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Abstract—In this paper we address the challenging task
of tracking a fast-moving bicycle, in the indoor Velodrome
environment, using inertial sensors and infrequent position
measurements. Since the inertial sensors are physically in the
intrinsic frame of the bike, we adopt an intrinsic frame dynamic
model for the motion, based on curvilinear dynamical models
for manoeuvring objects. We show that the combination of
inertial measurements with the intrinsic dynamic model leads
to linear equations, which may be incorporated effectively into
particle filtering schemes. Position measurements are provided
through timing measurements on the track from a camera-based
system and these are fused with the inertial measurements using
a particle filter weighting scheme. The proposed methods are
evaluated on synthesised cycling datasets based on real motion
trajectories, showing their potential accuracy, and then real data
experiments are reported.

Index Terms—Object localisation, Inertial measurements, Se-
quential Monte Carlo, Track cycling, Intrinsic coordinate model,
Curvilinear model

I. INTRODUCTION

In tracking problems ranging from pedestrian positioning
to track cycling, the aim is to estimate the kinematic state
of a target (position, orientation, etc.) over time according
to a set of noisy measurements. These measurements may
be provided by sensors such as inertial measurement units
(IMUs), magnetometers, odometers, wireless signal receivers
or GPS. Significant efforts have been devoted to the design
and building of indoor positioning systems that are capable
of providing pedestrians or vehicles with accurate location in-
formation in environments where GPS signals are unavailable
[1]–[3]. Among these systems, infrastructures including ultra-
wideband, infrared, RFID and Bluetooth are usually deployed
to reduce position errors resulting from low-cost sensors.
To fuse information from multiple information sources and
build an integrated navigation system, Kalman filter-based
methods and particle filters are possible candidate methods.
Compared with the classical Kalman filter and its variants,
particle filters have shown advantages in dealing with non-
linear and non-Gaussian filtering problems [4], [5]. Here, our
work aims to design novel particle filter-based methods to
tackle on-line tracking for a fast moving object (in this case
a bicycle) in an indoor environment using inertial sensors and
occasional position measurements provided by timing lines on
the Velodrome track.

We here adopt a dynamic model-based approach to the
fusion of inertial measurements with position (timing) mea-
surements, in an on-line localisation/tracking scenario. The
idea is that an accurate modelling of the inertial sensors and
their bias provides approximate information on the path, while
constraints of track geometry and timing line measurements
can be fused with the inertial data to achieve a refined tracking
of position and orientation as it evolves over time. Rather than
adopting standard motion models such as the white noise-
driven constant-acceleration and constant-velocity models [6],
[7], which may not accurately model object manoeuvres, we
use a curvilinear dynamical model defined in the intrinsic
coordinte frame of the object (see e.g. the excellent survey in
[8], which points out that the standard random process based
models may not accurately model the physical manoevres of
an object; see also [9] which suggests that the appropriate use
of target kinematic modelling can assist in an inertial tracking
system.)

The class of curvilinear models that we propose is based
on an intrinsic coordinate frame, as in the particle filter
methods of [10], [11]; see also the similar model in [12], in
which an interacting multiple model tracker is implemented
for an intrinsic coordinate frame, and [13] which describes the
dynamics of an aircraft using Frenet-Serret formulae, which
can be regarded as a variation to the intrinsic coordinate
model. While being powerful in terms of modelling target
manoeuvres accurately, the intrinsic model turns out also to
be very well adapted to the case of inertial measurements,
since it leads to a set of linear, Gaussian equations for turn
rate and ground speed measurements. The novelty of our work
here lies in developing the analytic structure for the inertial
measurements, and in blending this structure with a particle
filter for fusing with the timing measurements. In particular
we are able to make very effective hybrid proposals to the
particle filter based upon linear update equations for speed and
angle rate measurements, which achieves significantly better
performance than an equivalent bootstrap SIR filter [4]. We
also show a backward smoothing-based scheme that draws
samples from the joint distribution of states in the recent and
more distant past. The approaches proposed are then evaluated
on synthetic data as well as real world data.

The remainder of the paper is organised as follows. In the
next Section, we present the motion model using an intrinsic
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Fig. 1. 2D curvilinear motion in an intrinsic coordinate system. êT and êP
depict tangential and perpendicular unit vectors respectively.

coordinate model. We then present the measurement models
to link the sensor data to the dynamical model. Following this,
two novel particle filter weight update schemes are described
in Section III. Evaluation results on both synthetic and real
data can be found in Section IV and conclusions are drawn in
Section V.

II. DYNAMIC AND MEASUREMENT MODELS

In this section we describe the dynamical model, defined
in terms of an intrinsic coordinate system, to express the
motion of indoor Velodrome riders, and the corresponding
measurements processes for the inertial, speed and position
data.

A. Dynamical Model in an Intrinsic Coordinate System

The model here is based on [10], [11] and [14] and similar
to curvilinear models in [8] and [12]. An applied force acting
upon an object can be decomposed into a tangential component
TT and a component TP perpendicular to the tangential vector.
Let l denote the arc length along the curve on which a particle
of mass m travels, and ψ the heading angle relative to a
reference axis. The tangential and perpendicular equations of
motion are then given by:

TT = λ
dl

dt
+m

d2l

dt2
, (1)

TP = m
dl

dt

dψ

dt
, (2)

where λ dldt is a resistance term. Assume that TT and TP
are piecewise constant between time τ and τ + ∆τ . A 2-
dimensional motion may be described by the evolution of the
tangential and perpendicular unit vectors for the object over
time, see for example Fig. 1, which illustrates their motion
around a velodrome track.

(1) may be solved directly as in [10], [14] to obtain an
expression for speed st = dl/dt:

sτ+∆τ = sτe
−∆τλ

m +
TT
λ

(
1− e−∆τλ

m

)
, (3)

and lt can then be routinely obtained by further integrating
this expression [10], [14]. Now, using this result (2) can be
solved for the change in heading angle and unit vectors:[

êT,τ+∆τ

êP,τ+∆τ

]
=

[
cos(∆ψ) sin(∆ψ)
− sin(∆ψ) cos(∆ψ)

] [
êT,τ
êP,τ

]
, (4)

∆ψ =
TP
TT

(
∆τλ/m− log

∣∣∣∣ s(τ)

s(τ + ∆τ)

∣∣∣∣) . (5)

Finally, the change in Cartesian position can be computed in
closed form only for the case λ = 0 (no resistance to motion)
[11], so in general the position zt = [xt, yt]

T can be obtained
for example by a fine-grained Euler approximation:

zτ+∆τ ≈ zτ + ∆τ · s(τ) · êT,τ . (6)

B. Speed Measurement Model

If the tangential thrust is assumed to be drawn from a simple
Gaussian distribution, say TT ∼ N (µT , σ

2
T ), (3) becomes a

linear Gaussian state space model and the transition density
of speed is as follows:

f(sτ+∆τ |sτ ) = N
(
sτ+∆τ |e−

∆τλ
m sτ +

µT
λ

(
1− e−∆τλ

m

)
,

σ2
T

λ2

(
1− e−∆τλ

m

)2 )
.

(7)

Modeling the speed in this particular way allows the use of
linear Kalman-style updating when direct speed measurements
are available:

ŝτ = sτ + nŝ,τ , (8)

where the measurement noise nŝ,τ is additive, white Gaussian
noise of the form ns,τ ∼ N (0, σ2

ŝ).

C. Heading Measurement Model

Conditioned on the speed of the object, (2) can also be
rearranged to give the dynamic equation of heading rate

ψ̇t =
TP
mst

, τ < t < τ + ∆τ, st 6= 0, (9)

This is again a linear Gaussian model conditioning on sτ ,
under the assumption that TP ∼ N (0, σ2

P ):

f(ψ̇τ |sτ ) = N
(
ψ̇τ |0,

σ2
P

m2s2
τ

)
. (10)

Now, given direct noisy measurements of the turn rate of the
object in the 2D plane, ˆ̇

ψτ , which include a random additive
bias term bt, with Gaussian random walk transition density:

bτ+∆τ
= bτ + ∆τ · nb,τ , nb,τ ∼ N (0, σ2

b ), (11)

the observation model for turn rate is given by:

ˆ̇
ψτ = ψ̇τ + bτ + n ˆ̇

ψ,τ
, n ˆ̇

ψ,τ
∼ N

(
0, σ2

ˆ̇
ψ

)
. (12)

The orientation of the IMU relative to the bike is shown in
Fig. 2. When cycling around a track, direct measurements of
heading rate may be unavailable. This is because the geometry
of the track and the bike sway prevent the vertical axis of



gyroscope (i.e. Z+ in Fig. 2) from being aligned with the
normal vector of the plane of motion. This suggests that
we could obtain angular velocity on the plane of motion
by rotating the gyroscope’s frame onto the intrinsic frame,
a development that will be reported in future work. In this
paper however we treat the problem as a purely 2D tracking
model. As a result, angular speed from the gyroscope’s Z-
axis is treated as a direct measurement of the rate of heading.
The bias term bt in our observation model will then include a
component both from the modelling error (assumed to be small
if the cycle is close to vertical) and the true instrumentation
bias of the device.

D. Position Measurement Model

As discussed in the previous section, a major issue with
the consumer-grade inertial sensors such as gyroscopes and
accelerometers is that they usually suffer from bias. To deal
with drift resulting from an inertial navigation system, other
positioning systems such as GPS may be integrated. However,
unlike outdoor sports where it is possible to take advantage of
global navigation systems to help localise an object, we need
additional positioning systems for indoor track cycling. Here,
two additional systems are available for providing position
information:

Timings of Crossing Lines and Lateral Position: There
are 9 lines (0m, 25m, 50m, 100m, 115m, 125m, 150m, 200m
and 240m) across the track, see Fig. 3, and the crossing times
for these lines are measured. Such measurements are treated
as a Gaussian measurement of the true position, ẑτ at the
measured crossing time τ , truncated to lie within the track
width:

f(ẑτ |zτ ) ∝ N (ẑτ |zτ ,Σz) (13)

where ẑτ and Σz are respectively centred on and aligned
with each timing line. When accurate position information is
not available, Σz would be set very wide along the timing
line. Fig. 3 shows the positions of timing lines along the
track and the corresponding Gaussian distributions for two of
the timing lines. For certain timing lines along the straights

Fig. 2. Bike-mounted IMU orientation: Z+ is allighed to the surface normal
when riding on flat ground

Fig. 3. Left: Top view of the track with timing lines plotted in black. Yellow
contours represent the edge of velodrome track. Right: Gaussian distributions
on 25m and 50m timing lines

(i.e. 0m, 100m, 115m, 125m and 240m) a camera system
measuring lateral distance to the track’s inner black line has
been deployed around the velodrome, see [15]. In these cases
the same truncated Gaussian is employed, but with a narrower
covariance function centred on the measured lateral position.

III. STATE ESTIMATION USING SEQUENTIAL MONTE
CARLO METHODS

Since we are dealing with a tracking problem with non-
linear dynamical model, there is no closed-form analytic
solution for the whole problem. Therefore, we consider using
sequential Monte Carlo (SMC) methods, or particle filters [4],
[16], [17], to sequentially estimate the target states under a
Bayesian framework.

In this section, two approaches for improving performance
are presented: the first cascades locally optimal proposal
kernels together, seeking to reduce the mismatch between
prior predictive distribution and the posterior distribution
conditioned on new measurements, and the second provides
a section-wise Kalman-smoothing procedure for the particle
filter. Note that t and t− 1 are used to replace τ + ∆τ and τ
respectively in the following derivation. Also {x(i)

0:t}1≤i≤N is
used to denote samples drawn from a importance distribution
q(x0:t|y0:t).

A. Optimal Kernel Scheme

Owing to the particular design of our models, we can sample
states from efficiently constructed locally optimal kernels.
Specifically, for speed we suggest an importance distribution
q(·) in the following form, using (7), (8):

q(st|ŝt, s(i)
t−1) = p(st|ŝt, s(i)

t−1) ∝ p(ŝt|st)p(st|s(i)
t−1)

= N (st|ms, σ
2
s), (14)

with

ms = as
(i)
t−1 + b+ σ2

v(ŝt − as(i)
t−1 − b)/(σ2

v + σ2
ŝ),

σ2
s = σ2

v − σ4
v/(σ

2
v + σ2

ŝ),

a = e−∆τλ/msτ , b = µT (1− e−∆τλ/m)/λ,

σ2
v = σ2

T (1− e−∆τλ/m)2/λ2.



This distribution is the optimal kernel for the speed in the
sense of [17] conditioned solely upon the speed observation.
Similarly, we suggest an importance distribution for αt =
[ψ̇t, bψ̇,t]

T as follows:

q(αt| ˆ̇ψt,α(i)
t−1, s

(i)
t ) = p(αt| ˆ̇ψt,α(i)

t−1, s
(i)
t )

∝ p( ˆ̇
ψt|αt,α(i)

t−1, s
(i)
t )p(αt|α(i)

t−1, s
(i)
t )

= N (
ˆ̇
ψt|Bψ̇t, σ2

ˆ̇
ψ

)N (αt|Aα(i)
t−1, C)

= N (αt|mα, Pα), (15)

where

mα = Aα
(i)
t−1 + CBT (BCBT + σ2

ˆ̇
ψ

)−1(
ˆ̇
ψt −BAα(i)

t−1),

Pα = C − CB(CBT (BCBT + σ2
ˆ̇
ψ

)−1BC,

A =

[
0 0
0 1

]
, B = [1 1],

C =

[
σ2
P /m

2s2
τ+∆τ 0

0 ∆τ2σ2
b

]
.

Once again, this is a locally optimal kernel conditioned on the
speed s(i)

t and the heading rate measurement.
Finally, sequential importance sampling (SIS) can be ap-

plied to obtain samples from π(α0:t, s0:t| ˆ̇ψ0:t, ŝ0:t, ẑ0:t). The
update equation for the unnormalised importance weight w̃(i)

t

is given as:

w̃
(i)
t =

π(α
(i)
0:t, s

(i)
0:t|

ˆ̇
ψ0:t, ŝ0:t, ẑ0:t)

q(α
(i)
0:t, s

(i)
0:t|

ˆ̇
ψ0:t, ŝ0:t)

= w̃
(i)
t−1 ×

p(
ˆ̇
ψt, ŝt|α(i)

t , s
(i)
t )p(α

(i)
t , s

(i)
t |α

(i)
t−1, s

(i)
t−1)

p(s
(i)
t |ŝt, s

(i)
t−1)p(α

(i)
t |

ˆ̇
ψt,α

(i)
t−1, s

(i)
t )

× p(ẑt|α(i)
0:t, s

(i)
0:t)

p(
ˆ̇
ψt, ŝt, ẑt| ˆ̇ψ0:t−1, ŝ0:t−1, ẑ0:t−1)

∝ w̃(i)
t−1 × p(ẑt|α

(i)
0:t, s

(i)
0:t)p(ŝt|s

(i)
t−1)p(

ˆ̇
ψt|α(i)

t−1, s
(i)
t )

×
p(

ˆ̇
ψt|α(i)

t )p(ŝt|s(i)
t )p(α

(i)
t |α

(i)
t−1, s

(i)
t )p(s

(i)
t |s

(i)
t−1)

p(s
(i)
t |s

(i)
t−1)p(ŝt|s(i)

t )p(α
(i)
t |α

(i)
t−1, s

(i)
t )p(

ˆ̇
ψt|α(i)

t )

= w̃
(i)
t−1 × p(ŝt|s

(i)
t−1)p(

ˆ̇
ψt|α(i)

t−1, s
(i)
t )p(ẑt|α(i)

0:t, s
(i)
0:t).

(16)

Note that in the velodrome tracking scenario where timing
measurements are not available at every timestamp we can
compute the likelihood p(ẑt|α(i)

0:t, s
(i)
0:t) only when the object

passes one of the timing lines - at all other times the term
p(ẑt|α(i)

0:t, s
(i)
0:t) is omitted from the weight update. When

timing measurements are present, the likelihood is computed
as p(ẑt|α(i)

0:t, s
(i)
0:t) = f(ẑt|z(i)

t ) as in (13) and z(i)
t is the

Cartesian location of the i-th particle, obtained using (6).

B. Section-wise Backward Smoothing Scheme

Here we propose a scheme that performs section-wise
backward smoothing, aimed at improving the retrospective

performance of the scheme and in enhancing the proposed
state sequences. A natural partitioning of the data is into the
9 sections defined by the timing lines, although the scheme
is operable over any interval desired. The smoothing is based
on the observation that the speed states are jointly Gaussian
conditioned on the speed measurements, i.e. p(s0:T |ŝ0:T ) is a
T + 1-variate Gaussian that may be sampled using standard
forward-filtering backward sampling (FFBS) methods, see
[18], [19]. This arises because of the linear Gaussian state-
space structure of (7) and (8). Similarly, the linear Gaus-
sian structure of (10) and (11) means that the heading rate
and bias have a jointly Gaussian distribution conditioned on
sampled speed and heading measurements, p(α0:t| ˆ̇ψ0:t, s

(i)
0:t),

which may also be drawn jointly using FFBS. Recall that the
FFBS scheme applied to speed factorises the joint smoothing
distribution of speed, p(s0:T |ŝ0:T ), as follows

p(s0:T |ŝ0:T ) = p(sT |ŝ0:T )

T−1∏
t=0

p(st|st+1:T , ŝ0:T )

= p(sT |ŝ0:T )

T−1∏
t=0

p(st|st+1, ŝ0:t), (17)

and is easily adapted to a sub-section of the state sequence
from t1 to t2.

The proposed scheme then draws a joint sequence of speeds
from the the local optimal distribution q(st1+1:t2 |st1) =
p(st1+1:t2 |ŝt1+1:t2 , st1) using FFBS and then proposes
a sequence of αt states conditionally upon that pro-
posed sequence of speeds according to q(αt1+1:t2 |αt1) =

p(αt1+1:t2 |st1+1:t2 ,
ˆ̇
ψt1+1:t2 ,αt1). The details of the FFBS

scheme for each of these draws can be found in Appendix.
This proposal can be considered as a section-wise batch

version of the locally optimal proposal from the previous
section, and the weights are obtained in a similar fashion as:

w̃
(i)
t =

π(α
(i)
0:t, s

(i)
0:t|

ˆ̇
ψ0:t, ŝ0:t, ẑ0:t)

q(α
(i)
0:t, s

(i)
0:t|

ˆ̇
ψ0:t, ŝ0:t)

∝ w̃(i)
t1

p(s
(i)
t1+1:t|ŝt1+1:t, s

(i)
t1 )p(α

(i)
t1+1:t|

ˆ̇
ψt1+1:t, s

(i)
t1+1:t,α

(i)
t1 )

p(s
(i)
t1+1:t|ŝt1+1:t, s

(i)
t1 )p(α

(i)
t1+1:t|

ˆ̇
ψt1+1:t, s

(i)
t1+1:t,α

(i)
t1 )

× p( ˆ̇
ψt1+1:t|s(i)

t1+1:t,α
(i)
t1 )p(ẑt|α(i)

0:t, s
(i)
0:t)

= w̃
(i)
t1 p(

ˆ̇
ψt1+1:t|s(i)

t1+1:t,α
(i)
t1 )p(ẑt|α(i)

0:t, s
(i)
0:t), (18)

given t1 < t ≤ t2. Note that t1 and t2 are usually (but
not necessarily) the timings at two consecutive timing lines
while w̃(i)

t1 is the weight of particle i computed at time t1 (i.e.
at the end of the previous section). Again we only compute
p(ẑt|α(i)

0:t, s
(i)
0:t) when arriving at a timing line, typically at the

end of the segment t = t2. Also, the second term in (18) can
be computed as

p(
ˆ̇
ψt1+1:t|s(i)

t1+1:t,α
(i)
t1 ) = p(

ˆ̇
ψt1+1|s(i)

t1+1,α
(i)
t1 )

×
t∏

k=t1+2

p(
ˆ̇
ψk| ˆ̇ψt1+1:k−1, s

(i)
t1+1:k,α

(i)
t1 ), (19)



where

p(
ˆ̇
ψt| ˆ̇ψt1+1:t−1, s

(i)
t1+1:t,α

(i)
t1 ) (20)

=

∫
p(

ˆ̇
ψt|αt)p(αt| ˆ̇ψt1+1:t−1, s

(i)
t1+1:t,α

(i)
t1 )dαt

=

∫
N (

ˆ̇
ψt|Bαt, σ2

ˆ̇
ψ

)p(αt|µαt|t−1, P
α
t|t−1)dαt

= N (
ˆ̇
ψt|Bµαt|t−1, BP

α
t|t−1B

T + σ2
ˆ̇
ψ

), (21)

with the predictive distribution p(αt|µαt|t−1, P
α
t|t−1) provided

by a Kalman filter running on the i-th particle. Based on (18),
SIS can be implemented again to draw samples from the target
distribution.

C. On-track Detection

Apart from aforementioned observations, we also possess
point cloud data acquired by laser scanning. This type of
mapping information allows us to determine whether or not a
particle stays physically within the track width. We can then
assign zero weight to an out-of-track particle and resample
particles when, for example, the effective sample size (ESS)
is lower than a pre-defined threshold. Currently this detection
mechanism is implemented only in the optimal kernel scheme
in which it is easy to detect whether a particle will go off-track
at the next time epoch. For the sectionwise smoothing scheme,
we will not know whether a particle is moving off-track until
the sectionwise backward smoothing step is completed. This
more elaborate constraint enforcement is left as a topic of
future exploration.

IV. EXPERIMENTAL RESULTS

As the ground truth for the real data is not available, we
synthesise several different datasets, each of which mimics
a 2D cycling trajectory on the same Velodrome track. By
doing this, we could test and validate the tracking performance
of our methods. After this, an experiment is conducted by
applying the proposed methods to a real track cycling dataset
in which the cycling trajectory is pre-defined. All tests would
be implemented in MATLAB without code optimisation.

A. Results on Synthetic Data

Our idea of synthesising track cycling data is to run particle
filters on the measurements acquired during the time when
a cyclist cycled around a track for several laps. Then we
adopt the output of the filters as our ground truth for further
use. The dynamic and the measurements models are those
defined in Section II and the parameters we use to generate the
synthetic data are given in Table I. Also note that the sensor
measurements are logged every 0.1 seconds in order to be in
line with the actual scenario. In total, there are 5 datasets, each
corresponding to a 2- or 3-lap on-track trajectory.

We now present performance comparison based on RMSE
values between different schemes. It is worth noting that in
practice we only have timing information rather than the rel-
ative distance between the cyclist and the black measurement
line at corner timing lines. However, we start with assuming

TABLE I
PARAMETERS USED TO GENERATE SYNTHETIC DATA

λ m µT µP σT σP σb σŝ σ ˆ̇
ψ

1 100 0 0 50 3000 0.5◦ 0.5 18◦

TABLE II
OVERALL TESTING RESULTS FOR 5 DATASETS (10 RUNS FOR EACH

SCHEME). NUMBERS GIVEN ARE MEANS (AND STANDARD DEVIATIONS)
OF POSITION RMSES

filtering fix-lag smth. fix-int. smth.
RMSEs RMSEs RMSEs

#particles position [m] position [m] position [m]

OPT
500 1.691

(0.236)
0.958

(0.216)
0.773

(0.165)

1000 1.550
(0.243)

0.817
(0.177)

0.613
(0.113)

2000 1.546
(0.134)

0.776
( 0.123 )

0.526
(0.055)

FFBS
100 4.606

(0.727)
2.475

(0.485)
2.021

(0.523)

150 4.299
(0.747)

2.199
(0.686)

1.523
(0.767)

300 3.547
(0.350)

1.451
(0.198)

0.811
(0.097)

SIR 2000 5.481
(0.545)

4.237
(0.564)

3.993
(0.568)

such measurements are available in our first experiment whose
results are showed in Table II. Later we will present tracking
results with only corner timing measurements to evaluate
the necessity of having corner position measurements. Also,
the parameters have been adjusted manually to get the best
possible results in all schemes.

Specifically, the schemes are tested 10 times on each of the
synthesised datasets. The overall error performance in position
is given in Table II. Three measures of error are compared:
the first one uses the filtering state estimate, the second
one uses the fix-lag smoothing state estimate (lag = 15)
and the last one the fix-interval smoothing state estimate.
Different amount of particles are used in the tests in order to
compare performance between schemes given similar runtime.
For instance, the computation time of running 2000 particles
in the optimal kernel scheme (OPT) would be similar to
that of running 300 particles in the backward smoothing-
based scheme (FFBS). A bootstrap SIR filter (SIR) with track
geometry constraint is also run on the datasets to serve as
a benchmark. As shown in the table, the results for the OPT
outperforms both of the other two schemes. One of the reasons
that the FFBS scheme is less effective than the OPT schemes
is its lack of an on-track detection mechanism. Particles with
non-zero weights operating outside the track between timing
lines introduce negative contributions to the state estimation.
However, the FFBS scheme still exceeds the bootstrap filter.
The bootstrap filter has the worst performance as it uses
state transition density as its kernel. Drawing samples from
the Gaussian prior results in more diverse heading rates and
thus worse tracking performance. It is common that in the
bootstrap filter many particles fail to get to timing lines in



TABLE III
EVALUATION RESULTS ON EACH DATASET (10 RUNS). NUMBERS GIVEN ARE MEANS (AND STANDARD DEVIATIONS) OF POSITION RMSES

OPT FFBS SIR
#particle 500 1000 2000 100 150 300 2000

position [m] position [m] position [m]

1 0.601
(0.161)

0.551
(0.134)

0.470
(0.098)

1.050
(0.676)

0.999
(0.481)

0.679
(0.149)

2.158
(0.638)

2 0.872
(0.170)

0.662
(0.104)

0.570
(0.068)

2.513
(1.852)

1.022
(0.502)

0.759
(0.177)

2.543
(0.945)

3 0.651
(0.139)

0.560
(0.069)

0.525
(0.052)

2.3081
(1.125)

1.881
(1.611)

0.856
(0.109)

4.941
(1.678)

4 0.756
(0.215)

0.679
(0.332)

0.485
(0.071)

1.358
(0.806)

1.637
(1.505)

0.869
(0.298)

3.187
(0.611)

5 0.922
(0.411)

0.575
(0.093)

0.557
(0.155)

1.245
(0.682)

1.709
(1.753)

0.738
(0.222)

4.644
(0.876)

time, which further degrades the performance of the filter. In
contrast, the proposed schemes perform better as the mismatch
between prior predictive distribution and posterior distribution
is reduced. Furthermore, results regarding different measures
of error suggest that the fix-interval smoothing state estimation
is more appropriate for the scenario of indoor tracking cycling
given that the width of the track is about 7 meters.

More details on tracking results regarding individual dataset
can be found in Table III. Here we only present the RMSEs
obtained by the fix-interval smoothing state estimation. Again,
the OPT scheme surpasses the others in terms of the individual
position error performance. The results for the bootstrap filter
are dominated by a number of cases with very large position
errors. Moreover, the performance of the proposed schemes
are getting better when the number of particles is increased.
This implies that a tradeoff between performance and particle
number has to be made when considering running the filters
in an on-line sense. To find out different running time against
different numbers of particles, please see Table IV. The
numbers in entries denote the ratio of runtime over actual time.
For the OPT scheme, the on-track detection that is based on
an in-polygon test accounts for about 38 percent of the total
runtime according to the MATLAB profile, which suggests a
course of improvement in the future. As for the FFBS scheme,
one major portion of its computation cost is caused by running
N (number of particles) Kalman filters simultaneously.

We now investigate the situation where lateral position mea-
surements are not available on corner timing lines. Constrained
Gaussian distributions with very large covariance are deployed
on these lines (i.e. 25m, 50m, 150m and 200m lines), which
shows no preference for particles that are able to cross one
of the lines in time. Tracking results given in Table V reveal
that all filters suffer from reduction of performance when only
timing information is available on the corner lines. Particularly,
less frequent position measurements increase the chances of
having particles getting out of track for the FFBS scheme,
which sometimes leads to poor performance. On the other
hand, the performance of the OPT scheme has shown that
it is relatively robust even though less position measurements
are provided. To give a better visualisation with respect to the
tracking performance for each scheme, we show the time evo-

TABLE IV
RUNTIME TABLE WHERE FIGURES GIVEN BELOW THE DATASET NUMBER

ARE THE OBSERVATION DURATION. DEVICE SPECIFICATION:
INTEL(R)CORE(TM) I7-4790 CPU, 16 GB RAM

Methods OPT FFBS SIR
#particles 500 1000 2000 100 150 300 2000

ratios (runtime/actual time)
1

(37.4s) 1.72 3.14 6.15 1.71 2.53 4.84 5.26

2
(29.4s) 1.53 3.04 6.00 1.55 2.25 4.38 5.23

3
(62.5s) 1.65 3.28 6.46 1.83 2.65 5.25 5.68

4
(41.3s) 1.52 2.97 5.96 1.73 2.58 5.08 5.15

5
(41.7s) 1.50 2.98 5.96 2.05 2.59 5.10 5.14

lution of the position errors and the corresponding empirical
cumulative density functions regarding dataset 1 in Fig. 4. The
blue and red vertical lines on the left denote the timings of
crossing corner and straight timing lines respectively. It can
be seen from the top left graph that the proposed schemes can
keep the estimation errors at low levels when corner position
measurements are provided. In this case, 85% of the position
errors for the OPT scheme are below 0.616m while the same
percent of the errors in the FFBS scheme lie below 0.728m. As
for the case where only timings are provided around the corner,
the OPT schemes still keeps 85% of the errors under 0.896m.
And it becomes more clear that without the on-track constraint
and the corner position measurements, the performance of the
FFBS scheme drops.

B. Preliminary Results on Real Data

As mentioned, the lateral position measurements are not
available in practice and there is no groundtruth. To cope with
this situation, we firstly ask the cyclist to ride a bike along
a pre-defined trajectory on the track. The path is defined as
follows:

1) from 115m timing line to 35m line, the cyclist stays on
the black measurement line.

2) at 35m line, the cyclist starts a vector from the black
measurement and end up with around 220cm (slightly



TABLE V
WITH/WITHOUT CORNER POSITION MEASUREMENT (10 RUNS), PARTICLES

USED IN THREE SCHEMES ARE: 2000, 300 AND 2000 RESPECTIVELY.
NUMBERS GIVEN ARE MEANS (AND STANDARD DEVIATIONS) OF

POSITION RMSES

with corner
position?

RMSE
position [m]

OPT no 0.681
(0.071)

yes 0.526
(0.055)

FFBS no 1.771
(0.462)

yes 0.811
(0.097)

SIR no 3.992
(0.781)

yes 3.993
(0.568)

Fig. 4. Tracking performance of different schemes on Dataset 1. Left:
position errors along time, with(top left)/without(bottom left) corner position
measurements. Blue vertical lines: timings at the corner timing lines; Red
vertical lines: timings at the timing lines on the straights. Right: empirical
CDFs of position errors, with(top right)/without(bottom right) corner position
measurements.

below the blue line which is 250cm away from the black
measurement line) at 50m timing line.

3) from 50m timing line on, the cyclist dips down and
cycles around the red line.

4) from 110m line (i.e. between 100m and 115m timing
line) to 115m timing line, the cyclist drops again from
the red line to the black line

5) repeat for a few laps.

Lateral position measurements and timing measurements
are synchronised with the on-bike sensor measurements. The
sampling rate is set to be 10Hz for the on-bike sensors. On
the corner timing lines, constrained Gaussian distributions,
which are the same as the ones used in the synthetic datasets,
are implemented. We then test our proposed methods on a
collected cycling dataset.

As shown in Fig. 5, the OPT scheme gives a tracking result
which matches the defined trajectory well. 95% confidence
ellipses are occasionally plotted along the estimated trajectory.
From the magnified area 2-3 (i.e. corresponding to the step 2

Fig. 5. An 1-lap trajectory estimated by the OPT scheme and 95% confidence
ellipses along time.

and 3), it can be seen that the ellipse becomes smaller as
just a subset of the particles get to the line in time. As the
particles are moving between the 50m line and the 100m line,
the uncertainty becomes gradually larger as the model relies
only on the IMU and speed measurements. However, owing to
the optimal kernels and the on-track constraint the ellipses can
still cover the red line around which the rider is positioned.
This guarantees that the tracking model can use the accurate
lateral position measurements to get back to the correct path
when the rider arrives at the 100m timing line. As to the FFBS
scheme, although there are more uncertainty around the corner
due to the unconstrained particle motion it can still follow the
predefined path. This is because the correct positions are still
within the error ellipses. The example trajectory obtained by
the FFBS scheme is not plotted here as it is visually very
similar to that of the OPT scheme.

V. CONCLUSION

In this work, we have proposed two novel schemes which
allow an improved use of the model structure compared to
simpler particle filtering schemes. Experimental results on
synthetic cycling datasets have shown in particular that the
tracking performance of our model is improved over a boot-
strap SIR filter. Also, results on a real dataset show promise
for future application of the methods.

It should be noted that there is scope for improving the
models. For instance, a binormal vector, which is vertical to
the plane formed by the tangential and perpendicular vector,
could be added to obtain a 3D intrinsic coordinate system.



Given the fact that the cyclist would not physically leave the
track surface under normal conditions, this binormal vector
can be set to be equal to the surface normal, thus further
constraining the 3D motion of a cyclist. Also, we could
obtain more accurate information regarding the heading rate
by tracking the tilt angle. Moreover, the tracking accuracy
may be further improved by adopting existing sensors such
as accelerometers - we note that similar equations for linear
updating of accelerometer data apply to our intrinsic model,
and these will be reported in future work.

APPENDIX

Here we give the equations used in the section-wise back-
ward smoothing scheme. Supposing that p(st|ŝt1+1:t, st1) =
N (st|µst|t, σ

2
t|t) is the output from a Kalman filter run-

ning on the i-th particle, we can compute the term
p(st|st+1, ŝt1+1:t, st1) as below

p(st|st+1, ŝt1+1:t, st1) =
p(st+1|st)p(st|ŝt1+1:t, st1)

p(st+1|ŝt1+1:t, st1)

= N (st|m̃s, σ̃
2
s), (22)

with

m̃s = µst|t + b+ aσ2
t|t(a

2σ2
t|t + σ2

v)−1(st+1 − aµst|t − b),
σ̃2
s = σ2

t|t − a
2σ4
t|t(a

2σ2
t|t + σ2

v)−1.

Then we can firstly draw s
(i)
t2 given the measurements ŝt1+1:t2

and then work backwards in time drawing state using the
following equation:

p(st1+1:t2 |ŝt1+1:t2 , st1)

= p(st2 |ŝt1+1:t2 , st1)

t2−1∏
t=t1+1

p(st|st+1, ŝt1+1:t, st1). (23)

It is possible to factorise the joint smoothing distribution
for the heading rate and the bias in a similar fashion as:

p(αt1+1:t2 |
ˆ̇
ψt1+1:t2 , st1+1:t2 ,αt1)

= p(αt2 |
ˆ̇
ψt1+1:t2 , st1+1:t2 ,αt1)

×
t2−1∏
t=t1+1

p(αt|αt+1,
ˆ̇
ψt1+1:t, st1+1:t,αt1). (24)

with the terms inside the product computed as

p(αt|αt+1,
ˆ̇
ψt1+1:t, st1+1:t2)

=
p(αt+1|αt)p(αt| ˆ̇ψt1+1:t, st1+1:t,αt1)

p(αt+1| ˆ̇ψt1+1:t, st1+1:t,αt1)

= N (αt|m̃α, P̃α), (25)

where

m̃α = µαt|t + Pαt|tA
T (APαt|tA

T + C)−1(αt+1 −Aµαt|t),
P̃α = Pαt|t − P

α
t|tA

T (APαt|tA
T + C)−1APαt|t.

Again, p(αt| ˆ̇ψt1+1:t, st1+1:t,αt1) = N (αt|µαt|t, P
α
t|t) is given

by a Kalman filter. Now we can propose {α(i)
t1+1:t2}1≤i≤N

using the same backward sampling procedure.
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