Within individual bacteria, we combine force-dependent polymerization
dynamics of individual MreB protofilaments with an elastic model of
protofilament bundles buckled into helical configurations. We use variational
techniques and stochastic simulations to relate the pitch of the MreB helix,
the total abundance of MreB, and the number of protofilaments. By comparing our
simulations with mean-field calculations, we find that stochastic fluctuations
are significant. We examine the quasi-static evolution of the helical pitch
with cell growth, as well as timescales of helix turnover and denovo
establishment. We find that while the body of a polarized MreB helix treadmills
towards its slow-growing end, the fast-growing tips of laterally associated
protofilaments move towards the opposite fast-growing end of the MreB helix.
This offers a possible mechanism for targeted polar localization without
cytoplasmic motor proteins.Comment: 7 figures, 1 tabl