23 research outputs found

    Putting the feel in ’look and feel‘

    Get PDF
    Haptic devices are now commercially available and thus touch has become a potentially realistic solution to a variety of interaction design challenges. We report on an investigation of the use of touch as a way of reducing visual overload in the conventional desktop. In a two-phase study, we investigated the use of the PHANToM haptic device as a means of interacting with a conventional graphical user interface. The first experiment compared the effects of four different haptic augmentations on usability in a simple targeting task. The second experiment involved a more ecologically-oriented searching and scrolling task. Results indicated that the haptic effects did not improve users performance in terms of task completion time. However, the number of errors made was significantly reduced. Subjective workload measures showed that participants perceived many aspects of workload as significantly less with haptics. The results are described and the implications for the use of haptics in user interface design are discussed

    Tactile Displays with Parallel Mechanism

    Get PDF

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

    Get PDF
    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor

    Generating indicative-informative summaries with SumUM

    Get PDF
    We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies

    Exploring the effects of replicating shape, weight and recoil effects on VR shooting controllers

    Get PDF
    Commercial Virtual Reality (VR) controllers with realistic force feedback are becoming available, to increase the realism and immersion of first-person shooting (FPS) games in VR. These controllers attempt to mimic not only the shape and weight of real guns but also their recoil effects (linear force feedback parallel to the barrel, when the gun is shot). As these controllers become more popular and affordable, this paper investigates the actual effects that these properties (shape, weight, and especially directional force feedback) have on performance for general VR users (e.g. users with no marksmanship experience), drawing conclusions for both consumers and device manufacturers. We created a prototype replicating the properties exploited by commercial VR controllers (i.e. shape, weight and adjustable force feedback) and used it to assess the effect of these parameters in user performance, across a series of user studies. We first analysed the benefits on user performance of adding weight and shape vs a conventional controller (e.g. Vive controller). We then explore the implications of adding linear force feedback (LFF), as well as replicating the shape and weight. Our studies show negligible effects on the immediate shooting performance with some improvements in subjective appreciation, which are already present with low levels of LFF. While higher levels of LFF do not increase subjective appreciations any further, they lead users to reach their maximum distance skillset more quickly. This indicates that while adding low levels of LFF can be enough to influence user’s immersion/engagement for gaming contexts, controllers with higher levels of LFF might be better suited for training environments and/or when dealing with particularly demanding aiming tasks

    Effect of Tactile Feedback on Performance

    Get PDF
    Humans interact with their environment by obtaining information from various modalities of sensing. These various modalities of sensing combine to facilitate manipulation and interaction with objects and the environment. The way humans interact with computers mirrors this environmental interaction with the absence of feedback from the tactile channel. The majority of computer operation is completed visually because currently, the primary feedback humans receive from computers is through the eyes. This strong dependence on the visual modality can cause visual fatigue and fixation on displays, resulting in errors and a decrease in performance. Distributing tasks and information across sensory modalities could possibly solve this problem. This study added tactile feedback to the human computer interface through vibration of a mouse to more accurately reflect a human\u27s multi-sensory interaction with their environment. This investigation used time off target to measure performance in a pursuit-tracking task. The independent variables were type of feedback with two levels, (i.e., tactile feedback vs no tactile feedback) and speed of target at three different levels, (i.e., slow, medium, and fast). Tactile feedback improved pursuit-tracking performance by 6%. Significant main effects where found for both the speed and feedback factors, but no significant interaction between speed and feedback was obtained. This improvement in performance was consistent with previous research, and lends further support to the advantages multimodal feedback may have to offer man-machine interfaces

    Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Get PDF
    The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications
    corecore