MODELLING MOTIVATION FOR EXPERIENCE-BASED ATTENTION FOCUS IN REINFORCEMENT LEARNING

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Information Technologies at The University of Sydney

> Kathryn Elizabeth Merrick August, 2007

© Copyright by Kathryn Merrick 2007 All Rights Reserved I hereby declare that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other university or institution.

Kathryn E. Merrick

Sydney August, 2007

Acknowledgements

A PhD thesis is rarely the work of just one person. This thesis has benefited from the input and advice of members of the Key Centre for Design Computing and Cognition at the University of Sydney. My supervisor, Mary Lou Maher, has been both enthusiastic and supportive throughout. Mary introduced me to John Gero who, in turn, showed me the work of Rob Saunders, which has influenced the models developed in this thesis. Rob has provided support and guidance during the writing process. I would also like to thank Professor Peter Eades from the National ICT Australia for his help and advice over the past three years. This research was supported by an Australian Postgraduate Award and a National ICT Australia PhD scholarship.

Abstract

Computational models of motivation are software reasoning processes designed to direct, activate or organise the behaviour of artificial agents. Models of motivation inspired by psychological motivation theories permit the design of agents with a key reasoning characteristic of natural systems: experience-based attention focus. The ability to focus attention is critical for agent behaviour in complex or dynamic environments where only small amounts of available information is relevant at a particular time. Furthermore, experience-based attention focus enables adaptive behaviour that focuses on different tasks at different times in response to an agent's experiences in its environment. This thesis is concerned with the synthesis of motivation and reinforcement learning in artificial agents. This extends reinforcement learning to adaptive, multi-task learning in complex, dynamic environments.

Reinforcement learning algorithms are computational approaches to learning characterised by the use of reward or punishment to direct learning. The focus of much existing reinforcement learning research has been on the design of the learning component. In contrast, the focus of this thesis is on the design of computational models of motivation as approaches to the reinforcement component that generates reward or punishment. The primary aim of this thesis is to develop computational models of motivation that extend reinforcement learning with three key aspects of attention focus: rhythmic behavioural cycles, adaptive behaviour and multi-task learning in complex, dynamic environments. This is achieved by representing such environments using context-free grammars, modelling maintenance tasks as observations of these environments and modelling achievement tasks as events in these environments. Motivation is modelled by processes for task selection, the computation of experience-based reward signals for different tasks and arbitration between reward signals to produce a motivation signal. Two specific models of motivation based on the experience-oriented psychological concepts of interest and competence are designed within this framework. The first models motivation as a function of environmental experiences while the second models motivation as an introspective process.

This thesis synthesises motivation and reinforcement learning as motivated reinforcement learning agents. Three models of motivated reinforcement learning are presented to explore the combination of motivation with three existing reinforcement learning components. The first model combines motivation with flat reinforcement learning for highly adaptive learning of behaviours for performing multiple tasks. The second model facilitates the recall of learned behaviours by combining motivation with multi-option reinforcement learning. In the third model, motivation is combined with an hierarchical reinforcement learning component to allow both the recall of learned behaviours and the reuse of these behaviours as abstract actions for future learning.

Because motivated reinforcement learning agents have capabilities beyond those of existing reinforcement learning approaches, new techniques are required to measure their performance. The secondary aim of this thesis is to develop metrics for measuring the performance of different computational models of motivation with respect to the adaptive, multi-task learning they motivate. This is achieved by analysing the behaviour of motivated reinforcement learning agents incorporating different motivation functions with different learning components. Two new metrics are introduced that evaluate the behaviour learned by motivated reinforcement learning agents in terms of the variety of tasks learned and the complexity of those tasks.

Persistent, multi-player computer game worlds are used as the primary example of complex, dynamic environments in this thesis. Motivated reinforcement learning agents are applied to control the non-player characters in games. Simulated game environments are used for evaluating and comparing motivated reinforcement learning agents using different motivation and learning components. The performance and scalability of these agents are analysed in a series of empirical studies in dynamic environments and environments of progressively increasing complexity. Game environments simulating two types of complexity increase are studied: environments with increasing numbers of potential learning tasks and environments with learning tasks that require behavioural cycles comprising more actions.

A number of key conclusions can be drawn from the empirical studies, concerning both different computational models of motivation and their combination with different reinforcement learning components. Experimental results confirm that rhythmic behavioural cycles, adaptive behaviour and multi-task learning can be achieved using computational models of motivation as an experience-based reward signal for reinforcement learning. In dynamic environments, motivated reinforcement learning agents incorporating introspective competence motivation adapt more rapidly to change than agents motivated by interest alone. Agents incorporating competence motivation also scale to environments of greater complexity than agents motivated by interest alone. Motivated reinforcement learning agents combining motivation with flat reinforcement learning are the most adaptive in dynamic environments and exhibit scalable behavioural variety and complexity as the number of potential learning tasks is increased. However, when tasks require behavioural cycles comprising more actions, motivated reinforcement learning agents using a multioption learning component exhibit greater scalability. Motivated multi-option reinforcement

learning also provides a more scalable approach to recall than motivated hierarchical reinforcement learning.

In summary, this thesis makes contributions in two key areas. Computational models of motivation and motivated reinforcement learning extend reinforcement learning to adaptive, multi-task learning in complex, dynamic environments. Motivated reinforcement learning agents allow the design of non-player characters for computer games that can progressively adapt their behaviour in response to changes in their environment.

Table of Contents

Acknowled	gements	iv
Abstract		v
Index of Fi	gures	xii
Index of Ta	ables	xix
List of Abb	previations	XX
1. Introd	uction	1
1.1. I	RESEARCH OBJECTIVES	7
1.2. H	RESEARCH CONTRIBUTIONS AND SIGNIFICANCE	
1.3. N	METHODOLOGY	9
1.4.	THESIS OVERVIEW	
1.4.1.	Background and Related Work	
1.4.2.	Modelling Motivation for Experience-Based Attention Focus in Reinforce	ment
	Learning	
1.4.3.	Performance Metrics for Motivated Reinforcement Learning	
1.4.4.	Motivated Reinforcement Learning in a Simulated Game World	11
1.4.5.	Empirical Analysis of Motivated Reinforcement Learning in Complex,	
	Dynamic Environments	11
1.4.6.	Motivated Reinforcement Learning in an Open-Ended Virtual World	11
1.4.7.	Conclusion	12
2. Backg	round and Related Work	13
2.1.	THEORIES OF MOTIVATION FOR NATURAL AND ARTIFICIAL	
S	SYSTEMS	14
2.1.1.	Biological Theories and Models of Motivation	16
2.1.2.	Cognitive Theories and Models of Motivation	
2.1.3.	Social Theories and Models of Motivation	
2.1.4.	Combined Motivation Theories	
2.1.5.	Discussion	
2.2. H	REINFORCEMENT LEARNING MODELS	
2.2.1.	Reinforcement Learning	
2.2.2.	Reinforcement Learning in Partially Observable Environments	
2.2.3.	Reinforcement Learning with Function Approximation	43
2.2.4.	Hierarchical Reinforcement Learning	44
2.2.5.	Motivated Reinforcement Learning	47
2.2.6.	Discussion	

	2.3.	CONCLUSION	58
3.	Mod	elling Motivation for Experience-Based Attention Focus in Reinforcement	
	Lear	ning	59
	3.1.	MOTIVATION AND REINFORCEMENT LEARNING IN COMPLEX,	
		DYNAMIC ENVIRONMENTS	60
	3.1.1	. Motivation	62
	3.1.2	. Behavioural Cycles	63
	3.1.3	. Motivated Reinforcement Learning	64
	3.2.	MODELLING MOTIVATION FOR ATTENTION FOCUS IN	
		REINFORCEMENT LEARNING	65
	3.2.1	. Observations	66
	3.2.2	. Events	67
	3.2.3	. Tasks and Task Selection	69
	3.2.4	Experience-Based Reward Functions using Cognitive Motivation Theories	72
	3.2.5	. Arbitration Functions	76
	3.2.6	Summary and Discussion	77
	3.3.	ALGORITHMS FOR MOTIVATED REINFORCEMENT LEARNING	79
	3.3.1	. Motivated Flat Reinforcement Learning	80
	3.3.2	. Motivated Multi-Option Reinforcement Learning	82
	3.3.3	. Motivated Hierarchical Reinforcement Learning	85
	3.3.4	Discussion	88
	3.4.	CONCLUSION	88
4.	Perf	ormance Metrics for Motivated Reinforcement Learning	89
	4.1.	EXISTING PERFORMANCE METRICS FOR REINFORCEMENT	
		LEARNING	90
	4.1.1	. Models of Optimality and Performance Metrics for Reinforcement Learning	
	4.1.2		
		Reinforcement Learning Agents	94
	4.1.3		
	4.2.	NEW PERFORMANCE METRICS FOR ADAPTIVE, MULTI-TASK,	
		MOTIVATED REINFORCEMENT LEARNING	97
	4.2.1	. Statistical Model for Identifying Learned Tasks	98
	4.2.2		
	4.2.3	-	
	4.2.4		
	4.2.5	-	
	4.3.	CONCLUSION	. 103

5.	Moti	vated Reinforcement Learning in a Simulated Game World	. 104
	5.1.	RELATED WORK	. 105
	5.1.1	Character Roles in MMORPGs	. 106
	5.1.2	Existing Artificial Intelligence Techniques for NPCs in MMORPGs	. 107
	5.2.	MODELS OF MOTIVATION FOR SUPPORT CHARACTERS IN MMORPGS	. 109
	5.2.1	. Modelling Motivation as Interesting Events	109
	5.2.2	Modelling Motivation Using Interest and Competence	113
	5.3.	EXPERIMENT 1: MOTIVATED REINFORCEMENT LEARNING FOR	
		SUPPORT CHARACTERS IN MMORPGS	115
	5.3.1	. Experimental Setup: A Simulated Game Environment	115
	5.3.2	Results and Discussion	118
	5.4.	CONCLUSION	126
6.	Scala	bility of Motivated Reinforcement Learning in Complex and Dynamic	
		ronments	128
	6.1.	EXPERIMENT 2: INCREASING THE NUMBER OF POTENTIAL	
		LEARNING TASKS	129
	6.1.1	Experimental Setup	129
	6.1.2	Results and Discussion	131
	6.2.	EXPERIMENT 3: TASKS OF INCREASING COMPLEXITY	. 138
	6.2.1	Experimental Setup	138
	6.2.2	Results and Discussion	138
	6.3.	EXPERIMENT 4: ENVIRONMENTS THAT CHANGE WHILE THE AGENT	
		IS LEARNING	145
	6.3.1	Experimental Setup	145
	6.3.2	Results and Discussion	147
	6.4.	CONCLUSION	. 153
7.	Moti	vated Reinforcement Learning in an Open-Ended Virtual World	155
	7.1.	RELATED WORK	
	7.1.1	Open-Ended Virtual Worlds	156
	7.1.2	-	
	7.2.	EXPERIMENT 5: MOTIVATED REINFORCEMENT LEARNING IN OPEN-	
		ENDED SIMULATION GAMES	. 159
	7.2.1	Game Design	160
	7.2.2		
	7.2.3		
	7.2.4		
	7.3.	CONCLUSION	

8.	Conclu	ision	172
8	8.1. S	UMMARY OF RESEARCH CONTRIBUTIONS AND CONCLUSIONS	173
	8.1.1.	Synthesis of Motivation Theory and Reinforcement Learning	173
	8.1.2.	A Model of Motivation for Experience-Based Attention Focus in	
		Reinforcement Learning	173
	8.1.3.	Performance Metrics for Motivated Reinforcement Learning	174
	8.1.4.	An Empirical Analysis of Motivated Reinforcement Learning in Complex,	
		Dynamic Environments	174
	8.1.5.	Non-Player Characters for Open-Ended Virtual Worlds	175
8	8.2. L	IMITATIONS AND FUTURE WORK	175
	8.2.1.	Motivation in other Reinforcement Learning Settings	175
	8.2.2.	Scalability of Motivated Reinforcement Learning	176
	8.2.3.	Alternative Approaches to Motivation in Reinforcement Learning	177
	8.2.4.	Motivation in other Machine Learning Settings	178
	8.2.5.	Additional Metrics for Motivated Reinforcement Learning	179
8	8.3. C	ONCLUDING REMARKS	179
Gle	ossary		180
Ap	pendix A	- Details of the Experimental Method	183
Ар	pendix B	B – Additional Results from the Aussie Outback Challenge	186
Ар	pendix (C – Publications Related to this Research	191
Re	ferences		198

Index of Figures

Figure 1.1. The cliff walking task (Sutton and Barto, 2000). Reinforcement learning uses a
reward signal (left) to direct learning of a policy (right) for every state. Blue arrows
are resets that occur outside the world model
Figure 1.2. The cliff-walking task situated in an environment with multiple tasks that may
change unpredictably over time
Figure 1.3. (a) Existing reinforcement learning approaches solve an isolated task for all
states. (b) The motivated reinforcement learning approaches in this thesis focuses
attention using motivation to support the emergence of behavioural cycles for life-
long, adaptive, multi-task learning
Figure 2.1. Motivational state theory describes hunger more accurately than drive theory by
using multiple motivational variables (McFarland, 1995)
Figure 2.2. Arousal results from the joint action of positive and negative reward for a
stimulus. (Berlyne, 1970; Berlyne, 1971)
Figure 2.3. Operant theory describes the relationship between reward and behaviour
Figure 2.4. Incentive for behavioural response in individuals with (a) differing motivational
strength to approach success and (b) differing motivational strength to avoid failure.
Figure 2.5. The Naive Analysis of Action Theory (Heider, 1958) divides motivational forces
into two classes: personal forces and environmental forces
Figure 2.6. Maslow's hierarchy of needs (Maslow, 1954) synthesises different motivation
theories in an hierarchy
Figure 2.7. Existence, Relatedness, Growth theory (Alderfer, 1972) synthesises different
motivation theories without ordering
Figure 2.8. The reinforcement learning process takes states and rewards as input, updates a
policy stored in memory and outputs an action
Figure 2.9. Episodic temporal difference reinforcement learning algorithms process
experiences in distinct episodes
Figure 2.10. Continuing task, temporal difference reinforcement learning algorithms process
experiences as a single, infinite trajectory
Figure 2.11. The reinforcement learning process for partially observable environments.
Sensed states differ from the actual world state
Figure 2.12. The hierarchical reinforcement learning process takes states and rewards as
input, creates behavioural options, updates an hierarchical policy stored in memory
and outputs an action
Figure 2.13. Category (I) motivated reinforcement learning models: (a) MRL(I) and (b)
MHRL(I) extend reinforcement learning and hierarchical reinforcement learning by
introducing a motivation signal in addition to the reward signal

Figure 2.14. Category (II) motivated reinforcement learning models extend reinforcement
learning by using a motivation signal instead of the reward signal
Figure 2.15. Simsek and Barto (2006) model MHRL(I) agents using a task value function
and a behaviour value function
Figure 2.16. (a) Reinforcement learning is extended by Singh et al. (2005) by splitting the
environment into internal and external components to create (b) category (I)
reinforcement learning agents
Figure 3.1. An agent in an environment
Figure 3.2. Behavioural cycles of complexity one, two, three and n
Figure 3.3. The motivated reinforcement learning algorithm uses a continuing task flow of
control. Motivation is computed as an experience-based reward signal
Figure 3.4. Difference between a world state, a sensed state and an observation
Figure 3.5. The novelty of a stimulus decreases with repeated exposure to the stimulus
(habituation). Novelty increases when the stimulus is removed (recovery)
Figure 3.6. The Wundt curve is the difference between positive and negative reward
functions. It peaks at a moderate degree of novelty74
Figure 3.7. Learning error and competence have an inverse relationship76
Figure 3.8. Algorithmic description of motivation for attention focus in reinforcement
learning
Figure 3.9. Diagrammatic representation of motivation for attention focus
Figure 3.10. The motivated Q-learning algorithm
Figure 3.11. The motivated SARSA algorithm
Figure 3.12. Comparison of (a) flat reinforcement learning agents and (b) motivated flat
reinforcement learning agents. Flat reinforcement learning agents take a reward
signal from the environment, but motivated flat reinforcement learning agents
incorporate a motivation process to compute an experience-based reward signal.
(Saunders and Gero, 2002)
Figure 3.13. The motivated, multi-option Q-learning algorithm
Figure 3.14. Comparison of (a) motivated flat reinforcement learning agents and (b)
motivated, multi-option reinforcement learning agents. Motivated, multi-option
reinforcement learning agents incorporate a reflex process to create, remove and
trigger behavioural options
Figure 3.15. The motivated hierarchical reinforcement learning agent model
Figure 3.16. The motivated hierarchical Q-learning algorithm
Figure 4.1. The performance of different reinforcement learning algorithms can be measured
as the reward gained in each learning episode (Sutton and Barto, 2000)

Figure 4.2. Reinforcement learning is used as a baseline for measuring two hierarchical
reinforcement learning algorithms. Performance is measured as the number of steps
until the task is complete in each learning episode (Hengst, 2002)
Figure 4.3. (a) Singh et al. (2005) measure learning quality as the average number of actions
to salient events. (b) Standard reinforcement learning is used as a baseline
Figure 4.4. Schmidhuber (1997) measures learning quality as the number of occurrences of
rewarded 'goal' states. Standard (plain) reinforcement learning is used as a
baseline
Figure 4.5. Kaplan and Oudeyer (2003) characterise their motivation function in terms of
the evolution of its motivational variables (a) predictability, (b) familiarity, (c) head
stability and (d) light stability
Figure 4.6. Kaplan and Oudeyer (2003) characterise behaviour in terms of domain specific
physical attributes such a head pan position and perceived light position
Figure 4.7. Huang and Weng (2002) characterise (a) their motivation function in terms of
the evolution of q-values in the learning component and (b) behaviour in terms of
the frequency with which actions are performed
Figure 4.8. Saunders and Gero (2001a) characterise their motivation function in terms of the
evolution of novelty values
Figure 4.9. Behavioural cycles of (a) complexity one for a maintenance task, (b) complexity
n for n achievement tasks
Figure 4.10. Multi-task learning can be visualised as instantaneous behavioural variety 99
Figure 4.11. Adaptive, multi-task learning can be visualised as cumulative behavioural
variety
Figure 4.12. The scalability of multi-task learning can be visualised in terms of the
instantaneous behavioural variety at a particular time in different environments 100
Figure 4.13. Multi-task learning can be visualised in terms of maximum behavioural
complexity 101
Figure 4.14. The scalability of multi-task learning can be visualised in terms of the
maximum behavioural complexity attained in different environments
Figure 5.1. Algorithmic description of motivation to achieve interesting events, a motivation
function for support characters in MMORPGs
Figure 5.2. Change in novelty with $\alpha = 1.05$ and (a) $\tau_1 = 3.3$, $\tau_2 = 14.3$ and (b) $\tau_1 = 9$, $\tau_2 = 27111$
Figure 5.3. Change in novelty with (a) τ_1 =3.3, τ_2 =14.3, α =1.5 and (b) τ_1 =9, τ_2 =27, α =1.5.
Figure 5.4. Change in interest with (a) $\rho^+ = \rho^- = 5$, $F_{min}^+ = 0.5$ and $F_{min}^- = 1.5$ and (b) $\rho^+ = \rho^- = 0.5$
30, $F_{\min}^+ = 0.5$ and $F_{\min}^- = 1.5$
Figure 5.5. Change in interest with (a) $\rho^+ = \rho^- = 10$, $F_{min}^+ = 0.1$ and $F_{min}^- = 1.9$ and (b) $\rho^+ = \rho^- = 0.1$
10, $F_{\min}^+ = 0.9$ and $F_{\min}^- = 1.1$

Figure 5.6. Algorithmic description of motivation using interest and competence, a
motivation function for support characters in massively multiplayer, online role-
playing games
Figure 5.7. Modelling interest with an aversion to low novelty (highly familiar tasks) 114
Figure 5.8. A game environment in Second Life
Figure 5.9. A context-free grammar for sensed states in a game scenario in which agents
control non-player characters. Agents have location sensors, inventory sensors and
object sensors
Figure 5.10. A context-free grammar for the action set in a game environment in which
agents have location effectors, pick-up object effectors and use object effectors 116
Figure 5.11. Cumulative behavioural variety by motivated flat reinforcement learning agents
using different motivation functions
Figure 5.12. Maximum behavioural complexity achieved by motivated flat reinforcement
learning agents after 50,000 time-steps
Figure 5.13. Focus of attention by two individual motivated, flat reinforcement learning
agents motivated to achieve interesting events over 50,000 time-steps. Agents that
focus attention differently represent different game characters
Figure 5.14. Cumulative behavioural variety by motivated, multi-option reinforcement
learning agents using different motivation functions
Figure 5.15. Average behavioural variety achieved by motivated, flat reinforcement learning
(MFRL) and motivated, multi-option reinforcement learning (MMORL) agents after
50,000 time-steps
Figure 5.16. Maximum behavioural complexity achieved by motivated flat reinforcement
learning (MFRL) and motivated, multi-option reinforcement learning (MMORL)
agents after 50,000 time-steps
Figure 5.17. Cumulative behavioural variety by motivated hierarchical reinforcement
learning agents using different motivation functions
Figure 5.18. Cumulative behavioural variety by motivated flat reinforcement learning
(MFRL), motivated, multi-option reinforcement learning (MMORL) and motivated
hierarchical reinforcement learning (MHRL) agents motivated to achieve interesting
events
Figure 5.19. Average behavioural variety achieved by motivated flat reinforcement learning
(MFRL), motivated multi-option reinforcement learning (MMORL) and motivated
hierarchical reinforcement learning (MHRL) agents after 50,000 time-steps 125
Figure 5.20. Maximum behavioural complexity achieved by motivated flat reinforcement
learning (MFRL), motivated multi-option reinforcement learning (MMORL) and
motivated hierarchical reinforcement learning (MHRL) agents after 50,000 time-
steps

Figure 6.1. State and action spaces for the additional MDP used to compose Environment 2
for Experiment 2
Figure 6.2. State and action spaces for the additional MDP used to compose Environment 3
for Experiment 2
Figure 6.3. State and action spaces for the additional MDP used to compose Environment 4
in Experiment 2
Figure 6.4. State and action spaces for the additional MDP used to compose Environment 5
in Experiment 2
Figure 6.5. Comparison of state and action set sizes for successive experimental
environments in Experiment 2
Figure 6.6. Average behavioural variety achieved by motivated flat reinforcement learning
agents using different models of motivation. Each environment contains more tasks
than the previous
Figure 6.7. Maximum behavioural complexity achieved by motivated flat reinforcement
learning agents using different models of motivation. Each environment contains
more tasks than the previous environment
Figure 6.8. Average behavioural variety achieved by motivated, multi-option reinforcement
learning agents using different models of motivation. Each environment contains
more tasks than the previous environment
Figure 6.9. Maximum behavioural complexity achieved by motivated, multi-option
reinforcement learning agents using different models of motivation. Each
environment containing more tasks than the previous environment
Figure 6.10. Average behavioural variety achieved by motivated hierarchical reinforcement
learning agents using different models of motivation. Each environment contains
more tasks than the previous environment
Figure 6.11. Maximum behavioural complexity achieved by motivated hierarchical
reinforcement learning agents using different models of motivation. Each
environment containing more tasks than the previous environment
Figure 6.12. State and action spaces of Environments 2-5 in Experiment 3 139
Figure 6.13. Comparison of state and action set sizes for successive experimental
environments in Experiment 3
Figure 6.14. Maximum behavioural complexity achieved by motivated flat reinforcement
learning agents using different models of motivation. Each environment contains
tasks requiring progressively more actions
Figure 6.15. Average behavioural variety achieved by motivated flat reinforcement learning
agents using different models of motivation. Each environment contains tasks
requiring progressively more actions

Figure 6.16. Maximum behavioural complexity achieved by motivated, multi-option
reinforcement learning agents using different models of motivation. Each
environment contains tasks requiring progressively more actions
Figure 6.17. Average behavioural variety achieved by motivated, multi-option
reinforcement learning agents using different models of motivation. Each
environment contains tasks requiring progressively more actions
Figure 6.18. Maximum behavioural complexity achieved by motivated hierarchical
reinforcement learning agents using different models of motivation. Each
environment contains tasks requiring progressively more actions
Figure 6.19. Average behavioural variety achieved by motivated hierarchical reinforcement
learning agents using different models of motivation. Each environment contains
tasks requiring progressively more actions
Figure 6.20. Cumulative behavioural variety achieved in Environment 4 by motivated
hierarchical reinforcement learning agents motivated to achieve interesting events.
Figure 6.21. State and action spaces of the environment in Experiment 4 after t=50,000. 146
Figure 6.22. Comparison of state and action space sizes before and after the environment
changes in Experiment 4
Figure 6.23. Cumulative behavioural variety by motivated flat reinforcement learning agents
using different motivation functions
Figure 6.24. Change in attention focus over time exhibited by a single agent motivated by
interest and competence in a dynamic environment
Figure 6.25. Cumulative behavioural variety by motivated, multi-option reinforcement
learning agents using (a) motivation to achieve interesting events, (b) motivation by
interest and competence and (c) the baseline reward function
Figure 6.26. Cumulative behavioural variety by motivated hierarchical reinforcement
learning agents using (a) motivation to achieve interesting events, (b) motivation by
interest and competence and (c) the baseline reward function
Figure 7.1. In the Second Life virtual world, complex designs can be created using a
combination of primitives and uploaded textures
Figure 7.2. In Active Worlds, complex designs can be created using basic shapes and
textures
Figure 7.3. Opening sequences of Aussie Outback Challenge, an open-ended, persistent
simulation game set in the Second Life virtual world
Figure 7.4. System architecture for designing agents as characters for Second Life 162
Figure 7.5. In Aussie Outback Challenge, six uncommonly intelligent sheep are located in a
paddock in Second Life

Figure 7.6. (a) A sheep follows an avatar away from the eelgrass. (b) Finite state automaton
representation of the learned 'following' behavioural cycle 165
Figure 7.7. (a) A sheep explores the food machine. (b) A learned behavioural cycle for
eating one food ball at a time. (c) A learned behavioural cycle for eating two food
balls at a time. (d) A learned behavioural cycle for obtaining and eating food without
moving
Figure 7.8. Two toys built for the sheep: a colour changing screen and a shape changing
wall
Figure 7.9. A hoop and target challenge designed for the sheep. A player attempts to ride a

Index of Tables

Table 3.1. Observation functions that achieve different levels of attention focus at time t 67
Table 3.2. Difference functions that achieve different levels of attention focus at time t 68
Table 3.3. Event functions that achieve different levels of attention focus at time t
Table 3.4. Arbitration functions for producing a motivation signal from motivation values,
when motivation values are computed by multiple computational models of
motivation
Table 3.5. Arbitration functions for producing a motivation signal from motivation values,
when motivation values are computed for multiple motivating tasks
Table 3.6. Potential experience trajectories as input for motivation functions in motivated
reinforcement learning
Table 3.7. Structures associated with behavioural options in motivated, multi-option
reinforcement learning
Table 3.8. Reflex rules used in motivated, multi-option reinforcement learning
Table 3.9. Structures associated with behavioural options in motivated hierarchical
reinforcement learning
Table 5.1 Parameters and their values for motivated reinforcement learning agents
motivated to achieve interesting events
Table 5.2 Parameters and their values for motivated reinforcement learning agents
motivated by interest and competence
Table 5.3. Comparison of reward from interest based motivation, experience-based reward
without motivation and a termination function
Table 6.1. Scalability characteristics of motivated reinforcement learning approaches using
different motivation and learning components

List of Abbreviations

CEC	
CFG	Context-Free Grammar
GPI	Generalised Policy Interaction
HRL	Hierarchical Reinforcement Learning
HSOM	Habituated Self-Organising Map
IHDR	Incremental Hierarchical Discriminant Regression
MDP	Markov Decision Process
MEU	Maximum Expected Utility
MFRL	Motivated Flat Reinforcement Learning
MHRL	Motivated Hierarchical Reinforcement Learning
MMORL	Motivated Multi-Option Reinforcement Learning
MMORPG	Massively Multiplayer, Online Role-Playing Game
MORL	Multi-Option Reinforcement Learning
MRL	Motivated Reinforcement Learning
MSL	Motivated Supervised Learning
MUL	Motivated Unsupervised Learning
NPC	Non-Player Character
POMDP	Partially Observable Markov Decision Process
RL	Reinforcement Learning
RPG	Role-Playing Game
SL	Supervised Learning
SMDP	Semi-Markov Decision Process
SOM	Self-Organising Map
TD	Temporal Difference
UL	Unsupervised Learning