325 research outputs found

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Bimanual robot control for surface treatment tasks

    Full text link
    This is an Author's Accepted Manuscript of an article published in Alberto García, J. Ernesto Solanes, Luis Gracia, Pau Muñoz-Benavent, Vicent Girbés-Juan & Josep Tornero (2022) Bimanual robot control for surface treatment tasks, International Journal of Systems Science, 53:1, 74-107, DOI: 10.1080/00207721.2021.1938279 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207721.2021.1938279[EN] This work develops a method to perform surface treatment tasks using a bimanual robotic system, i.e. two robot arms cooperatively performing the task. In particular, one robot arm holds the work-piece while the other robot arm has the treatment tool attached to its end-effector. Moreover, the human user teleoperates all the six coordinates of the former robot arm and two coordinates of the latter robot arm, i.e. the teleoperator can move the treatment tool on the plane given by the work- piece surface. Furthermore, a force sensor attached to the treatment tool is used to automatically attain the desired pressure between the tool and the workpiece and to automatically keep the tool orientation orthogonal to the workpiece surface. In addition, to assist the human user during the teleoperation, several constraints are defined for both robot arms in order to avoid exceeding the allowed workspace, e.g. to avoid collisions with other objects in the environment. The theory used in this work to develop the bimanual robot control relies on sliding mode control and task prioritisation. Finally, the feasibility and effectiveness of the method are shown through experimental results using two robot arms.This work was supported by Generalitat Valenciana [grant numbers ACIF/2019/007 and GV/2021/181] and Spanish Ministry of Science and Innovation [grant number PID2020117421RB-C21].García-Fernández, A.; Solanes, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Girbés-Juan, V.; Tornero, J. (2022). Bimanual robot control for surface treatment tasks. International Journal of Systems Science. 53(1):74-107. https://doi.org/10.1080/00207721.2021.19382797410753

    Bimanual robot control for surface treatment tasks

    Get PDF
    This work develops a method to perform surface treatment tasks using a bimanual robotic system, i.e. two robot arms cooperatively performing the task. In particular, one robot arm holds the workpiece while the other robot arm has the treatment tool attached to its end-effector. Moreover, the human user teleoperates all the six coordinates of the former robot arm and two coordinates of the latter robot arm, i.e. the teleoperator can move the treatment tool on the plane given by the workpiece surface. Furthermore, a force sensor attached to the treatment tool is used to automatically attain the desired pressure between the tool and the workpiece and to automatically keep the tool orientation orthogonal to the workpiece surface. In addition, to assist the human user during the teleoperation, several constraints are defined for both robot arms in order to avoid exceeding the allowed workspace, e.g. to avoid collisions with other objects in the environment. The theory used in this work to develop the bimanual robot control relies on sliding mode control and task prioritisation. Finally, the feasibility and effectiveness of the method are shown through experimental results using two robot arms

    Rover and Telerobotics Technology Program

    Get PDF
    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed
    • …
    corecore