3,643 research outputs found

    Modelling motivation for experience-based attention focus in reinforcement learning

    Get PDF
    Computational models of motivation are software reasoning processes designed to direct, activate or organise the behaviour of artificial agents. Models of motivation inspired by psychological motivation theories permit the design of agents with a key reasoning characteristic of natural systems: experience-based attention focus. The ability to focus attention is critical for agent behaviour in complex or dynamic environments where only small amounts of available information is relevant at a particular time. Furthermore, experience-based attention focus enables adaptive behaviour that focuses on different tasks at different times in response to an agent’s experiences in its environment. This thesis is concerned with the synthesis of motivation and reinforcement learning in artificial agents. This extends reinforcement learning to adaptive, multi-task learning in complex, dynamic environments. Reinforcement learning algorithms are computational approaches to learning characterised by the use of reward or punishment to direct learning. The focus of much existing reinforcement learning research has been on the design of the learning component. In contrast, the focus of this thesis is on the design of computational models of motivation as approaches to the reinforcement component that generates reward or punishment. The primary aim of this thesis is to develop computational models of motivation that extend reinforcement learning with three key aspects of attention focus: rhythmic behavioural cycles, adaptive behaviour and multi-task learning in complex, dynamic environments. This is achieved by representing such environments using context-free grammars, modelling maintenance tasks as observations of these environments and modelling achievement tasks as events in these environments. Motivation is modelled by processes for task selection, the computation of experience-based reward signals for different tasks and arbitration between reward signals to produce a motivation signal. Two specific models of motivation based on the experience-oriented psychological concepts of interest and competence are designed within this framework. The first models motivation as a function of environmental experiences while the second models motivation as an introspective process. This thesis synthesises motivation and reinforcement learning as motivated reinforcement learning agents. Three models of motivated reinforcement learning are presented to explore the combination of motivation with three existing reinforcement learning components. The first model combines motivation with flat reinforcement learning for highly adaptive learning of behaviours for performing multiple tasks. The second model facilitates the recall of learned behaviours by combining motivation with multi-option reinforcement learning. In the third model, motivation is combined with an hierarchical reinforcement learning component to allow both the recall of learned behaviours and the reuse of these behaviours as abstract actions for future learning. Because motivated reinforcement learning agents have capabilities beyond those of existing reinforcement learning approaches, new techniques are required to measure their performance. The secondary aim of this thesis is to develop metrics for measuring the performance of different computational models of motivation with respect to the adaptive, multi-task learning they motivate. This is achieved by analysing the behaviour of motivated reinforcement learning agents incorporating different motivation functions with different learning components. Two new metrics are introduced that evaluate the behaviour learned by motivated reinforcement learning agents in terms of the variety of tasks learned and the complexity of those tasks. Persistent, multi-player computer game worlds are used as the primary example of complex, dynamic environments in this thesis. Motivated reinforcement learning agents are applied to control the non-player characters in games. Simulated game environments are used for evaluating and comparing motivated reinforcement learning agents using different motivation and learning components. The performance and scalability of these agents are analysed in a series of empirical studies in dynamic environments and environments of progressively increasing complexity. Game environments simulating two types of complexity increase are studied: environments with increasing numbers of potential learning tasks and environments with learning tasks that require behavioural cycles comprising more actions. A number of key conclusions can be drawn from the empirical studies, concerning both different computational models of motivation and their combination with different reinforcement learning components. Experimental results confirm that rhythmic behavioural cycles, adaptive behaviour and multi-task learning can be achieved using computational models of motivation as an experience-based reward signal for reinforcement learning. In dynamic environments, motivated reinforcement learning agents incorporating introspective competence motivation adapt more rapidly to change than agents motivated by interest alone. Agents incorporating competence motivation also scale to environments of greater complexity than agents motivated by interest alone. Motivated reinforcement learning agents combining motivation with flat reinforcement learning are the most adaptive in dynamic environments and exhibit scalable behavioural variety and complexity as the number of potential learning tasks is increased. However, when tasks require behavioural cycles comprising more actions, motivated reinforcement learning agents using a multi-option learning component exhibit greater scalability. Motivated multi-option reinforcement learning also provides a more scalable approach to recall than motivated hierarchical reinforcement learning. In summary, this thesis makes contributions in two key areas. Computational models of motivation and motivated reinforcement learning extend reinforcement learning to adaptive, multi-task learning in complex, dynamic environments. Motivated reinforcement learning agents allow the design of non-player characters for computer games that can progressively adapt their behaviour in response to changes in their environment

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Increasing generality in machine learning through procedural content generation

    Get PDF
    Procedural Content Generation (PCG) refers to the practice, in videogames and other games, of generating content such as levels, quests, or characters algorithmically. Motivated by the need to make games replayable, as well as to reduce authoring burden, limit storage space requirements, and enable particular aesthetics, a large number of PCG methods have been devised by game developers. Additionally, researchers have explored adapting methods from machine learning, optimization, and constraint solving to PCG problems. Games have been widely used in AI research since the inception of the field, and in recent years have been used to develop and benchmark new machine learning algorithms. Through this practice, it has become more apparent that these algorithms are susceptible to overfitting. Often, an algorithm will not learn a general policy, but instead a policy that will only work for a particular version of a particular task with particular initial parameters. In response, researchers have begun exploring randomization of problem parameters to counteract such overfitting and to allow trained policies to more easily transfer from one environment to another, such as from a simulated robot to a robot in the real world. Here we review the large amount of existing work on PCG, which we believe has an important role to play in increasing the generality of machine learning methods. The main goal here is to present RL/AI with new tools from the PCG toolbox, and its secondary goal is to explain to game developers and researchers a way in which their work is relevant to AI research

    Constraining the Size Growth of the Task Space with Socially Guided Intrinsic Motivation using Demonstrations

    Get PDF
    This paper presents an algorithm for learning a highly redundant inverse model in continuous and non-preset environments. Our Socially Guided Intrinsic Motivation by Demonstrations (SGIM-D) algorithm combines the advantages of both social learning and intrinsic motivation, to specialise in a wide range of skills, while lessening its dependence on the teacher. SGIM-D is evaluated on a fishing skill learning experiment.Comment: JCAI Workshop on Agents Learning Interactively from Human Teachers (ALIHT), Barcelona : Spain (2011

    Intrinsic Rewards for Maintenance, Approach, Avoidance and Achievement Goal Types

    Get PDF
    In reinforcement learning, reward is used to guide the learning process. The reward is often designed to be task-dependent, and it may require significant domain knowledge to design a good reward function. This paper proposes general reward functions for maintenance, approach, avoidance, and achievement goal types. These reward functions exploit the inherent property of each type of goal and are thus task-independent. We also propose metrics to measure an agent's performance for learning each type of goal. We evaluate the intrinsic reward functions in a framework that can autonomously generate goals and learn solutions to those goals using a standard reinforcement learning algorithm. We show empirically how the proposed reward functions lead to learning in a mobile robot application. Finally, using the proposed reward functions as building blocks, we demonstrate how compound reward functions, reward functions to generate sequences of tasks, can be created that allow the mobile robot to learn more complex behaviors

    CGAMES'2009

    Get PDF

    Agent Street: An Environment for Exploring Agent-Based Models in Second Life

    Get PDF
    Urban models can be seen on a continuum between iconic and symbolic. Generally speaking, iconic models are physical versions of the real world at some scaled down representation, while symbolic models represent the system in terms of the way they function replacing the physical or material system by some logical and/or mathematical formulae. Traditionally iconic and symbolic models were distinct classes of model but due to the rise of digital computing the distinction between the two is becoming blurred, with symbolic models being embedded into iconic models. However, such models tend to be single user. This paper demonstrates how 3D symbolic models in the form of agent-based simulations can be embedded into iconic models using the multi-user virtual world of Second Life. Furthermore, the paper demonstrates Second Life\'s potential for social science simulation. To demonstrate this, we first introduce Second Life and provide two exemplar models; Conway\'s Game of Life, and Schelling\'s Segregation Model which highlight how symbolic models can be viewed in an iconic environment. We then present a simple pedestrian evacuation model which merges the iconic and symbolic together and extends the model to directly incorporate avatars and agents in the same environment illustrating how \'real\' participants can influence simulation outcomes. Such examples demonstrate the potential for creating highly visual, immersive, interactive agent-based models for social scientists in multi-user real time virtual worlds. The paper concludes with some final comments on problems with representing models in current virtual worlds and future avenues of research.Agent-Based Modelling, Pedestrian Evacuation, Segregation, Virtual Worlds, Second Life
    • 

    corecore