
An Assistive Shared Control Architecture for a Robotic Arm

Using EEG-Based BCI with Motor Imagery

Giuseppe Gillini, Paolo Di Lillo, Filippo Arrichiello

Abstract— The paper presents a shared control architecture
for robotic systems commanded through a motor imagery based
Brain-Computer Interface (BCI). The overall system is aimed
at assisting people to perform teleoperated manipulation tasks,
and it is structured so as to leave different levels of autonomy
to the user depending on the actual stage of the task execution.
The low-level part of the shared control architecture is also
in charge of taking into account safety and operational tasks,
such as to avoid collisions or to manage robot joint limits. The
overall architecture has been realized by integrating control
and perception software modules developed within the ROS
environment, with the OpenVibe framework used to operate
the BCI device. The effectiveness of the proposed architecture
has been validated through experiments where a healthy user,
wearing a Unicorn g.tec BCI, performs an assisted task through
motor imagery sessions, with a 7 Degrees of Freedoms Kinova
Jaco2 robotic arm.

I. INTRODUCTION

For people with severe motor diseases, daily life activities,

such as drinking or getting fed, might be difficult or even

impossible to accomplish; such conditions might limit one’s

independence and lower the quality of life, thus requiring a

constant presence of caregivers for assistance. In this context,

the development of assistive robotics architectures aimed at

providing some sort of autonomy to the user in the execution

of basic life tasks [1] could represent a possible help.

From a robotic system control perspective, two main

operational modes can be envisioned for assistive operations:

shared and supervisory control strategies. Such modes are

strictly related to the level of involvement of the user into

the task, to the level of autonomy required to the robotic

system, and to the Human-Machine Interfaces (HMIs) used

to provide operational commands, that could rely on different

kinds of devices, as e.g. joysticks or haptic interfaces,

and signals, as e.g. ElectroOcoluGraphic (EOG), ElectroEn-

cephaloGraphic (EEG) and ElectroMyoGraphic (EMG) sig-

nals [2]. Here we focus on the use of non invasive Brain-

Computer Interfaces (BCIs) [3], i.e. headsets with a series of

electrodes to place on the scalp of the user to measure the

EEG signals. In BCIs’ field, supervisory control applications

might be obtained relying on the P300 component of the

Event Related Potentials (ERPs) [4], i.e. fluctuations in the

EEG signals generated by the electrophysiological response

Authors are with the Department of Electrical and Information Engineer-
ing of the University of Cassino and Southern Lazio, Via G. Di Biasio 43,
03043 Cassino (FR), Italy {giuseppe.gillini, pa.dilillo,
filippo.arrichiello}@unicas.it

This work has been supported by the MIUR program ”Dipartimenti di
Eccellenza 2018-2022” granted to Department DIEI of the University of
Cassino and Southern Lazio.

to a significant sensorial stimulus or event, or through Steady

State Visually Evoked Potential (SSVEP) [5], i.e. a resonance

phenomenon in the EEG signal which can be observed when

a subject looks at a light source flickering at a constant fre-

quency. For example, in [6] and in [7] we presented a control

solution where a P300-based BCI was used to generate high-

level directives for different robotic systems. On the other

hand, shared control application can be obtained relying

on motor imagery [8], i.e. a cognitive process in which

a user imagines to perform a movement without actually

performing it. Different approaches have been adopted to

control robots with two class motor imagery, in which the

classifier has to discriminate between two possible intended

movements (usually right hand and left hand). In [9] motor

imagery signals are used for controlling the lifting and the

dropping of an object carried by a dual-arm robot. In order

to obtain a wider variety of possible actions to perform, the

two classes could be translated in a set of commands by

defining a specific paradigm as in [10]. In particular, the

authors use the two motor imagery commands to define a

posture-dependent control architecture where, depending on

the motor command and the robot position, the BCI user

is able to send four motion commands to a mobile robot.

To execute more complex tasks, two motor imagery classes

could be inadequate. Thus, a larger class number could be

considered as in [11], where a four class motor imagery

session is adopted to control two different kind of mobile

robots movements in the 3D space. In [12] a motor imagery

EEG-based continuous teleoperation robot control system

to grasp objects in the 2D planar coordinates with tactile

feedback is presented. In all these works, the four motor

imagery classes have been used to control only the mobile

robot movements or few DOFs (Degrees Of Freedom) of the

manipulator end-effector, limiting the range of possible tasks

to be performed.

In this work we present a shared control architecture aimed

at performing assisted teleoperation tasks using a motor

imagery based BCI. The architecture is developed so as to

leave different levels of autonomy to the user depending on

the actual stage of the task execution. Indeed, depending

on the task stage, the control architecture automatically

switches among control modes that commands the robot to

autonomously execute specific operations, and control modes

that might allow the user to provide to the robot either four

or two different commands. During all the different stages,

safety constraints tasks are handled through a set-based task-

priority inverse kinematic control algorithm; i.e., a specific

motion control strategy able to manage both set-based and

equality-based tasks organized in a hierarchy [13], [14].

The contribution of the paper is two-fold: 1) the extension

of the work [15], in which the authors developed a filter

to continuously send commands reducing the false positives

rate for managing two motor imagery classes, to the use of

four motor imagery classes; 2) the design of a shared control

architecture that assists the user in the control of a robotic

arm in 3D space to execute manipulation tasks, relying on a

maximum of four available commands.

The effectiveness of the technological approach used in

the proposed architecture has been validated through exper-

iments where a healthy user (the first author of the present

paper), wearing a BCI, performs assisted teleoperation tasks

to pick and place an object using a 7 DOFs robotic arm.

II. ASSISTIVE SHARED CONTROL ARCHITECTURE

In the proposed architecture the user is able to send up

to a maximum of four commands for the robot end-effector

control, limiting the possibility to accomplish complex tasks.

Thus, we propose a shared control strategy that assists the

user by understanding his/her intended task, helping in the

execution of some operation and autonomously performing

some of the phases needed for the task accomplishment. This

is handled structuring the envisioned shared control strategy

into three possible control modes: user 2-D control, user

1-D control and robot control. The switching among these

control modes is automatically handled by the architecture

depending on the operational conditions.

In the user 2-D control mode, the motor imagery BCI

allows the user to discern among four classes (RIGHT,

LEFT, FORWARD, BACKWARD), and the output of the

BCI classifier is used to modify the desired robot end-effector

position in the 2-D space (e.g. the horizontal plane).

In user 1-D control mode, the motor imagery BCI al-

lows the user to discern among two classes (FORWARD,

BACKWARD), and the output of the BCI classifier is used

to modify the advancement of the robot in a task execution

(e.g. move forward or backward in the grasping direction of

a target object).

In robot control mode, the output of the BCI is neglected

and the robot automatically executes a preassigned operation.

A. BCI based Motor Imagery

When the system is in a user control mode, through a

motor imagery session, the user can use 2 or 4 commands to

teleoperate the robotic arm. In particular, in user 1-D control

mode, the user imagines right or left hand movements to

respectively go ahead and back in the task execution, while

for the user 2-D control mode he imagines right and left hand

movements to control the robot in the right/left directions,

and both hands and tongue movements to control the robot

in the forward and backward directions. All the aspects

related to the acquisition, processing and classification of

the brain signals are handled by resorting to the open source

framework OpenVibe.

In order to improve the classification reliability and con-

tinuity, it is worthwhile introducing an additional filtering

layer as presented in [15], where the authors developed a

filter suitable for mitigating the above-mentioned issues for

2 motor imagery classes. In this paper we rely on the solution

presented in [15] for generating commands in the user 1-D

control mode; furthermore we have extended this formulation

in order to handle also sessions in which there are 4 possible

classes to classify, as for the user 2-D control mode.

1) Motor imagery classes for user 1-D control mode

Given a manifold of two possible classes M =
{Cforward, Cbackward}, defining xforward

t as the probability of

Cforward coming from the classifier output at time t, and

denoting as yforward
t the filter output at time t, then the filter

output increment at time t, ∆yleft
t , is obtained by

∆yforward
t = χ·[φ·Ffree(y

forward
t−1)+(1−φ)·FBCI(x

forward
t)] (1)

where yforward
t−1 is the filter output at time t−1, Ffree is the free

force exerted by the filter, which is dependent from its past

outputs, and FBCI is the force exerted by the BCI depending

on the current input. These two forces are then weighted

for a confidence factor φ, and multiplied by a filter gain χ.

The filter works in the following way: the current probability

xforward
t coming from the BCI classifier is taken as input by

the filter, together with its output at the previous time step.

xforward
t is then weighted by FBCI, while the filter output at

previous instant is used to compute the Ffree. The Ffree is

defined as:

Ffree =

=

− sin(π
0.5−ω

· y), if y ∈ [0, 0.5− ω)

−ψ sin[π
ω
· (y − 0.5)], if y ∈ [0.5− ω, 0.5 + ω]

sin[π
0.5−ω

· (y − 0.5− ω)], if y ∈ (0.5 + ω, 1]
(2)

where ψ is the sin wave amplitude, and ω the range used to

discriminate the filter output. The FBCI is defined as:

FBCI = α1 · (x− 0.5)3 + α2 · (x− 0.5). (3)

where α1 and α2 are parameters to be properly tuned

depending on the EEG data. The Ffree is designed in order

Fig. 1: Left: evolution of the free force Ffree with ψ = 0.4, ω =

0.3. Right: BCI force FBCI with α1 = 6.4 and α2 = 0.4.

to exert a conservative force when the current state of the

system is close to 0.5, 0.0 and 1.0 and a pushing force

otherwise. These points can be considered as attractors for

the filter output, while the points located at 0.5 − ω and

0.5+ ω are repellers that represent undesirable intermediate

points in which the filter output cannot be determined due to

the too low probability belonging to the current class. This

helps the system to be less sensitive to random perturbations

reducing the false positives rate, and allows managing the

relaxed state, i.e. a state in which the user does not want

to generate any command. On the other hand, the FBCI

has been designed to reduce or enhance the impact of BCI

responses with low or high confidence. Then, the two forces

are combined using φ as parameter to influence how much

to trust the BCI output versus the filter evolution. Finally,

the class in output from the filter is:

Cout =

{

Cforward, if yforward
t >= 0.5 + ω

Cbackward, if yforward
t <= 0.5− ω

(4)

being Cforward and Cbackward mutually exclusive, while the fil-

ter does not give any output if yforward
t ∈ (0.5− ω, 0.5 + ω).

The evolution of the two forces is shown in Fig. 1.

2) Motor imagery classes for user 2-D control mode

The described method, designed for binary classifications,

cannot be directly used in cases in which there are 4 possible

classes. Therefore, given the manifold of the four possible

classes M = {Cleft, Cright, Cforward, Cbackward}, here we pro-

pose to use two filters in cascade, one for discriminating the

direction of the intended movement, and the other one for

discriminating the sense. In particular the first one works on

a manifold composed by other two manifolds:

Mdirection ={Mhorizontal = {Cleft, Cright}, (5)

Mvertical = {Cforward, Cbackward}}. (6)

In this way, the first filter takes in input the probability

xhorizontal
t = xleft

t + x
right
t and it discriminates the direction

of the intended movement. Its output is the manifold:

Mout
direction =

{

Mhorizontal, if yhorizontal
t > 0.5 + ω

Mvertical, if yhorizontal
t < 0.5− ω

(7)

The manifold in output from the first filter is used by the

second one that discriminates the sense of the movement.

Assuming that Mhorizontal is the output of the first filter, the

input of the second one would be the normalized probability

of the LEFT class x̄left
t =

xleft
t

xleft
t

+x
right
t

, with output class:

Cout =

{

Cleft, if yleft
t > 0.5 + ω

Cright, if yleft
t < 0.5− ω

(8)

Assuming that Mvertical is the output of the first filter, the

input of the second one would be the normalized probability

of the FORWARD class x̄forward
t =

xforward
t

xforward
t

+xbackward
t

, with output

class:

Cout =

{

Cforward, if yforward
t > 0.5 + ω

Cbackward, if yforward
t < 0.5− ω

(9)

B. Robot end-effector control strategy

The switching among the control modes is related to the

operational conditions and it follows a Finite State Machine

related to the configured achievable tasks. Starting from a

certain initial position of the end-effector Pee,ini, the initial

control mode is assumed to be user 2-D control, thus the

user can control the planar position of the end-effector. The

procedure is initialized taking into account the end-effector

initial position Pee,ini and the position of the considered target

ptarget, while user 2-D controlis considered as the initial

control mode. The control strategy updates the robot end-

effector position depending on the current control mode

and, if the latter is not set on robot control, on the BCI

command received. More in detail, when the control mode

is user 2-D control, the user could move the end-effector

position on a plane, so as to reach to the desired object.

When he/she brings the end-effector position close enough

to a certain target (inside a sphere of radius smaller or

equal than a certain threshold ∆ centered in the target), the

control mode switches in robot control. At this point the

robot autonomously executes a movement that changes the

position/orientation of the end-effector, in order to initialize

a task that depends on the type of the considered target (e.g.

it aligns the end-effector to an object to be grasped). Once

that the autonomous movement is completed, the control

mode is changed to user 1-D control, and the control returns

to the user. Then, he/she can choose to abort the task (i.e.

moving the end-effector away from the target), or to go ahead

until its completion (e.g. moving the end-effector toward

an object until it can be autonomously grasped). In both

cases the control mode switches to robot, that once again

makes the robot autonomously move to a predefined location,

eventually switching the control mode back to user 2-D

control.

When the system is in user 1-D control or user 2-D control

mode, the class Cout computed by the filters at each time step

goes in input to a dedicated software node that computes a

point of the reference trajectory for the end-effector to be

followed by the robot.

In particular, when in user 2-D control mode, each

command is associated to a desired velocity at timestep k

expressed in the arm base frame:

vRL(k) =

[

{Vdes,−Vdes}
0

]

vFB(k) =

[

0
{Vdes,−Vdes}

]

,(10)

where Vdes > 0 is a parameter that expresses the desired

end-effector velocity amplitude, vRL and vFB are the veloc-

ity associated with the (RIGHT, LEFT) and (FORWARD,

BACKWARD) commands respectively, assuming RIGHT

and FORWARD as positive directions and LEFT and BACK-

WARD as negative directions. These velocity commands get

then integrated over time, obtaining a reference position on

the xy plane to be sent to the robot.

p
xy
des(k + 1) = p

xy
des(k) +

[

vRL,x(k)
vFB,y(k)

]

Ts , (11)

where Ts is the sampling time, while the zdes coordinate is

kept constant at the current value, obtaining the 3D desired

position as pdes(k) = [pxy

des(k) zdes(k)]
T

. When system enters

in the user 1-D control mode, a linear path associated to

the specific operation to achieve is defined, e.g. a linear

movement to perform the grasping of an object from a

pregrasp configuration, or to move toward a release location

when the grabbed object is close to it. In this mode, the

user can generate only two commands (FORWARD, BACK-

WARD) to go ahead or back in the task execution. In this

case the reference position moves along a segment, which is

expressed as:

pdes(s(k)) = (1− s(k)) pini + s(k) pfin , (12)

where pini is an initial 3D position (e.g. the pregrasp position

when the task is to grasp an object), pfin is the a final

3D position (e.g. the object position) and s(k) ∈ [0, 1] is

a parameter. The command given by the user is translated

in a velocity vAB set as Vdes for the FORWARD command

and −Vdes for the BACKWARD one, that gets integrated

over time to increase or decrease the parameter s allowing

to go forward with the task execution until its completion

(s(k) = 1) or to go back until the task is aborted (s(k) = 0):

s(k + 1) = s(k) + vABTs . (13)

In robot control mode, the robot autonomously adjusts its

end-effector 3D position and orientation according to the

actual stage of the task, e.g. it brings the end-effector to

pini when a task is started, or it moves the end-effector in

predefined configurations once a task is completed. In sum,

the reference pose for the end-effector at each time step is

composed of a desired position pdes and orientation Qdes

expressed in quaternion:

σpose, des =

[

pdes

Qdes

]

∈ R
7 (14)

The computed reference pose goes in input to an inverse

kinematics algorithm that computes the joint velocities

needed to move the end-effector toward it. For more details

about the joint control algorithm the reader is referred to [6],

[16].

III. EXPERIMENTAL RESULTS

A. System Architecture

The overall architecture has been implemented and ex-

perimentally tested using a non-invasive g.tec Unicorn BCI,

a 7 DOF Kinova Jaco2 robotic arm, and an Intel RealSense

RGB-D sensor for object detection and localization. Figure 2

shows a scheme of the overall software architecture. The

RGB-D based perception module recognizes the available

objects in the scene through an object recognition algorithm

based on YOLO, that locates them in the 2D image plane.

B. Filters cascade effect on the command generation

The first experimental tests1 were aimed at evaluating

the effectiveness of the implemented filters cascade on the

command generation. In particular, we focus the attention

on the user 2-D control mode. The user is asked to generate

each one of the four possible commands in the following

sequence: LEFT, FORWARD, RIGHT, BACKWARD. Each

1The experiments were taken in accordance with the Declaration of
Helsinki, the protocol has been approved by the Research Ethics Committee
of the University of Cassino and Southern Lazio and the participant gave
informed consent.

Windows PC Linux PC

Raw BCI
Signals

x

y

user 1-D

user 2-D

user 2-D

robot
Finite State
Algorithm

Control
Mode End-Effector

Control

q̇

σpose,desptarget
Marker
Position

RGB-D Data

Joints Control

BCI Filters

Shared Control
Architecture

user 1-D or

Fig. 2: Main components of the proposed architecture.

command is intended to be generated for a given amount of

time (10 s). The goal of the experiment is to evaluate the

differences on the commands generated by the BCI when

using the filter cascade and when considering as output the

raw command with the highest probability among the four

possible choices. The parameters used for Filter 1 and Filter 2
in this experiment are: ω1 = ω2 = 0.3, ψ1 = 0.2, ψ2 = 0.1,

χ1 = 2, χ2 = 1, φ1 = 0.6, φ2 = 0.7, α1,1 = α1,2 = 6.4,

α2,1 = α2,2 = 0.4.

Figure 3 shows the input-output of the two filters over time

during one of the experiments, while the top plot in Figure

4 shows the desired sequence over time, the mid plot shows

the classified commands without using the filters, which are

the ones with the highest probability, and the bottom plot

shows the classified commands using the filters, given the

same input as in the mid plot. It is possible to see that,

without using the filters, between 0−10s and 20−30s there

are several time intervals in which the command with the

highest probability is not the desired one, leading to mis-

classification. Using the filters, instead, this kind of problem

is avoided. Indeed, the attractor/repeller system prevents the

change of the output caused by random perturbations in

the input, letting the filter successfully classify the correct

command even if the probability in input tries to push the

output toward 0.5 (peaks right before 10s and after 20s in

the first filter output). Moreover, it is worth noticing that, for

the first seconds of the experiment, the filters correctly do

not give any output (white background in the bottom plot

of Fig. 4) because the output of the second filter is close to

0.5, most likely because the user was in a relaxed state and

needed some time to focus on the task when the test started.

C. Experimental Validation

Following the general architecture described in Section II,

pick and place operations were considered for the experi-

0 20 40

0.2
0.4
0.6
0.8

0 20 40

0.2
0.4
0.6
0.8

0 20 40

0

0.5

1

0 20 40

0

0.5

1

Filter 1 Filter 2

xx

yy

time [s]time [s]
Fig. 3: Input-output of the two filters over time during the
experiment.

Fig. 4: BCI filter effect. Starting from the top plot: the desired
commands sequence over time; the classified commands without
using the filters; the classified commands using the filter.

mental tests, in which the user could teleoperate the robot

to grasp one of the bottles located on a table and release it

in one of the pre-assigned Release Object Areas (ROAs). In

this section we show results of a set of experiments aimed

at validating the proposed technological approach, during

which, a healthy user (the first author of the present paper)

is asked to perform 10 times with the filters and 10 times

without the filters, the following sequence of tasks: grasp a

bottle, place it on a first ROA, regrasp it and place it on the

second ROA. Far all the repetitions of the experiment, the

end-effector started from a predefined configuration and the

bottle was placed in the same initial configuration. Note that

the bottle location on the table could be any, but we have

chosen to start each experimental run with the bottle placed

on the same initial configuration in order to perform a fair

comparison between the two cases in terms of percentage of

failures and execution time.

The defined sequence initially requires the user to control

the robot end-effector position on the xy plane relying on

the user 2-D control mode. When the end-effector is close

enough to the bottle, the shared architecture switches in

robot control mode and the robot autonomously reaches a

pregrasp configuration aligned with the object. At that point

the control goes back to the user, this time in user 1-D

control mode, and he/she can control the end-effector to

go forward or backward along a segment that connects the

pregrasp position with the bottle. Once the task is completed

(s = 1.0 in Eq. 12), the architecture switches again in robot

control mode and the robot grasps it and moves the end-

effector in a predefined configuration. From that point on,

the user, being in user 2-D control mode, can control again

TABLE I: Pick and place experiments results

Run
Execution time [s]

With filters Without filters

1 80 110
2 85 115
3 87 FAIL
4 82 108
5 79 FAIL
6 77 112
7 80 113
8 77 FAIL
9 75 117

10 78 FAIL

Mean [s]
80 113
Standard deviation

0.04 0.03

the planar position of the end-effector. The same happens

when the user teleoperates the end-effector with an object

grasped close enough to a ROA. If, during a grasping or

releasing task, the user moves backward to s = 0.0, this is

interpreted as the user intention to give up to the selected

task, bring back system to the user 2-D control mode to

move the hand towards a different location. The Finite State

Machine diagram of the pick and place experiment is shown

in Fig. 5.

1D

1D

robotrobot

robot

robot

robot

robot

2D

2D
W/O bottle

W/ bottle

close to

close to
object

grasp

conf. reached

conf. reached

conf. reached

conf. reached

conf. reached

conf. reached

grasp

back

back

pre-defined

pre-defined

pre-defined

pre-defined

ROA
release

release

Fig. 5: Finite State Machine diagram of the proposed shared control
architecture, particularized for the pick and place experiment.

The desired orientation is automatically handled by the

shared architecture. We have chosen three possible prede-

fined orientations useful as a visual feedback to the user

for understanding when the shared architecture switches

among the different control modes. When in user 2-D

control mode, the desired orientation, expressed as unit

quaternion, is Qdes = [−0.5 0.5 0.5 − 0.5]
T

. When in user

1-D control mode, the orientation depends on the specific

task to be accomplished: in case of a grasping task, the

desired orientation is set to Qdes = [−0.7071 0 0.7071 0]
T

;

in case of a releasing task on a ROA, the orientation is

Qdes = [−0.5 0.5 0.5 0.5]
T

.

Table I shows the results of the different runs, where we

consider a run failed when the execution time to complete

the experiment was higher than 120s. Even ignoring the

failed runs, the average execution time using the filters

(80s) is anyway lower than without using them (113s). This

demonstrates that the implemented filters cascade allows to

control the end-effector more precisely. Figure 6 shows some

snapshots of the experiment execution, while a complete

video can be found at the following link2. Figure 7 shows

Fig. 6: Screenshots of the video taken during an experiment.

the path followed by the end-effector in one of the runs

executed using the filters. In the figure are depicted the initial

end-effector configuration (in black), the two ROAs (red and

white circles) and the bottle in the initial position and on

the two ROAs. The color of the 3D path of the end-effector

highlights the state of the shared control architecture: green

for robot control mode; blue for user 2-D control mode; red

for user 1-control mode. It is clear that the control mode

switches several times during the execution of the sequence,

effectively allowing to perform the requested tasks using only

a maximum of four commands.

Fig. 7: Path followed by the end-effector in one of the experiment
runs. In the plot are highlighted the initial end-effector configuration
(in black), the two ROAs (red and white circles) and the bottle in
positions of interest.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a shared control architecture

for robotic systems aimed at assisting people with severe

motion disabilities to perform teleoperated manipulation

tasks through a motor imagery based BCI. Experimental

results showed the effectiveness of the implemented filter

cascade and the technological approach used in the proposed

architecture.

Future works will include: i) an extensive experimental

campaign, to be performed in collaboration with healthcare

organizations, on multiple healthy and unhealthy users to

2https://www.youtube.com/watch?v=EnztvCKG2z4

evaluate the actual usability of the system, which represents

a key point for the evaluation of the whole architecture in

terms of robustness, accuracy and perceived ease-of-use; ii)

the integration of other possible manipulation tasks to assist

the user in wider use case scenarios.

REFERENCES

[1] N. C. M. Nickelsen, “Imagining and tinkering with assistive
robotics in care for the disabled,” Paladyn, Journal of Behavioral

Robotics, vol. 10, no. 1, pp. 128 – 139, 2019. [Online]. Available:
https://www.degruyter.com/view/journals/pjbr/10/1/article-p128.xml

[2] G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared control templates for assistive robotics,”
in 2020 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2020, pp. 1956–1962.
[3] S. Liyanage and C. Bhatt, “Wearable electroencephalography tech-

nologies for brain–computer interfacing,” in Wearable and Implantable

Medical Devices. Elsevier, 2020, pp. 55–78.
[4] C. Mulert, O. Pogarell, G. Juckel, D. Rujescu, I. Giegling, D. Rupp,

P. Mavrogiorgou, P. Bussfeld, J. Gallinat, H. Möller et al., “The neural
basis of the p300 potential,” European archives of psychiatry and

clinical neuroscience, vol. 254, no. 3, pp. 190–198, 2004.
[5] D. Zhu, J. Bieger, G. Garcia Molina, and R. M. Aarts, “A survey

of stimulation methods used in ssvep-based bcis,” Computational

intelligence and neuroscience, vol. 2010, 2010.
[6] P. Di Lillo, F. Arrichiello, D. Di Vito, and G. Antonelli, “BCI-

controlled assistive manipulator: developed architecture and experi-
mental results,” IEEE Transactions on Cognitive and Developmental

Systems, 2020.
[7] G. Gillini, P. Di Lillo, F. Arrichiello, D. Di Vito, A. Marino,

G. Antonelli, and S. Chiaverini, “A dual-arm mobile robot system
performing assistive tasks operated via p300-based brain computer
interface,” Industrial Robot, 2020.

[8] L. Tonin, R. Leeb, M. Tavella, S. Perdikis, and J. d. R. Millán,
“The role of shared-control in bci-based telepresence,” in 2010 IEEE

International Conference on Systems, Man and Cybernetics. IEEE,
2010, pp. 1462–1466.

[9] Y. Liu, W. Su, Z. Li, G. Shi, X. Chu, Y. Kang, and W. Shang, “Motor-
imagery-based teleoperation of a dual-arm robot performing manip-
ulation tasks,” IEEE Transactions on Cognitive and Developmental

Systems, vol. 11, no. 3, pp. 414–424, 2018.
[10] M. Aljalal, R. Djemal, and S. Ibrahim, “Robot navigation using a brain

computer interface based on motor imagery,” Journal of Medical and

Biological Engineering, vol. 39, no. 4, pp. 508–522, 2019.
[11] A. M. Batula, Y. E. Kim, and H. Ayaz, “Virtual and actual hu-

manoid robot control with four-class motor-imagery-based optical
brain-computer interface,” BioMed research international, vol. 2017,
2017.

[12] B. Xu, W. Li, X. He, Z. Wei, D. Zhang, C. Wu, and A. Song,
“Motor imagery based continuous teleoperation robot control with
tactile feedback,” Electronics, vol. 9, no. 1, p. 174, 2020.

[13] S. Moe, G. Antonelli, A. Teel, K. Pettersen, and J. Schrimpf, “Set-
based tasks within the singularity-robust multiple task-priority inverse
kinematics framework: General formulation, stability analysis and
experimental results,” Frontiers in Robotics and AI, vol. 3, p. 16, 2016.

[14] P. Di Lillo, E. Simetti, F. Wanderlingh, G. Casalino, and G. Antonelli,
“Underwater intervention with remote supervision via satellite com-
munication: Developed control architecture and experimental results
within the dexrov project,” IEEE Transactions on Control Systems

Technology, 2020.
[15] L. Tonin, F. C. Bauer, and J. d. R. Millán, “The role of the control

framework for continuous teleoperation of a brain–machine interface-
driven mobile robot,” IEEE Transactions on Robotics, vol. 36, no. 1,
pp. 78–91, 2019.

[16] E. Cataldi, F. Real, A. Suarez, P. Di Lillo, F. Pierri, G. Antonelli,
F. Caccavale, G. Heredia, and A. Ollero, “Set-based inverse kinematics
control of an anthropomorphic dual arm aerial manipulator,” in 2019

International Conference on Robotics and Automation (ICRA), 2019,
pp. 2960–2966.

