

αi =
rHi−1ri−1

tHi B̃ti
,

ṽi = ṽi−1 + αiti,

ri = ri−1 − αiB̃ti,

(5.28)

with initial values set as r0 = d̃ and ṽ0 = 0. Clearly, with PCG, the computation

of the Gramian matrices and matrix inversions are avoided. The computational

complexity is now dominated by the matrix-vector product of the form B̃t at each

iteration. Its direct calculation still has a high complexity due to the high dimen-

sionality of the matrix B̃. We suggest addressing this issue by exploiting the factored

form of B̃ and step-wise multiplication. To see this, note that

B̃t =PBPHt

=P
(
UHU + µI

)
PHt

=PUHUPHt + µPPHt.

(5.29)

As P is diagonal, matrix-vector multiplications involving P have negligible com-

plexities. We thus focus on the first term and compute it in a step-wise manner

as

t̃ = PHt, c1 = U t̃, c2 = UHc1, c3 = Pc2. (5.30)
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Recalling (5.22), we then have U = K(INTNC ⊗U) and

c1 = (K(INTNC ⊗U)) t̃ =



(
ΞT

1 ⊗WH
1

)
(INTNC ⊗U)̃t(

ΞT
2 ⊗WH

2

)
(INTNC ⊗U)̃t

...(
ΞT
M ⊗WH

M

)
(INTNC ⊗U)̃t


. (5.31)

Now consider the m-th block in (5.31)

(
ΞT
m ⊗WH

m

)
(INTNC ⊗U)̃t =

(
ΞT
m ⊗ (WH

mU)
)
t̃

=vec(WH
mUvec−1(̃t)Ξm),∀m,

(5.32)

where we recall Wm ∈ CNR×QR , U ∈ CNR×l, vec−1(̃t) ∈ Cl×NCNT , and Ξm ∈

CNCNT×NC . The above item can be computed in a step-wise manner as

C11 = WH
mU ∈ CQR×l, C12 = vec−1(̃t)Ξm ∈ Cl×NC , C13 = C11C12 ∈ CNR×NC .

(5.33)

The complexities of these steps are O(lQRNR), O(lNTN
2
C) and O(lQRNC), re-

spectively. Since there are M blocks, the total complexity of calculating c1 is

O(Ml(QRNR +NTN
2
C +QRNC)). For computing c2 = UHc1, we use

c2 = (K(INTNC ⊗U))H c1 =





ΞT
1 ⊗WH

1

ΞT
2 ⊗WH

2

...

ΞT
M ⊗WH

M


(INTNC ⊗U)



H

c1

=
M∑
m=1

((
ΞT
m ⊗WH

m

)
(INTNC ⊗U)

)H
c1,m =

M∑
m=1

(
(INTNC ⊗UH) (Ξ∗m ⊗Wm)

)
c1,m

=
M∑
m=1

(
Ξ∗m

(
UHWm

))
c1,m =

M∑
m=1

vec(
(
UHWm

)
vec−1(c1,m)ΞH

m)

=
M∑
m=1

vec(
(
CH

11

)
vec−1(c1,m)ΞH

m),

(5.34)
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where C11 ∈ CQR×l is already computed, vec−1(c1,m) ∈ CQR×NC , and Ξm ∈ CNCNT×NC .

Using a similar strategy as for c1, the complexity of calculating c2 is O(lM(QRNC +

NTN
2
C)). With the above computations based on the factored forms, the complex-

ity per PCG iteration is O(lM(QRNR +NTN
2
C +QRNC)). This can be significantly

lower than the complexity of O(lMNTN
2
CQR) for the direct calculation for c1 and

c2 even using already calculated U . The PCG treatments of (5.23) require the same

order of per-iteration complexity as that for (5.21).

Recall that Ξm = I⊗pm as shown in (5.14) when impulsive training is considered.

Due to the block diagonal structure of Ξm, the complexity of calculating c1 and c2

can be further reduced to O(lM(QRNR+NTNC +QRNC)) using the factored forms

of the relevant matrices.

5.3.3 Complexity Reduction via LRMC

The above LRMS solution allows arbitrary training schemes {Wm,pm, sm(n)} to

be deployed. However, their sparsity levels affect the complexity of the GCG-

ALTMIN-based estimator. We now present an alternative formulation based on

LRMC, which can significantly reduce computational complexity. This is achieved

by designing {Wm,pm, sm(n)} in such a way that noisy observations of the entries

of a transformed matrix

C = XH
RHXT ∈ CNR×NCNT (5.35)

are obtained, where XT and XR are the transmitter and receiver feature matrices,

respectively. In order to accommodate this formulation for the hybrid transceiver

and multi-tap wideband channel, we construct the transmitter feature matrix as

XT ,

[
INC ⊗ xT,1, INC ⊗ xT,2, . . . , INC ⊗ xT,NT

]
∈ CNCNT×NCNT (5.36)

with xT,i representing the i-th column of a transmitter feature matrix XT ∈ CNT×NT .
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We aim to obtain first an estimate Ĉ of the transformed matrix C, and then

estimate the channel matrix as

Ĥ = (XH
T )−1Ĉ(XR)−1. (5.37)

Clearly, in order to achieve good performance, the feature matrices XR and XT must

be full-rank. Furthermore, they should be well-conditioned such that the inversions

do not significantly amplify the errors in Ĉ. We still estimate C by leveraging its

low rankness, which originates from the low rankness of H, by using LRMC. This

requires that C satisfies the general incoherence properties for LRMC to be effective.

Intuitively, the singular vectors of C should not be too sparse and should be well

spread out (i.e., uncorrelated with standard basis) [129]. This also suggests that

the nonzero entries of C should not be concentrated to only a few rows or columns,

such that random sampling can be used for effective matrix completion. Based on

the above considerations of the feature matrices, we apply the construction of [50,

Section IV] to obtain XT and XR which are close to unitary and then compute

XT as (5.36). We observe empirically that they meet well the requirements for the

feature matrices.

The hybrid precoder and combiner are designed to form these feature matrices.

For a given subframe, pm is selected as one column of XT , while Wm as a group

of QR columns of XR. They are implemented using the hybrid transceivers by

applying the PE-ALTMIN algorithm [98]. Meanwhile, the impulsive training as

(5.14) is adopted. As such, from (5.7), the received signal Y obtained after training

gives noisy samples of C, i.e.,

vec(Y) , KΩvec(C̃) ∈ CMNCQR×1, (5.38)

where C̃ is a noisy version of C. Correspondingly, KΩ is the MNCQR ×NRNTNC

sparse matrix with only one nonzero entry in each row, whose position is determined
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by the sampling pattern Ω. The training during each subframe corresponds to

sampling QR rows of NC columns of C̃. The above sampling process can be chosen

following uniform spatial sampling (USS) [97].

Note that the training process requires all of {Wm} and {pm} to be selected from

the columns of XR ∈ CNR×NR and XT ∈ CNT×NT , even for a very large number of

training subframes M . Furthermore, in order to ensure feasible implementations

using hybrid receivers, Wm should be selected from fixed sets of the columns of XR,

which shall also be disjoint. This differs from the more general training scheme as

discussed in Section 5.3.1, where Wm and pm are not subject to these constraints.

Both H and C are low-rank. After training, the transformed matrix C is first

estimated from Y using LRMC, which is a special instance of the LRMS of (5.10)

as

min
Ĉ

rank(Ĉ), s.t. ‖AΩ(Ĉ)− vec(Y)‖2
F ≤ δ2, (5.39)

with AΩ(Ĉ) , KΩvec(Ĉ) as the sampling operator. The GCG-ALTMIN algorithm

can be used, whose complexity is significantly lower than the general LRMS approach

due to the low-complexity matrix products involving the extremely sparse matrix

KΩ. Note that K is generally a dense matrix in the LRMS formulation in (5.10)-

(5.13). After solving (5.39), (5.37) can be applied to obtain the channel estimate.

5.3.4 Performance Enhancement via Matrix Reshaping

In the above, we have discussed methods for complexity reduction. This subsec-

tion introduces an effective approach for enhancing the performance with a given

training overhead. For nuclear norm minimization-based LRMS with the linear op-

erator A(·) following the restricted isometry property (RIP) or rank-one Gaussian

measurements, the training complexity (number of observations required for reli-

able recovery) for an n× p matrix with rank L is given as Ns ∝ Lq, with q = n+ p

[130]. Therefore, given a fixed rank L, a lower training complexity is required when

q is smaller. As an example, consider the channel matrix model in this chapter for

97



5.3. LRMS-Based Wideband MIMO Channel Estimation

NR = 512, NT = 8 and NC = 4. Then the dimension of H is 512 × 32, giving

q = 544 with n = NR = 512 and p = NCNT = 32. If H can be reshaped into a

matrix H of dimension 128× 128, then q can be reduced to 256 with n = NR/4 and

p = 4NCNT . If H further has the same rank as H, then the training complexity

can be reduced by such reshaping. Therefore, for applications with H being fat or

tall matrix, rank-preserving matrix reshaping may be applied to reduce the training

complexity, or equivalently, improve the performance of LRMS with a given training

overhead.

To apply the rank-preserving matrix reshaping to the channel matrix, the shift-

invariance property of uniform arrays may be utilized, which states that two uniform

arrays that are shifted versions of each other have the same signal subspace. This

property is commonly exploited in ESPRIT-like spectrum estimation techniques [99].

Here, it provides a useful tool for performance enhancement via matrix reshaping.

Consider first the case where the original channel matrix H in (5.8) is a tall

matrix with NR � NCNT . Assume that NR has positive integer factors KR and

MR, i.e., NR = KRMR. Then we can reshape H into

H =

[
H0,H1, . . . ,HNC−1

]
∈ CMR×NTNCKR , (5.40)

where Hd ∈ CMR×NTKR is obtained by reshaping Hd as

Hd =
[
vec−1(Hd,:,1), vec−1(Hd,:,2), . . . , vec−1(Hd,:,NT )

]
, (5.41)

where vec−1(Hd,:,n) ∈ CMR×KR denotes the matricization of the n-th column of Hd.

Note that there can be multiple choices for reshaping but it is preferable to adopt

the option that results in a matrix close to square, as can be seen from the earlier

analysis.

To understand how the shift-invariance property of the ULAs can be leveraged
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to preserve the rank of Hd, let us rewrite the steering vector in (5.2) as

aR(θR,l) = aR,KR(θR,l)⊗ aR,MR
(θR,l)

aR,KR(θR,l) ,
1√
KR

[
1, ejMR

2π
λc
β cos(θR,l), · · · , ejMR(KR−1) 2π

λc
β cos(θR,l)

]T
aR,MR

(θR,l) ,
1√
MR

[
1, ej

2π
λc
β cos(θR,l), · · · , ej(MR−1) 2π

λc
β cos(θR,l)

]T
.

(5.42)

It can be easily demonstrated that

Hd =

√
NTNR

L

L−1∑
l=0

αlp(dTs − τl)aR,MR
(θR,l)

(
aT (φT,l)⊗ a∗R,KR(θR,l)

)H
, (5.43)

where aR,MR
(θR,l)

(
aT (φT,l)⊗ a∗R,KR(θR,l)

)H
is a reshaped version of aR(θR,l)a

H
T (φT,l)

and both form rank-1 matrices. This demonstrates that the rank is preserved via

reshaping.

When NR � NCNT , similar rank-preserving reshaping may be applied. Consider

a case with NT = KTMT . The channel matrix can be reshaped into

H =

[
H0,H1, . . . ,HNC−1

]
∈ CNRKT×

NTNC
KT (5.44)

where KT is the reshaping factor and Hd ∈ CNRKT×
NT
KT is written as

Hd =

[
vec(Hd,:,1:KT ), vec(Hd,:,KT+1:2KT ), . . . , vec(Hd,:,(MT−1)KT+1:MTKT )

]
, (5.45)

with vec(Hd,:,(n−1)KT+1:nKT ) ∈ CNRKT×1 obtained by stacking columns (n−1)KT +1

to nKT of Hd. As the transmitter-side array response can be written as

aT (φT,l) = aT,MT
(φT,l)⊗ aT,KT (φT,l)

aT,MT
(φT,l) ,

1√
MT

[
1, ejKT

2π
λc
β cos(φT,l), · · · , ejKT (MT−1) 2π

λc
β cos(φT,l)

]T
aT,KT (φT,l) ,

1√
KT

[
1, ej

2π
λc
β cos(φT,l), · · · , ej(KT−1) 2π

λc
β cos(φT,l)

]T
.

(5.46)
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Then

Hd =

√
NTNR

L

L−1∑
l=0

αlp(dTs − τl)
(
a∗T,KT (φT,l)⊗ aR(θR,l)

)
aHT,MT

(φT,l) (5.47)

where
(
a∗T,KT (φT,l)⊗ aR(θR,l)

)
aHT,MT

(φT,l) is the reshaped version of aR(θR,l)a
H
T (φT,l)

and both form rank-1 matrices. Clearly, such reshaping also preserves the rank.

The shift-invariance property can be utilized to obtain different versions of Hd.

However, the options of Hd in (5.43) and (5.47) ensure that vec(H) = vec(H).

Therefore, the sensing operator A(·) and received signal Y in (5.10) are not affected

by reshaping. However, with the reshaped target matrix H to be estimated, the

problem in (5.20) is reformulated by obtaining the low-rank estimate of H , UV
H

as

min
U,V

1

2
‖Kvec(UV

H
)− vec(Y)‖2

F +
1

2
µ(‖U‖2

F + ‖V‖2
F ). (5.48)

Note that the dimensions of the factor matrices U and V depend on the adopted

reshaping option, which differ from those in (5.20). After obtaining the low-rank

estimate of Ĥ using the GCG-ALTMIN algorithm similar to Section 5.3.1, it can be

reshaped back to the original dimension, giving Ĥ.

Note that in the above we have considered the reshaping for the LRMS estima-

tion of H, for which the shift-invariance property can apply. It is, however, not

directly applicable to the transformed matrix C in the LRMC approach in Section

5.3.3. However, when switches are available, such as considered in [50], the LRMC

can work directly on H and reshaping can be applied straightforwardly to enhance

performance.
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5.3.5 Performance Enhancement via Spectrum Denoising

(SD)

The proposed LRMS estimator (including the special case of LRMC) exploits the

low-rank nature of the channel and estimates the channel matrix from compressed

observations. This reduces the training overhead in hybrid MIMO systems. The

solution can be used alone as a robust wideband mmWave channel estimator which

does not rely on assumptions other than low-rankness. On the other hand, LRMS

does not exploit the array response knowledge. We now extend the SD approach in

[108, 131] to further enhance the performance by exploiting such knowledge. With

SD, the AoAs and AoDs shared by all delay taps are first estimated from Ĥ. Then

the path gains for each tap are estimated using the angle information and received

signal.

5.3.5.1 Estimation of Path Angles

Based on the low-rank estimate of the channel matrix H, the sparsity of the channel

in the angular domain and the array response can be leveraged to estimate the AoAs

θR = {θR,1, θR,2, . . . , θR,L} and AoDs φT = {φT,1, φT,2, . . . , φT,L} of the propagation

paths. Let us first consider the AoA estimation from the row subspace of Ĥ. Note

that (5.3) can be rewritten in terms of transmitter/receiver array response matrices

and path gains for different channel taps as

H =

[
AR(θR)G0A

H
T (φT ), . . . ,AR(θR)GNC−1A

H
T (φT )

]
=AR(θR)

[
G0A

H
T (φT ), . . . ,GNC−1A

H
T (φT )

]
=AR(θR)ΛR

(5.49)

with ΛR =

[
G0A

H
T (φT ), . . . ,GNC−1A

H
T (φT )

]
∈ CL×NCNT acts as the “source” for

generating “snapshots” of the receiver ULA given by the columns of H. Since the

angles are shared by all the taps, the number of “snapshots” for estimating the
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Figure 5.2: Flowchart of the proposed LRMS-SD-based scheme.

AoAs can be large, which can contribute to the reliable estimation of the angles

using subspace-based super-resolution methods.

The low-rank channel matrix estimate Ĥ can be written as

Ĥ = H + E, (5.50)

where E represents the estimation error of the LRMS estimator. The SCM for the

AoA estimation is written as

R̂θR =
1

NCNT

ĤĤH . (5.51)

The signal and noise subspaces are estimated from the SCM in (5.51) and the AoAs

can be estimated by applying root-MUSIC [93–95], exploiting its good trade-off be-

tween estimation accuracy and computational complexity. The computation com-

plexity is kept low by utilizing polynomial rooting rather than spectrum peak search.

Similarly, to estimate the AoDs, we first note that

Ȟ ,

[
HH

0 , · · · ,HH
NC−1

]
=

[
AT (φT )G0A

H
R (θR), · · · ,AT (φT )GNC−1A

H
R (θR)

]
=AT (φT )

[
G0A

H
R (θR), · · · ,GNC−1A

H
R (θR)

]
=AT (φT )ΛT

(5.52)
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with ΛT =

[
G0A

H
R (θR), · · · ,GNC−1A

H
R (θR)

]
∈ CL×NCNR . The SCM for AoD esti-

mation can be obtained by

R̂φT =
1

NCNR

̂̌H ̂̌HH

(5.53)

where ̂̌H denotes the estimate of Ȟ obtained from Ĥ in a way similar to (5.52).

Then the root-MUSIC algorithm is used to estimate the AoDs.

In summary, this stage estimates the AoAs and AoDs separately using the root-

MUSIC algorithm from Ĥ. As compared to the narrowband case of [108], we can

access more “snapshots” for obtaining the SCMs for angle estimation, thanks to

that the channel taps share the AoAs and AoDs. The abundance of samples also

eliminates the necessity of the treatments, such as Toeplitz rectification or spatial

smoothing, for low sample supports, though they can also be implemented here with

low extra costs.

5.3.5.2 Estimation of Path Gains

The obtained AoA estimates θ̂R and AoD estimates φ̂T are now used to denoise the

channel estimate. The key task is to obtain the path gains corresponding to each

delay tap using the observations Y and estimated AoAs and AoDs.

The channel matrix can be written as H = AR(θR)G(INC ⊗ AH
T (φT )) where

G = [G0,G1, . . . ,GNC−1] ∈ CNR×NTNC contains the beamspace gains of all the

delay taps. Then after vectorization,

h , vec(H) = ((INC ⊗A∗T (φ))⊗AR(θR)) vec(G) , Ψg, (5.54)

where Ψ = (INC ⊗A∗T (φT )) ⊗AR(θR) ∈ CNTNRNC×L2NC and g ∈ CL2NC×1. When

the AoAs {θR,l} and AoDs {φT,l} are known, within G the channel gain matrix of

the d-th tap, Gd,∀d, can be estimated by using the standard LS method. However,

since the correspondence between θ̂R and φ̂T is unknown, the LS estimate of Gd

may contain more than L̂ nonzero entries in the noisy cases, where L̂ is the rank
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of the low-rank channel estimate Ĥ. This can also result in significant estimation

errors when the PNR is low.

Alternatively, we estimate the channel gain vector by solving the following sparse

recovery problem:

g? = arg min
g
||vec(Y)−KΨ̂g||2, ||g||0 = L̂NC , (5.55)

where Ψ̂ = (INC ⊗ A∗T (φ̂T )) ⊗ AR(θ̂R) ∈ CNTNR×L̂2
. We suggest applying OMP

[132] to solve the above problem for simplicity but other sparse recovery methods

can also be used. The sparsity pattern of g?d within g? reveals the correspondence

of the AoAs, AoDs, and path gains for the d-th delay tap.

If the impulsive training structure is used, the channel gains of each delay tap

can also be estimated separately. The received signal corresponding to the d-th

delay tap can be extracted as Yd , Y:,d:NC :NCM ∈ CQR×M when impulsive training

is applied. Recall the channel for the d-th delay tap in (5.3). After vectorization,

the channel for the d-th delay tap can be written as

hd , vec(Hd) = (A∗T (φT )⊗AR(θR)) vec(Gd) , Ψgd, (5.56)

where Ψ = A∗T (φT ) ⊗ AR(θR) ∈ CNTNR×L2
and gd ∈ CL2×1. We estimate the

channel gain vector by solving the following sparse recovery problem:

g?d = arg min
gd
||vec(Yd)−KdΨ̂gd||2, ||gd||0 = L̂, (5.57)

where Ψ̂ = A∗T (φ̂T ) ⊗ AR(θ̂R) ∈ CNTNR×L̂2
. In the above, the sensing matrix for
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the d-th delay tap is given as

Kd =



pT1 ⊗WH
1

pT2 ⊗WH
2

...

pTM ⊗WH
M


∈ CMQR×NTNR ,∀d. (5.58)

Finally, the channel matrix is reconstructed as

Ĥd = vec−1(Ψ̂g?d),∀d. (5.59)

The flowchart of the proposed LRMS-SD-based estimator is depicted in Fig. 5.2.

The SD treatments for the LRMC-based training and estimation are similar and

are skipped for brevity. The solutions presented in this chapter can be applied to

narrowband channels in Chapter 3 by assuming NC = 1.

5.4 Performance of the Proposed Estimators

In this section, we evaluate the performance of the proposed channel estimators

by comparing their complexity and estimation accuracy with several representative

estimators.

5.4.1 Complexity Comparison With Alternative Estimators

The proposed estimators are compared with the LS estimator, an OMP-based [132]

CS estimator exploiting only the sparsity, and an ADMM-based estimator exploiting

both the sparsity and low-rankness of the channel following [92].

For the LS estimator, the received signal is modeled as Y̌ = XH
RHXT + XH

RN,

which can be viewed as a fully sampled version of the received signal used for

the LRMC estimator. The channel estimate is obtained using Ĥ = (XH
R )†Y̌X

†
T

where (·)† denotes pseudo-inverse. This LS estimator has complexity O(N2
RNTNC +

105



5.4. Performance of the Proposed Estimators

NRN
2
TN

2
C) if XR and XT are square and their inverses are pre-calculated. Exploiting

neither the sparsity nor the low-rankness of the channel, the LS estimator generally

requires high training overhead, but exhibits lower computational complexity.

The OMP-based estimator is based on the following sparse model of the channel

matrix: H = DRZ̃(INC ⊗DH
T ), where DR ∈ CNR×GR and DT ∈ CNT×GT are DFT

matrices and GR and GT are the grid sizes for the AoA and AoD, respectively. Here

Z̃ = [Z̃0, Z̃1, . . . , Z̃NC−1] is assumed sparse with Z̃d denoting the virtual channel gains

for the d-th tap. The training signal can be generated the same as the proposed

method. Let y = vec(Y) = Ψ̃z + n, with Ψ̃ = K
(
(I⊗DH

T )T ⊗DR

)
denoting

the measurement matrix, z = vec(Z̃) and n representing the noise vector. The

OMP-based solution solves heuristically the following problem:

min
z
‖z‖0 s.t.‖y − Ψ̃z‖2

F ≤ ρo (5.60)

where ‖·‖0 denotes the number of nonzero entries and ρo a threshold. The computa-

tional complexity with IO iterations isO(IO(GRNTNC(QRM/NT+GT )+IONRNCNT+

IONCQRM)). The dictionary dependence makes the computational complexity of

this OMP-based solution high especially for large systems. Also in order to cope

with the power leakage of on-grid CS, a relatively large number of iterations is often

required for the OMP to achieve good performance.

The ADMM estimator is modified from [92] which originally targets different

hybrid transceivers. It aims to jointly exploit the low-rankness of H and the sparsity

of Z̃ ∈ CGR×NCGT . The training scheme is designed such that Ỹ = Ω◦Y is observed,

where Y = WHHΞ+WHN ∈ CNR×NCM , Ω ∈ {0, 1}NR×NCM denotes the sampling

matrix with QR ones and NR−QR zeros in each column, ◦ the Hadamard product,

and N is the noise matrix. This is implemented by employing a hybrid combiner

W = XR and selecting QR columns of XR at each time instance and generating Ξ

according to (5.9) using random 4-QAM symbols and random precoders. The low-

rankness of the noiseless version of Y (arising from that of H) and the sparsity of Z̃
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are then jointly exploited by the iterative ADMM algorithm. The estimate can be

further refined by exploiting a priori angle information as suggested in [92], which

can be obtained by applying the ADMM estimator for another time. This is referred

to as “ADMM with angle”. The complexity of the ADMM estimator is dominated

by the SVD of a NR ×NCM matrix in line 2 of [92, Alogrithm 1] and the pseudo-

inverse of a MNCNT × NCNRNT matrix in line 5 of [92, Algorithm 1]. Utilizing

a gradient descent (GD) algorithm and incomplete SVD the overall complexity is

O(IA(N3
RN

3
CN

2
TM +N2

RN
2
CNTM +N2

RN
2
CN

2
T +NRNCM)). The complexity may be

reduced by exploiting further iterative algorithms but it is generally high in large

systems as the number of iterations IA required tends to be high.

By contrast, the proposed estimators can exploit the low rankness and sparsity

at separate stages. The complexity of the LRMS-based approach using the GCG-

ALTMIN algorithm is dominated by the computation of (5.21) and (5.23). By

utilizing the PCG algorithm and the factored forms, their complexity is kept low.

Additionally, similar factored forms can be used to reduce the complexity of calcu-

lating (5.18) and (5.19). Then the complexity of the GCG-ALTMIN-based LRMS is

O(IM(IP (ML̂2(QRNR +NTNC +QRNC))) +NRNCL̂(MNT +MQR +NT )) with IP

denoting the number of the PCG iterations and IM denoting number of the ALTMIN

iterations. Both IM and IP are low due to the fast convergence of the ALTMIN algo-

rithm and preconditioning, respectively. The complexity for obtaining the LRMC-

based estimate using the GCG-ALTMIN algorithm is significantly lower since KΩ is a

sparse matrix, which isO(IM L̂
2((NCNT+NR)(L̂2+L̂+1)+L̂QRMNC)+L̂NRNTNC)

[50]. This complexity assumes direct computation of (5.21) and (5.23), and it may

be reduced further by using PCG.

The matrix reshaping strategy in Section 5.3.4 does not increase the computa-

tional complexity of the LRMS estimators as the ALTMIN steps for solving (5.48)

require fewer computations than those for (5.20) due to the changed matrix dimen-

sions. The SD method in Section 5.3.5 requires additional computational efforts.

The complexity of AoA and AoD estimation is dominated by the root-MUSIC algo-
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rithm and given by O(N3
R + N3

T ). For the d-th delay tap, the OMP-based channel

path gain estimation has a complexity of O(L̂(L̂NT (QRM/NT + L̂) + L̂NTNR +

L̂MNCQR)), which is low as L̂ is typically small for mmWave and THz bands.

5.4.2 Simulation Results

This subsection presents the simulation results. We employ (5.1) to model the

small-scale fading of the mmWave and THz channels, following [36, 38, 52, 87,

117–120]. The pilot-to-noise-ratio is defined as PNR , 10 log10( P
σ2
n
), with P =

‖pmsm‖2
F = 1 denoting the total transmitted power during a subframe. The path

gains {αl} in (5.1) follow CN (0, 1), the delays {τl} are uniformly distributed in

[0, (NC − 1)Ts], while all the AoAs and AoDs are uniformly distributed in [0, 2π).

The roll-off factor for the raised-cosine filter is assumed to be 0.8 [36]. For the

GCG-ALTMIN algorithm, the regularization parameter µ = σ2
n and the stopping

thresholds for the ALTMIN algorithm and the GCG algorithm are set as εa = 0.1

and ε = 0.01, respectively, following [50]. To compensate for the power leakage for

the OMP estimator, the sparsity level of Z is assumed to be 100. The grid sizes

for the OMP and ADMM estimators are assumed as GR = NR and GT = NT . The

normalized mean squared error (NMSE) for estimating the concatenated channel

matrix is obtained as the mean of
||H−Ĥ||2F
||H||2F

.

We first compare the influence of the training schemes on the proposed methods.

We consider two types of precoders/combiners: the structured precoder/combiner as

used for the LRMC estimator in Section 5.3.3, and the random precoder/combiner

having phase shifts randomly selected from the set of feasible phase shifts. Note

that LRMC needs to use the structured precoder/combiner and impulsive training

while LRMS can accommodate different precoder/combiner and training structures.

Fig.5.3a shows the performance with structured precoders/combiners. It is seen that

the impulsive training (LRMS-SI) shows slightly better performance. The LRMS

estimator with structured precoder/combiner and continuous symbol transmission
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(a) Structured precoder and combiner (SI: structured precoder/combiner with impulsive training
signal; SC: structured precoder/combiner with continuous training signal.)
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Figure 5.3: Channel estimation performance versus PNR with different training schemes
for a wideband hybrid MIMO system with NT = 8, NR = 32, QR = 4, QT = 2, L =
3, NC = 4,M = 40.
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Figure 5.4: Channel estimation performance versus PNR for NT = 8, NR = 32, QR =
4, QT = 2, L = 3, NC = 4,M = 40,MLS = 64.

(LRMS-SC) suffers performance degradation of around 2 dB, but this loss dimin-

ishes when SD is used by gleaning the angle information. Fig.5.3b uses random

precoding/combining, where it can be seen that the different training schemes show

similar performance, with and without SD with marginal degradation in performance

shown by LRMS-RC. Recall that impulsive training leads to lower computational

complexity of the LRMS estimator and the LRMC estimator can further reduce the

complexity. However, note also that continuous training has a lower dynamic range

of the transmitted training signal. For its simplicity, impulsive training will be used

for the proposed estimators in the following simulations.

Comparisons of the proposed estimators with several existing solutions is pre-

sented in Fig. 5.4. The training overhead is set the same for the different so-

lutions except that the LS-based solution uses an extended training overhead of

MLS = NTNR/QR subframes. The proposed LRMC-SD estimator performs the best

and improves the proposed LRMC estimator by around 4 dB for the different PNR

values considered. However, it is worth noting that the LRMC estimator (and also
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the LRMS estimator) do not require knowledge of the array responses, in contrast

to the LRMC-SD, OMP, and ADMM estimators. The ADMM estimator attempts

to reconstruct the NR×NCM = 32× 160 received signal matrix (see Section 5.4.1).

This is in contrast to the proposed LRMC and LRMS approaches which aim to

recover directly the NR ×NCNT = 32× 32 channel matrix which has a smaller size

but the same rank. The performance lower bound is also added where perfect AoA

and AoD information is used to estimate the channel path gains using (5.57) for

reconstructing channel for all delay taps. It can be seen the proposed LRMC-SD is

the closest to the performance lower bound.

The comparison of channel estimation performance versus the training overhead

is shown in Fig. 5.5. The proposed LRMC-SD approach performs the best even at

very low training overhead. The ADMM approach with angle information performs

better than the proposed LRMC and OMP approaches at low training overhead.

After 40 subframes, the proposed LRMC approach outperforms the ADMM ap-

proach with angle information. The performance gains for the LRMC and LRMC-

SD estimators increase further at higher training. At 64 subframes, the LRMC and

LRMC-SD approaches show improvements of 2 dB and 5 dB, respectively, over the

ADMM approach with angle information. The influence of the number of channel

paths on the channel estimation performance is demonstrated in Fig. 5.6. It is

seen that the proposed estimators are most suitable for low-rank channels and their

estimation accuracy reduces when the channel rank increases. However, the pro-

posed LRMC-SD approach provides around 1.5 dB gain for L = 5 over the ADMM

approach exploiting the angle information.

Next, we report the effectiveness of matrix reshaping for the proposed LRMS

estimator. The comparison with the ADMM solution is skipped due to its increased

computational requirements for the channel dimensions considered. In Fig. 5.7, the

8× 256 channel matrix H is reshaped into a matrix H of size 32× 64. The results

in Fig. 5.7a suggest that the proposed LRMS estimators suffer performance loss

when H is far from square. However, the reshaped LRMS (R-LRMS) estimator,
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Figure 5.5: Channel estimation performance versus the number of training subframes M
for a wideband hybrid MIMO system with NT = 8, NR = 32, QT = 2, QR = 4, L =
3, NC = 4,PNR = 15 dB.

which works on H instead of H, can significantly improve the performance. The

improvement is also translated into the R-LRMS-SD estimator that applies SD to

refine the R-LRMS estimate. The gap between the performance of the R-LRMS-

SD estimator and the LRMC-SD ranges from 1 dB to 10 dB when the PNR is

increased from 0 dB to 20 dB. Fig. 5.8a shows the rank estimates obtained for

the LRMC, LRMS, and R-LRMS estimators using the GCG-ALTMIN algorithm.

The results suggest that reshaping improves the accuracy of the rank estimation.

The condition number of the reshaped channel matrix, which can generally indicate

the difficulty in solving LRMS problems [133], is also examined. The empirical

cumulative distribution function (CDF) of the condition number is demonstrated in

Fig. 5.8b for the original and reshaped channel matrix. It is seen that on average

reshaping improves the conditioning of the matrix to be estimated, which is helpful.

In the above, we have considered the channel model (5.1). In Fig. 5.9, we further
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Figure 5.6: Channel estimation performance versus number of paths L for a wideband
hybrid MIMO system with NT = 8, NR = 32, QT = 2, QR = 4, NC = 4,M = 40,MLS =
64,PNR = 15 dB.
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Figure 5.7: Channel estimation performance versus PNR for a wideband hybrid MIMO
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C32×64,KT = 4,MT = 16.

114



5.5. Summary

consider the ray-cluster channel model [134]

Hd =

√
NTNR

LcLr

Lc−1∑
c=0

Lr−1∑
r=0

αc,rp(dTs − τc)aR(θr,c)a
H
T (φr,c), (5.61)

where the total number of paths is given as L = LcLr, Lc denotes the number of

clusters, Lr denotes the number of rays and τc denotes the path delay for the c-

th cluster. The path delays for different rays within a cluster are assumed to be

the same [135]. Similarly to [50], Lc follows max(Poisson(1.8), 1), Lr is uniformly

distributed in [1, 20] and the other path parameters are generated following [50].

Although the total number of paths L = LcLr can be high, the rank of Hd,∀d,

can still be low [50] due to the high correlation of the rays within each cluster.

Therefore, the proposed LRMS solutions are still effective for channels modelled by

(5.61), outperforming the LS and OMP based estimators. Furthermore, compared

to OMP, the LRMS-based solutions do not require knowledge of the array responses

and hence they can be more robust against the phase and gain errors of the antennas

[50]. When Lr is large, the angles of the rays within each cluster can be very close

and the SD treatment becomes less effective due to the limitation of root-MUSIC

in estimating very close path angles.

5.5 Summary

In summary, this chapter presents LRMS-based solutions for estimating the wide-

band channel of mmWave and THz MIMO systems equipped with hybrid precoders

and combiners. The proposed estimators leverage the low rankness of the channel

matrix. The computational complexity of the LRMS estimator is lower when adopt-

ing the preconditioned conjugate gradient implementations or the LRMC formula-

tion. Such LRMS-based solutions do not rely on the knowledge of array responses

and thus can be used as stand-alone, robust estimators of low-rank wideband MIMO

channels, which differ from many existing estimators. Their performance can be
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Figure 5.9: Channel estimation performance versus PNR for the ray-cluster channel model
with L = LcLr, Lc ∼ max(Poisson(1.8), 1), Lr ∼ U [1, 20], NC = 4. Scenario 1: NT =
8, NR = 32, QT = 2, QR = 4,M = 40,MLS = 64. Scenario 2: NT = 64, NR = 8, QT =
4, QR = 2,M = 128,MLS = 256,H ∈ C8×256,H ∈ C32×64,KT = 4,MT = 16.

further improved if knowledge of the array response is available. In particular, the

shift-invariance property of the transmitter or receiver arrays can be exploited by

the matrix reshaping approach to enhance performance. If the array responses are

known, low-complexity spectrum denoising steps can be included to obtain the path

directions and reconstruct the channel. The different precoder/combiner structures

and training schemes that are suitable for the proposed estimators are also pre-

sented. As demonstrated by the simulation results, the proposed estimators can

noticeably improve the channel estimation performance and strike an attractive bal-

ance between performance and complexity.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, channel estimation solutions for future wireless communication sys-

tems are proposed. The proposed solutions target MIMO systems operating at

mmWave and THZ bands. All the provided solutions require low training overhead

and are computationally efficient. Hybrid analog-digital transceivers are considered

throughout the thesis and passive IRS is also considered. The findings show that by

first utilizing the low-rank nature of the channel and then exploiting the knowledge

of array response significant improvement in channel estimation accuracy can be

achieved. More specifically,

• In Chapter 3, a three-stage approach is presented for narrowband mmWave

channels. The proposed solution is able to estimate channel parameters like

AoAs, AoDs, and channel path gains in different stages with each stage bene-

fiting from the previous stage. The simulation results show that the proposed

narrowband channel estimator outperforms various existing solutions like the

OMP estimator, ADMM-based estimator, and IR-SR-based estimator. Addi-

tionally, it is shown that the proposed estimator allows low training overhead

and its computational effort is less than the existing solutions.
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• In Chapter 4, a channel estimation solution is proposed for IRS-assisted hybrid

MIMO systems. The proposed solution progressively estimates the channel

parameters including transmitter AoDs, receiver AoAs, the angle difference

between AoAs and AoDs at the IRS, and the composite channel gains for the

Tx-IRS and IRS-Rx channels. The proposed solution consists of two stages,

Stage 1 provides the estimates for transmitter AoDs and receiver AoAs,based

on which Stage 2 estimates the IRS angle difference and composite path gains.

The simulation results show significant improvements as compared to existing

solutions like LS-estimator, ANM-based solution, and TRICE estimator. The

training overhead of the proposed solution is kept low by adopting a two-stage

training in which Stage 2 benefits from already estimated angles and activates

only a subarray from IRS elements. The computational effort for the pro-

posed solution is significantly reduced as compared to existing solutions. This

reduction in computational complexity is achieved by estimating the channel

parameters in two stages and also by adopting low-complexity solutions while

estimating each channel parameter.

• In Chapter 5, channel estimation solutions for single-carrier wideband MIMO

channels are presented. First, the channel estimation problem is formulated

as low-rank matrix recovery and solved using LRMS. Then two complexity

reduction techniques are presented, first by utilizing an iterative matrix inver-

sion within the LRMS and then by using LRMC as a special case of LRMS.

For performance enhancement, a rank-preserving matrix reshaping strategy is

proposed for channel matrices far from square. Then the performance is fur-

ther enhanced by applying SD on the LRMS estimate to estimate the channel

parameters like AoAs, AoDs that are shared by all delay taps, and effective

path gains for each delay tap. The simulation results suggest that the pro-

posed solution with SD provides better estimation accuracy as compared to

LS-estimator, OMP-based estimator, and ADMM-based solutions. The pro-

118



6.1. Conclusions

posed solution is suitable for continues as well as impulsive training making it

flexible for practical scenarios.

Overall the solutions provided in Chapters 3, 4, and 5 exploit the low-rankness

of the channel matrix and the knowledge of array responses. All chapters provide

parametric channel estimation with super-resolution angle estimation. Having said

that, the problems considered in each chapter have their own challenges.

• Chapter 3 aims to provide a low-complexity solution for the narrowband chan-

nel estimation. The low-rank property of the NR ×NT channel matrix is ex-

ploited and the using low-rank channel estimate AoAs, AoDs, and finally the

path gains are estimated to further improve the overall channel estimate.

• Chapter 4 considers the narrowband IRS-assisted systems. The training and

estimation process is divided into two stages to reduce the training overhand

as well as computational cost. As compared to Chapter 3 the low-rankness of

the effective channel matrix H0 = GΩ0F ∈ CNR×NT is first exploited to only

provide the AoDs and AoAs at the transmitter and receiver. The low-rank

estimate of H0 is not a standalone channel estimation solution in contrast to

Chapter 3. Additionally, the IRS angles are also estimated and the collective

path gains are estimated as compared to path gains of a single channel in

Chapter 3.

• Finally, Chapter 5 considers wideband systems and first provides the LRMS-

based solution that is computational expensive, then complexity reduction

techniques are introduced. In contrast to Chapters 3 and 4, the channel model

also accounts for the path delays and have different delay taps. Different from

LRMC a generic framework based on the LRMS is first introduced that can

also be applicable to Chapter 3. Also, rank-preserving matrix reshaping is

introduced that was not considered in Chapters 3 and 4.

The trade-off between computational complexity and estimation accuracy is of

the proposed solutions is better than the existing solutions. This can be seen from
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the computational costs of the proposed solutions and the existing solutions. The

proposed solutions are less complex than the CS-based, ADMM-based (or IRSR

and ANM-based) solutions. In addition to low complexity, the proposed solutions

also outperform the above mentioned existing solutions as shown in the simulation

results.

6.2 Future Work

The work in this thesis can be extended to various promising directions:

• Extension to OFDM: The solutions in Chapter 3, Chapter 5, and Chapter 4

can be extended to OFDM systems with similar settings [36]. Effective LRMS

schemes may be developed, followed by the spectrum denoising techniques to

recover the AoAs, AoDs and delays shared by different subcarirers.

• Extension to time-varying channels: The solutions presented in Chapter 3,

Chapter 4, and Chapter 5 can be extended to time-varying channels where

Doppler shifts capture the time variation of the channel [81, 136, 137].

• Extension to UPA: The solutions in the thesis considered that the transmitter

and receiver are equipped with ULA. The extension to the case where the

transmitter and receiver are equipped with UPAs is also feasible. The problem

of 2D direction finding can be decomposed into two separate 1D problems and

solved using root-MUSIC as considered for the IRS angle estimation in Chapter

4. Then the pairing can be done while estimating the path gains using CS.

Alternatively, 2D direction finding methods such as 2D-ESPRIT [116] can be

used if the computational cost can be afforded.

• Subarray Sampling: The transmitter AoDs and receiver AoAs in this thesis

are estimated by utilizing the full arrays. For the cases when NT (NR) is very

high, the AoDs (AoDs) estimation will require high training and computational
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cost. To reduce the computational cost, subarray sampling can be utilized for

estimating the AoDs (AoDs).

• Array Inherent Impairments: The solutions presented in the thesis assume that

arrays do not suffer from phase or gain errors. The GCG-ALTMIN algorithm

has shown to be able to provide an accurate low-rank estimate in the presence

of array inherent impairments [50, 138]. However, the AoDs (AoAs) estimation

will suffer when arrays are not calibrated. For such cases, direction estimation

tools should take into account the array inherent impairments [139, 140].

• In addition to root-MUSIC algorithm that already provides viable angle esti-

mation solution, angle estimation based on the sparse Bayesian learning may

be explored.
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