138,531 research outputs found

    Collective motion of binary self-propelled particle mixtures

    Full text link
    In this study, we investigate the phenomenon of collective motion in binary mixtures of self-propelled particles. We consider two particle species, each of which consisting of pointlike objects that propel with a velocity of constant magnitude. Within each species, the particles try to achieve polar alignment of their velocity vectors, whereas we analyze the cases of preferred polar, antiparallel, as well as perpendicular alignment between particles of different species. Our focus is on the effect that the interplay between the two species has on the threshold densities for the onset of collective motion and on the nature of the solutions above onset. For this purpose, we start from suitable Langevin equations in the particle picture, from which we derive mean field equations of the Fokker-Planck type and finally macroscopic continuum field equations. We perform particle simulations of the Langevin equations, linear stability analyses of the Fokker-Planck and macroscopic continuum equations, and we numerically solve the Fokker-Planck equations. Both, spatially homogeneous and inhomogeneous solutions are investigated, where the latter correspond to stripe-like flocks of collectively moving particles. In general, the interaction between the two species reduces the threshold density for the onset of collective motion of each species. However, this interaction also reduces the spatial organization in the stripe-like flocks. The most interesting behavior is found for the case of preferred perpendicular alignment between different species. There, a competition between polar and truly nematic orientational ordering of the velocity vectors takes place within each particle species. Finally, depending on the alignment rule for particles of different species and within certain ranges of particle densities, identical and inverted spatial density profiles can be found for the two particle species.Comment: 16 pages, 10 figure

    Particle-based simulation of fluids

    Get PDF
    Journal ArticleDue to our familiarity with how fluids move and interact, as well as their complexity, plausible animation of fluids remains a challenging problem. We present a particle interaction method for simulating fluids. The underlying equations of fluid motion are discretized using moving particles and their interactions. The method allows simulation and modeling of mixing fluids with different physical properties, fluid interactions with stationary objects, and fluids that exhibit significant interface breakup and fragmentation. The gridless computational method is suited for medium scale problems since computational elements exist only where needed. The method fits well into the current user interaction paradigm and allows easy user control over the desired fluid motion

    A Particle Filter Localisation System for Indoor Track Cycling Using an Intrinsic Coordinate Model

    Get PDF
    © 2018 ISIF In this paper we address the challenging task of tracking a fast-moving bicycle, in the indoor velodrome environment, using inertial sensors and infrequent position measurements. Since the inertial sensors are physically in the intrinsic frame of the bike, we adopt an intrinsic frame dynamic model for the motion, based on curvilinear dynamical models for manoeuvring objects. We show that the combination of inertial measurements with the intrinsic dynamic model leads to linear equations, which may be incorporated effectively into particle filtering schemes. Position measurements are provided through timing measurements on the track from a camera-based system and these are fused with the inertial measurements using a particle filter weighting scheme. The proposed methods are evaluated on synthesised cycling datasets based on real motion trajectories, showing their potential accuracy, and then real data experiments are reported

    A CFD study of complex missile and store configurations in relative motion

    Get PDF
    An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids

    Continuous Multi-image Preprocessing for Euclidean Reconstruction

    Get PDF
    We address the problem of performing 3D motion and structure analysis along long video sequences (mpeg animation, surveillance recording television programs, etc..) in which we want to : - be able to segment the sequence in smaller pieces of image sets corresponding to homogeneous parts of the sequence, - stabilize the sequence in order to reduce the disparity between two consecutive frame, - detect unexpected events such as moving objects or close obstacles, - reconstruct the 3D shape of some predefined objects, which implies the self calibration of the image sequence. Such data have two characteristics : (a) they have been recorded using cameras with unknown and possibly varying optical parameters\footnote{ We are in the un-calibrated case quoted before.} and (b) cameras are moving while some objects are also moving in the scene. It is, in general, not possible to entirely analyze such sequences automatically because of the complexity of the contained information. On the other hand, a complete manual analysis is also not possible because of the huge amount of data. Here, the idea is to pre-process the image sequence, in order to ease its interactive analysis and provide to the user an enhanced image sequence in which: - the image sequence have been stabilized to ease its observation, so that. - first order approximations of usual motion equations could be numerically valid, - disparity not related to object motion or object depth parallax displacement could be eliminated, - regions of disparities corresponding to close obstacles or objects in motion have been segmented,i.e. their contour have been extracted and the relative location/size of these objects have been computed

    Mechanics of extended masses in general relativity

    Full text link
    The "external" or "bulk" motion of extended bodies is studied in general relativity. Compact material objects of essentially arbitrary shape, spin, internal composition, and velocity are allowed as long as there is no direct (non-gravitational) contact with other sources of stress-energy. Physically reasonable linear and angular momenta are proposed for such bodies and exact equations describing their evolution are derived. Changes in the momenta depend on a certain "effective metric" that is closely related to a non-perturbative generalization of the Detweiler-Whiting R-field originally introduced in the self-force literature. If the effective metric inside a self-gravitating body can be adequately approximated by an appropriate power series, the instantaneous gravitational force and torque exerted on it is shown to be identical to the force and torque exerted on an appropriate test body moving in the effective metric. This result holds to all multipole orders. The only instantaneous effect of a body's self-field is to finitely renormalize the "bare" multipole moments of its stress-energy tensor. The MiSaTaQuWa expression for the gravitational self-force is recovered as a simple application. A gravitational self-torque is obtained as well. Lastly, it is shown that the effective metric in which objects appear to move is approximately a solution to the vacuum Einstein equation if the physical metric is an approximate solution to Einstein's equation linearized about a vacuum background.Comment: 39 pages, 2 figures; fixed equation satisfied by the Green function used to construct the effective metri

    Dynamics of classical strings in Rindler Space

    Get PDF
    Includes bibliographical references.The fundamental degrees of freedom in string theory are extended objects. Solving their equations of motion can be difficult unless they are considered in very constrained situations. We investigate the dynamics of gravitational D-brane radiation. Results of others are reviewed which show that in the static case the string prole of Newtonian and relativistic strings are the same. We show that for slow moving strings the relativistic solution agrees with the classical one

    Cortical Dynamics of Navigation and Steering in Natural Scenes: Motion-Based Object Segmentation, Heading, and Obstacle Avoidance

    Full text link
    Visually guided navigation through a cluttered natural scene is a challenging problem that animals and humans accomplish with ease. The ViSTARS neural model proposes how primates use motion information to segment objects and determine heading for purposes of goal approach and obstacle avoidance in response to video inputs from real and virtual environments. The model produces trajectories similar to those of human navigators. It does so by predicting how computationally complementary processes in cortical areas MT-/MSTv and MT+/MSTd compute object motion for tracking and self-motion for navigation, respectively. The model retina responds to transients in the input stream. Model V1 generates a local speed and direction estimate. This local motion estimate is ambiguous due to the neural aperture problem. Model MT+ interacts with MSTd via an attentive feedback loop to compute accurate heading estimates in MSTd that quantitatively simulate properties of human heading estimation data. Model MT interacts with MSTv via an attentive feedback loop to compute accurate estimates of speed, direction and position of moving objects. This object information is combined with heading information to produce steering decisions wherein goals behave like attractors and obstacles behave like repellers. These steering decisions lead to navigational trajectories that closely match human performance.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National Geospatial Intelligence Agency (NMA201-01-1-2016

    Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics

    Full text link
    Standard formulae of classical electromagnetism for the forces between electric charges in motion derived from retarded potentials are compared with those obtained from a recently developed relativistic classical electrodynamic theory with an instantaneous inter-charge force. Problems discussed include small angle Rutherford scattering, Jackson's recent `torque paradox' and circular Keplerian orbits. Results consistent with special relativity are obtained only with an instantaneous interaction. The impossiblity of stable circular motion with retarded fields in either classical electromagnetism or Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded electromagnetic forces. See also physics/0501130. V2 has typos corrected, minor text modifications and updated references. V3 has further typos removed and added text and reference
    corecore