
 

 
MODELLING MOTIVATION FOR  

EXPERIENCE-BASED ATTENTION FOCUS IN 
REINFORCEMENT LEARNING 

 

 

 

 

 

 
A thesis submitted in fulfilment of the requirements for the  

degree of Doctor of Philosophy in the School of Information Technologies at  
The University of Sydney 

 

 
 
 
 

 
 
 
 

Kathryn Elizabeth Merrick 
August, 2007 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41230791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
© Copyright by Kathryn Merrick 2007 

All Rights Reserved 



 iii

 

 

 

 

 

 

I hereby declare that the work embodied in this thesis is the result of original research and 
has not been submitted for a higher degree to any other university or institution. 

 

 

_______________________________________ 

 

Kathryn E. Merrick 

 

Sydney 
August, 2007 



 iv

 
 
 
 
 
 
 
 
 
Acknowledgements 
A PhD thesis is rarely the work of just one person.  This thesis has benefited from the input 

and advice of members of the Key Centre for Design Computing and Cognition at the 
University of Sydney.  My supervisor, Mary Lou Maher, has been both enthusiastic and 
supportive throughout.  Mary introduced me to John Gero who, in turn, showed me the work 
of Rob Saunders, which has influenced the models developed in this thesis.  Rob has 

provided support and guidance during the writing process.  I would also like to thank 
Professor Peter Eades from the National ICT Australia for his help and advice over the past 
three years.  This research was supported by an Australian Postgraduate Award and a 
National ICT Australia PhD scholarship. 

 



 v

Abstract 
Computational models of motivation are software reasoning processes designed to direct, 

activate or organise the behaviour of artificial agents.  Models of motivation inspired by 
psychological motivation theories permit the design of agents with a key reasoning 
characteristic of natural systems: experience-based attention focus.  The ability to focus 
attention is critical for agent behaviour in complex or dynamic environments where only 

small amounts of available information is relevant at a particular time.  Furthermore, 
experience-based attention focus enables adaptive behaviour that focuses on different tasks 
at different times in response to an agent’s experiences in its environment.  This thesis is 
concerned with the synthesis of motivation and reinforcement learning in artificial agents.  

This extends reinforcement learning to adaptive, multi-task learning in complex, dynamic 
environments.   

Reinforcement learning algorithms are computational approaches to learning characterised 

by the use of reward or punishment to direct learning.  The focus of much existing 
reinforcement learning research has been on the design of the learning component.  In 
contrast, the focus of this thesis is on the design of computational models of motivation as 
approaches to the reinforcement component that generates reward or punishment.  The 

primary aim of this thesis is to develop computational models of motivation that extend 
reinforcement learning with three key aspects of attention focus: rhythmic behavioural 
cycles, adaptive behaviour and multi-task learning in complex, dynamic environments.  This 
is achieved by representing such environments using context-free grammars, modelling 

maintenance tasks as observations of these environments and modelling achievement tasks 
as events in these environments.  Motivation is modelled by processes for task selection, the 
computation of experience-based reward signals for different tasks and arbitration between 
reward signals to produce a motivation signal.  Two specific models of motivation based on 

the experience-oriented psychological concepts of interest and competence are designed 
within this framework.  The first models motivation as a function of environmental 
experiences while the second models motivation as an introspective process.     

This thesis synthesises motivation and reinforcement learning as motivated reinforcement 

learning agents.  Three models of motivated reinforcement learning are presented to explore 
the combination of motivation with three existing reinforcement learning components.   The 
first model combines motivation with flat reinforcement learning for highly adaptive 
learning of behaviours for performing multiple tasks.  The second model facilitates the recall 

of learned behaviours by combining motivation with multi-option reinforcement learning.  In 
the third model, motivation is combined with an hierarchical reinforcement learning 
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component to allow both the recall of learned behaviours and the reuse of these behaviours 
as abstract actions for future learning.   

Because motivated reinforcement learning agents have capabilities beyond those of existing 
reinforcement learning approaches, new techniques are required to measure their 
performance.  The secondary aim of this thesis is to develop metrics for measuring the 
performance of different computational models of motivation with respect to the adaptive, 

multi-task learning they motivate.  This is achieved by analysing the behaviour of motivated 
reinforcement learning agents incorporating different motivation functions with different 
learning components.  Two new metrics are introduced that evaluate the behaviour learned 
by motivated reinforcement learning agents in terms of the variety of tasks learned and the 

complexity of those tasks.   

Persistent, multi-player computer game worlds are used as the primary example of complex, 
dynamic environments in this thesis.  Motivated reinforcement learning agents are applied to 
control the non-player characters in games.  Simulated game environments are used for 

evaluating and comparing motivated reinforcement learning agents using different 
motivation and learning components.  The performance and scalability of these agents are 
analysed in a series of empirical studies in dynamic environments and environments of 
progressively increasing complexity.  Game environments simulating two types of 

complexity increase are studied: environments with increasing numbers of potential learning 
tasks and environments with learning tasks that require behavioural cycles comprising more 
actions.   

A number of key conclusions can be drawn from the empirical studies, concerning both 
different computational models of motivation and their combination with different 
reinforcement learning components.  Experimental results confirm that rhythmic behavioural 
cycles, adaptive behaviour and multi-task learning can be achieved using computational 

models of motivation as an experience-based reward signal for reinforcement learning.  In 
dynamic environments, motivated reinforcement learning agents incorporating introspective 
competence motivation adapt more rapidly to change than agents motivated by interest 
alone.  Agents incorporating competence motivation also scale to environments of greater 

complexity than agents motivated by interest alone.  Motivated reinforcement learning 
agents combining motivation with flat reinforcement learning are the most adaptive in 
dynamic environments and exhibit scalable behavioural variety and complexity as the 
number of potential learning tasks is increased.  However, when tasks require behavioural 

cycles comprising more actions, motivated reinforcement learning agents using a multi-
option learning component exhibit greater scalability.  Motivated multi-option reinforcement 
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learning also provides a more scalable approach to recall than motivated hierarchical 
reinforcement learning.   

In summary, this thesis makes contributions in two key areas.  Computational models of 
motivation and motivated reinforcement learning extend reinforcement learning to adaptive, 
multi-task learning in complex, dynamic environments. Motivated reinforcement learning 
agents allow the design of non-player characters for computer games that can progressively 

adapt their behaviour in response to changes in their environment.   
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