3,485 research outputs found

    Steady-state MreB helices inside bacteria: dynamics without motors

    Full text link
    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.Comment: 7 figures, 1 tabl

    Expression of membrane-associated proteins within single emulsion cell facsimiles

    Get PDF
    MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB–RFP). We follow the aggregation and localisation of the fusion protein MreB–RFP in this artificial cell-like environment. The expression of MreB–RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface

    Supramolecular structure in the membrane of Staphylococcus aureus

    Get PDF
    The fundamental processes of life are organized and based on common basic principles. Molecular organizers, often interacting with the membrane, capitalize on cellular polarity to precisely orientate essential processes. The study of organisms lacking apparent polarity or known cellular organizers (e.g., the bacterium Staphylococcus aureus) may enable the elucidation of the primal organizational drive in biology. How does a cell choose from infinite locations in its membrane? We have discovered a structure in the S. aureus membrane that organizes processes indispensable for life and can arise spontaneously from the geometric constraints of protein complexes on membranes. Building on this finding, the most basic cellular positioning system to optimize biological processes, known molecular coordinators could introduce further levels of complexity. All life demands the temporal and spatial control of essential biological functions. In bacteria, the recent discovery of coordinating elements provides a framework to begin to explain cell growth and division. Here we present the discovery of a supramolecular structure in the membrane of the coccal bacterium Staphylococcus aureus, which leads to the formation of a large-scale pattern across the entire cell body; this has been unveiled by studying the distribution of essential proteins involved in lipid metabolism (PlsY and CdsA). The organization is found to require MreD, which determines morphology in rod-shaped cells. The distribution of protein complexes can be explained as a spontaneous pattern formation arising from the competition between the energy cost of bending that they impose on the membrane, their entropy of mixing, and the geometric constraints in the system. Our results provide evidence for the existence of a self-organized and nonpercolating molecular scaffold involving MreD as an organizer for optimal cell function and growth based on the intrinsic self-assembling properties of biological molecules

    Shape selection of surface-bound helical filaments: biopolymers on curved membranes

    Full text link
    Motivated to understand the behavior of biological filaments interacting with membranes of various types, we study a theoretical model for the shape and thermodynamics of intrinsically-helical filaments bound to curved membranes. We show filament-surface interactions lead to a host of non-uniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to non-linear coupling between elastic twist and bending of filaments on anisotropically-curved surfaces, such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature-radius of the surface to which it is bound, even when that radius is much larger than the filament intrinsic pitch. Typical values of elastic parameters and interaction energies for several prokaryotic and eukaryotic filaments indicate that biopolymers are inherently very sensitive to the coupling between twist, interactions and geometry and that this could be exploited for regulation of a variety of processes such as the targeted exertion of forces, signaling and self-assembly in response to geometric cues including the local mean and Gaussian curvatures

    Structural Analysis of Polarizing Indels Argues the Root of the Tree of Life is Near the Chloroflexi

    Get PDF
    Determining which branches of the tree of life have derived features narrows down the possible location of the root. Currently the polarization of indels done by Lake _et al_.^1-5^ and the polarizing transitions of Cavalier-Smith^6^ arrive at contradictory positions for the root of the tree. We have analyzed the sequence based indel arguments using protein structure wherever possible. Structure strongly supports some of the polarizations, but in other indels it argues for a different conclusion. We conclude that there is no contradiction between Lake _et al_. and Cavalier-Smith; the root of the tree of life must be near the Chloroflexi.
&#xa
    • …
    corecore