56,658 research outputs found

    Topology estimation for thousand-camera surveillance networks

    Get PDF
    Copyright © 2007 IEEESurveillance camera technologies have reached the point whereby networks of a thousand cameras are not uncommon. Systems for collecting and storing the video generated by such networks have been deployed operationally, and sophisticated methods have been developed for interrogating individual video streams. The principal contribution of this paper is a scalable method for processing video streams collectively, rather than on a per camera basis, which enables a coordinated approach to large-scale video surveillance. To realise our ambition of thousand camera automated surveillance networks, we use distributed processing on a dedicated cluster. Our focus is on determining activity topology - the paths objects may take between cameras' fields of view. An accurate estimate of activity topology is critical to many surveillance functions, including tracking targets through the network, and may also provide a means for partitioning of distributed surveillance processing. We present several implementations using the exclusion algorithm to determine activity topology. Measurements reported for the key system component demonstrate scalability to networks with a thousand cameras. Whole-system measurements are reported for actual operation on over a hundred camera streams (this limit is based on the number of cameras and computers presently available to us, not scalability). Finally, we explore how to scale our approach to support multi-thousand camera networks. ©2007 IEEE

    Automated video processing and scene understanding for intelligent video surveillance

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on December 7, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Zhihai He.Vita.Ph. D. University of Missouri--Columbia 2010.Recent advances in key technologies have enabled the deployment of surveillance video cameras on various platforms. There is an urgent need to develop advanced computational methods and tools for automated video processing and scene understanding to support various applications. In this dissertation, we concentrate our efforts on the following four tightly coupled tasks: Aerial video registration and moving object detection. We develop a fast and reliable global camera motion estimation and video registration for aerial video surveillance. 3-D change detection from moving cameras. Based on multi-scale pattern, we construct a hierarchy of image patch descriptors and detect changes in the video scene using multi-scale information fusion. Cross-view building matching and retrieval from aerial surveillance videos. Identifying and matching buildings between camera views is our central idea. We construct a semantically rich sketch-based representation for buildings which is invariant under large scale and perspective changes. Collaborative video compression for UAV surveillance network. Based on distributed video coding, we develop a collaborative video compression scheme for a UAV surveillance network. Our extensive experimental results demonstrate that the developed suite of tools for automated video processing and scene understanding are efficient and promising for surveillance applications.Includes bibliographical reference

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Semi-automatic Data Annotation System for Multi-Target Multi-Camera Vehicle Tracking

    Full text link
    Multi-target multi-camera tracking (MTMCT) plays an important role in intelligent video analysis, surveillance video retrieval, and other application scenarios. Nowadays, the deep-learning-based MTMCT has been the mainstream and has achieved fascinating improvements regarding tracking accuracy and efficiency. However, according to our investigation, the lacking of datasets focusing on real-world application scenarios limits the further improvements for current learning-based MTMCT models. Specifically, the learning-based MTMCT models training by common datasets usually cannot achieve satisfactory results in real-world application scenarios. Motivated by this, this paper presents a semi-automatic data annotation system to facilitate the real-world MTMCT dataset establishment. The proposed system first employs a deep-learning-based single-camera trajectory generation method to automatically extract trajectories from surveillance videos. Subsequently, the system provides a recommendation list in the following manual cross-camera trajectory matching process. The recommendation list is generated based on side information, including camera location, timestamp relation, and background scene. In the experimental stage, extensive results further demonstrate the efficiency of the proposed system.Comment: 9 pages, 10 figure

    Multi-camera cooperative scene interpretation

    Get PDF
    In our society, video processing has become a convenient and widely used tool to assist, protect and simplify the daily life of people in areas such as surveillance and video conferencing. The growing number of cameras, the handling and analysis of these vast amounts of video data enable the development of multi-camera applications that cooperatively use multiple sensors. In many applications, bandwidth constraints, privacy issues, and difficulties in storing and analyzing large amounts of video data make applications costly and technically challenging. In this thesis, we deploy techniques ranging from low-level to high-level approaches, specifically designed for multi-camera networks. As a low-level approach, we designed a novel low-level foreground detection algorithm for real-time tracking applications, concentrating on difficult and changing illumination conditions. The main part of this dissertation focuses on a detailed analysis of two novel state-of-the-art real-time tracking approaches: a multi-camera tracking approach based on occupancy maps and a distributed multi-camera tracking approach with a feedback loop. As a high-level application we propose an approach to understand the dynamics in meetings - so called, smart meetings - using a multi-camera setup, consisting of fixed ambient and portable close-up cameras. For all method, we provided qualitative and quantitative results on several experiments, compared to state-of-the-art methods

    On the design and implementation of a high definition multi-view intelligent video surveillance system

    Get PDF
    This paper proposes a distributed architecture for high definition (HD) multi-view video surveillance system. It adopts a modular design where multiple intelligent Internet Protocol (IP)-based video surveillance cameras are connected to a local video server. Each server is equipped with storage and optional graphics processing units (GPUs) for supporting high-level video analytics and processing algorithms such as real-time decoding and tracking for the video captured. The servers are connected to the IP network for supporting distributed processing and remote data access. The DSP-based surveillance camera is equipped with realtime algorithms for streaming compressed videos to the server and performing simple video analytics functions. We also developed video analytics algorithms for security monitoring. Both publicly available data set and real video data that are captured under indoor and outdoor scenarios are used to validate our algorithms. Experimental results show that our distributed system can support real-time video applications with high definition resolution.published_or_final_versio
    • …
    corecore