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ABSTRACT 
 

Creating an intelligent agent capable of open-ended learning and long term autonomy is 

still an active research area. Reinforcement learning, where an agent learns by interacting 

with its environment, is suitable for agent autonomy and its extensions, such as motivated 

reinforcement learning and goal-oriented agent architectures, with their focus on meta-

cognitive aspects such as ‘what to learn’, enable autonomous multitask learning. The other 

essential aspect is the cognitive aspect of ‘how to learn’, a focus area of lifelong learning 

architectures. When these aspects are combined, it creates a comprehensive agent 

architecture that would endow an agent to learn new skills with minimal human 

intervention. The first contribution of this thesis is an agent architecture consisting of a task 

generation module, knowledge management module and learning module, providing the 

agent with open-ended, continuous and autonomous learning capabilities. Further, this 

thesis contributes to each of the modules of this architecture as follows.    

In reinforcement learning, the agent learns by interacting with its environment, guided by 

reward. However, for many dynamic environments, it is unknown upfront what tasks the 

agent will need to learn, and research has acknowledged the benefits of generating subtasks 

to direct learning. Depending on how the broken-down subtasks are considered to be 

accomplished, they can be an achievement, maintenance, approach or avoidance type. The 

second contribution of this thesis, related to the learning module of the proposed 

architecture, is a reward design based on these different types of tasks. For a continuously 

learning agent, tasks direct what the agent learns. Typically, the task design requires 

external intervention, thus hindering the agent’s autonomy. The third contribution of this 

thesis, related to the task generation module of the proposed architecture, is a mechanism 

to generate tasks at different levels of complexity. That enables the agent to learn simpler, 

more primitive tasks first, followed by more difficult compound tasks. 

Furthermore, one of the key characteristics of continuous learning is that the agent should 

be able to use its existing knowledge to solve future tasks. Compound tasks can be either 

a sequential or a concurrent combination of primitive tasks. The fourth contribution of this 

thesis, related to the knowledge management module of the proposed architecture, is a 

compositionality technique whereby the agent can combine its primitive skills for disjoint 
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tasks to solve a compound task that is a concurrent combination of those tasks. Finally, the 

fifth contribution of this thesis is metrics to measure task difficulty, agent’s competency 

for a particular skill and agent performance for tasks of different types. A mobile robot is 

used for all the experiments to show how the agent generates new tasks, learns solutions to 

those tasks and combines the skills to accomplish compound tasks, thus demonstrating 

autonomous behaviour of continuous learning in an open-ended way.   
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CHAPTER 1     INTRODUCTION 

 

1.1 Introduction 

Designing an intelligent agent is complex [1] [2] [3]. In the case of living organisms, while 

some skills are self-learned, others need to be taught. While some learning is structured, 

most of it is unstructured. Moreover, the reason to attempt to learn some skills ranges from 

survival to social and sometimes just for its sake [4]. In any case, for a living organism, 

there appears to be an ecosystem that initiates, drives and sustains learning. To create an 

artificial agent, all of this has to be thought of and designed [5] [6] [7] [8]. The reason, the 

drive, the motivation, and the cause to learn something new is all a piece of code or some 

form of a programmable circuit. The knowledge representation, in its simple form, is a 

relationship mapping between data points. The knowledge repository, in its simplest form, 

is a data store. In the 1980s and 1990s, this used to be a very active research area [9] [10]. 

Since then, several tangible and intangible advances have been made in everything even 

remotely related to the intelligent agent, from hardware (processing power, sensor 

technologies, to name a few) and software (learning frameworks, knowledge 

representation, to name a few) to our understanding of what intelligence is [3]. In recent 

years researchers have started to examine self-motivated, continuous learning agents [11] 

[12] [13]. However, there remain few established architectures that empower the agents to 

self-direct their learning. That is the topic of this thesis. 

An agent or a robot, in most cases, is designed to do a particular task or a set of tasks. 

Undoubtedly, those repetitive tasks are carried out with high precision and better than 

humans in many cases. However, due to one failure in hardware or software or one change 

to the environment, such an agent’s behaviour becomes highly unpredictable. Even if the 

agent has the capability to adapt to programmed predictable uncertainty, such as sudden 

road closure requiring the mapping software to recalculate the route, in many cases, any 

unexpected change in the normal working condition leads to failure. Such adaptability 

requires the agent to learn continuously, sort of rewiring some of the internal 

representations of the model of its world on a constant basis, and this should continue for 
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the whole lifetime of the agent. That is commonly referred to as lifelong or continual 

learning [14] [15]. That learning behaviour is reactive since the learning is triggered by an 

event [2]. On the other hand, a proactive learning behaviour can be where the agent, like 

living organisms, learns a skill to prevent some mishap or find a more optimal solution 

without being asked to do that [2]. That requires the agent to be able to create a plan, a sort 

of curriculum of what it should learn next, or do next, given its current level of knowledge. 

Such structured learning is referred to as incremental or curriculum learning [16] [17]. 

When the agent does this with no immediate benefit to itself, it is called motivated learning 

[18] and the behaviour exhibited by the agent is said to be open-ended learning [4]. Open-

ended learning enables the agent to self-direct its learning based on its interaction with the 

environment. With its focus on the meta-cognitive aspects such as what to learn [19] and 

when to learn [20], it is envisaged to empower the agent such that constant supervision will 

no longer be necessary. When intrinsic motivation [4], in particular, curiosity, is used to 

direct what the agent learns, it creates an intrinsically motivated open-ended learning 

framework [12] [21]. Consider a service robot in a real-world situation. Since the 

environment is dynamically changing, it is not possible to contemplate all the skills that 

the service robot will require [22]. Since it is not practical to provide the agent with constant 

guidance regarding which environment-specific skills to learn, it would be essential that 

the agent can decide by itself which skills to acquire, i.e. learn in an open-ended manner.  

Closely related to the above is lifelong learning, whose general characteristics are that it 

learns continuously, accumulates and incorporates new learning into its knowledge 

repository, and can reuse the learned knowledge to find solutions to future tasks [15] [23]. 

That enables the agent to continuously increase the overall knowledge of its environment. 

From the literature review, it appears that the questions that lifelong learning is aiming to 

find answers to are: (i) how to overcome the “Frame Problem”, i.e. if the system is limited 

by what it models, is it possible to make the same system learn other things as well [24], 

(ii) if all the knowledge is stored in a single representation, how does one overcome the 

problem of catastrophic forgetting when a new task is to be learned [25], (iii) what is a 

representation of the core commonality of the related tasks and how best to transfer known 

skill to a related new task, and (iv) learning how to learn [23] [26]. That shows that this 

research area’s focus is on the cognitive aspect.  
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For a comprehensive agent architecture, both open-ended learning, with its focus on the 

meta-cognitive aspect, and lifelong learning, with its focus on the cognitive aspect, are 

required [27]. The third aspect of all this is the agent’s ability to learn independently or 

with minimal intervention from other agents/humans [28]. Most real-world situations 

cannot easily be divided into training and test samples, so the agent should be able to gather 

its data and make a deliberate attempt to learn aspects of the skill it is uncertain about. 

Since the learning rate of different skills is not going to be the same, the agent should be 

able to tune its learning parameters. Autonomy, defined as the system’s ability to make its 

own decisions, is required for the agent to be classified as a functional artificial agent [28]. 

Reinforcement learning is a learning method where the agent interacts with its environment 

and learns new skills by trial and error. The agent is not instructed what action it should 

take in a particular state of its world but must figure out by itself the best action it should 

take from all the available actions. Over time, it forms a policy, i.e., mapping between 

states and actions akin to skill. A policy can be packaged and stored. It can also be used as 

a macro-action and can be recalled based on a trigger. It executes the packaged behaviour 

and terminates when a final state is reached. These attributes have made reinforcement 

learning an ideal starting point for lifelong learning architectures [29] [30] [31]. However, 

as the literature review shows, there is no agreement on the necessary components to take 

reinforcement learning from reliable task-oriented learning to reliable lifelong open-ended 

learning.        

With that gap as the starting point, Section 1.2 lists the research questions. The solutions 

to those questions, i.e. the contributions of this research, are summarised in Section 1.3. 

Then, Section 1.4 details the organisation of this thesis.  

 

1.2 Research Questions 

This research starts with the premise that the essential aspects of the architecture of a 

functional self-learning agent are that it should be able to learn in an open-ended manner 

throughout its whole life and use reinforcement learning to carry out the learning with 
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minimal external intervention. With that in mind, the following are the questions that this 

research will aim to contribute towards.  

        Question 1: What are the modules of an open-ended and continuous reinforcement 

learning architecture? 

By the end of Chapter 2, this thesis identifies that an open-ended architecture: i) should be 

able to decide what new skill it should acquire, ii) should have a memory module where 

the skills are stored, and iii) the agent should be able to assimilate the knowledge acquired 

and use that knowledge to solve future tasks. The agent architecture should be modular in 

that it should be able to add/remove/plugin the auxiliary modules required. The scope of 

this thesis is limited to reinforcement learning as the learning method. The learning, 

however, should be domain-independent and hence flexible in the choice of task generation 

technique and knowledge store technology. With these points in mind, the subsequent 

research questions focus on the design of specific modules that will sit within an open-

ended, continuous reinforcement learning architecture. 

        Question 2: How does one design a module to generate task-independent reward 

functions for different types of tasks, including when the primitive tasks are combined to 

form a compound task?   

In reinforcement learning, the learning is guided by feedback, commonly referred to as a 

reward. How well the agent learns is often determined by how well the reward function is 

designed. Typically, the reward design is task-dependent and requires significant domain 

knowledge. That, however, limits the autonomy of the agent. A review of the literature in 

the area of task-independent reward function design shows that a concept called ‘intrinsic 

motivation’ can be used. The agent generates such a reward based on its perceived novelty 

of the task or an internal prediction error. As an alternative, one could exploit the inherent 

property of the task type, which would make the reward task-independent. Tasks can be 

classified as achievement, maintenance, avoidance and approach type [32]. This question 

focuses on the design of reward functions based on such task classification. Also, one may 

wonder could such a reward design be extended to be used when the primitive tasks are 

combined to form a compound task.   
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        Question 3: How does one design a module to self-generate tasks of varying 

complexity? 

To exhibit open-ended learning, the agent should be able to self-generate the tasks to direct 

what it learns. Also, since the architecture allows continuous learning and requires minimal 

external intervention, the architecture should support agents to progressively build their 

knowledge of their environment. For that, the agent must be able to generate tasks of 

varying complexity, not necessarily hierarchical. It will initially start by learning to attain 

simpler tasks and gradually, as it gains more knowledge to attain complex tasks [22]. 

Existing task generation techniques either generate flat tasks or hierarchical tasks. Often 

tasks are a combination of primitive tasks. For example, consider a task for a robot to open 

the lid of a bottle. It is a complex task that comprises grasping the bottle and opening the 

lid. It is a combination of tasks that are not hierarchical. A literature review in the area of 

self-task generation shows that technique to generate tasks of varying complexity does not 

exist. Such a technique would enable the agent to start with little or no knowledge of its 

environment and improve its capabilities over time. Also, it will enable the agent to reuse 

its skills for primitive tasks to learn compound tasks.  

        Question 4: How does one design a module to compose a skill for a compound task 

by combining primitive skills? 

The reinforcement learning community’s focus has mostly been on devising algorithms to 

enable faster learning; however, reinforcement learning is sample inefficient by nature. 

That is because the agent has to try out all the actions when in a particular state to be able 

to build an accurate model of its environment. Techniques such as imitation learning are 

employed to make learning more sample efficient [33]. Since the agent architecture has the 

capability to learn continuously and assimilate the learned knowledge into its repository, 

an alternative approach to enable faster learning is to reuse the learned knowledge. For 

related tasks, the knowledge learned from previous tasks can be used [34]; however, not 

always are the tasks related. Again, consider the example of a robot learning to open the 

lid of a bottle. The task of grasping is not necessarily related to the task of opening the lid. 

One approach to learning such compound tasks is using multitask reinforcement learning 

[35], where the agent can learn multiple/complex tasks from scratch, which, however, is 
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not “sample efficient”. As an alternative approach, compositionality can be used, where 

the skills of primitive tasks are combined to form solutions for compound tasks. In 

reinforcement learning, this typically has been used when the skills, i.e. policies, are 

represented as Q-tables. However, such policy representation does not scale to problems 

with high dimensional or large state spaces. Another way to represent a policy is by using 

a neural network. In the last few years, the composition of skills represented by the neural 

network has been an active area of research. Such composition serves as an alternative to 

‘sample efficient reinforcement learning’ and forms a repository of primitive skills that can 

be mixed and matched to create a variety of sophisticated skills.  

 

1.3 Contributions and Significance 

This research makes the following contributions to fulfil the questions listed in the previous 

section.  

1.3.1 A modular agent architecture for open-ended continuous reinforcement 

learning 

This research proposes a modular learning architecture detailed in Chapter 3, Section 3.3. 

It comprises (i) a task generation module fulfilling the criteria of making the architecture 

capable of open-ended learning, (ii) a knowledge repository that stores learned skills, 

fulfilling the criteria of making the architecture capable of continuous learning, and (iii) a 

learning module which can be any reinforcement learning algorithm. The architecture is 

flexible and allows any self-task generation technique to be used and any form of 

knowledge store to be used. The skills can be stored as individual policies, making them 

easy to recall and combine as required. Using simulated e-puck mobile robot based 

experiments, Section 3.4 shows how the robot experiences its environment, self-generates 

its task, learns the skills, and continues that throughout its lifetime. Thus gradually 

improving its capabilities in an open-ended and continuous manner.      
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1.3.2 Task-independent reward functions based on the type of task 

Tasks can range in abstraction from high-level to low-level. Another categorisation is based 

on the functional aspect and how it is considered to be attained. The common categories 

are achievement, maintenance, avoidance and approach [32]. The inherent nature of this 

categorisation makes them task-independent. When a robot opens the lid of a bottle, the 

task is said to be achieved. A mobile robot moving along a marked track is an example of 

a maintenance task. Reward functions can be based on this categorisation of tasks, thus 

making them task-independent. In Chapter 4, Section 4.3, this research proposes reward 

functions based on task types. Using simulated e-puck mobile robot based experiments, 

Section 4.5 shows how the robot using the proposed reward functions learns to attain 

maintenance, achievement, approach, and avoidance tasks.  

1.3.3 A technique to self-generate tasks of varying levels of complexity 

In Chapter 5, Section 5.3, this research proposes a novel task generation technique. The 

proposal uses agglomerative hierarchical clustering to generate regions within the agent’s 

state space. The number of clusters or regions generated can be varied, generating fewer 

clusters, i.e. higher-level abstract regions, to more clusters, i.e. granular abstractions. These 

aggregated state attributes are then used to generate tasks. Furthermore, a change in its 

environment triggers a continuous learning agent to explore its environment and regenerate 

the aggregations. These new unique aggregations are integrated within the list of previous 

unique aggregations, making them suitable for continuous learning. Using simulated e-

puck mobile robot experiments, Section 5.4 demonstrates the task generation.    

1.3.4 A technique to concurrently compose primitive skills to form solutions for 

compound tasks 

A compound task can be composed of primitive tasks sequenced together or concurrently 

combined primitive tasks. This research proposes a novel concurrent skill combination 

technique for the reinforcement learning policies represented by neural networks. Policies 

combined using this technique provide simplicity and understandability of Q-table based 
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representation and scalability of neural networks. In Chapter 6, Section 6.3, this research 

proposes the generation of policy for compound tasks using a method similar to the average 

model weight ensemble [36] [37]. The policy comprises average learnable parameters of 

the constituent primitive tasks. Using simulated e-puck mobile robot experiments, Section 

6.5 demonstrates how the combined primitive policies can be used as a solution for a 

compound task with little or no additional training.  

1.3.5 Metrology for agent performance, task difficulty and agent competency 

The metrics generally used to measure a reinforcement learning agent’s performance is the 

reward gained by the agent in each episode. That is appropriate for achievement type tasks, 

i.e. when the desired state is reached, the episode is considered to be completed. However, 

maintenance tasks are non-ending, and the concept of the episode is not relevant; thus, the 

commonly used metric is not an effective way to measure an agent’s performance. This 

thesis proposes new metrics to measure an agent’s performance for maintenance, 

achievement, approach, and avoidance task types. Chapter 4, Section 4.4, details the 

proposed agent performance metrics. A measure of task difficulty and agent’s competency 

for a skill can be used for task prioritisation and even as intrinsic motivation. Chapter 6, 

Section 6.4, proposes metrics to measure the task difficulty and agent competency. 

 

1.4 Organisation of the Thesis 

This chapter introduces the topic of the thesis, provides the motivation behind this research, 

details the research questions, and lists the contributions of this thesis. The rest of the thesis 

is organised as described below and shown in a graphic format in Figure 1.1. 
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Figure 1.1: A graphical view of the organisation of the thesis. 

 

Chapter 2: Methods, Materials and Concepts 

Chapter 2 details the methods, materials and concepts used in this thesis. It starts by 

describing reinforcement learning concepts and algorithms, followed by the adaptive 

resonance theory algorithm. It then provides the details of the e-puck mobile robot, 

followed by other key concepts used throughout this thesis.  

Chapter 3: Agent Architecture for Open-Ended and Continuous Learning 
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Chapter 3 will describe the proposed agent architecture for open-ended and continuous 

learning, i.e. contribution #1 of this thesis. It will describe the essential components of the 

architecture and how they are integrated to form a ‘Modular Continuous Learning 

Architecture’. Using simulated e-puck mobile robot based experiments, it will show how 

the architecture results in agent learning in an open-ended and continuous manner.   

Chapter 4: Reward Design for Autonomous Learning 

Chapter 4 will describe a novel approach to reward function design, a contribution related 

to the task learning module. It will detail task-independent reward functions that are based 

on the type of task. The experiments will use the various types of tasks generated by 

Merrick et al. [38] and a simulated e-puck mobile robot to demonstrate how it learns to 

attain those tasks. The learning will be measured using the proposed agent performance 

metrics. This chapter will also show how the proposed task-independent reward functions 

can be used to learn compound tasks.  

Chapter 5: Self Generation of Tasks to Direct the Learning 

Chapter 5 will detail a novel task generation technique capable of generating tasks of 

varying complexity, a contribution related to the task generation module. It will then detail 

the results of the experiments related to the proposed task generation technique. Using a 

simulated e-puck mobile robot, it will be demonstrated how the attributes that form a 

robot’s state space are aggregated to form features that are then used to create tasks ranging 

from simple to more complex.  

Chapter 6: Reuse of Learned Knowledge by Skill Composition 

Chapter 6 will detail a novel skill composition technique for the reinforcement learning 

policies represented by neural networks, a contribution related to the knowledge 

management module of the architecture proposed in Chapter 3. It will then detail the results 

of the experiments related to the proposed skill composition technique. Using a simulated 

e-puck mobile robot, this chapter will demonstrate how the robot can combine primitive 

skills to form solutions to attain compound tasks with little or no additional training. It will 

compare those results with the results of learning to attain the compound task from scratch.  
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Chapter 7: Conclusion and Future Work 

Chapter 7 will revisit the research questions, summarise how the contributions of this 

research answer those questions and extend the current state-of-the-art. The final section 

of this chapter will list the future direction of this research.            
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CHAPTER 2     METHODS, MATERIALS AND CONCEPTS 

 

2.1 Introduction 

This chapter details the methods, materials and concepts used in this thesis. It starts with 

reinforcement learning used in the learning module of the architecture proposed in this 

thesis, followed by the adaptive resonance theory algorithm. Section 2.3 details the 

simulation software and the mobile robot used in this thesis. Section 2.4 then details other 

key concepts used throughout this thesis.  

 

2.2 Algorithms 

This section will detail the algorithms and fundamental reinforcement learning concepts 

used in this thesis. The algorithms include reinforcement learning used in all the chapters 

and adaptive resonance theory used in Chapter 3. 

2.2.1 Reinforcement Learning 

Reinforcement learning is a method of learning where the agent learns by interacting with 

its environment. It is not instructed what actions it should take while in a particular situation 

but must figure out by itself by trying different actions, i.e. the agent learns by trial and 

error. As shown in Figure 2.1, the agent perceives the state of the environment, takes action 

in the current state and receives positive or negative feedback called a reward. The agent 

must compute the most favourable action by selecting and attempting an action from the 

available set of actions. Over time, reinforcement learning forms a policy, a mapping 

between states and actions that help decision-making.  
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Figure 2.1: Graphic representation of reinforcement learning.  
 

State Space 

In reinforcement learning, an agent’s state 𝑠 is a vector of parameters that describes its 

representation in the environment. That ‘state’ can be expressed as:  

𝑠 = [ 𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … 𝑢௡] 
 

 (2.1)   

where each attribute 𝑢௜ is typically a numerical value that describes an external or internal 

variable, and 𝑛 is the number of attributes of the state. For example, consider a state of a 

mobile robot represented in terms of its side and front proximity sensors as the state 

attributes. Further, consider that the state attributes are discretised binary values. Thus, the 

state can be represented using vector [0 0 0 0]. As will be detailed in the next subsection, 

this state indicates that all the proximity sensor readings are 0, i.e. no object in close 

proximity of the mobile robot. 

The state space 𝑆, also sometimes referred to as an observation space, is a collection of all 

agent states. The state space can be discrete or continuous. If all the vector attributes that 

make up the state of the agent are discrete, then the state space is said to be discrete. A 

discrete state space is represented as shown in the equation below, where 𝑣 is the number 

of states in the state space 𝑆. If one or more attributes are continuous, then the state space 

is said to be continuous. 

𝑆 = {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , 𝑠௩}  (2.2) 
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Continuing with the same mobile robot example as above where the state is represented in 

terms of its side and front proximity sensors and the attributes are discretised into binary 

values. The state space will be {[0 0 0 0], [1 0 0 0], [0 1 0 0], …, [1 1 1 1]}.   

Action Space 

The set of available actions is called the action space of the agent. Action space, too, can 

be discrete or continuous. In the case of discrete action space, represented as shown in the 

equation below, the agent can select an action from a finite set of 𝑚 actions.   

𝐴 = {𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠}  (2.3) 

Consider the mobile robot example again. Consider that it can take actions related to 

turning and moving forward in each of its states. The action space of the robot will be{turn 

left, move forward, turn right}. Thus, in the state [0 0 0 0] i.e. 𝑠ଵ, it can take either of the 

actions 𝑎ଵ, 𝑎ଶ, 𝑎ଷ and similarly in other states 𝑠ଶ, 𝑠ଷ, … , 𝑠௩, it can take those actions.  

Reinforcement Learning Representation 

The reinforcement learning problem is formulated using Markov Decision Process, whose 

main components are: 

 A set of states 𝑠 ∈ 𝑆, where 𝑆 is the state space 

 A set of actions 𝑎 ∈ 𝐴 the agent can take, where 𝐴 is the action space. 

 A transition function (also referred to as the transition model) 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) that 

defines the transition probability of landing in the state 𝑠௧ାଵ when an action 𝑎௧ is 

taken in the state 𝑠௧, that is, 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  𝑇(𝑠௧ାଵ|𝑠௧, 𝑎௧)  

 Feedback received from the environment for taking action 𝑎௧ in state 𝑠௧ and landing 

in the state 𝑠௧ାଵ, that is, a reward 𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) 

 A policy 𝜋 which determines what action to take in a particular state 

Reinforcement learning aims to maximise cumulative reward. Thus, many reinforcement 

learning algorithms find this policy by estimating a value function that computes how good 

it is for the agent to be in each state. For example:  
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𝑉௧ାଵ(𝑠௧) ← 𝑚𝑎𝑥
௔

෍ 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ)[𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) + 𝛾𝑉௧(𝑠௧ାଵ)]
௦೟శభ

 (2.4) 

where 𝑉 is the value, i.e. the expected utility of state, 𝛾 is the discount factor, and 𝑡 is a 

time step. 

Policy 

A reinforcement learning agent is not instructed what actions it should take while in a 

particular situation but must figure out by trying different actions. In each state, the agent 

takes action and lands in the next state. Using algorithms such as Q-Learning, the agent 

determines how good it was to take that particular action. Once the reinforcement learning 

algorithm converges, i.e. the Q-values stabilise, learning is considered complete. These Q-

values help form a mapping between states and actions called policy. This mapping 

suggests that regardless of how the agent arrived at a particular state, it should take action 

as per the policy as that action will lead to optimal reward in the future. The policy is akin 

to skill (detailed in Section 2.4) and is represented as 𝜋. The commonly used storage 

mechanisms for policy are Q-table and neural networks. Both mechanisms allow the 

storage and recall as required. When the agent has mastered the skill, the policy is said to 

be optimal policy.  

Consider the Q-table shown in Table 2.1. A Q-table is a tabular representation of the state 

and action pairs where the cells store the Q-values. Q-values, the calculation using Q-

Learning detailed in Equation (2.5), denotes the action that should be taken to maximize 

the cumulative reward, i.e. it encodes the future reward. The following is an example of a 

Q-table for state space of size 𝑣 and action space of size 5. The cells show the Q-value that 

is used to determine how good taking a particular action in each state is. Once the learning 

is complete, using the Q-values, it should be possible to derive the best action to select in 

a particular state, i.e. the action with the highest Q-value. Such derived mapping is the 

policy. For example, consider that the policy uses the epsilon-greedy (detailed in the 

subsection below) action selection strategy, which selects the action with the highest Q-

value in each state. Thus, for the Q-table shown in Table 2.1, the state-action mapping, i.e. 

the policy would select action 2 when in state 1, action 4 when in state 2, action 1 when in 

state 3 and continue that for all the states. 



16 

 

Table 2.1: An example of a Q-table. A tabular representation of the state and action pairs where the 
intersection cell stores the Q-value. 

 action 1 action 2 action 3 action 4 action 5 

state 1 1.2 4.3 0.4 0.8 3.2 

state 2 0.3 6.0 0.1 6.9 2.1 

state 3 5.7 2.2 3.2 5.2 1.2 

state 4 7.9 3.1 5.7 1.7 8.0 

…      

state v 0.0 0.0 0.9 6.2 3.4 

 

Action Selection Strategy 

A key challenge with reinforcement learning algorithms involves finding the right balance 

between exploration and exploitation so that it does not converge to a suboptimal solution. 

Through a trial and error procedure, the agent takes action, records the reward it receives 

and explores the value function in different regions of the environment. To reach new areas 

of the state space, reinforcement learning algorithms try out different untried actions 

randomly. That is called exploration. Too much exploration may prevent maximizing the 

short term reward because of the lower reward yielded by some actions. On the other hand, 

the agent can choose to maximize the reward by using the knowledge gained from previous 

successful actions. That is called exploitation. Too much exploitation, however, prevents 

the agent from maximizing long term reward because the action chosen may not be optimal. 

The perceived maxima may be a local maxima. 

For Q-table based algorithms, techniques such as the epsilon-greedy and softmax can be 

used for action selection to balance exploration and exploitation. The epsilon-greedy 

strategy is used for the experiments in Chapters 3, 4 and 5. The epsilon-greedy strategy has 

the epsilon parameter that determines the exploration/exploitation ratio, i.e. what 

percentage of time steps will the agent take random steps to explore new actions versus 

selecting the best action based on the current policy. The value of the parameter ranges 

from 0 to 1. For example, when that parameter is set to 0.1 with no decay, 90% of the time, 

the agent selects the best action according to the current policy; however, 10% of the time, 

it will randomly select an action. “No decay” indicates that even when the agent has 

learned, it continues to take random action 10% of the time. The other options are to end 
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the exploration completely when the learning is complete and “linear decay”, where the 

exploration is gradually reduced as the learning progresses.   

Q-Learning 

Q-Learning [39] is a reinforcement learning algorithm proposed by C.H. Watkins and P. 

Dayan. The state-action value function 𝑄 estimates the value for selecting an action 𝑎௧ in 

a state 𝑠௧ at time step 𝑡 is given as: 

𝑄௧
௡௘௪(𝑠௧, 𝑎௧)

=  𝑄௧(𝑠௧, 𝑎௧)  + 𝛼 [𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) +  𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) −  𝑄௧(𝑠௧, 𝑎௧)] 
(2.5) 

Where 𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) is the reward received for carrying out an action 𝑎௧ in the state 𝑠௧, 𝛼 

is the learning rate (0 <  𝛼 < 1) and 𝛾 is the discount factor (0 <  𝛾 < 1). The algorithm 

is generally used to learn the policy for domains that can be represented by discrete state 

and action spaces. The algorithm starts by initializing the Q-table and then begins the 

learning loop. In this loop, the agent takes action in the current state and receives a reward 

and lands in the next state. This reward is used to update the Q-value as per Equation (2.5), 

and the process repeats in the next state. The algorithm maintains and updates a Q-table 

that contains the action values, i.e. Q-value for each state-action pair. It is model-free 

learning, i.e. it does not use the transition model for learning, and all the learning happens 

through actual interactions with the environment, which are typically expensive. The core 

logic of the algorithm, as shown by the equation, is that the Q-function is calculated based 

on the expected utility for taking the best action in a state and assuming that the optimal 

policy is followed after that, i.e. the algorithm uses the current estimates of the Q-function 

to obtain a new (better) estimate of Q.  

Dyna-Q 

Dyna-Q [40], a combination of Dyna architecture with Q-Learning, was proposed by R. 

Sutton. In Dyna-Q, the Q-Learning is supplemented with the transition model 

𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) thus combining both model-based and model-free learning, i.e. Dyna-Q has 

additional internal planning steps to speed up learning. Thus, in addition to the Q-

Learning’s loop, the additional steps initialise the transition model, iterate through the 

internal model (also called hallucinate experience) and update the Q-value based on those 
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imaginary experiences. The Q-table is updated using Equation (2.5), as detailed in the Q-

Learning section above. These imaginary experiences are updated using the actual 

experiences with the environment, creating an internal model that keeps track of the state 

transitions of the agent and the reward that the agent receives during that transition. Thus 

the algorithm improves its Q-values using the actual interactions with its environment 

(expensive) and imaginary experiences generated by the transition probability model 

(typically not expensive). The number of internal planning cycles is set to be greater than 

the actual interaction with the environment, thus speeding up learning because, typically, 

actual interactions can be costly in many cases, such as robotic applications. 

 

Algorithm 2.1: Dyna-Q 

Initialize 𝑄(𝑠௧ , 𝑎௧) to 0 for all states 𝑠௧ ∈ 𝑆 and action 𝑎௧  ∈ 𝐴 
Initialize the transition model 𝑇(𝑠௧ , 𝑎௧ , ∶) to 0 for all states 𝑠௧  ∈ 𝑆 and action 𝑎௧  ∈ 𝐴 
 
for steps = 1:max_learning_steps 
 
    /* Q learning steps */ 
    Interact with the environment and perceive the current state 𝑠௧ 
    Choose action 𝑎௧ as per the action selection strategy  
    Execute action 𝑎௧  in the environment  
    Perceive the next state 𝑠௧ାଵ and receive reward 𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) 
     𝑄௧

௡௘௪(𝑠௧ , 𝑎௧) =  𝑄௧(𝑠௧ , 𝑎௧)  + 𝛼 [𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) +  𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) − 𝑄௧(𝑠௧ , 𝑎௧)] 

 

     /* Dyna-Q specific steps - update the transition model */ 

     𝑇(𝑠௧ , 𝑎௧ , 1) =  𝑠௧ାଵ 

     𝑇(𝑠௧ , 𝑎௧ , 2) =  𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) 

     /* Dyna-Q specific steps – internal simulation */ 

     for simulation_steps = 1:max_simulation_steps 
         Randomly select a previously visited state 𝑠௧ as per the transition model 𝑇 
         Randomly select an action 𝑎௧  previously taken in that state 𝑠௧ 
         Execute action 𝑎௧ in simulation 
         Perceive the next state 𝑠௧ାଵ and receive reward 𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) as per the transition model 𝑇 
          𝑄௧

௡௘௪(𝑠௧ , 𝑎௧) =  𝑄௧(𝑠௧ , 𝑎௧)  + 𝛼 [𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) +  𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) −  𝑄௧(𝑠௧ , 𝑎௧)] 

     end for 

 
end for 

 

A comparison between Q-Learning and Dyna-Q is detailed in Appendix B. Considering the 

pros and cons of each algorithm and the performance comparison as detailed in Appendix 

B, Dyna-Q is the algorithm of choice for the experiments in Chapters 3, 4 and 5. Dyna-Q 
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was implemented using MATLAB. The mobile robot used this algorithm to learn skills, i.e. 

the robot is not instructed using an explicit control program on how to attain the tasks or 

exhibit certain behaviours but instead learns by itself using reinforcement learning. The 

number of planning cycles for model learning was set to 25, i.e. before attempting one 

action with the real environment, the algorithm attempted 25 actions in internal simulation 

using imaginary experiences.  

Advantage Actor-Critic (A2C) 

Reinforcement Learning consists of algorithms that are either value-based methods where 

the agent learns the value function that determines how good it is to take a particular action 

in a specific state or policy-based methods where the agent directly optimizes the policy by 

sampling several rollouts of the episode. The actor-critic family of algorithms is a hybrid 

approach where the critic is trained to estimate the value function and provide feedback to 

the actor that aims to optimize the policy. When implemented using a neural network, the 

actor network determines what action to take when in a particular state, and the critic 

network determines how good that action was and provides feedback to the actor network. 

The Advantage Actor-Critic (A2C) [41] uses the ‘Advantage’ instead of the ‘Value’ 

function, which leads to learning stability. The advantage is calculated as: 

𝐴𝑑𝑣(𝑠௧, 𝑎௧) =  𝑄(𝑠௧, 𝑎௧) −  𝑉(𝑠௧) (2.6) 

where 𝑉(𝑠௧) is the value at 𝑠௧ and 𝑄(𝑠௧, 𝑎௧) is the Q-value function. In the experiments in 

Chapter 6, the A2C algorithm from MATLAB’s Reinforcement Learning Toolbox was 

used, and the mobile robot used this algorithm to learn primitive and compound skills.  

Option 

Reinforcement learning literature also describes the concept of temporal abstractions that 

take control of the execution for a period, follow a learnt policy and eventually end 

execution and relinquish control. This abstraction is called an ‘option’, a closed-loop policy 

for taking actions over a period [42][43]. Thus, an option is a well-defined macro action 

denoted by a tuple comprising: an initiation set of states I, termination condition β, and the 

closed-loop policy π. It is like a subroutine that gets called when the agent is in one of the 

specific sets of states, i.e. triggered when a particular starting condition is satisfied. When 



20 

invoked, it follows a learned policy and ends when the termination condition is satisfied 

and relinquishes control. That allows existing behaviours to be used while learning new 

behaviours, thus speeding up learning [44].  

Intrinsically Motivated Reinforcement Learning 

For many dynamic environments, upfront knowledge of the tasks to be learnt is unknown, 

and hence it is not possible to design the reinforcement learning reward for the task. More 

recent work has considered the idea of reward modelled using the psychological concept 

of motivation. Broadly, motivation can be categorised into two types: intrinsic and 

extrinsic. Intrinsic motivation can be used to model reward functions that can lead to the 

emergence of task-oriented performance without making strong assumptions about which 

specific tasks will be learned before the interaction with the environment. When intrinsic 

motivation is combined with reinforcement learning, it creates a mechanism whereby the 

system designer is no longer required to program a task-specific reward. Thus, the 

combination of intrinsic motivation with reinforcement learning results in intrinsically 

motivated reinforcement learning [45].  

 

 

Figure 2.2: Graphic representation of intrinsically motivated reinforcement learning. 
 

Figure 2.2 shows a representation of intrinsically motivated reinforcement learning. 

Motivation signal is typically computed online as a function of the current experienced 

state, and some representation of all the states experienced so far, i.e. is independent of 

task-specific factors in the environment. The signal may drive the acquisition of knowledge 

or a skill that is not immediately useful but could be useful later on [45]. An agent generates 
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this signal because the task is inherently enjoyable, leading to further exploration of its 

environment, manipulation/play, or learning the skill. 

2.2.2 Adaptive Resonance Theory 

Adaptive Resonance Theory (ART) [46] and its variants are neural networks based 

clustering algorithms. ART1 (used in Chapter 3 for task generation) is an unsupervised 

learning variant that takes binary vector data points as input. ART1 consists of a 

comparison field layer, recognition field layer and vigilance parameter. The comparison 

field layer takes the data points as input. The data points are compared and transferred to 

the best match in the recognition field layer that represents the category or the cluster. The 

comparison is based on the concept of ‘resonance’, which is a similarity measure. If a 

match is not found, a new category is created. The maximum number of categories is not 

determined up front but depends on the data points; hence the algorithm is considered 

‘adaptive’. The vigilance parameter determines how granular the categories are, in turn 

determining how many categories/clusters are generated. A higher vigilance value 

generates fine-grained clusters, and a lower vigilance value generates a coarse-grained 

cluster.  

Typically, a task generation process can be divided into the experience gathering phase that 

collects the data points and the clustering phase that generates potential tasks. During this 

phase, the states experienced by the agent are recorded. That experience forms the data 

points for the ART1 algorithm for the clustering phase. ART1 begins by considering the 

first data point as a new category. It then processes the data points one by one by comparing 

their similarity with the existing categories. If the data point being processed is a close 

enough match, it is added to the existing category; else, a new category is created. The 

granularity and number of categories created depend on ART1’s vigilance parameter.  

Once the data points have been categorised/clustered, the next step is to select a 

representative data point. That can be done in several ways (such as selecting a 

representative or calculating the cluster centroid), with each method having its pros and 

cons. In the experiments in Chapter 3, the first data point in the category was selected as a 
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representative for simplicity. This representative data point is then considered a ‘potential 

task’. 

 

2.3 Mobile Robot and Simulation Software 

Webots 

The simulation software Webots (www.cyberbotics.com) was used to create various 

environments and simulate the robot’s dynamics. Webots integrates with multiple 

programming languages enabling the robot control program to be written in any supported 

language. The experiments in this thesis use MATLAB to implement the reinforcement 

learning algorithm, which is used as a control program for the simulated e-puck. 

E-Puck 

An e-puck mobile robot (www.e-puck.org) is used for the experiments throughout this 

thesis. An e-puck, as shown in Figure 2.3, is a small (~7 cm diameter and ~5 cm height) 

two-wheeled mobile robot. It is a differential wheeled robot, i.e. the two wheels can be 

separately controlled. It has eight infrared proximity sensors to measure the robot’s 

distance from an obstacle. The range of those sensors is 6 cm. It has accelerometers to 

measure acceleration along all three axes; a 52x39 pixels resolution colour camera, a 

compass, a microphone and speakers. As an add-on capability, it can be fitted with ground 

sensors. That provides three infrared ground sensors that can be used to detect edges for 

fall detection and black/white bands on the ground for applications such as line following. 

In Webots, the proximity sensor value for e-puck ranges from 0 to 2000, with a high value 

indicating that an object is nearby. The ground sensor value ranges from 0 to 1000, with a 

high reading indicating that the sensor is detecting dark area / black colour on the ground. 

Using such granular values does not result in any benefit for the experiments in this thesis. 

In fact, since the Dyna-Q algorithm, which uses Q-table to represent the policy, is used in 

Chapters 3, 4 and 5, the actual sensor values result in huge state space and corresponding 

slow learning. Hence the proximity and ground sensor values are discretised. Discretising 

to 3 (object nearby; not so nearby; far away) or another relatively small number would not 
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result in much detrimental effect from an algorithm performance point of view; however, 

doing that is not beneficial either. Hence for simplicity, binary discretisation is used in 

those chapters. Also, for consistency, the binary discretisation is continued in Chapter 6, 

where the A2C algorithm, which uses a neural network to represent the policy, is used.  

 

 
Figure 2.3: e-puck mobile robot 

 

For the proximity sensors, the value 1 indicates that an object is in close proximity, and 0 

indicates no object nearby. The proximity sensor’s binary value is considered 1 if the actual 

sensor reading is greater than 500, otherwise considered 0, i.e. if the actual value is greater 

than 500, the object is considered nearby. This value of 500 was determined based on trial 

and error to eliminate any false positives due to sensor noise. For ground sensors, the value 

1 indicates that the sensor detects black colour, and 0 indicates that it detects white. The 

ground sensor’s binary value is considered 1 if the actual sensor value is greater than 300, 

otherwise considered 0. Again, this value of 300 was determined based on trial and error 

to eliminate any false positives due to sensor noise. For simplicity and consistency, binary 

values are used to represent the left and right wheel speed. A value of 1 indicates that the 

wheel is moving forward, and 0 indicates that it is moving backwards. 

E-Puck Learning a Task using Reinforcement Learning 

In the following chapters, a different combination of sensors is used based on the 

experiments, and each of the chapters details the state representation. Shown here is an 

example of a state vector used to detail how reinforcement learning agent learns policies 
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for certain tasks. Consider that the left wheel, right wheel, the side and front proximity 

sensors (labelled in a clockwise direction: Front-Right, Right-Diagonal, Right, Left, Left-

Diagonal, Front-Left) are used as the attributes to represent the state vector, i.e. the vector 

can be represented as [ωL  ωR  pFR  pRD  pR  pL  pLD   pFL]. Figure 2.5 is a sketched top view 

of an e-puck with the labelled wheels, proximity sensors, ground sensors and camera. 

Consider that the action space consisted of turning left, stepping forward, and turning right. 

Further, consider that the task is for the e-puck to learn to avoid obstacles in the arena shown 

in Figure 2.4. That task can be represented as maintaining [1 1 0 0 0 0 0 0] state, i.e. 

maintaining: 

𝑚𝑎𝑥(𝑙𝑒𝑓𝑡_𝑤ℎ𝑒𝑒𝑙_𝑠𝑝𝑒𝑒𝑑) ∧ 𝑚𝑎𝑥(𝑟𝑖𝑔ℎ𝑡_𝑤ℎ𝑒𝑒𝑙_𝑠𝑝𝑒𝑒𝑑)  ∧ 𝑚𝑖𝑛(𝑎𝑙𝑙_𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦_𝑠𝑒𝑛𝑠𝑜𝑟𝑠) 

The e-puck receives a positive reward in that state and a negative reward in all other states.  

 
Figure 2.4: Top view of the arena created in 

Webots. 

 

Figure 2.5: A plan view of e-puck with labelled 
sensors (proximity sensors, ground sensors, and 

camera) and wheels. 

State Vector: 

    [ωL  ωR  pFR  pRD  pR  pL  pLD  pFL] 

 
 

 

Actions: 

    {  
         1 - Turn Left, 
         2 - Step Forward, 
         3 - Turn Right 
    } 

 

When e-puck starts learning, it tries different actions in the current state. When an action is 

taken in a particular state, it lands in a different state. For example, when the e-puck has an 

obstacle in front, it may try out an action to turn right. That would result in the e-puck 

having the obstacle to its left, a different state per the state representation. The e-puck may 

choose to move forward in this state, thus moving away from the obstacle. Over time, by 
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trying such actions, it learns to maintain the desired state, i.e. it learns that when it is near 

an obstacle or a wall, it should turn away from it to maintain zero sensor values of its 

proximity sensors and gain positive reward. When the algorithm converges, the skill is said 

to be learned. When this learned policy is tested, the e-puck will exhibit the behaviour of 

avoiding obstacles while moving forward.  

 

2.4 Other Concepts used in this Thesis 

Task 

A task is defined as a piece of work that is attempted. A typical definition of a task is an 

objective that the agent should achieve [47]. The term ‘task’ is also interchangeably 

referred to as ‘goal’ in the literature. Tasks can range from simple, primitive tasks to 

complex, composite tasks and have been categorised based on the following criteria: 

categorisation abstraction from ‘high level’ tasks covering functional or behavioural 

aspects to ‘low level’, concrete tasks that cover the fine-grained definition of what those 

aspects mean [47] and categorisation from ‘hard’ tasks, which can be validated 

straightforwardly, to ‘soft’ tasks that are difficult to validate [47]. Further, Van Riemsdijk 

et al. [48] have classified tasks as state-based/declarative, where the task is to reach a 

specific desired situation, and action-based/procedural, where the task is to execute actions. 

The declarative tasks are further classified into the ‘query’, ‘achieve’ and ‘maintain’ tasks 

and the procedural tasks are further classified into ‘perform’ tasks. That is, tasks have been 

categorised based on the way they are attained. That categorisation leads to ‘maintenance’, 

‘achievement’, ‘approach’, ‘test’, and ‘optimisation’ types, to name a few [32].   

Skill 

A solution to the task is defined as a skill, i.e. learned knowledge. It is the ability of an 

agent to solve the task and is acquired by training. A primitive skill is a solution to a 

primitive task, and a compound skill is a composition of primitive skills. In reinforcement 

learning, a skill is represented as a policy that maps states and actions and is learned by 

training. Further, the primitive skills can be combined in sequential order or concurrently 
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to form solutions for compound tasks. For a sequential combination, a concept of temporal 

abstraction called option (detailed above) is commonly used. When multiple such temporal 

abstractions are sequenced together, it forms a solution for a compound task. Although not 

a well-researched area, there are mechanisms to combine the skills concurrently. That is 

further explored in Chapter 6 of this thesis. 

Event 

When the agent is in a state 𝑠௧ and takes action 𝑎௧, it transitions to a new state. This 

transition can be called an event 𝐸௧ and represented as:  

𝐸௧ = [𝑒௧
ଵ, 𝑒௧

ଶ, 𝑒௧
ଷ, … , 𝑒௧

௡]  (2.7) 

where each attribute that makes up an event is 𝑒௧
௜ =  𝑢௧

௜ − 𝑢௧ିଵ
௜  and 𝑠௧ =

 [𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, … , 𝑢௧

௡]. That is, an event can also be represented as: 

𝐸௧ = 𝑠௧ −  𝑠௧ିଵ =  [(𝑢௧
ଵ − 𝑢௧ିଵ

ଵ ) , (𝑢௧
ଶ − 𝑢௧ିଵ

ଶ ) , … , (𝑢௧
௡ − 𝑢௧ିଵ

௡ )]  (2.8) 

An event, thus, is a vector of difference of the state attributes and models the state 

transitions caused by the action. In such representation, the event is unaware of any task-

specific assumptions about the values of the state attributes, thus making this representation 

ideal for defining the transition in a task-independent manner [49].  

Experience  

This thesis defines an experience consisting of three elements: i) the states 𝑠௧ encountered 

by the agent, ii) the state transitions or the events 𝐸௧ and iii) the actions 𝑎௧ that the agent 

has performed. The experience, denoted by 𝑋, is a trajectory denoted in the equation below. 

As will be seen later in the thesis, it forms the input data points from which the tasks can 

be constructed. 

𝑋 =  {𝑠௧, 𝐸௧, 𝑎௧| 𝑡 = 1,2,3, … }  (2.9) 

There is a similar concept used in reinforcement learning called ‘rollout’. A rollout, 

however, refers to the trajectory when the agent is attempting to learn a particular task. 

This thesis uses the term experience to refer to the trajectory of the agent when it is in the 

body-babbling / experience-gathering phase.   
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With the algorithms detailed and concepts defined, the next chapter proposes the agent 

architecture for open-ended and continuous learning.        
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CHAPTER 3 AGENT ARCHITECTURE FOR OPEN-ENDED AND 

CONTINUOUS LEARNING 

Parts of this chapter have been published in: P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, 
“Modular Continuous Learning Framework,” 2018 Joint IEEE 8th International Conference on 

Development and Learning and Epigenetic Robotics, ICDL-EpiRob 2018. Tokyo, Japan, pp. 107–
112, 2018. 

 

3.1 Introduction 

The focus of lifelong/continuous learning research is to overcome the “Frame Problem” 

[24], i.e. the focus is on the cognitive aspect of learning and representation of the core 

commonality of the related tasks to learn skills for multiple tasks. The essential components 

of such architectures are ways to represent a skill, a memory to store the skills and a 

mechanism to transfer the skills to solve new tasks [50]. Thus, continuous learning in itself 

cannot form a complete agent architecture since, in the real world, the environment is 

dynamically changing, and it is not always possible to determine in advance all the skills 

that the agent will require [22]. On the other hand, open-ended learning is focused on the 

meta-cognitive aspects of ‘what to learn’ [19] and ‘when to learn’ [20]. That behaviour is 

envisaged to empower the agent such that it will be able to decide by itself which skills to 

acquire. Open-ended learning and continuous learning (the two complementary aspects) 

are required to create a comprehensive agent architecture. The third aspect is learning 

autonomy, i.e. self-sufficiency, in deciding ‘how to learn’ the task. Reinforcement learning 

is a method of learning where the agent learns by interacting with its environment making 

it a good fit for the required third component of the agent architecture.  

The review of the literature on architectures that provide an agent with an open-ended 

learning capability [12] [51] [52] [53] [54] shows that they have the following modules: (i) 

a module for task generation and (ii) a module for learning the skills for the tasks generated. 

Many of those learning architectures also use reinforcement learning as the learning 

module [12] [51] [52]. However, they lack either the knowledge repository or the 

continuous learning aspect. The contribution of this chapter is an agent architecture for 

open-ended and continuous learning. This chapter will show how open-ended learning, 
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knowledge store and continuous learning are combined to form the modular learning 

architecture. Using a simulated e-puck mobile robot, the experiments in this chapter will 

demonstrate the validity of the architecture. It will show that the e-puck when placed in 

different arenas, autonomously generates new tasks and then learns skills to solve them—

thus demonstrating the capability of autonomously learning new skills in an open-ended 

way.  

The rest of this chapter is organised as follows: Section 3.2 reviews the literature on agent 

architectures for autonomous, open-ended and continuous learning. Section 3.3 details the 

proposed agent architecture. Section 3.4 elaborates on the experimental setup and results 

of the experiments demonstrating open-ended and continuous learning. Finally, Section 3.5 

provides concluding remarks.   

 

3.2 Agent Architectures for Open-Ended Learning 

Broadly, agents are classified to be reflex, goal-oriented, adaptive and autonomous [6]. An 

autonomous agent, a broad classification in itself [55], can sense its environment and take 

action to accomplish a specific goal. That category is further classified into several 

subcategories, of which executive autonomy is one that is related to the setting and 

execution of goals [28]. In the last fifteen years, motivated reinforcement learning is 

emerging as a popular way to achieve such autonomy [56]. Motivated behaviour is argued 

to be crucial for an agent to gain the competence that is essential for autonomy [45]. This 

competence is gained in a task-independent manner [22], resulting in the development of 

an entity capable of accomplishing varied activities compared to an agent capable of 

accomplishing only one specific or a few related activities [57] [58]. The following 

subsection will review motivated reinforcement learning agent architectures.  

3.2.1 Motivated reinforcement learning agent architectures 

Reinforcement learning is a form of learning in which an agent learns by interacting with 

its environment [40]. The agent is not provided with a rule book, instructions on what to 
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do in a particular situation or prior knowledge of its environment but must figure it out by 

itself by trying out the available actions. The agent senses its environment, takes action and 

receives feedback from the environment, called ‘reward’. This reward guides the learning 

by providing the agent with a sense of which actions to take in different situations. The 

broad aim of the reinforcement learning agent is to maximise this cumulative reward. In 

early work, the reward was typically defined to be specific to a particular task. However, 

for many dynamic environments, it is not known upfront which tasks are to be learned. As 

a solution, the idea of reward modelled using the psychological concept of motivation has 

gained popularity, and in the last decade, intrinsically motivated reinforcement learning 

has attracted particular interest. When motivation is combined with reinforcement learning, 

it creates a mechanism whereby a task-specific reward is no longer required to be 

programmed. It creates a motivated reinforcement learning agent that can select a task to 

be learned [11] and learn that task autonomously. That results in an autonomous learning 

agent that can learn complex behaviours in a task-independent and open-ended way.  

Figure 2.1 shows a general intrinsically motivated reinforcement learning architecture in 

which, in addition to the environment provided feedback, the agent internally generates a 

signal, and in combination, both of those form the basis for its actions. The intrinsic 

motivation signal can either be combined with the extrinsic reward using certain criteria or 

can be used exclusively, that is, instead of the extrinsic reward. Broadly speaking, the 

architecture introduces a meta-learning layer, where the role of the motivation signal is to 

enable the learning algorithm to focus the learning [45]. These software architectures are 

essentially formed by combining the basic building blocks of reinforcement learning 

algorithms and the blocks that generate motivation signals. The different intrinsically 

motivated reinforcement learning architectures detailed in this section are then formed by 

combining the motivation generator block with different types of reinforcement learning 

algorithms and blocks responsible for managing the learned skills. The subsections below 

describe the flat, hierarchical and multi-option architectures found in the motivated 

reinforcement learning literature.  
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Figure 3.1: Concept of intrinsically motivated 
reinforcement learning. The reward received by 

the reinforcement learning agent is a combination 
of external reward and motivation signal. 

 

Motivated Flat Reinforcement Learning: Perhaps the most basic variant of intrinsically 

motivated reinforcement learning [45] is where only one policy is learned. This variant is 

termed motivated flat reinforcement learning (MFRL) by Merrick and Maher [44]. MFRL 

combines motivation with a single non-hierarchical (or ‘flat’) reinforcement learning 

algorithm forming an adaptive architecture for performing multiple tasks. Because MFRL 

only learns a single policy, that policy adapts to represent a different behaviour at different 

times [44]. That leads to an advantage in a highly dynamic environment. MFRL is arguably 

the simplest form of motivated reinforcement learning and is well represented in Figure 

2.1. The downside of MFRL is that it does not implement the option; hence there can be 

no recall of skills. Each learned skill is overwritten when a new skill is learned. Alternatives 

to MFRL discussed in the following sections overcome this weakness.  

Motivated Multi-Option Reinforcement Learning: When an option is combined with 

reinforcement learning, it creates multi-option reinforcement learning. Knowledge is 

accumulated by continuously creating additional options representing a solution to a task. 

When motivation is combined with multi-option reinforcement learning, it creates 

motivated multi-option reinforcement learning (MMORL). In the case of MMORL, the 

reinforcement learning block is the multi-options reinforcement learning algorithm. 

MMORL learns multiple skills, each implemented using options. For each skill, an 

initiation state triggers the respective option. The policy of that option guides it to reach 

the termination state, which accomplishes a task. Learning how to accomplish each of the 

N possible tasks is going to be time-consuming, but this will still be cheaper than N times 
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the work of learning to achieve a single task [59]. MMORL can be equated to the 

implementation of multiple motivated flat reinforcement learning with a parent layer 

triggering the recall of the relevant option. The additional meta-layer is responsible for the 

addition and deletion of the options. Thus the agent implemented with multi-option 

reinforcement learning is able to achieve multiple goals. This architecture provides a recall 

of multiple options at the same level, whereas motivated hierarchical reinforcement 

learning, detailed in the following subsection, provides a recall of options at a different 

level, all arranged in a hierarchy.  

Motivated Hierarchical Reinforcement Learning: A hierarchical reinforcement 

learning algorithm is one in which a policy can be decomposed into a hierarchy of sub-

policies. This enables the reuse of policies to form a solution to a more complex problem. 

Similar to multi-option reinforcement learning, hierarchical reinforcement learning is also 

implemented using options. An option can invoke other options as actions, thus leading to 

a hierarchical structure of learning and recalling the learned behaviours. When motivation 

is combined with hierarchical reinforcement learning, it creates motivated hierarchical 

reinforcement learning (MHRL) [44]. MHRL, like motivated multi-option reinforcement 

learning, can learn multiple skills. However, the skills are hierarchical skills, arranged from 

the most basic skills at the bottom-most level of the hierarchy to the complex skills that 

build upon these basic skills at the higher level, ordered by increasing complexity. 

Likewise, the skill recall in the case of MHRL is hierarchical too. Thus the MHRL 

architecture can resolve fairly complex tasks. 

Appendices Section A.1 compares the different motivated reinforcement learning 

architectures in detail. For completeness, this thesis also compares performance measures 

of these architectures found in the literature, which are detailed in Appendices Section A.2. 

However, none of the architecture detailed fulfils the criteria for open-ended continuous 

learning architecture. That is because the focus of these architectures is on learning 

autonomy, i.e. automation of ‘how to learn’, and they fail to consider the open-ended 

learning aspect of ‘what to learn’, i.e. what all tasks the agent should be learning. The next 

subsection reviews the architectures that overcome that limitation.  
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3.2.2 Goal-oriented autonomous agent architectures 

While the focus of the architectures in the previous subsection was on generating task-

independent reward functions, the architectures detailed in this subsection focus on task 

generation to direct the learning.  

Goal Discovering Robotic Architecture for Intrinsically Motivated Learning 

(GRAIL): Santucci et al. proposed GRAIL architecture [12] [60] and, subsequently, an 

extension of C-GRAIL that is context-aware for the cases where the solution to the same 

task may require different skills [61]. In this multi-layered architecture, the agent, a 

simulated iCub robot, detects changes to its environment (considered tasks) and forms their 

representations for storage. Another layer of architecture then generates a competence-

based signal based on the learning progress to select a task from a list of tasks. The agent 

then aims to learn a solution to achieve that task. Santucci et al. demonstrate how the 

architecture generates tasks and then autonomously determines which iCub’s arms to use 

to reach a specified object. The architecture, however, lacks an organised mechanism to 

store and recall the learned knowledge, one of the essential requirements for lifelong 

learning architecture.  

Motivated Introspective Reinforcement Learning: Merrick [11] introduces the concept 

of combining introspection with intrinsically motivated reinforcement learning. The 

architecture introduces a meta-layer of introspection that guides the motivated 

reinforcement learning framework using an options model to activate a skill, suspend the 

activation, and delete a skill. This motivated introspective reinforcement learning (MIRL) 

architecture incorporates a task life cycle model with motivated reinforcement learning, 

thus removing the common reinforcement learning assumption of a fixed set of tasks. With 

such an architecture, an agent can create tasks online and automatically decide which skills 

to learn and when. Introspection is used to create and delete options in relation to the 

discovery of skill acquisition. Here too, the option is used to learn skills that achieve those 

tasks. Similar to the motivated multi-option reinforcement learning detailed in the previous 

subsection, it uses a multi-option reinforcement learning algorithm. However, unlike 

motivated multi-option reinforcement learning, it has a meta-layer, i.e. an introspective 

layer that manages the life cycle of the skills and provides a mechanism to add, update and 
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remove the skills. The skill recall scalability of MIRL will be comparable to motivated 

multi-option reinforcement learning [11]. Figure 2.2 shows the MIRL architecture. The 

additional introspective learning and goal management layers are responsible for managing 

the life cycle of the skills, i.e. autonomously selecting when to learn a skill to achieve a 

goal, when to activate and deactivate a particular skill and when to delete a skill. The 

reinforcement learning agent is implemented using a multi-option reinforcement learning 

algorithm. The rest of the components in this architecture are the same as the motivated 

flat reinforcement learning, i.e. the agent senses the environment (represented as a state), 

takes action, and receives a reward and a motivation signal. 

 

 

Figure 3.2: Motivated introspective learning; 
diagram adapted from Merrick  [11] 

 

Self-Motivated Incremental Learning (SMILe): Bonarini [52] proposed SMILe, an 

intrinsically motivated learning architecture that generates a hierarchy of tasks that are then 

learned using a three-phase process. In the first phase, termed a babbling phase, the agent 

explores its environment to create a state transition model. In the second phase, the 

architecture identifies the tasks, i.e. interesting events, using intrinsic motivation. In the 

final phase, the agent then learns a solution to a task. This architecture lacks a mechanism 

to store and recall the learned knowledge, thus not satisfying all the criteria for an open-

ended continuous learning agent architecture.  
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Jaidee et al. [62] proposed a task-driven architecture with a focus on task formulation and 

task management. The agent learns using case-based reasoning and reinforcement learning. 

The task formulation process starts with the agent comparing observation to expectation. 

If a discrepancy is found, it tries to reason based on the existing knowledge of case-based 

reasoning. If the discrepancy is not resolved, it is considered a new task for which the skill 

should be acquired. The new tasks are added to the set of tasks pending to be learned. The 

task manager selects a task based on priority and assigns it to the learning algorithm.       

Hanheide et al. [63] present an architecture that autonomously generates tasks to 

demonstrate how task-directed behaviour is more adaptive in dynamic environments. In 

their experiments, a mobile robot explores an unknown environment, generates a map and 

then categorises the rooms, which is the task. The architecture’s main feature is a 

knowledge management module that activates and suspends the tasks and prioritises them 

based on their importance. This architecture can autonomously generate tasks in a new 

environment and manage those tasks; however, it lacks a learning module to acquire skills 

to solve those tasks, thus not satisfying all the criteria for an open-ended continuous 

learning agent architecture.        

3.2.3 Other architectures 

In addition to the architecture categories mentioned above, several more architecture 

categories exist. The most popular is cognitive architecture. Broadly the main focus of such 

architectures is on problem-solving and knowledge management and lacks the mechanism 

to self-generate tasks. This subsection reviews some of the architectures from this category. 

However, the scope of the review in this thesis is limited to architecture categories that are 

an extension of motivated reinforcement learning and focus on either learning autonomy, 

open-ended learning or continuous learning aspects.   

SOAR Cognitive Architecture: Laird [64] proposed architecture for agents dealing with 

an uncertain and dynamic environment. The architecture has a procedural memory 

consisting of if-then-else rules as well as a reinforcement learning based module. The 

permanent memory stores the world model, primitive skills and broad general knowledge. 

Laird states that architecture enables building knowledge over time and can be pre-seeded 
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and shared by multiple robots. The architecture stores snapshot of experiences that guides 

future behaviour. The learning can be with or without reinforcement learning and can be 

using the stored snapshot of experiences or direct interaction with the environment. This 

architecture has the memory to store knowledge and the capability to learn new skills; 

however, it lacks the continuous stream of tasks that the agent can aim to learn, thus falling 

short of fulfilling all the criteria of open-ended continuous learning architecture.   

Deferred Restructuring of Experience in Autonomous Machines (DREAM): Doncieux 

et al. [65] proposed a modular cognitive architecture with open-ended learning capability. 

Tasks are generated using the babbling approach, where the agent explores its environment 

to form a list of objects that it can grasp (one task) and objects that it can push (another 

task). Multiple tasks can be learned, with the learning in the wakeful state, where the agent 

interacts with the environment and dreaming state, where the agent mulls over the learning 

without any interaction with the environment, making the architecture suitable for robotic 

applications since learning can be time-consuming if the robot has to interact with the 

environment constantly. The architecture also has a cognitive module, a knowledge store 

that enables the transfer of skills between tasks. From a basic building blocks point of view, 

this architecture is similar to the architecture proposed in this thesis.     

3.2.4 Gap in the state-of-the-art 

It is evident from the literature review that progressing reinforcement learning beyond 

single-task learning and that too, in an open-ended manner, is an active research area. As 

summarised in Table 3.1, motivated reinforcement learning architecture focuses on 

learning autonomy such that learning the tasks does not require handcrafted reward 

functions. On the other hand, goal-oriented agent architectures focus on task generation so 

that agents can self-direct their learning. Thus, neither of the architectures by themselves 

form an agent architecture capable of open-ended, continuous and autonomous learning. 

That raises the question, what are the modules of an open-ended and continuous 

reinforcement learning architecture? 
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Table 3.1: Table showing the focus areas of each architecture category reviewed in this literature review 
section. 

Focus area Motivated reinforcement learning agent 
architectures 

Goal-oriented autonomous agent 
architectures 

Learning autonomy   

Task generation (i.e. ‘what to learn’)   

Continuous learning   

 

While neither of the architectures mentioned above satisfies the criteria, they can be 

combined since they are complementary. It creates an architecture that enables the agent 

to self-direct its learning and also enables it to learn the skills with little to no external 

intervention. The following section explores this further and proposes an architecture with 

a mechanism to self-discover tasks to learn, a repository to manage the tasks, and a 

mechanism to learn self-discovered tasks.  

 

3.3 Modular Continuous Learning Architecture  

Tasks direct the learning as they are the reason for the agent’s actions [32]. For an 

autonomous agent, a well-formed curriculum is vital for it to learn new and complex skills. 

Thus, task generation is an essential component of agent architecture, with the primary 

responsibility of generating tasks for the agent. However, the task generation mechanism 

may not provide any information regarding the usefulness or similarity of the task with the 

other tasks, thus leading to a proliferation of tasks that could hinder as opposed to direct the 

agent’s learning. Thus, task management is an important consideration. The task 

management component can be responsible for keeping track of the tasks that are yet to be 

learned, similar tasks, and tasks that are not useful or obsolete tasks and hence need to be 

pruned. It can also be responsible for prioritising the tasks based on the current skill level 

of the agent. That is especially useful in the case of robots with limited computational 

resources, as learning every skill from scratch can be very time-consuming. The third 

essential component is the learning algorithm, enabling the agent to acquire the skill for the 

prioritized tasks. Thus, to create a comprehensive continuous learning architecture capable 
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of open-ended learning, task generation, task management, and learning algorithm are the 

main components.  

This chapter proposes an agent architecture that satisfies all those criteria. It proposes a 

generic, domain-independent, and modular architecture termed ‘Modular Continuous 

Learning Architecture’ capable of open-ended learning. The following are the essential 

modules: 

1. ‘Task Generation Module’, that generates the tasks in an open-ended manner,  

2. ‘Knowledge Management Module’, which is a repository of skills, and  

3. ‘Learning Module’, that learns skills to solve those tasks.  

 

 
Figure 3.3: Modular Continuous Learning Architecture. 

 

This task generation and skill acquisition are implemented in a continuous loop. That 

enables the agent to adapt to the dynamic changes in its environment and continuously 

improve its skills in an open-ended manner. Figure 3.3 shows the proposed Modular 
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Continuous Learning Architecture that forms the basis for this thesis’s work. The following 

subsections discuss each of the essential components of this architecture in detail.  

3.3.1 Task generation module 

The ‘Task Generation Module’ is responsible for directing the agent’s learning by 

autonomously generating a list of tasks to learn. This module makes the architecture capable 

of open-ended learning and enables the agent to self-direct its learning. It enables the agent 

to learn more than one task, makes it more adaptive to dynamic environments and is 

required for it to behave autonomously in the real world. The task generation process, in 

most cases, begins with the agent gathering the experience by moving about randomly in 

its environment. That is the same as body babbling described in the developmental robotics 

literature, where the agent aims to discover its body and its relationship with the 

environment. That experience is then used to generate a set of potential tasks. The literature 

review shows that task generation is an active research area and that there are several ways 

to generate tasks. Tasks can be generated in one or more of the following ways: 

 Using artificial curiosity, seek novel situations that form the potential tasks.  

 Using the agent’s previous experience as data points, generate clusters of unique 

situations using an unsupervised learning algorithm. The cluster centroids form 

potential tasks.  

 In its simplest form, an externally supplied domain-dependent list of tasks.  

The types of tasks generated depend on the implementation of this module, i.e. the module 

can be designed to generate: i) flat tasks, i.e. non-hierarchical tasks, ii) hierarchy of tasks 

ranging from top-level tasks to its corresponding sub-tasks, iii) a curriculum of related tasks 

ranging in complexity from primitive to compound tasks. Typically, the curiosity-based 

implementations would generate single level tasks. To generate a hierarchy of tasks, 

options discovery methods [66][67] can be used, and methods such as the one detailed in 

Chapter 5 can be used to generate a curriculum of tasks.  
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3.3.2 Knowledge management module 

The ‘Knowledge Management Module’ is a knowledge repository. Its primary role is to 

manage the tasks and store the learned skills. For certain environments, a vast number of 

tasks can be generated by the task generation module, and it is not always possible or 

practical to learn all the tasks, especially for robotic applications. Hence, there should be a 

mechanism to ascertain the task’s usefulness and gauge the task’s similarity with other 

tasks,  both of which may require domain knowledge. Based on that, it should prune and 

prioritize the tasks. The module should be able to store the skill and recall it when required. 

Also, it should be able to combine the skills to form solutions for compound tasks. 

Considering that, the primary responsibilities of this module are:  

 Add and delete the tasks to its internal list. 

 Maintain the status of the task indicating whether it is learned or not.  

 Update the priority of tasks based on similarity with the learned tasks. 

 Store and recall the skills.  

 Generalize the skills to form a consolidated knowledge representation.  

In addition to the above, in most cases, the ability to unlearn or forget a skill is an important 

consideration for real-world applications. That will be required if the task is no longer valid 

or an alternative way of attaining the task is learned—the deleting of skill results in freeing 

up memory and optimising the skill search. Also, task prioritisation is vital as learning 

every skill is not possible, especially for robots. Such prioritisation can be implemented 

based on a similarity index generated by the task clustering algorithm [68], novelty-based 

motivation [11] or based on the current competency level of the agent for similar skills. 

For example, consider that the task generation module is implemented using a clustering 

algorithm. Such algorithms internally use similarity indices to generate clusters, i.e. tasks 

in this case. Those indices can be used to determine the similarity of a newly generated 

task with other tasks in the knowledge management module. The implementation of the 

knowledge repository can be based on reinforcement learning packaged policy per skill 

rather than the approach of one large neural network. That also enables easier storage, 

recall and composition of the skills as required in the future.    
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3.3.3 Learning module 

The ‘Learning Module’ is responsible for learning the skill required to solve the task. This 

thesis started with the premise that reinforcement learning is suitable for autonomous 

learning; hence this module should be implemented using one of the reinforcement learning 

algorithms. Section 3.4 shows how this module can be implemented using the Dyna-Q 

algorithm. In reinforcement learning, the agent learns interactively. It perceives the state of 

its environment, takes action from all the available actions that it can take in that state and 

receives feedback called ‘reward’. Over time reinforcement learning forms a policy. The 

learning in reinforcement learning is guided by reward, either received when a milestone is 

reached or for every step. Reinforcement learning aims to maximize this cumulative reward. 

Once a task is learned, or the learning cycle is finished, the learning module receives the 

next task to learn from the ‘Knowledge Management Module’ that maintains a prioritized 

list of tasks. The outcome of the learning process can be that the task is learned or that it is 

not learned in the given time frame. If the task is learned, the policy, i.e. the skill, is sent to 

the ‘Knowledge Management Module’ for storage. The reason a task cannot be learned can 

be either that the task is too difficult to learn at this time or because it is invalid. The 

knowledge management module records this.   

3.3.4 Continuous learning 

The cycle of task generation, skill learning, and knowledge management is shown in Figure 

3.3 and detailed in Algorithm 3.1. The knowledge management module, which maintains 

the list of tasks, supplies the learning module with a task to learn. When all the tasks from 

that list are learned or when a change is detected in the environment, the task generation 

module generates a new set of tasks. Thus, there are two loops. One is an internal loop 

between the knowledge management and learning modules. That loop ensures that all the 

tasks that are not yet learned are learned. The other loop is an outer loop that checks if there 

is any change to the environment, and if so, the task generation module generates new 

potential tasks. That loop can be beneficial if the agent’s environment is dynamically 

changing. These cycles continue for the whole lifetime of the agent, forming continuous 

learning. Also, task generation and learning can happen concurrently, with one agent 
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scanning the environment and generating new tasks while the other agent is learning the 

skills for those tasks. This continuous learning results in an ever-increasing knowledge 

base of the system.   

 

Algorithm 3.1: Modular Continuous Learning 

Repeat 
 
    /* 1a - Experience gathering phase */ 
    for steps = 1: max_exploration_steps 
        Interact with the environment using exploration policy 
        Gather experience  
    end for 
 
    /* 1b – Task generation phase */ 
    Cluster the tasks using the experience as the data points 
 
    /* 2 – Knowledge management phase */ 
    From the list of potential tasks, add unique tasks to the task_list 
    Sort the task_list 
 
    /* 3 - Learning phase */ 
    for task = 1:task_list 
        for steps = 1:max_learning_steps 
            Interact with the environment according to epsilon-greedy 
            Simulate and update Reinforcement Learning Q-table using Dyna-Q 
        end for 
        if Q Learning has converged 
            Mark the task as learned 
            Store the learned policy for the task 
        end if 
    end for 
 
until forever 

 

3.3.5 Architecture extensions 

The flexibility of the architecture allows multiple agents to collaborate in order to generate 

tasks. Similarly, multiple agents can collaborate to learn those tasks. Figure 3.4 shows the 

architecture with the task generation and the learning modules with multiple blocks stacked 

on top of each other, indicating that they can be implemented as multi-agent modules. All 

the skills are stored in a single repository, thus enabling the transfer and sharing of 

knowledge between agents. Such transfer between the agents can be advantageous when 

using simulated and real robots in tandem with the simulated robot carrying out activities 

that can be too risky or time consuming for the real robot. 
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Figure 3.4: A consolidated view of the Modular Continuous Learning Architecture showing functional 
details of each module and multi-agent capability of the Task Generation Module and the Learning 

Module. 
 

The literature review detailed the following two categories of open-ended learning agent 

architectures. The first category was motivated reinforcement learning agent architecture 

with architectures such as motivated multi-option reinforcement learning (MMORL), 

where motivation is used to design a task-independent reward. In the architecture proposed 

in this chapter, the learning module can be implemented with a motivation based task-

independent reward design. The second category of agent architecture was goal-oriented 

autonomous agent architectures with architectures such as goal discovering robotic 

architecture for intrinsically motivated learning (GRAIL), where motivation is used to 

generate tasks that direct what the agent learns. In the architecture proposed in this chapter, 

the task generation module can be implemented using novelty detection, for example, as 

shown by Marsland et al. in [69], where a neural network can be trained to detect novel 

perceptions, and such perceptions can then be considered as tasks. In addition, the 
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knowledge management module can be implemented using a competence-based task 

selector where the system selects which task to learn (from the list of tasks provided by the 

task generation module) based on the difficulty level of the task and the current competency 

level of the agent for a similar task. When motivation is used in the design of either of the 

modules of the proposed architecture, it creates an architecture that can be termed as 

“motivated open-ended continuous reinforcement learning agent architecture”.  

Figure 3.4 shows a consolidated view of the architecture with each module’s multi-agent 

capability and functional details. Each module of the architecture also represents a phase 

of the whole learning cycle. These phases of task generation, learning and knowledge 

storage can be explicit stages or implemented to work in a continuous way where the agent 

receives a continuous stream of experience akin to learning online. The architecture allows 

flexibility in terms of the addition of other external modules, each of which could be 

responsible for a particular functionality. Also, since the architecture is designed to have 

low coupling between the modules, there is flexibility in terms of the techniques used to 

implement each of the modules.  

3.3.6 Architecture applications  

The proposed agent architecture is envisaged to be applied to robotics, in particular 

developmental robotics. Different robots have different sensors and actuators, providing 

them with different capabilities. They locomote and interact with the environment 

differently. For these robots to be useful, the typical approach is for a designer to write a 

control program for these robots to be able to carry out specified tasks. However, for 

dynamically changing environments, even the designer will not know upfront what tasks 

the robot will need to carry out. Thus, it is difficult to determine upfront what skills the 

robot will require, and hence not possible to write the control program corresponding to 

those skills. Moreover, these control programs are specific to the capabilities of the robot’s 

sensors and actuators. Any change to the hardware requires rewriting/optimising the 

control programs. Developmental robotics’ approach to this is to endow the robot with the 

capability of open-ended and lifelong learning of new skills of increasing difficulty. The 

architecture proposed in this chapter is a generic architecture with the required modules to 
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empower the robot to accomplish such open-ended and lifelong learning. The architecture, 

however, does not have modules that allow the robot to learn language-based 

communication skills; thus, the scope of this architecture is limited to learning 

sensorimotor skills. 

In developmental robotics, the robot is not provided with any innate knowledge. It starts 

with body babbling to acquire knowledge of its body and environment, creates 

sensorimotor associations and determines what to learn. The architecture’s task generation 

module is proposed with just that in mind. Further, in developmental robotics, the robot 

should be able to learn the skills by itself, store and recall skills as required and 

progressively increase its overall knowledge. The architecture’s knowledge management 

and learning modules are proposed with just that in mind. To put it in perspective, the tasks 

generated by the robot implemented using the proposed architecture will be dependent on 

their sensors’ and actuators’ capabilities (one such implementation is detailed in Chapter 

5). The architecture enables the robot to learn skills to accomplish those tasks 

autonomously. The learned skills can be stored and recalled when required. They can be 

combined to generate solutions for more complex tasks (one such implementation is 

detailed in Chapter 6).  

The learned behaviour exhibited by the robot will be as per its inherent capabilities 

depending on the types of sensors and actuators that make up the robot, thus demonstrating 

skills acquisition in an open-ended manner. During such execution mode, the architecture 

can be considered as a reactive robot architecture where the learned primitive skills are 

equivalent to the layer/module of a reactive architecture, such as the subsumption 

architecture [70]. In such reactive architectures, the world is considered the best model, i.e. 

there is no internal representation of the external world, or that representation is just a 

current estimate of the world. The behaviour exhibited by the robot is based on a mapping 

from state to action, i.e. the learned reinforcement learning policy for a task in the case of 

the proposed architecture. Such a policy can be triggered based on specific criteria 

exhibiting the learned behaviour. Also, the primitive skills can be combined (one such 

implementation is detailed in Chapter 6) to execute a more complex behaviour.  
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Take, for example, a vacuum cleaning robot with primitive tasks such as (i) detecting the 

dirt, (ii) cleaning the dirt, (iii) avoiding obstacles, and (iv) detecting an edge of the floor to 

keep the robot from falling off the stairs. The task generation module will generate such 

tasks, and the skills will be learned and the learned policy stored in the knowledge 

management module. During the execution mode, the primitive task of avoiding an 

obstacle is triggered when the vacuum cleaning robot detects an obstacle in its proximity. 

Similarly, the primitive task of cleaning the dirt is triggered when the robot detects dirt on 

the floor. For cases where multiple tasks are triggered simultaneously, such as (a) the robot 

detecting the dirt while avoiding obstacles and (b) the robot cleaning the dirt while avoiding 

obstacles and avoiding falling off the stairs, the skill is generated by combining the policies 

of the constituent primitive tasks.      

The following section details the experiments that validate the claims of the architecture. 

Those experiments use a mobile robot; however, the concept can be extended to robots of 

other types. Some of the challenges related to such an extension are discussed in the future 

work section in Chapter 7. 

 

3.4 Mobile Robot Experiments 

The previous section proposed an open-ended continuous learning architecture. The 

experiments in this section validate the basic claims of the architecture—i.e. the open-

ended and continuous learning aspects. The scope of the experiments is limited to 

validating the end-to-end working of the Modular Continuous Learning Architecture.   

3.4.1 Objectives of the experiments 

The objectives of the experiments in this section are: 

 Using a basic task generation mechanism, verify identified tasks that the agent 

architecture can learn in an open-ended manner. 

 Verify, by observing learning progress, that the agent architecture enables 

continuous learning.  
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3.4.2 Methods and materials 

The experiments in this chapter use a simulated e-puck mobile robot. The simulation 

software Webots was used to create various environments and simulate the robot’s 

dynamics. This section describes an implementation of each component of the Modular 

Continuous Learning Architecture described in the previous section.   

Robot and its Environment 

In the experiments in this chapter, only proximity sensors and ground sensors of the e-puck 

mobile robot were used. As seen in Figure 3.5, the eight proximity sensors are labelled in 

a clockwise direction as Front-Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left, 

Left-Diagonal, Front-Left. The three ground sensors are labelled as Left, Centre, Right. The 

red directional lines in Figure 3.5 show the direction in which the proximity sensors 

measure the distance to an obstacle. An abbreviated name of each sensor is shown beside 

the directional lines.  

In the experiments in this chapter, binary discretisation was used for state space attribute 

values, as detailed in Chapter 2. The action space constituted of the following three actions: 

(i) Turn Left, (ii) Step Forward, and (iii) Turn Right. There was no action representing 

standing still or moving backwards. The proximity and ground sensors and the left and the 

right wheels form the state vector of the e-puck, represented by [ωL  ωR  pFR  pRD  pR  pRR  

pRL  pL  pLD   pFL  gL  gC  gR]. ωL and ωR are the motion direction of the left and the right 

wheels, respectively.  

For the experiments, three environments were created in Webots. The arenas, shown in 

Figure 3.6, Figure 3.7 and Figure 3.8, were 2m x 2m in size. Figure 3.6 shows a top view 

of the arena with obstacles with a few cylindrical and cuboid objects randomly scattered in 

the arena. This environment can provide an opportunity to exhibit behaviour, such as 

avoiding obstacles. Figure 3.7 shows a top view of the maze arena, providing the robot 

with lots of walls and an opportunity for the robot to exhibit behaviours such as following 

a wall. Figure 3.8 shows a top view of the circular arena with black tracks on the ground 

providing the robot with an opportunity to exhibit behaviour such as following a track. 
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Figure 3.5: Top view of e-puck with 

labelled proximity sensors. Red lines show 
the direction in which the proximity is 

detected. 

 

 

State Vector: 

        [ωL  ωR  pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR] 

 

Actions: 

        { 
             1 - Turn Left,  
             2 - Step Forward,  
             3 - Turn Right 
         } 

 

 
Figure 3.6: Top view of the arena 

with obstacles. 

 
Figure 3.7: Top view of the 

maze arena. 

 
Figure 3.8: Top view of the 
circular arena with tracks. 

 

Learning Algorithm 

In the experiments in this chapter, a reinforcement learning algorithm called Dyna-Q 

(detailed in Chapter 2) was implemented using MATLAB. In the experiments, the potential 

tasks to be learned were considered ‘maintenance’ tasks, where the aim is to maintain a 

target state [32]. That is to say, the mobile robot aimed to maintain the desired state. That 

makes learning non-episodic. Thus, the concept of ‘trial’ was used to represent the start and 

end of an attempt. Each trial consisted of 50,000 steps, after which the trial was ended. The 

epsilon parameter of the epsilon greedy action selection was set to 0.1 with no decay for 

the experiments.  
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Chapter 4 details the maintenance task type and other types of tasks when categorised by 

how they are considered attained. In the experiments in this section, the following generic 

reinforcement learning reward function was used: 

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  ቄ
  1               𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑

−0.5                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (3.1) 

where r is the reward received by the mobile robot in step 𝑠௧. Also, for the experiments, the 

learnability of a task was determined by calculating the average cumulative reward 𝑅 for a 

configured number of trials. That configured number was 5, i.e. after five attempts, the task 

was deemed unlearnable if this cumulative reward was less than the threshold. As shown 

by the equation, 

 𝑅 <  −(0.4 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙)  (3.2) 

it was concluded that the system was unable to learn to maintain that task state, resulting in 

the task being removed from the list of potential tasks.  

Task Generation Technique 

The experiments in this chapter used the ART1 (detailed in Chapter 2) clustering algorithm 

as the task generation technique. For the experiments in this chapter, the vigilance 

parameter value was set to 0.3, resulting in relatively fewer categories. Once the data points 

have been categorized/clustered, the next step is to select a representative data point. In the 

experiments, for simplicity, the first data point in the category was selected as a 

representative data point, which was then considered a ‘potential task’.   

Consider a hypothetical state [1 1 0 0 0 0 0 0 1 1 0 0 0] that is selected as a potential task. 

If this task is treated as a maintenance task, it would mean that the e-puck has to maintain 

moving forward with the high sensor values of its Left-Diagonal, Front-Left sensors. Since 

the state vector does not comprise position or orientation attributes, this task can be attained 

at any location near the wall/obstacle. Figure 3.9 shows the top view of the maze arena 

with example locations of the e-puck in the maze arena. The mobile robots are shown in 

blue colour with red directional lines for the Left-Diagonal, Front-Left sensors. The task is 

considered maintained as long as the e-puck moves forward with high sensor values of its 
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Left-Diagonal, Front-Left sensors, i.e., to maintain that task e-puck is following a wall to 

its left.   

 

Figure 3.9: Example locations of the e-puck (shown in blue colour) in the maze arena for the state “move 
forward with the wall to its left”. 

3.4.3 Results and analysis 

This section demonstrates the performance of each of the key modules of the architecture 

introduced in the previous section. The experiments in this chapter focus on the qualitative 

evaluation of the set of tasks generated and the architecture’s continuous learning capacity. 

Chapter 4 introduces quantitative metrics to examine further these and other aspects of the 

architecture’s performance.  

Task Generation Performance 

The architecture design allows any task generation mechanism to be used; however, the 

experiments in this chapter used ART1 based clustering algorithm to generate potential 

tasks. ART1 takes the experience gained by the mobile robot during the experience-

gathering phase as the data points. Since there is no arena specific attribute in the agent’s 

state space, this exploration phase, i.e. the experience gathering phase, aims not to explore 

the different parts of the arena but enables the agent to experience the different states in its 

state space. For example, it may be able to explore the black region on the floor or obstacle 

on one of its sides that are represented as different states in its state space. In this phase, the 

e-puck moves around randomly in the arena. That is done by making it follow an 

exploration policy. In this policy, the epsilon parameter of reinforcement learning’s epsilon-
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greedy action selection strategy is set to 1, and the reward received is 0 for all the state 

action combinations. Webots simulates the dynamics of the environment, i.e. the collision 

behaviour. Thus, when the e-puck collides against an obstacle, it is not allowed to move 

forward anymore, and hence as per the exploration policy, it will randomly select a new 

action, landing in a new location in the arena and internally in a new state within its state 

space. This phase was carried out for 15,000 steps. The trajectory of the e-puck while in the 

experience-gathering phase is shown in Figure 3.10, Figure 3.11 and Figure 3.12.  

The task generation mechanism takes the data points gathered during the exploration as the 

input and creates clusters as per the ART1 algorithm. Table 3.2, Table 3.3 and Table 3.4 

show the cluster representatives for each of the three arenas. The first column of each table 

shows the task Id; the second shows the task attributes (robot’s state)—these are the cluster 

representatives identified by ART1. The third column shows the manually provided 

description of those tasks. The architecture does not require that description but is done to 

provide an intuition of what those states mean. The fourth column shows whether the task 

previously existed in the knowledge management module’s list or is a unique new task 

identified in this arena. The fifth column shows whether the task is valid or invalid. 

 

 
Figure 3.10: Trajectory, shown 
using blue line overlay of the e-

puck randomly exploring the 
arena with obstacles. The states 

experienced during this 
exploration would be related to 

“being close to an obstacle”, 
“being in an open space”, to 

name a few. 

 
Figure 3.11: Trajectory, shown 
using blue line overlay of the e-

puck randomly exploring the 
maze arena. The states 
experienced during this 

exploration would be related to 
“being close to a wall”, “being in 
an open space”, to name a few. 

 
Figure 3.12: Trajectory, shown 
using the blue line overlay of 

the e-puck randomly exploring 
the circular arena with tracks. 
The states experienced during 

this exploration would be 
related to “being on a track”, 

“not on a track”, to name a few. 
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For the first arena, ten clusters are generated; for the second and the third arena, nine 

clusters are generated. The vigilance parameter for the ART1 algorithm influences the 

number of clusters generated by varying the similarity between the clusters. The output of 

the task generation provides a fair idea of the different cluster representatives, i.e. it 

provides an insight into the states experienced by the e-puck. From Table 3.2, it can be seen 

that the states experienced by the mobile robot are related to obstacles to its right or left 

while it is either moving forward or turning right or left. For example, one of the cluster 

representatives is To9. This state indicates that the mobile robot is turning right when there 

is an obstacle to its right. Table 3.3 shows the results for the maze arena (Figure 3.7), which 

can be considered similar to the arena with obstacles (Figure 3.6) since it has walls that also 

act as obstacles. That similarity is evident from the result, as many of the cluster 

representatives are the same as in Table 3.2. For example, one of the cluster representatives 

is Tm7. This state indicates that the mobile robot is moving forward with the wall to its right. 

Table 3.4, on the other hand, shows that the robot experiences the states that denote that it 

is partially or entirely over the black region on the ground. For example, one of the cluster 

representatives is Tc3, which indicates that the robot is moving forward while on a black 

track.  

 

Table 3.2: Cluster representatives generated for the arena with obstacles. 

Task Id Task Attributes  Description of the task state Unique 
task? 

Is Task 
Valid? 

To1 1 1 0 0 0 0 0 0 0 0 0 0 0 Moving forward, no obstacle anywhere nearby Yes Yes 

To2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no obstacle/wall nearby  Yes Yes 

To3 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, obstacle/wall on the left at the side Yes Yes 

To4 1 0 1 0 0 0 0 0 1 1 0 0 0 Turning right, obstacle/wall on the left at the front Yes Yes 

To5 0 1 1 1 0 0 0 0 0 1 0 0 0 Turning left, obstacle/wall on the right at the front and 
obstacle/wall on the left at the front 

Yes Yes 

To6 1 0 1 1 1 0 0 0 0 0 0 0 0 Turning right, obstacle/wall on the right at the front and side Yes Yes 

To7 1 0 0 0 0 0 0 1 1 0 1 1 1 Appears to be invalid sensor readings. Ground sensors should be 0 
for this arena. 

Yes No 

To8 1 1 0 0 0 0 1 1 0 0 0 0 0 Moving forward, obstacle/wall on the left at the back Yes Yes 

To9 1 0 0 1 1 0 0 0 0 0 0 0 0 Turning right, obstacle/wall on the right at the side Yes Yes 

To10 0 1 1 0 1 0 0 0 0 1 0 0 0 Turning left, obstacle/wall at the front and right at the side Yes Yes 
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Table 3.3: Cluster representatives generated for the maze arena. 

Task Id Task Attributes Description of the task state Unique 
task? 

Is Task 
Valid? 

Tm1 1 1 0 0 0 0 0 0 0 0 0 0 0 Moving forward, no wall anywhere nearby No Yes 

Tm2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no wall anywhere nearby No Yes 

Tm3 1 1 1 0 0 0 0 0 1 1 0 0 0 Moving forward, a wall at the front and left Yes Yes 

Tm4 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, the wall on the left at the side No Yes 

Tm5 1 0 1 1 0 0 0 0 0 1 0 0 0 Turning right, a wall at the front and right Yes Yes 

Tm6 1 1 1 1 0 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the front Yes Yes 

Tm7 1 1 0 1 1 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the side Yes Yes 

Tm8 1 0 0 0 0 0 0 0 0 0 1 1 1 Appears to be invalid sensor readings. Ground sensors should 
be 0 for this arena. 

Yes No 

Tm9 1 1 1 1 0 0 0 1 1 1 0 0 0 Moving forward, a wall at both the front right and left. Yes Yes 

 

Table 3.4: Cluster representatives generated for the circular arena with tracks. 

Task Id Task Attributes  Description of the task state Unique 
task? 

Is Task 
Valid 

Tc1 1 0 0 0 0 0 0 0 0 0 0 0 0 Turning right, no wall anywhere nearby, and the robot is not on 
the black track  

Yes Yes 

Tc2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no wall anywhere nearby, and the robot is not on 
the black track  

No Yes 

Tc3 1 1 0 0 0 0 0 0 0 0 1 1 1 Moving forward, no wall anywhere nearby, and the robot is on 
the black track 

Yes Yes 

Tc4 0 1 0 0 0 0 0 0 0 0 1 1 1 Turning left, no wall anywhere nearby, and the robot is on the 
black track 

Yes Yes 

Tc5 1 1 1 1 0 0 0 0 0 1 0 0 0 Moving forward, a wall at the front on the right and left Yes Yes 

Tc6 1 1 0 1 1 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the side and the robot is 
not on the black track 

No Yes 

Tc7 1 1 0 0 0 0 0 0 1 1 0 0 0 Moving forward, a wall on the left at the front and the robot is 
not on the black track 

Yes Yes 

Tc8 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, a wall on the left at the side and the robot is 
not on the black track 

No Yes 

Tc9 1 1 0 0 0 0 0 1 1 0 1 1 1 Appears to be invalid sensor readings. There is no track near the 
wall. 

Yes No 

 

Scanning through the manually provided description of the tasks, i.e. cluster 

representatives, most of the tasks appear to be valid. However, a few appear to be invalid 

cluster representatives, for example, state To7 in Table 3.2 and the state Tm8 in Table 3.3. 

There are no dark coloured regions on the floor in either of those arenas. Examining the 

raw data points from the exploration phase also shows the presence of those states. The 

only explainable reason for those data points and subsequently identified cluster 

representatives is the sensor noise. However, this also shows that the task generation 
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mechanism is correctly identifying the uniqueness of the clusters. The knowledge 

management module will prune such invalid tasks.   

Knowledge Management Performance 

In the experiment, the knowledge management module maintains a list of cluster 

representatives identified by the task generation module and their status, indicating whether 

they are learned or not. These cluster representatives are termed as ‘potential tasks’, i.e. 

unique states that the e-puck has experienced. The knowledge management module also 

stores the reinforcement learning policy, i.e. the Q-table as the learned knowledge. Q-table 

can be persisted as a text file and stored. They can be recalled back into memory when 

required. Comparing the results shown in Table 3.2, Table 3.3 and Table 3.4, it can be seen 

that several ‘potential tasks’ are common to the different arenas, such as state To1, Tm1 and 

Tc1. This state means that the e-puck is moving forward while in an open space and not on 

the black region on the floor. The knowledge management module is responsible for 

keeping track of such similarities, as indicated by the third column of Table 3.2, Table 3.3 

and Table 3.4. Initially, for the first arena, the task generation module will identify a large 

number of tasks that are added to the list of tasks to be learned by the knowledge 

management module. However, the number of tasks added will be fewer for the arenas that 

are explored subsequently, as only the unique tasks are added to the list. Once a task is 

learned, it is marked as learned, and its policy is stored in the repository. If a task cannot be 

learned, it is marked as such and left on the list for later attempts. The task cannot be learned 

because it is too difficult at that point in time or because it is an invalid task. The learning 

was attempted up to five times, after which such tasks were removed from the list.   

Learning Performance 

The design of the proposed architecture permits the usage of any reinforcement learning 

algorithm. However, since the experiments in this chapter aim to focus on the validity of 

the proposed architecture, the task representation uses discrete state and action space, and 

the Dyna-Q reinforcement learning algorithm was used. Once the ‘potential task’ generated 

by the task generation module was learned, the policy, i.e. the learned knowledge, was 
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stored in the knowledge management module. The learning module was then assigned 

another task to learn, and the cycle continued.  

In the experiments, the tasks were considered ‘maintenance’ tasks, i.e. the aim of the agent 

was to maintain the task state, and the reward detailed by Equation 3.1 was used by the 

algorithm. Using the intuition provided by the description column of Table 3.2, Table 3.3 

and Table 3.4, five tasks were selected for each arena, the results for which are shown in 

Figure 3.13. These tasks were selected as follows: one task of particular interest, one invalid 

task and the remaining three were randomly chosen. The five tasks for each of the arenas 

are shown in the legend of the figure.  

 

 
Figure 3.13: Reward gained when learning the selected tasks. Tasks for the arena with obstacles are 

shown in green, tasks for the maze arena are shown in blue, and the tasks for the circular arena are shown 
in purple. 

 

Figure 3.13 shows that the invalid tasks are not learned. The cumulative reward for them is 

-25000, the lowest that can be in the experiments. For the other tasks that are valid, the 

learning performance depends on the opportunity that the e-puck gets to learn a particular 

task. Results show that some tasks are learned, others are not. In this experiment, the aim 

was to perform qualitative analysis; hence the experiment for each task was run for only 

50,000 steps. By very nature, in reinforcement learning, the learning requires that the agent 
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tries out different actions in a particular state. For this, the agent has to find itself in that 

state to try out other available actions. Some states are easy to regain the maintenance 

attempt whereas others are not, thus the difference in the opportunity to learn certain tasks. 

Chapter 4 introduces metrics to measure this, and an experiment in Chapter 6 shows that 

the learning performance can be better in specially constructed environments as it provides 

a better learning opportunity. The task To2 (turning left, no wall nearby) in the maze arena 

appears to be easy to learn. The e-puck finds plenty of opportunities (open area) and keeps 

turning left. For the tasks that appear to be difficult to learn, in the experiment, if the 

cumulative reward was less than the threshold as shown by Equation 3.2, it was considered 

a failed learning attempt and such task was added to a list to be reattempted. After five 

attempts, the task was considered unlearnable and removed from the task list. 

 

 
Figure 3.14: Trajectory of e-
puck (shown using blue line 

overlay) avoiding 
obstacles/walls in the arena with 

randomly scattered obstacles. 
The starting location is shown 

with the red dot.  

 
Figure 3.15: Trajectory of e-puck 
(shown using blue line overlay) 
following the wall to its right in 

the maze arena. The starting 
location is shown with the red dot. 

 
Figure 3.16: Trajectory of e-

puck (shown using the blue line 
overlay) following the black 

track in the circular arena. The 
starting location is shown with 

the red dot. 

 

Regarding the tasks of particular interest for each of the arenas, the learning was continued 

for one million steps. For the arena with obstacles, the task state of particular interest is To1. 

To maintain this state, the e-puck has to maintain zero sensor values of all its proximity 

sensors while moving forward, i.e. avoid obstacles. In learning this task, the e-puck exhibits 

the behaviour of avoiding obstacles. Figure 3.14 shows the learned behaviour that the e-

puck is avoiding obstacles. For the maze arena, the task state of particular interest is Tm6. 

To maintain this state, the e-puck has to maintain high sensor values of its Front-Right, 

Right-Diagonal proximity sensors and zero value for the rest of its proximity sensors while 
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moving forward. In learning this task, the e-puck exhibits the behaviour of following the 

wall to its right. Figure 3.15 shows learned behaviour. For the circular arena with tracks, 

the task state of particular interest is Tc3. To maintain this state, the e-puck has to maintain 

zero sensor values of all its proximity sensors and high sensor values of its ground sensors 

while moving forward. In learning this task, the e-puck exhibits the behaviour of following 

the track. Figure 3.16 shows the learned behaviour of the e-puck following the black track. 

Continuous Learning and Overall Architecture Performance 

The continuous learning cycle starts with the exploration phase, where the e-puck moves 

around randomly in its arena. The states experienced during this phase are used by the task 

generation module to generate potential tasks. Those tasks are then learned, and the 

knowledge is stored in the knowledge management module. The robot is then placed in 

another arena, and the cycle continues. Figure 3.17 summarises this continuous learning. 

When the e-puck is placed in a new arena, it forms new tasks and learns those tasks, i.e. 

when placed in a new environment, it autonomously discovers new tasks specific to that 

environment and then learns to attain those tasks, thus continuously improving its 

knowledge of its environment. 

 

 

Figure 3.17: Continuous Learning cycle of generating tasks and learning skills in different arenas. With 
this open-ended continuous learning cycle, the e-puck discovers a unique set of tasks in each arena and 

then learns skills to accomplish those tasks, thus increasing its overall knowledge base.    
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Again consider a few examples from each of the three arenas. As seen in Table 3.2, when 

the e-puck is in the arena with obstacles, the potential tasks generated are related to the 

presence of an obstacle in its proximity (for example, To8) or that it is in an open space 

(state To1). When learning tasks such as To1, the e-puck exhibits behaviour akin to avoiding 

obstacles. Next, when the e-puck is placed in the maze arena, as shown in Table 3.3, it 

forms tasks related to being beside a wall (for example, Tm7). When learning to maintain 

such a task state, the e-puck exhibits behaviour akin to following the wall on its right. Then, 

when the arena is changed again to the circular arena with tracks, as shown in Table 3.4, it 

forms tasks related to being over a track (for example, Tc3 or Tc4). In learning to maintain 

such task states, the e-puck exhibits behaviour akin to following the track. 

Thus, the e-puck goes from having no knowledge of its environment or even its own state 

space to exhibiting identifiable behaviours. At the start and when the environment changes, 

the e-puck self-generates the tasks specific to that environment and learns skills to 

accomplish those tasks, thus, continuously improving its overall knowledge. That shows 

the validity of the proposed continuous learning architecture. 

 

3.5 Summary 

This chapter proposed the Modular Continuous Learning Architecture—an agent 

architecture with a ‘Task Generation Module’ that enables the agent to decide what to learn, 

a ‘Knowledge Management Module’ which is a skills repository and a ‘Learning Module’ 

implemented using reinforcement learning. The task generation, learning, storing, and 

recalling of the skill continues in a cycle, thus continuously improving the system’s overall 

capability without external intervention. Mobile robot experiments were run in a 

dynamically changing environment to demonstrate how the agent can switch from learning 

to exploring and continuing that in an open-ended manner, with basic definitions for the 

key components: tasks, skills and rewards. When the Task Generation Module is 

implemented using novelty-based or curiosity-based motivation or the Learning Module is 

implemented using intrinsic motivation based reward, it creates a ‘motivated open-ended 

continuous learning’ architecture. The literature review showed that the focus of the 
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motivated reinforcement learning agent architectures was on generating task-independent 

reward functions and the focus of goal-oriented autonomous agent architectures was on 

generating tasks to self-direct the learning, both of which lacked lifelong learning 

capability. This new architecture fulfils that gap in the literature.   

The architecture presented in this chapter provides the foundation for investigating open-

ended continuous reinforcement learning by mobile robots in the rest of this thesis. The 

next chapter will examine the types of tasks and the design of generic rewards for different 

task types in the context of the proposed architecture. Later chapters will examine 

compound task generation (Chapter 5) and skill composition (Chapter 6). 
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CHAPTER 4     REWARD DESIGN FOR AUTONOMOUS LEARNING 

Parts of this chapter have been published in: P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, 
“Intrinsic rewards for maintenance, approach, avoidance, and achievement goal types,” 

Frontiers in Neurorobotics, vol. 12. October. 2018. 
 

4.1 Introduction 

The previous chapter showed the modules that make up the Modular Continuous Learning 

Architecture. Those modules form essential components for the agent architecture’s open-

ended and continuous learning aspects. Another crucial aspect that was mentioned in 

Chapter 1 was autonomous learning, which is the main reason for using reinforcement 

learning in architecture. In reinforcement learning, the agent is not provided labelled data. 

It is not told what the positive and negative samples are. Neither is there a control program 

consisting of if-else conditions instructing the agent what to do. Instead, the agent must 

figure out what action it should take in which state. That mapping from state to action is 

called policy, and the learning is driven using ‘reinforcement’, which can be a negative or 

a positive reward. Typically, the reward in single task reinforcement learning is a 

handcrafted function that may require significant domain knowledge in many cases. For 

agent autonomy, it is essential that the rewards are task-independent. The literature review 

shows that either intrinsic motivation or reward shaping can be used as a task-independent 

reward function. However, another way of designing the task-independent reward function 

is basing it on the type of the task. That is what will be discussed in this chapter.    

Tasks, also interchangeably referred to as goals, have been among the main research areas 

of the Beliefs, Desires, Intentions community [71] and the agent community [72]. As seen 

in Chapter 2, a categorisation based on how the tasks are attained leads to ‘maintenance’, 

‘achievement’, ‘approach’ and ‘avoidance’. In a reinforcement learning problem 

formulation, albeit somewhat unknowingly, this task categorisation is already considered. 

Take, for instance, the cart-pole benchmark problem, which is a maintenance task. A maze 

navigation problem is an achievement task. Similarly, problems solved with positive 

reward have properties of approach task, and the problems solved using negative reward 

have properties of avoidance task. Thus, the concept of using task types for generating a 
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reward seems promising. Encouraged by that, this chapter proposes a task-independent 

reward function for different types of tasks.  

 

 

Figure 4.1: Modular Continuous Learning Architecture revisited. Task-independent reward design, the 
focus of this chapter, is the contribution related to the Learning Module of the architecture. 

 

This chapter will propose reward functions for achievement, approach, avoidance and 

maintenance task types. Also, tasks can be ‘primitive’, i.e. elementary tasks that logically 

cannot be broken down into subparts and ‘compound’ that are a combination of the 

primitive tasks. This chapter will further explore the possibility of extending the proposed 

reward functions to be used with the compound tasks. It will also propose metrics to 

measure the performance of the agent. Using simulated e-puck based experiments, this 

chapter will demonstrate the use of the proposed reward functions, i.e. the robot will learn 

the different types of tasks. One of the experiments will also show a hand-coded example 

of how a compound task can be broken into sub-tasks, which could be treated as one of the 

aforementioned types. Then using the proposed reward functions for those sub-tasks, the 

experiment will find a solution for the compound task.  

Figure 4.1 is the Modular Continuous Learning Architecture, as detailed in Chapter 3. The 

‘Task Learning Module’, shown in green, uses reinforcement learning. The task-

independent reward function design, the focus of this chapter, is a research contribution 
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related to that learning module. The rest of this chapter is organised as follows: Section 4.2 

will review the literature on task-independent reward design. Section 4.3 proposes the 

reward functions for different types of tasks. Section 4.4 proposes the metrics to measure 

the agent’s performance. Section 4.5 will detail the setup of the experiments and discuss 

the results. Finally, Section 4.6 will then provide the concluding remarks. 

 

4.2 Task-Independent Reward Design 

Reinforcement Learning, where an agent learns by interacting with its surroundings, is 

most suitable for autonomous learning. The learning is guided by reinforcement, 

commonly known as ‘reward’. The reinforcement learning agent aims to maximise the 

cumulative reward and, in doing so, find the optimal mapping between states and actions, 

i.e. learn the task. Thus, reward design is most crucial in reinforcement learning. ‘Reward 

engineering’ is one of the active research areas. That research focuses on the principles of 

construction of reward that empowers efficient learning [73]. Typically, designing a good 

reward function requires task-dependent knowledge. However, if the reward is task-

dependent, it hinders autonomy. Thus, this section will review the literature on a specific 

aspect of reward engineering, the one that is concerned with task-independent reward 

design.  

Consider the following example of a predefined value assignment reward function: 

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  ቄ
  1          𝑖𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (4.1) 

where 𝑟(𝑠௧) is the per-step reward at time step t. Such reward is suitable for certain tasks; 

however, consider a benchmark cart-pole (or the similar inverted pendulum) example used 

in reinforcement learning research. In this problem, there is a cart that moves along a track 

with a pole attached. The agent’s task is to balance that pole by moving the cart to the right 

or left along the track. The following equation gives the reward function where 𝑢𝑡
1 and 𝑢𝑡

ଶ 

are its state attributes, the position of the cart and the pole’s angle with respect to the cart. 

G is the goal state with attributes 𝑔ଵ and 𝑔ଶ, the desired position and angle.  
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𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  −𝑐2 ∗ (𝑔ଵ − 𝑢௧
ଵ)ଶ − 𝑐3 ∗ (𝑔ଶ − 𝑢௧

ଶ)ଶ  (4.2) 

As can be seen from the reward function, such reward design requires significant task-

dependent knowledge. In essence, the control logic is encoded in the reward function, 

instructing the agent what action to take when in a particular situation. Consider another 

example of a ball paddling game. The game consists of a ball attached to a paddle by an 

elastic string. The aim is to bounce the ball on the paddle. To design a good reward 

function, one has to consider not just that the end task is accomplished but also how the 

task is accomplished. Thus, the reward function should consist of a condition for bouncing 

the ball and a condition for bouncing it above the paddle and not hitting it towards the 

ground, again illustrating the need for task-dependent knowledge to design a reward 

function. If the design is incorrect, the agent will learn an incorrect behaviour [74]. Even 

if the design is correct, the agent might find an alternative way to gain maximum 

cumulative reward, i.e. ‘hack’ the reward [74], resulting in the right behaviour but achieved 

in an unforeseen way. Thus, a good reward design usually consists of a primary reward 

responsible for guiding the agent towards the goal and a secondary reward that guides the 

agent in the way the goal is to be achieved.  

Also, for some domains, it is only possible to design a ‘sparse reward’. This is where the 

reward is assigned to a small proportion of situations making the learning difficult since, 

in such cases, the reinforcement learning agent gets very little feedback for its actions. 

Alternatives proposed in the literature include ‘hallucinating’ positive rewards [75]. 

Another solution is to use imitation learning [33] [76] and inverse reinforcement learning 

[77] [78] that provide a near-optimal policy, and the reward can then be derived from these 

human demonstrations. However, this does not allow the fully autonomous development 

of the agent. Dewey [73] concluded that to create an autonomous agent, one cannot use 

handcrafted rewards, and that is a considerable challenge since the task-independent design 

of reward resulting in desired behaviours is complex. While earlier, the focus of the 

reinforcement learning research was on efficient learning of an arbitrary given task, recent 

research has recognised that the design of a reward function can either restrict or facilitate 

autonomy. Also that the reward function can enable open-ended learning, allowing 

reinforcement learning to progress beyond single-task learning. The following few 

subsections review work that focuses on this area.  
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4.2.1 Intrinsic motivation 

Although the concept of novelty [79] and curiosity [80] has been used with reinforcement 

learning for decades, this usage was to find novel tasks to learn or assist with exploring the 

state-space. Singh et al. [45] introduced the idea of reward modelled using the 

psychological concept of motivation. Motivation is defined as a reason to perform a task 

and is broadly classified as either intrinsic or extrinsic [81]. When a task is carried out for 

internal satisfaction without any external influencing factor, it is said to be carried out due 

to ‘intrinsic motivation’. When a reward signal is generated internally within an agent using 

an inherent attribute without an external influence, it is classified as an intrinsic reward 

[45]. It can depend on the state components from the agent’s internal environment in 

addition to the components from its external environment and is task-independent [82]. It 

is, in short, an agent’s perception of the scalar reward and an example of an engineered 

reward leading to open-ended learning [83] [84].  

The computation of the reward can be based on experienced states, specific events, or 

actions. The central aspect is that it is independent of the previous task-specific knowledge. 

The motivation signal may lead to learning a specific skill of no immediate benefit but 

could be beneficial later [45]. An agent may generate this signal because a task is inherently 

‘motivating’, which in turn results in further exploration of its environment or acquisition 

of the skill and is composed of the agent’s perception along with components from its 

external environment. 

𝑟 =  𝑟௘ + 𝑟௜   (4.3) 

Intrinsic motivation, i.e. the ‘motivation function’, is a reward model that leads to task-

oriented performance. Equation (4.3) shows that the reward r is a summation of the 

extrinsic or hand-coded task-specific reward re and the intrinsic reward ri. However, the 

intrinsic reward may be used along with or instead of a task-specific reward signal. When 

used along with the task-specific reward, the agent achieves more adaptive learning. When 

used instead of the task-specific reward signal, it results in a true task-independent learner 

since it reduces the handcrafting of the task-specific reward [44]. Also, alternatively, the 

intrinsic reward can be gradually decreased or increased as required. When intrinsic 

motivation is used in reward design, it serves the following two purposes: (i) state-space 
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exploration and (ii) controllability, i.e. to provide an internally generated positive or 

negative feedback to manipulate the agent’s behaviour. In this section, the review is 

restricted to the latter form of intrinsic motivation. Section 2.4 reviews the former use of 

intrinsic motivation. 

Intrinsic motivation is categorised by Oudeyer and Kaplan [85] into the following two 

categories: knowledge-based and competence-based. The signal is considered knowledge-

based motivation if it is based on an internally generated prediction error [86]. This error 

is generated based on the comparison between what actually happens versus the agent’s 

expectation of what is supposed to happen when a particular action is executed and is also 

sometimes referred to as ‘surprise’ [87]. On the other hand, novelty identifies new patterns 

that have never been seen before [79] [88]. Intrinsic reward is generated only by a novel or 

unexpected event. The system compares the predicted next state to the actual next state, 

and if the prediction is incorrect, a novelty signal is generated. Competence refers to an 

organism’s ability to interact with the environment and the development of its ability to 

change it in specific ways. It is the sense of mastery that the organism has for a particular 

skill. The central concept for a competence-based model is an appropriate level of learning 

a challenge; that is, the activity is at a correct level of learnability given the agent’s current 

level of mastery of that skill [89]. The model gauges the agent’s competence in achieving 

the self-determined goals. The signal is considered competence-based motivation if it is 

generated based on a progress indicator metric [86]. Such motivation generates a maximum 

signal when the task’s difficulty level matches the agent’s mastery of the skill required to 

accomplish that task.  

The following is a small subset of examples of how intrinsic motivation is derived. Oudeyer 

et al. [54] use the distance measure between the terminal state when the goal-reaching 

attempt is finished and the actual goal state as a measure of competence to derive an 

intrinsic reward. Stout and Barto [90] used the expected pseudo return of the options to 

derive the competence-based reward. Bonarini et al. [91] use a ‘level of interest’ in visiting 

the states as an intrinsic measure to generate subgoals. They propose that the states that are 

difficult to reach during random exploration, once reached and easily exited, generate a 

high level of interest. Sequeira et al. [92] propose using an agent’s emotions such as 

surprise, in control, and situation pleasantness as intrinsic motivation. Temel et al. [93] and 
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Grzyb et al. [94] use the frustration of the robot in grasping the objects as a measure of 

competence progress. They showed that low or high frustration results in exploitative 

behaviour, whereas an optimal level of frustration results in explorative behaviour. Along 

similar lines, Ma et al. [95] have an optimal level of challenge between the task’s difficulty 

level and one’s competency is essential to maintain a higher level of intrinsic motivation. 

Motivation has been examined in a deep reinforcement learning setting as well. Kulkarni 

et al. [96] present a hierarchical DQN framework where motivation is used to identify the 

goals for the agent in a data-efficient manner. Bellemare et al. [97] use intrinsic motivation 

generated using the count-based exploration method to measure the learning progress and 

demonstrate its advantage on Atari 2600 games and how this leads to better state space 

exploration. 

Santucci et al. [98] compare the different knowledge-based and competence-based intrinsic 

motivations. The motivation generated for the state predictor, the state-action predictor and 

the task predictor is compared using prediction error and prediction error improvement 

measures. Their results show that just knowledge-based motivation is insufficient for an 

agent to learn skills for multiple tasks, whereas some but not all types of competence-based 

motivation are sufficient. Whether knowledge-based or competence-based, information 

regarding what constitutes prediction error or mastery level competency must be defined. 

However, they can be based on the attributes from the agent’s internal state-space or 

components from its external environment but independent of task-specific factors. The 

following subsection reviews the literature on reward shaping.  

4.2.2 Reward shaping 

Another technique that generates task-independent reward is a concept called ‘shaping’ 

[99] [100] [101]. In reward shaping, one starts with a basic reward function that is then 

shaped either statically or dynamically. Thus, shaping can guide the learning process by 

favouring certain behaviours [102] and accelerating learning [103]. In the literature related 

to reward shaping, the reward is seen as a programmer’s bias. The native task reward, the 

initial bias, is shaped by providing a positive or negative artificial increment to encourage 

or discourage behaviours. In essence, ‘shaping’ is a mathematical representation of a bias 
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that will establish a preference for action [102]. Thus, shaping, in a way, is similar to the 

concept of intrinsic motivation seen in the previous subsection and can be called a 

precursor to it. The shaped reward 𝑟̃ can be represented using the following equation where 

𝑟 is the native task reward, f is the shaping function, (𝑠௧, 𝑎௧, 𝑠௧ାଵ) are the state, action and 

next state resulting from taking action 𝑎௧.  

𝑟̃(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) +  𝑓(𝑠௧, 𝑎௧, 𝑠௧ାଵ)  (4.4) 

In the case of static shaping, the reward function is modified using predetermined criteria, 

often hand-coded, i.e. it does not vary with experience. However, since this predetermined 

criterion is often hand-coded, it requires significant domain knowledge and external 

manual intervention. However, this concept can be further extended by modifying the 

reward dynamically. One approach is to derive the dynamic shaping function using the 

agent’s initial experiences with the environment [103]. Another approach is to shape the 

reward based on the progress indicator [104], where the reward is shaped based on the 

evaluation of the progress in attaining a task.  

Although shaping is said to be a powerful technique, it is also acknowledged that a poorly 

shaped reward function might cause the learning to converge on a non-optimal solution 

[105]. Also, designing a good shaping function that reduces learning time requires a task 

or environment-specific knowledge [106]. Thus, reward shaping is not the type of task-

independent reward function that can be used for autonomous learning and is not explored 

further in this thesis. In saying that, the modular nature of the architecture proposed in 

Chapter 3 allows the ‘Learning Module’ to be implemented using reward shaping.  

4.2.3 Gap in the state-of-the-art 

Intrinsic motivation is the most commonly used approach to generate a task-independent 

reward function for reinforcement learning. While intrinsic motivation can be used instead 

of or along with other reward functions and leads to learning autonomy for an agent, it 

requires additional albeit general information. That information may or may not be task-

independent in all cases. In the case of knowledge-based motivation, which is derived from 

the prediction error, the information on what constitutes novelty is required. In the case of 

competence-based motivation, which is derived from the difference between the mastery 
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level competence and the current competence level, information on what constitutes 

mastery level competency is required. The other technique for generating task-independent 

reward found in the literature is using reward shaping. That, too, requires an additional 

input of either determining criteria for the static shaping update or determining what 

constitutes a dynamic update to the reward function. Thus, none of the existing task-

independent techniques enables full autonomy. 

Early work on reinforcement learning focused on generating reward, using intrinsic 

motivation directly from the environment. However, in many cases, especially where the 

rewards are sparse, research has acknowledged the benefits of generating subtasks, i.e. 

transitional milestones, to direct the learning [12] [38]. This approach enables the agent to 

break down a monolithic task, and the intrinsic reward for the subtasks increases the reward 

density for the overarching task. The agent can exhibit behaviours such as achieving, 

avoiding or maintaining these subtasks. That leads to an interesting alternative approach 

where the reward function is generated based on different types of tasks. That raises the 

question, how does one design a module to generate task-independent intrinsic reward 

functions for different types of tasks? The following section will aim to answer that 

question.  

 

4.3 Reward Functions based on the Type of the Task 

In reinforcement learning, the learning process is guided by reward. Typically the reward 

is hand-designed and often task-dependent. However, it is not always possible, especially 

in dynamic environments, to know upfront which tasks the agent should learn, making it 

challenging to design the reward function. This chapter proposes reward functions based 

on the type of task, which is the categorisation of tasks based on the functional aspect of 

how the task is considered to be attained. The common types based on this categorisation 

are achievement, maintenance, avoidance, approach, optimisation, test, query, and cease 

type [32]. The ‘optimisation’ type means maximising or minimising a particular value. The 

‘test’ type determines if a particular condition holds. The ‘query’ type is used for 

information retrieval, and the ‘cease’ type is the opposite of the ‘achieve’ task type. These 
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task types are more appropriate for data-driven agents than robotics applications [38]. The 

scope of this chapter is limited to the types of tasks whose “attainment” can be verified in 

the context of reinforcement learning. Hence optimisation, test, query, and cease task types 

are not considered further in this chapter. The remaining task types, achievement, 

maintenance, avoidance, and approach, as seen earlier, are already considered in the 

reinforcement learning problem formulation. Based on that criteria, this chapter proposes 

reward functions for those types. The basis of the reward design starts with the generic 

reward function, as shown in Equation (4.5). 

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) =  ቄ
  1                          𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
 1 −  ε                                         𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 

  (4.5) 

where r is the per time step reward when action 𝑎௧ is taken in the state 𝑠௧. ε is a non-

negative constant; typically, its value would be greater than 1 so that there is a per step 

penalty which incentivises the agent to find an optimal solution. The rest of this section 

defines different representations of tasks and representations of the meaning of “reached” 

or “attained”. 

4.3.1 Reward function for a maintenance task 

A type of task where the aim is to preserve the desired state is classed as a maintenance 

task. Thus, for a maintenance task, the distance between the current state and the desired 

state is monitored, and if that distance increases beyond a set threshold, the agent aims to 

re-establish the desired state. To do that, the agent’s action selection should take into 

account both the triggering and constraining conditions of the task [107]. For example, 

consider a vacuum cleaning robot where the task is to remove dirt and dust from an area 

supposed to be “maintained clean”. Examples of the mobile robot include following a wall 

or staying within a track. Other maintenance tasks are air conditioners maintaining a 

specific temperature in the room or cruise control maintaining a certain driving speed. 

Maintaining a task state can be never-ending. Thus, compared to “typical” reinforcement 

learning tasks, the maintenance tasks are non-episodic. Therefore, new metrics are required 

to measure the agent’s performance. Those metrics are detailed in Section 4.4. 
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To represent the reward design, consider that the desired state is denoted by 𝐺 and the 

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also, 

consider that 𝑑(. ) is a measure of distance and 𝜌 is a permissible threshold distance. Thus, 

if the distance between the current and desired state is below the threshold, the aim can be 

considered fulfilled. The reward function is as shown in Equation (4.6):   

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =  ൜
 𝜎       𝑖𝑓 𝑑(𝑠௧, 𝐺) <  𝜌 
𝜑               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (4.6) 

In the equation, when the aim is attained, the reward is 𝜎 and 𝜑 otherwise. Generally 𝜎 >

0, i.e. a positive reward, but there is no particular recommendation regarding the maximum 

value of 𝜎. 𝜑 is less than 𝜎 in order to incentivise the agent to find an optimal solution. 

4.3.2 Reward function for an approach task  

A type of task where the aim is to get closer to the desired state is classed as an ‘approach’ 

task. Compared to the maintenance task detailed in the previous subsection, the difference 

lies in how the task is fulfilled. There is a ‘desired state’ in both cases, and the agent’s aim 

is related to that state. For a maintenance task, as long as the distance between the current 

state and the desired state remains under a certain threshold, it is considered fulfilled. For 

an approach type task, it is considered fulfilled as long as the distance between the current 

state and the desired state is decreasing [108]. The approach attempt is said to have ended 

once that distance is shorter than a certain threshold, thus making the approach task 

transient in nature. The task is classified as an approach type task as long as the distance 

between the current and desired states is getting shorter. However, once that distance is 

shorter than the threshold, the task is no longer considered ‘approaching’. For example, 

consider a vacuum cleaning robot starting from the middle of a room with the aim/task of 

following the wall. For that robot, the initial task would be to approach the wall and then 

start the next task of maintaining a set distance from the wall while following the wall.   

To represent the reward design, consider that the desired state is denoted by 𝐺, and the 

agent’s state at the time step 𝑡  is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also, 

consider that 𝑑(. ) is a measure of distance and 𝜌 is a permissible threshold distance. The 

approaching attempt is measured by comparing the distance between the current 𝑠௧ and 
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desired state 𝐺 with the state at the previous time step 𝑠௧ିଵ and the desired state 𝐺. The 

equation also has a second condition which ensures that while the agent is approaching the 

desired state, the distance remains more than the defined threshold 𝜌. That is so that the 

fulfilment remains an “approach” endeavour and not “approach and achieve”. The first 

condition in the equation is also the progress indicator and can be used on its own. Such 

progress indicators can be used to represent an agent’s competence and derive a 

competence specific intrinsic motivation signal. The reward function is as shown in 

Equation (4.7):   

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)  =  ൜
𝜎      𝑖𝑓 𝑑(𝑠௧, 𝐺) < 𝑑(𝑠௧ିଵ, 𝐺)  𝑎𝑛𝑑  𝑑(𝑠௧, 𝐺) > 𝜌 
𝜑                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (4.7) 

In the equation, when the aim is attained, the reward is σ and φ otherwise. Also, generally 

σ > 0, i.e. a positive reward and φ is less than σ in order to incentivise the agent to find an 

optimal solution. 

4.3.3 Reward function for an avoidance task  

The type of task where the aim is to remain away from the desired state is classed as an 

avoidance task. It is the opposite of the approach task detailed in the previous subsection. 

As the name suggests, avoidance is a behaviour where an agent stays away from a particular 

state or an object [108]. The task is considered fulfilled as long as the agent stays away 

from the state it should avoid, making this type of task transient in nature. For example, 

consider a robotic vacuum cleaner cleaning rooms while avoiding obstacles or an 

autonomous lawnmower cutting grass while avoiding obstacles.  

To represent the reward design, consider that the desired state is denoted by 𝐺, and the 

agent’s state at the time step 𝑡  is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also, 

consider that 𝑑(. ) is a measure of distance and 𝜌 is a permissible threshold distance. The 

equation has two conditions. The first measures the avoidance attempt by comparing the 

distance between the current 𝑠௧ and desired state 𝐺 with the state at the previous time step 

𝑠௧ିଵ and the desired state 𝐺. The second condition ensures that while the agent is staying 

away from the desired state, the distance remains more than the defined threshold 𝜌. It is a 



72 

more intuitive way to represent the avoidance attempt. Either of the two expressions can 

be used on their own as well. The reward function is as shown in Equation (4.8):   

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)  =  ൜
𝜎       𝑖𝑓 𝑑(𝑠௧, 𝐺) > 𝑑(𝑠௧ିଵ, 𝐺)  𝑎𝑛𝑑  𝑑(𝑠௧ିଵ, 𝐺) > 𝜌 
𝜑                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.8) 

As is the case for the maintenance and the approach reward functions, when the aim is 

attained, the reward is σ and φ otherwise. Also, generally σ > 0, i.e. a positive reward and 

φ is less than σ in order to incentivise the agent to find an optimal solution. 

4.3.4 Reward function for an achievement task  

A type of task where the aim is to attain the desired state is classed as an achievement task 

[109]. The task is considered fulfilled when that desired state is reached. That makes the 

learning episodic in nature, i.e. a starting or an initial state of an agent and an end state. In 

the case of reinforcement learning, the learning process can start at the starting state and 

then end when the desired state is reached. That starting state can be different for each 

episode to make the learning more robust. The concept of ‘event’ (detailed in Chapter 2) 

is used to represent an achievement task. An event describes the transition of states of the 

agent. An achievement task is considered fulfilled when that transition is accomplished. 

Examples of achievement tasks are a vacuum cleaning robot making its way out of the 

room once it is cleaned or finding its way through the room back to the charging station.  

To represent the reward design, consider that the desired state is denoted by 𝐺, and the 

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also, 

consider that 𝑑(. ) is a measure of distance and 𝜌 is a permissible threshold distance. The 

reward function is as shown in Equation (4.9):   

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)  =  ൜
𝜎       𝑖𝑓 𝑑(𝐸௧, 𝐺) <  𝜌 
𝜑                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (4.9) 

Similar to equations in the previous subsections, when the aim is attained, the reward is σ 

and φ otherwise. Also, generally σ > 0, i.e. a positive reward and φ is less than σ in order 

to incentivise the agent to find an optimal solution.  
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4.4 Metrology for Agent Performance 

As seen in the previous section, tasks can be of various types when categorized based on 

their functional aspect. However, the reinforcement learning tasks are typically assumed to 

be of achievement type. Even the tasks that do not necessarily fit the definition of 

achievement task are treated as one. The task has a start state and the desired end state. A 

trial, a run or a rollout is considered episodic where the episode is considered to have ended 

when either (i) the end state is reached, (ii) a configured undesired state, such as a robot 

has fallen down, is reached, or (iii) the number of steps in the episode has exceeded the set 

limit. Typically, the agent’s per episode aggregate reward is used as a metric. The agent is 

said to be performing well if this per episode reward increases or reaches a set maximum. 

Such a metric is not sufficient for all the task types detailed in the previous section. This 

section proposes metrics to measure the agent’s performance for non-episodic tasks. For 

instance, maintenance tasks are non-ending; thus, the concept of an episode is not relevant. 

Thus, a metric such as the regain attempt, a critical measure for non-episodic tasks, is 

proposed. Another metric is the number of times the agent was not able to avoid the state 

that it was supposed to avoid. These metrics evaluate the reward functions for those task 

types and are measured over a fixed period T of the agent’s life. The proposed metrics can 

be used in conjunction with the reinforcement learning’s standard per-episode reward 

metric to provide additional insight into the agent’s learning performance.   

4.4.1 Number of times for which the non-episodic task is attained (M1) 

This metric is applicable to maintenance, approach and avoidance tasks. It counts how 

often the agent maintains/approaches/avoids the desired state for two or more consecutive 

steps during a period P. For maintenance, approach and avoidance tasks, the process of 

‘attaining’ the desired state is never-ending, and the learning ‘episode’ is not ended at the 

first occurrence of the task being maintained/approached/avoided. That is to say that the 

learning is not stopped when the desired state is ‘reached’; the agent’s position is not reset 

back to a pre-determined or random initial state; instead, the training continues. The 

maintained state could be lost for such unending tasks, or the approaching/avoiding attempt 

is lost; however, since the process is never-ending, the reinforcement learning agent 
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reattempts to maintain/approach/avoid. The metric M1 counts the number of times the agent 

reattempts. Thus, it provides a measure of the agent’s competence in regaining the 

approach/avoidance/maintenance task.  

𝑀ଵ = 𝑐𝑜𝑢𝑛𝑡
௧ୀଶ…௉

(𝑡)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑟௧ = 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ ≠ 𝜎  (4.10) 

where depending on the type of the task, Equations (4.6), (4.7) or (4.8) provide rt and rt-1. 

In the equation, 𝜎 is used as an example positive reward for 𝑟௧ and 𝑟௧ିଵ.  

4.4.2 The longest period of maintenance task (M2)  

This metric is also used for maintenance tasks and calculates the longest stretch in terms 

of time steps for which the task was maintained. Once the reinforcement learning agent has 

learned the skill, the expectation would be that this metric would be of higher value than 

the agent who has not learned or partially learned the skill. Thus, this metric indicates the 

agent’s competence in maintaining the task, with longer stretches indicating better agent 

performance. However, a lower value of this metric could result from a lack of learning 

opportunities for the agent or an unsuitable environment. This metric requires keeping track 

(or calculated from experience) of the maintenance attempt segments (represented as an 

array J). The maintenance attempt segment starts when 𝑟௧ = 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ ≠ 𝜎 and ends 

when 𝑟௧ ≠ 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ = 𝜎 (𝜎 is used in the equation as an example of a positive reward). 

M2 is the longest segment in the array J. 

𝑀ଶ = 𝑚𝑎𝑥
௝ୀଵ…௃

(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑗)  (4.11) 

4.4.3 Number of times task not avoided (M3)  

This metric is applicable to avoidance tasks. For approach and avoidance tasks, the 

reinforcement learning agent may actually end up ‘reaching’ the state that it is approaching 

or avoiding. In such cases, the approaching or the avoiding attempt ends. For the avoidance 

type tasks, that ‘reaching’ is considered a failure. This metric measures how often such 
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failure occurred, i.e. it counts how often the agent fails to avoid the task state over a fixed 

period P. 

𝑀ଷ = 𝑐𝑜𝑢𝑛𝑡
௧ୀଵ…௉

(𝑡)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑑(𝑠௧, 𝐺) < 𝜌  (4.12) 

where 𝑑(. ) is the distance between the current and the task state and 𝜌 is the distance 

threshold. 

 

4.5 Mobile Robot Experiments 

Previous sections proposed the task-independent reward functions and metrics to evaluate 

an agent’s performance. This section uses those metrics to verify the effectiveness of the 

reward functions to guide learning. The experiments in this section will use the e-puck 

mobile robot. An experiment will be performed to measure the effectiveness of each of the 

reward functions proposed in the previous section. Also, an experiment will be performed 

to measure the suitability of the proposed reward functions for compound tasks. 

4.5.1 Objectives of the experiments 

Following are the objectives of the experiments: 

 Experiment 1: Measure the effectiveness of the reward function proposed in 

Section 4.3.1 for maintenance tasks. 

 Experiment 2: Measure the effectiveness of the reward function proposed in 

Section 4.3.2 for approach tasks. 

 Experiment 3: Measure the effectiveness of the reward function proposed in 

Section 4.3.3 for avoidance tasks. 

 Experiment 4: Measure the effectiveness of the reward function proposed in 

Section 4.3.4 for achievement tasks. 

 Experiment 5: Measure the suitability of the proposed reward functions for 

compound tasks. 
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4.5.2 Methods and materials 

The experiments in this chapter used Webots software to simulate e-puck and create arenas. 

A reinforcement learning algorithm was written using MATLAB and integrated with 

Webots to control the mobile robot. The tasks used in the experiments were as generated 

by Merrick et al. [38], and for consistency, the agent’s state and the action space used were 

also as defined by Merrick et al. [38]. 

Robot and its Environment 

 

 

Figure 4.2: Top view of e-puck with labelled 
proximity sensors. Red lines show the direction in 

which proximity is detected. 

 

State Vector: 

        [ωR  ωL  θ  pL  pR  pFL  pFR  pRL  pRR] 

 

Actions: 

       {  
            1 – left_wheel_speed + δ,  
            2 – right_wheel_speed + δ,  
            3 – left_wheel_speed – δ,  
            4 – right_wheel_speed – δ, 
            5 – No change to wheel speeds 
       } 

 

For the experiments in this chapter, the e-puck detailed in Chapter 2 was used. The 

reinforcement learning state vector used was as defined by Merrick et al. [38]. It consists 

of six proximity sensors labelled as Front-Right, Right, Rear-Right, Rear-Left, Left, and 

Front-Left. Figure 4.2 shows the top view of the e-puck with the abbreviated labels shown 

beside the red directional lines along which the sensors detect an obstacle.  

The value of the sensor reading indicates the proximity to an object. In the experiments, 

discretised binary values were used for the proximity sensors. The value 1 indicated that 

an object was nearby, and 0 indicated no object nearby. The state vector also consisted of 

angular velocities of the wheels, represented as ωR and ωL with the range -π to π radians 

per second. These velocities were discretised into nine values. The robot’s orientation angle 

θ was also used in the state vector, and its range -π to π too was discretised into nine values. 
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Thus, the state of the e-puck comprised nine attributes [ωR  ωL  θ  pL  pR  pFL  pFR  pRL  pRR]. 

The action space comprised five actions: 1) increase the left wheel speed by δ, 2) increase 

the right wheel speed by δ, 3) decrease the left wheel speed by δ, 4) decrease the right 

wheel speed by δ, and 5) no change to the left or the right wheel speeds. The value of δ 

used was π/2. 

 

 

Figure 4.3: Top view of the simple vast walled arena. 

 

The mobile robot environment used for the experiments with primitive tasks was the same 

as used by Merrick et al. [38]. Figure 4.3 shows the top view of a large 5m  5m arena that 

was created for the experiments with the primitive tasks. It is a simple arena with four walls 

at its periphery and no walls/objects/obstacles in its open area. However, based on the 

findings from those experiments, two new arenas were created, for the experiment with 

compound tasks, as detailed in Experiment 5.  

Learning Algorithm 

In the experiments, a reinforcement learning algorithm called Dyna-Q (detailed in Chapter 

2)  was implemented using MATLAB. The epsilon-greedy action selection strategy was 

used for all the experiments, and the epsilon parameter was set to 0.15 with linear decay, 

i.e. the epsilon was reduced linearly.    
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Tasks used for the Experiments 

For the experiments with the maintenance, approach, avoidance and achievement tasks, the 

tasks generated by Merrick et al. [38] were used. To generate those tasks, Merrick et al. 

[38] use Simplified Adaptive Resonance Theory (SART) [110], a clustering technique 

similar to ART (detailed in Chapter 2), with the main difference being that it works with 

non-binary values of its data points. Merrick et al. [38] generated two categories of tasks. 

One category of potential tasks is formed using the experienced states. These tasks can be 

used as maintenance, approach and avoidance tasks. The second category of tasks is 

generated using events. These tasks are treated as achievement tasks since the robot aims 

to achieve those event transitions.      

4.5.3 Results and analysis 

Experiment 1: Experiment with maintenance tasks 

Using the SART clustering technique, Merrick et al. [38] generated two sets of tasks. One 

set of tasks was based on the clustering of states, and the other set of tasks was based on 

the clustering of events. For the experiment in this section, tasks based on the clustering of 

states were used. In this experiment, the tasks are treated as maintenance tasks, i.e. the 

agent seeks to maintain the task state. The tasks detailed in the ‘Task Attributes’ column 

of Table 4.1 are the same maintenance tasks described by Merrick et al. [38]. The ‘Task 

Description’ column is merely to provide a human-readable meaning of the task state. 

Columns M1 and M2 are the metrics proposed in this chapter. The column ‘Is Task Valid’ 

is an evaluation of whether the task appears to be a valid task or generated in error by the 

clustering algorithm.  

Since the learning phase for a maintenance task is non-episodic, a concept of the trial was 

used. Each trial lasted for 25,000 steps, and the trial for each task was repeated ten times. 

Learning was not carried over between trials, i.e. e-puck’s state and position were reset. A 

random starting state was chosen for each trial. Metrics columns show the results averaged 

over ten trials along with the standard deviation. Equation (4.6) was used as the reward 

function with the following parameter values: ρ was 0.9, σ was 1, φ was -1, and d was the 

Euclidian distance.  
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Table 4.1: Results for maintenance tasks. Metrics M1, M2 and reward per episode measured for ten trials 
with standard deviation shown. 

Task 
Id 

Task Attributes Task Description Reward per 
Episode 

M1 M2 Is 
Task 
Valid? 

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 493 ± 91 37 ± 8 154 ± 7 Yes 
G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 568 ± 124 121 ± 25 88 ± 0 Yes 
G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backwards at high speed 888 ± 179 88 ± 8 188 ± 9 Yes 
G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 866 ± 110 192 ± 28 71 ± 0 Yes 
G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for an obstacle in front 3 ±3 1 ± 1 5 ± 0 Yes 
G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 601 ± 106 142 ± 24 37 ± 1 Yes 
G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate 

speed 
848 ± 127 157 ± 26 53 ± 2 Yes 

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for an obstacle behind 0 ± 0 0 ± 0 0 ± 0 Yes 
G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 0 ± 0 0 ± 0 2 ± 0 Yes 
G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate 

speed 
763 ± 105 162 ± 23 52 ± 2 Yes 

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for an obstacle in front 0 ± 0 0 ± 0 0 ± 0 No 
G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate 

speed 
427 ± 85 100 ± 18 36 ± 1 Yes 

 

Once the agent learns to attain the maintenance task, it strives to maintain that task state. 

There could, however, be reasons why it loses the maintenance attempt. In which case, it 

will attempt to regain the state; the metric M1 measures such attempts. A higher value does 

not necessarily indicate better performance. However, the value of 0 means that the agent 

did not learn to maintain the task state at all. For example, consider G1 (move forward at 

high speed). While in an open area, the e-puck can maintain that state; however, it loses 

that state when it reaches the wall. The e-puck has to learn to turn around and regain the 

G1 state. A higher value of reward per episode metric indicates better agent performance. 

The metric M2 counts the longest stretch for which the task state was maintained. A higher 

value of this metric indicates the continued opportunity that the agent receives in 

maintaining the task state. For example, tasks G1 to G4 require an obstacle-free area. In 

contrast, tasks G8 and G9 require the e-puck to be closer to an obstacle/wall. Thus the design 

of the arena will determine the opportunity that the agent gets to learn the tasks.   

The reward per episode metric is high for G1 to G4, G6, G7, G10 and G12, indicating that the 

e-puck can maintain those tasks. The corresponding values for metrics M1 and M2 are also 

high for those tasks. Thus, those tasks appear to be easy to maintain. Also, the design of 
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the arena provides the required opportunity to learn to maintain those tasks. For G11, 

however, all metrics show 0 value. The agent’s performance for that task is poor because 

that task is invalid. For the agent to learn that task, it has to find itself close to a wall in a 

particular orientation (wall at its Right and Front-Left but not the Front-Right). It is hard 

to imagine where the e-puck should find itself in the arena to be in such a state. It appears 

to be unreasonable and marked as such in the ‘Is Task Valid?’ column. This state could be 

due to clustering error. It appears that the cluster centroid is not a correct representation of 

the cluster in this case.  

 

 

Figure 4.4: Trajectory (shown in black colour) of 
e-puck learning task G1. Note the straight-line 
trajectory. Even during this learning phase, the 
behaviour of “moving forward at high speed” is 

apparent.   

 

Figure 4.5: Trajectory (shown in black colour) of 
the e-puck learning task G3. Note the straight-line 

trajectory. Even during this learning phase, the 
behaviour of “moving backwards at high speed” is 

apparent.   
 

For tasks G5, G8 and G9, which are valid, the metrics M1 and reward per episode are very 

low, indicating that the e-puck cannot maintain those tasks. That is not because the 

maintenance reward design is inadequate, but because of the arena’s design. To learn those 

tasks, the agent requires a wall/obstacle in proximity. Due to the size of the arena, the agent 

does not get sufficient opportunity to learn and subsequently be able to maintain those task 

states that require a wall/obstacle in proximity. That is evident from M2 values, which are 

low for those tasks. Consider G5, for example. The agent has to find itself close to the wall 

at the front. Considering the size of the arena, the chance of such an opportunity is relatively 

small. That is discussed below by comparing the set of tasks that can be learned in an open 

area with tasks requiring a wall/obstacle in close proximity. 
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Figure 4.4 shows the trajectory of the e-puck for task G1 during one of the learning trials, 

i.e. the trajectory indicates the learning progress as opposed to the learned behaviour. 

Admittedly, the trajectory of the e-puck during the learning phase appears uninteresting for 

most of the tasks; however, as will be seen in Experiment 5 for the compound tasks, the 

trajectory during the learning phase provides a valuable insight into the learning process. 

The straight line stretches in Figure 4.4 indicate the maintenance of the high speed while 

moving forward at a particular orientation.  

 

 

Figure 4.6: The green overlay shows the region 
where the e-puck could receive a reward for tasks 

G1, G3 and G12. E-pucks are shown scattered to 
indicate that the location of the e-puck can be 

anywhere in that region. 

 

Figure 4.7: The green overlay on the arena shows 
the region where the e-puck could receive a reward 
for tasks G5 and G8. E-pucks are shown scattered 
to indicate that the location of the e-puck can be 

anywhere in that region. 

 

Similarly, Figure 4.5 shows the trajectory of the e-puck learning task G3. Tasks such as G1 

to G4, G6, G7, G10 and G12 can only be maintained in the arena’s open area. When the e-

puck reaches the wall for these tasks, it has to learn to turn around and regain the desired 

task state. The green overlay in Figure 4.6 shows where the e-puck can maintain these task 

states. The arena used in the experiment was 5m x 5m in size, and with the sensor range of 

0.06m, the chance of the e-puck being in the green zone can be calculated as follows. 

Consider that the arena is divided into squares of 0.06m. That would create an 83x83 grid. 

Subtracting one square from all sides (for the region closer to the walls) gives the size of 

the green overlay as 8181 grid. The chances of the e-puck finding itself in the green zone 

is (8181)/(8383)=95.2%. That shows that the arena provides the e-puck with plenty of 

opportunities to learn those task states.  
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The e-puck does not learn tasks G5
 and G8. For the e-puck to learn those tasks, it should be 

near the wall at a particular orientation. The green overlay in Figure 4.7 shows the area 

where the e-puck should be to learn those tasks. The chances of e-puck being in that region 

are (81)/(83x83)=1.2%. That shows that the arena does not provide the e-puck with many 

opportunities to learn those task states. While those tasks are valid, the e-puck does not 

learn those tasks due to a lack of opportunity. In order to confirm this hypothesis, the 

experiment for those two tasks was continued in a smaller arena. The arena’s size was 

reduced from 5m x 5m to 0.25m  0.25m, i.e. a reduction by the factor of 400. Thus, in 

that smaller arena, the e-puck’s chance of finding itself in the right situation is increased 

400 times. An experiment in Chapter 6 further explores the usage of specialized arenas, 

sometimes referred to as a scaffolded environment.  

Experiment 2: Experiment with approach tasks 

The experiment with approach tasks uses the same set of tasks generated by Merrick et al. 

[38] as used in the experiment with maintenance tasks. Table 4.2 lists those tasks along 

with the results for metric M1 used to measure the effectiveness of the reward design for 

approach task type. The states detailed under the ‘Task Attributes’ column are treated as 

approach tasks. The same as maintenance tasks, learning for approach tasks is non-

episodic. Hence, like the previous experiment, the trial constituted 25,000 steps. The trial 

was repeated ten times for each task, with no learning carried over between them. A random 

starting state was chosen for each trial. The metric M1 column shows the results averaged 

over ten trials and the standard deviation. The reward function, as detailed by Equation 

(4.7), was used. That equation’s parameter values were as follows: ρ was 0.9, σ was 1, φ 

was -1, and d was the Euclidian distance.  

 

Table 4.2: Results for approach tasks. Metric M1 measured for ten trials with standard deviation shown. 

Task 
Id 

Task Attributes Task Description M1 

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 756 ± 16 

G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 800 ± 21 

G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 839 ± 14 

G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backwards at low speed 852 ± 11 

G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 884 ± 34 
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G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 874 ± 19 

G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 876 ± 22 

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 873 ± 22 

G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 860 ± 26 

G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backwards at moderate speed 824 ± 23 

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 874 ± 26 

G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 740 ± 17 

 

 

Figure 4.8: The green overlay shows the region 
where the e-puck could cross the threshold from 
‘approach’ to ‘achieve’ for tasks G5, G8, and G9. 

 

The metric M1 shows that the approach tasks are relatively straightforward to attain. Tasks 

G5, G8 and G9 that were difficult to maintain due to lack of opportunity appear to be easy 

to attain when treated as approach tasks. That is because the reward function, Equation 

(4.7), is designed to reward the approach attempt regardless of its distance from the desired 

task state. Take, for example, G5. That task means stopping for an obstacle in front at a 

particular orientation. As long as the distance between the current and the desired state 

reduces, the agent receives a positive reward. The metric M1 counts the number of instances 

of that. If the agent reaches too close to the task state, the ‘approach’ attempt becomes the 

‘achieve’ attempt, resulting in the agent not receiving a positive reward anymore. Tasks 

G5, G8 and G9 relate to stopping either because the obstacle is to the front or the back. The 

green overlay in Figure 4.8 shows the region where the ‘approach’ attempt becomes the 

‘achieve’ attempt for all those tasks.  

Experiment 3: Experiment with avoidance tasks 

The experiment with avoidance tasks uses the same set of tasks generated by Merrick et al. 

[38] as used in the experiment with maintenance tasks. Table 4.3 lists those tasks along 

with the results for metrics M1 and M3 used to measure the effectiveness of the reward 
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design for avoidance task type. The states detailed under the ‘Task Attributes’ column are 

treated as avoidance tasks. The same as maintenance tasks, learning for avoidance tasks is 

non-episodic. Hence, like the previous experiment, the trial constituted 25,000 steps. The 

trial was repeated ten times for each task, with no learning carried over between them. A 

random starting state was chosen for each trial. Metrics columns show the results averaged 

over ten trials. Metrics M1 also shows the standard deviation. The reward function, as 

detailed by Equation (4.8), was used. The equation parameter values were as follows: ρ 

was 0.9, σ was 1, φ was -1, and d was the Euclidian distance. 

  

Table 4.3: Results for avoidance tasks. Metrics M1 and M3 measured for ten trials with standard deviation 
shown. 

Task 
Id 

Task Attributes Task Description M1 M3 

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 863 ± 14 45 
G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 805 ± 25 14 
G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 753 ± 16 12 
G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 762 ± 14 12 
G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 821 ± 30 1 
G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 795 ± 25 16 
G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 775 ± 22 13 
G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 811 ± 18 0 
G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 831 ± 17 0 
G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 752 ± 16 6 
G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 826 ± 33 0 
G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 856 ± 20 7 

 

For avoidance tasks, along with measuring the avoidance attempts M1, the avoidance 

performance is also measured by metric M3, which counts how often the mobile robot failed 

to avoid the desired task state. The reward function design for the avoidance task type 

rewards the avoidance attempt, i.e. as long as the agent moves away and stays away from 

the task state, it is rewarded. As metric M1 shows, the tasks are relatively easy to attain 

when treated as avoidance tasks. The reason is that the attempt to avoid the task state is 

rewarded. The distance from the task state does not matter. As long as it is increasing, the 

agent is rewarded, i.e. as long as the mobile robot stays away from the task state, the attempt 

is rewarded positively. For instance, G3, where the right and left wheel speed attributes 
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values are -2.4. That indicates moving backwards at high speed at a particular orientation 

indicated by the third state attribute. Thus the task for the agent, as indicated in the ‘Task 

Description’ column, is to avoid moving backwards at high speed. When learning to attain 

that task, the agent receives a positive reward as long as it is able to avoid moving 

backwards at high speed. That is to say, the agent will receive a positive reward when it is 

moving forward or even moving backwards but at a low speed. The metric M1 measures 

the number of times it receives the positive reward. There will, however, be instances when 

the agent fails to avoid that state G3, i.e. during the learning attempt, for one or the other 

reason, the agent will land in the state that it is supposed to avoid. Those failure instances 

are measured by metric M3. The results show that tasks such as G5, G8 and G9 that are 

difficult to maintain due to lack of opportunity are easier to avoid when treated as 

avoidance tasks. However, the metric M3 that counts the failed avoidance attempts is very 

low for those tasks, indicating that those tasks are difficult in general.  

Experiment 4: Experiment with achievement tasks 

The second set of tasks generated by Merrick et al. [38] was based on events. Table 4.4 

lists those tasks. The ‘Task Attributes’ column shows the task’s event. An event, as detailed 

in Chapter 2, is a transition represented by 𝑒௧
௜ =  𝑢௧

௜ − 𝑢௧ିଵ
௜ , where i is one of the state 

attributes. The experiment in this section uses those tasks as ‘achievement’ tasks, and to 

recall, the state vector is represented by the following nine state attributes: [ωR  ωL  θ  pL  

pR  pFL  pFR  pRL  pRR]. The aim of the achievement task is to achieve the event transition, 

i.e. the task is considered achieved when the transition 𝑒𝑡
𝑖  is reached regardless of what the 

state attribute 𝑢𝑡
௜   is. Consider task Ga5, for example. As per the description, the task is to 

increase the right wheel speed by 0.9 and the left wheel speed by 0.6 in a single transition. 

Thus, the task is considered achieved only when the right and left wheel speed change by 

that amount in a single transition.  

The learning in the case of achievement tasks is episodic. However, for uniformity with 

the other experiments, the learning attempt for each task was run for 25,000 steps. The 

metric reward per episode is used to measure the agent’s performance. Learning was not 

carried over between trials, i.e. e-puck’s state and position were reset at the start of each 

trial. A random starting state was chosen for each trial. The reward column shows the 
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results averaged over ten trials and the standard deviation. The column ‘Task Description’ 

is a manually provided description of the task to understand what that task means. Equation 

(4.9) was used as the reward function with the following parameter values: ρ was 0.9, σ 

was 1, φ was -1, and d was the Euclidian distance.  

Table 4.4 shows that five tasks are marked as invalid, and of the remaining, the e-puck was 

able to learn eight tasks. Firstly, let us analyse the Ga12, Ga18, Ga19, Ga20 and Ga22 marked as 

invalid. For task Ga12, task attributes show transition for Right and Front-Left sensors 

without any transition for Front-Right. It is hard to think of the mobile robot’s location in 

the arena resulting in such a transition. For task Ga18, the wheel speed transition of 1.2 and 

0.5 radians per second, the change in orientation should be more than |-0.1| radians. It 

appears that that task is invalid. Regarding Ga19, a transition of 2.7 radians per second for 

the left wheel speed and, regarding Ga22, a transition of 2.0 radians per second for the left 

wheel speed is a big transition for one timestep. The maximum transition in the wheel 

speeds can only be π/2 radians. Thus, those tasks are invalid. The results show that nearly 

a quarter of the tasks are invalid. That raises a question regarding why the task generation 

technique has nominated such unreasonable transitions as the cluster centroids. The 

potential reasons could be i) noise, ii) delay in sensing, iii) issue with the simulation of the 

e-puck resulting in an invalid event or iv) an error in clustering, resulting in cluster centroid 

not being a correct representation of the cluster. If the issue were with the cluster centroids, 

the solution would be to place a minimum threshold on the cluster size or shift the cluster 

centroids to the nearest valid attribute value.  

 

Table 4.4: Results for achievement tasks. Metric reward per episode measured for ten trials with a standard 
deviation shown. 

Task Id Task Attributes Task Description Reward per Episode Is Task 
Valid? 

Ga1 (0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0) Achieve no change 25000 ± 0 Yes 
Ga2 (0.0, 0.0, 0.0, 0, 0, 1, 0, 0, 0) Detect obstacle in front 43 ± 21 Yes 
Ga3 (-0.1, 0.0, 0.0, 0, 0, -1, 0, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes 
Ga4 (-0.6, 0.0, -0.1, 0, 0, 0, -1, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes 
Ga5 (0.9, 0.6, 0.0, 0, 0, 0, 0, 0, 0) Increase the speed of both wheels 6521 ± 268 Yes 
Ga6 (-0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 Yes 
Ga7 (0.1, 0.0, -0.1, 0, 0, 0, 0, 0, 0) Turn right 0 ± 0 Yes 
Ga8 (0.1, -0.4, 0.0, 0, 0, 0, 0, -1, -1) Turn right to avoid obstacle behind 54 ± 17 Yes 
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Ga9 (-0.3, 0.4, -0.3, 0, 0, -1, -1, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes 
Ga10 (0.0, 0.5, 0.2, 0, 0, 1, 0, 0, 0) Turn left to detect obstacle on the right 29 ± 16 Yes 
Ga11 (-0.6, -0.8, -0.2, 0, 0, -1, 0, 0, 0) Turn right to avoid an obstacle  10 ± 4 Yes 
Ga12 (0.0, 0.7, 0.3, 0, -1, 1, 0, 0, 0) Turn left to sense obstacle on the right 0 ± 0 No 
Ga13 (0.2, -0.8, -0.4, 0, 0, 0, 0, 1, 0) Turn right to sense obstacle on left 12 ±4 Yes 
Ga14 (0.0, 0.6, 0.1, 0, 0, 0, 0, 1, 1) Turn to detect obstacle behind 0 ±0 Yes 
Ga15 (0.0, -0.1, 0.0, 0, 1, 1, 0, 0, 0) Turn right to sense an obstacle in front 0 ±0 Yes 
Ga16 (1.0, 0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn right to sense obstacle on left 0 ±0 Yes 
Ga17 (0.7, 0.9, 0.3, 0.0, -1, 0, 0, 0, 0) Turn left to sense obstacle on left 18 ±3 Yes 
Ga18 (1.2, 0.5, -0.1, 0, -1, 0, 0, 0, 0) Turn to avoid an obstacle on left 0 ±0 No 
Ga19 (0.2, 2.7, -0.2, 0, -1, 0, 0, 0, 0) Turn to avoid an obstacle on left 0 ±0 No 
Ga20 (-1.7, -0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on the right 0 ±0 No 
Ga21 (-0.7, -1.2, -0.3, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on left 0 ±0 Yes 
Ga22 (1.4, 2.0, 0.2, 0, 0, 0, 0, 0, 0) Turn left 0 ±0 No 

 

The rest of the tasks are valid. However, results show that only eight of the seventeen show 

non-zero reward per episode. Tasks Ga2, Ga8, Ga10, Ga11, Ga13, and Ga17 could be achieved 

only a few times, whereas the tasks Ga4, Ga9, Ga14, Ga16, and Ga21 could not be achieved at 

all. That is not because the reward function is insufficient but due to the lack of learning 

opportunities. For example, to achieve Ga2 (where the task is to stay still when an object is 

detected in front) or Ga8 (where the task is to turn right when an object is detected behind 

the robot), the e-puck has to find itself close to the wall in a particular orientation to achieve 

those transitions. Similarly, to achieve Ga4 (where the task is to learn to turn left to avoid 

an obstacle on the right) or Ga16 (where the task is to turn right to sense the object on the 

left), again, the e-puck has to find itself near the wall in a particular orientation to achieve 

those transitions. Considering the size of the arena and the fact that walls are the only 

objects in the arena, the chances of e-puck finding itself in those situations is very slim, 

which results in the lack of learning opportunities. In the discussion for the maintenance 

tasks (Experiment 1), the solution to such an issue was to reduce the arena’s size. That 

solution will work for these tasks as well.      

Tasks Ga3, Ga6, Ga7, and Ga15 are valid but could not be achieved. The reason for this 

appears to be the choice of the granularity of discretisation used in this experiment. 

Consider Ga3, for example. The task attribute for right wheel speed is a transition of -0.1. 

Considering that the range of -π to π for wheel speeds and orientation was discretised into 
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nine values. That difference of -0.1 (between 𝑠௧ିଵ and 𝑠௧) is too fine-grained to be detected 

by the relatively coarser nine values state space design and, as a result, will be treated as 

0.0. The same is the case for Ga7. The task is to turn right by increasing the right wheel 

speed by 0.1. Discretizing the range of -π to π (i.e. 2π radians) into nine buckets gives the 

granularity of 0.7 radians. That makes any change less than 0.7 radians difficult to detect. 

One of the solutions to this problem would be to discretise the wheel speed and orientation 

attributes into more than nine values. That would increase the size of the state space and 

the corresponding size of the Q-table and thus increase the time it will take for the mobile 

robot to learn those tasks, which is not a problem per se; however, it was not done to keep 

the state space uniform with other experiments in this chapter.  

While experiments 1 to 4 validate that the proposed reward functions can be used for 

primitive tasks, they have also highlighted flaws in the task generation technique, the 

choice of state attributes and action space and granularity of discretisation. Based on the 

observations, the following changes were made to the setup for the experiments in the next 

subsection: i) the size of the arena was reduced, ii) a task-specific environment was created, 

i.e. walls and obstacles were introduced to provide more learning opportunities, iii) the 

orientation attribute was removed from the reinforcement learning state vector resulting in 

more intuitive achievement type primitive tasks, for example, ‘achieve turning left’, and 

iv) the action space was simplified.  

Experiment 5: Experiment with a combination of tasks 

Not all tasks are atomic. Consider the task of booking a meeting as detailed in [111]. As 

such, it would appear that it can be represented as an achievement task. However, consider 

a variant of such a task, i.e. booking a recurring meeting. Since people’s schedules change 

or the meeting has to be adjusted for some participants due to the daylight savings time, 

keeping the meeting current in the calendar of all the participants becomes a follow-on 

task. Thus, the actual task is a sequence of tasks of different types and is better modelled 

as “achieve then maintain”. Consider a mobile robot example where the robot’s task is to 

follow a wall. As such, this example appears to be an atomic task. However, when one 

considers the different start positions of the robot and the contour of the wall, it becomes 

apparent that it is better to model the task as a sequence of tasks. The first task is to 
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approach a wall; the second task is to maintain a set distance from the wall. Other tasks 

would be negotiating a corner, a cul-de-sac, or going around the wall opening. Such a task 

is a compound task and best represented as “approach then maintain” in the simplest case. 

The corresponding reward function can be built from the reward functions of the 

constituent primitive tasks.  

A compound task can be a sequential or a concurrent combination of the constituent 

primitive tasks. Further, as will be seen in Chapter 6, a third way is implemented using 

modular reinforcement learning. It is not related to how primitive tasks are combined but 

when primitive skills are triggered. The experiment in this section, which is akin to modular 

reinforcement learning, demonstrates the suitability of the proposed primitive reward 

functions to learn compound tasks. It demonstrates the learning of a compound task by 

using handcrafted if-then-else rules to identify and trigger different primitive reward 

functions proposed in this chapter. It is, however, interesting to think about how this can 

be done autonomously. That is discussed as an avenue for future work in Chapter 7. The 

experiment also demonstrates how such a combination of tasks is a sample-efficient 

learning method compared to learning the complex skill from scratch. That is further 

explored in Chapter 6.    

State Vector: 

        [ωR  ωL  pL  pR  pFL  pFR  pRL  pRR] 

 

Actions: 

       {  
            1  – Turn Left, 
            2 – Step Forward,  
            3 – Turn Right 
        } 

 
Figure 4.9: Top view of the maze arena. 

 
Figure 4.10: Top view of the arena with 

obstacles. 
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For this experiment, two new 2m x 2m arenas, as shown in Figure 4.9 and Figure 4.10, 

were created. As shown in Figure 4.9, the maze arena is an arena with walls to form a 

simple maze. The e-puck learns the compound task of following a wall in this arena. The 

learning is directed using Function 1, which details the if-then rules for the task. 

 

Function 1) Wall following task in the maze arena 

if wall on the left  

        achieve turning left 

elseif wall close on the left 

        maintain moving forward 

elseif wall on the right  

        achieve turning right 

elseif wall close on the right  

        maintain moving forward 

elseif wall at the front and left  /* i.e. corner on the left */  

        achieve turning right 

elseif wall at the front and right  /* i.e. corner on the right */ 

        achieve turning left 

elseif wall at the front  

        achieve turning right 

elseif no wall nearby  

        maintain moving forward 

end 
 

Figure 4.10 shows the arena with cylindrical and cuboid-shaped obstacles. In this arena, 

the e-puck learns the compound tasks of learning to avoid obstacles using Function 2, 

which details the if-then rules to attain that task. In this experiment, the state and action 

space was modified based on the observations from the previous experiments. The state 

space does not include orientation, and the action space comprises three actions: turn left, 

step forward and turn right. 

 

Function 2) Obstacle avoidance task in the arena with obstacles 

if obstacle on the left 

        achieve turning right 

elseif obstacle on the right 

        achieve turning left 

elseif obstacle at the front and/or side 

        achieve turning right 

elseif obstacle at the back 

        maintain moving forward 

elseif no obstacle anywhere nearby 

        maintain moving forward 
end 
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Table 4.5 shows the results for the two tasks detailed above. Metrics M1, M2 and reward 

per episode are used to measure the agent’s performance for the compound tasks. The table 

shows the average metric value (with a standard deviation) for each task run ten times, with 

a trial length of 25,000 steps. In the experiment, these metrics measure the cumulative 

reward gained by the e-puck for all the primitive tasks combined, i.e. they measure the 

reward for the compound task.  

The metric ‘reward per episode’ shows the overall learning progress and indicates that the 

agent has learned both tasks. Also, the significant value of metric M1 (number of times the 

task maintenance attempt is regained) indicates that the e-puck learns to regain the task 

state. Metrics M2 (the longest stretch of task maintenance), which depends on the design of 

the arena, shows that the e-puck is able to maintain the task state for a significant number 

of time steps.  

 

Table 4.5: Results for compound tasks. Metrics M1, M2 and reward per episode measured for ten trials with 
standard deviation shown. 

Task Description Reward per Episode M1 M2 

Wall following 16833 ±115 1373 ±29 78 ±6 
Avoiding obstacles  13613 ±109 747 ±24 81 ±8 

 

 

 
(a) 

 

(b) 

 

(c) 

Figure 4.11: (a), (b) and (c) show different stages of the e-puck learning the wall-following task in the 
maze arena. The blue line is the trajectory of the e-puck, with the red arrows showing the e-puck’s 

direction. The e-puck starts at the bottom third of the arena, goes straight until it is close to a wall and 
then follows the wall to its left. Attempts 1, 2, 3 are the trajectory of the e-puck trying to go all the way 
around the wall. Similarly, at the top half of the arena, it takes the e-puck four attempts to go all the way 

around the wall and then it continues following the wall.    
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Figure 4.11 shows the trajectory for one of the trials to follow the wall in the maze arena 

while the agent is in the learning phase, i.e. it is not the trajectory of the learned behaviour. 

Function 1 comprises if-then-else rules to trigger a specific skill to reach the wall, follow 

the wall to the left, negotiate corners and go all the way around the wall. It is a hand-crafted 

combination of achievement and maintenance task types, each of which is triggered in a 

specific situation. The red arrow shows the direction of the e-puck. Initially, when there is 

no wall in close proximity, it goes straight until it reaches a wall. That then triggers a new 

skill of following the wall to the left. The attempt to go all the way around the wall seems 

to require several attempts. That is indicated by the digits 1, 2, and 3 besides the trajectory. 

For a reinforcement learning agent, that is an order of magnitudes quicker than the agent 

attempting to learn the skill of following a wall from scratch. That validates the suitability 

of proposed reward functions for learning compound tasks, i.e. the primitive reward 

functions can be combined to form a skill for the compound task.  Also, it indicates that 

the proposed metrics are suitable to measure the agent’s performance for those compound 

tasks.  

 

4.6 Summary 

Reward in reinforcement learning guides the learning. Those rewards, in most cases, are 

handcrafted and often task-dependent. However, for dynamic environments, the tasks to 

learn are not known in advance. Thus, for open-ended and continuous learning, the agent 

architecture should be equipped with the ability to guide the learning with task-independent 

reward. This chapter proposed reward functions for the ‘achievement’, ‘approach’, 

‘avoidance’ and  ‘maintenance’ tasks, a categorisation of tasks based on the functional 

aspect of how they are considered ‘attained’. The reward design exploits the inherent 

property of the type of the task, and hence the reward is task-independent.  

This chapter also proposed metrics to measure the agent’s performance for these task types. 

Those metrics clearly indicate that the e-puck is learning to attain the desired agent state in 

the experiments. Experiments also showed that such reward design could be used to ‘attain’ 

compound tasks where the constituent primitive tasks use the proposed reward functions. 
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When such a task-independent reward design is integrated with a task generation 

mechanism capable of generating compound tasks, it will result in an autonomous agent 

capable of learning primitive as well as compound tasks. The literature review shows a 

lack of a suitable autonomous compound task generation mechanism. The next chapter will 

investigate the possibility of equipping the agent to generate tasks of varying complexity.       
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CHAPTER 5     SELF GENERATION OF TASKS TO DIRECT THE LEARNING 

Parts of this chapter have been published in: P. Dhakan, K. Kasmarik, I. Rano, and N. Siddique, 
“Open-Ended Continuous Learning of Compound Goals,” IEEE Transactions on Cognitive and 

Developmental Systems, vol. 13, no. 2. pp. 274–285, 2019. 
 

5.1 Introduction 

Chapter 3 introduced an agent architecture for open-ended and continuous learning. 

Continuous learning is an essential aspect for the agent to learn multiple skills over its 

lifetime, but it is the open-ended learning that directs that learning. By that, it means 

whether the agent increases the knowledge of its environment by gaining the breadth of the 

knowledge first and then the depth or learns by using some hybrid approach depends on 

the tasks generated by the task generation module. That is to say, to create an open-ended 

learning agent, the meta-cognitive aspects such as ‘what to learn’ [19] [20] and ‘when to 

learn’ [20] need to be considered. This chapter focuses on the question of ‘what to learn’. 

Figure 5.1 is the Modular Continuous Learning Architecture proposed in Chapter 3. The 

‘Task Generation Module’, shown in green colour, is the focus of this chapter. 

Several task generation approaches have been proposed to provide an agent with the 

capability to decide ‘what to learn’. Broadly they appear to be techniques that either 

generate subtasks of the provided high-level task or generate just a flat high-level task. In 

the case of subtask generation, the over-arching task is supplied, and the aim is to find its 

subtasks. The literature review shows that this can be done by determining the frequency 

of visited states [66], based on the identification of bottleneck states and graph partitions 

that enables the transition in the state space [112] [113], based on relative novelty when 

attempting to attain an overarching task [114] or by sequencing the skills [115]. The flat 

high-level task generation techniques are where the agent looks for the changes to its 

environment in real-time that can then be considered potential tasks [69] [63] [116] [53] 

[117], and offline techniques where the tasks are generated based on the novel states 

experienced during the agent’s exploration of its environment [38]. Chapter 2 showed the 

different categorisation of tasks, one of which was based on the complexity of the task 

ranging from ‘primitive’ to ‘compound’ tasks. From the literature review on self-task 
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generation, it is apparent that the existing task generation techniques do not focus on the 

composition aspect of the task. That is to say, they do not focus on how a compound task 

is built using its constituent primitive tasks. This chapter’s contribution is a task generation 

technique that fulfils that gap. 

 

 

Figure 5.1: Modular Continuous Learning Architecture revisited. Task generation, the focus of this 
chapter, is a contribution related to the Task Generation Module. 

 

This chapter proposes a domain-independent technique to generate tasks of varying 

complexity. The tasks are generated by combining the low-level units that make up the 

agent’s state. Using a granularity parameter, the size of these units can be varied from 

coarser to finer units. These units are then used to create tasks of varying complexity. Using 

simulated e-puck based experiments, this chapter will show how the agglomerative 

hierarchical clustering is used to aggregate the state attributes, which are then used to form 

tasks. It will also show how these primitive tasks can then be combined to form compound 

tasks. The rest of this chapter is organised as follows: Section 5.2 reviews the literature on 

task generation. Section 5.3 will detail the proposed task generation mechanism. Section 

5.4 will detail the methodology and the results of the experiments, and finally, Section 5.5 

will provide the concluding remarks. 
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5.2 Self-Generation of Tasks 

As seen in Chapter 3, to progress reinforcement learning based agent architecture beyond 

single-task learning, the architecture should be combined with a mechanism that can 

generate a stream of tasks for the system to learn, i.e. make the architecture open-ended. 

That is what directs the learning of the system and provides it with ‘what to learn’. This 

section will review the literature on the self-generation of tasks.  

‘Task’, as seen in Chapter 2, is defined as an objective that an agent should attain. Also, as 

seen, they are categorised based on whether they are: i) hard or soft, ii) state-based or action-

based, and iii) low-level or high-level. The organisation of this literature review is based on 

the third category. It details the techniques that generate the top-level tasks and techniques 

that generate sub-tasks given a top-level task.  

5.2.1 Task generation 

Intrinsic motivation reviewed in the previous section can be used to explore the agent’s 

state space. Task generation using novelty [118] or curiosity [119] [53] is one approach. 

Forestier et al. [116] propose an intrinsically motivated task exploration technique. In this, 

the agent iteratively samples the continuous and high-dimensional state space and sets a 

task. A novelty heuristics then generates an intrinsic reward that is used to learn the task. 

Further, this is used to ascertain the learnability of the task leading to the tuning of the task 

exploration preferences. Baranes and Oudeyer [54] propose a task generation mechanism 

using adaptive curiosity or a measure of interest. Marsland et al. [69] proposed an online 

novelty detection algorithm that aims to discover novel situations from the states it has 

experienced. A neural network is trained to ignore the normal perceptions that have been 

experienced before. This leaves anything that has not been sensed before being treated as 

‘novelty’. These novel situations are treated as tasks that the agent should aim to attain.  

Santucci et al. propose a multi-layer GRAIL agent architecture [12] seen in the previous 

section. Task generation is one of the layers of this architecture that detect a change in its 
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environment. These changes, if unique, are considered tasks. Mirolli and Baldassarre [89] 

argue that skill acquisition should be cumulative and best represented using a hierarchical 

structure for complex skills. In that case, one substructure, using knowledge-based intrinsic 

motivation, can determine what to learn, and another substructure, using competence-based 

motivation, can decide which task to learn.     

Other approaches include the one shown by Rolf et al. [120], where the system auto-

generates tasks using inconsistencies during exploration. Hanheide et al. [63] have shown 

how a service robot uses the states it has explored before to determine the gaps in the 

knowledge, which are then used as tasks. Merrick et al. [38] proposed experience-based 

task generation, where a mobile robot explores its environment to gather experience data. 

Using a simplified adaptive resonance theory (SART), the data points, i.e. experienced 

states, are clustered. The cluster centroids are then treated as tasks. 

5.2.2 Subtask generation 

As an alternative to task generation reviewed in the previous subsection, the subtask or 

interim task or provisional task generation techniques are intended to generate a hierarchical 

task structure with an assumption that the end task is provided. The subtask generation, also 

referred to as subtask discovery, is not so much seen as a means for an agent to learn 

multiple tasks but as a means to divide and conquer the monolithic end task. When used 

with reinforcement learning, the reward for the subtasks act as interim rewards, simplifying 

the reward design and accelerating learning. Santucci et al. [121] suggested that instead of 

using intrinsic motivation directly for skill acquisition, it should be used to generate an 

interim concept of tasks, and those tasks can then direct the acquisition of the skill. Simsek 

and Barto [112] hypothesise that certain states are central in navigating the environment for 

any problem. They term such measure of structural centrality as “betweenness”. The states 

with a higher measure of betweenness than their neighbouring states are identified as 

potential subtasks. Such subtasks help to navigate the interaction graph of the environment. 

Thus, when the skills to achieve the subtasks are combined, they enable reaching other 

regions of the interaction graph and eventually the end task.  
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In reinforcement learning, commonly, an option [42] is used to represent a macro action. 

The end state of the option can be considered as a subtask. The discovery of options has 

been an area of active research [122] [67]. Konidaris and Barto [115] extended the usage 

of options to the continuous domain and proposed “skill chaining”, a subtask discovery 

mechanism for reinforcement learning agents. Like Simsek and Barto [112], they too 

hypothesise that a useful skill always lies in the solution path of the end task, i.e. a skill for 

a useful subtask is critical to solving the main task. In the proposed technique, the 

reinforcement learning agent works backwards. Starting with the end task, the agent creates 

a short-range option to reach that end state and learns the skill to reach that end state. The 

initial state of that option is then considered the next end task, and the aim of the agent is 

to discover another short-range option and the skill to reach that state. This continues until, 

eventually, the agent reaches the initial starting state, thus identifying all the subtasks along 

the path. The learned skills are then chained, which forms the solution to traverse from the 

starting state to the end state.   

Recently, the usage of tasks to direct learning has also drawn the interest of the deep 

learning community. Andrychowicz et al. [75] proposed training a deep neural network on 

automatically generated interim tasks using the concept of experience replay. They showed 

that the reinforcement learning agent could learn end tasks for the cases when the rewards 

are sparse and even when those end tasks have never been observed during the training. In 

a learning framework proposed by Held et al. [123], they automatically generated interim 

tasks at a difficulty level that is just appropriate for the agent. That curriculum of tasks 

directs the agent’s learning and enables the agent to learn a variety of skills without any 

previous knowledge of its environment.   

5.2.3 Gap in the state-of-the-art 

While most of the task generation and the sub-task generation techniques found in the 

literature can be integrated into the architecture proposed in this thesis, the review of the 

literature showed that the current research either focused on generating top-level tasks or 

focused on discovering subtasks given a top-level task. That highlights a research 

opportunity as summarized in Table 5.1. 
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Table 5.1: Table showing the focus areas of each category reviewed in this section. 

Focus area Task generation techniques Subtask generation techniques 

Generate flat/high-level tasks   

Generate subtasks of a given high-level task   

Generate tasks of varying complexity   

 

The existing techniques do not focus on generating tasks that vary in complexity. For a 

continuous learning agent, it is essential that the agent is constantly learning new skills. 

For that, it should be able to self-generate tasks of varying complexity ranging from 

simpler, more primitive tasks to compound tasks that are, in essence, some combination of 

primitive tasks. Such a task generation would enable the development of a learning 

curriculum for the autonomous agent. That raises the question, how does one design a 

module to self-generate tasks of varying complexity? The following section will aim to 

answer that question.  

 

5.3 Self-Generation of Tasks of Varying Complexity 

Providing the system with the ability to decide ‘what to learn’ is essential for it to be called 

an open-ended learning system. While any task generation mechanism can be plugged into 

the Modular Continuous Learning Architecture, the literature review shows that no 

mechanism exists that enables the system to generate tasks of varying complexity. Tasks 

can be called ‘primitive’ if they are atomic in nature and cannot be further subdivided and 

‘compound’ if they are composed of two or more primitive tasks. This section proposes a 

task generation mechanism that can generate tasks of varying complexity ranging from 

primitive to compound tasks.  

5.3.1 Step 1: Gather experience 

The task generation process starts with gathering experience data. In this stage, the agent 

explores its environment by randomly moving around. The observations are recorded in 
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terms of states experienced by the agent. The agent’s location and the salient features of 

the environment may or may not be part of the agent’s state vector. Hence the main aim of 

this random exploration is not that the agent should visit all parts of its environment; 

instead, for the agent to visit as many states of its internal state space as possible, akin to 

body babbling as termed in developmental robotics literature. These visited states are 

recorded as an experience and form data points for the next step of the process. The state 

of the agent can be represented as a vector of its state attributes:  

𝑠 = [𝑢ଵ, 𝑢ଶ, … , 𝑢௡] 
 

 (5.1)   

where ui
t is typically a numerical value that describes the agent’s internal or external 

attribute, and n is the number of attributes in the state vector. The experience will contain 

duplicate data points since the same state will be experienced several times. During the 

next step, which is to cluster these data points, only unique data points are used. This is so 

that the dominant states do not overpower the seldom visited states.  

5.3.2 Step 2: State attribute aggregation using hierarchical clustering 

The next step is to aggregate the related state attributes to create logical units or groups 

which can be seen as regions in the state space. For this, hierarchical agglomerative 

clustering [124], a bottom-up clustering algorithm, is used. The algorithm starts by treating 

each data point as a cluster. Consider cluster 𝑓௣ and a data point 𝑢௫. The cluster can be 

represented as:  

𝑓௣ = { 𝑢௫ }  (5.2) 

 

The algorithm then carries out bottom-up clustering by successively merging the pairs of 

clusters. This iterative process continues until all clusters have been combined into one big 

cluster consisting of all the data points. This merging occurs based on the linkage criteria 

that specify dissimilarity between the clusters. The algorithm can use the following linkage 

criteria: ‘complete, ‘average’, ‘weighted’, ‘centroid’, ‘single’ and ‘ward’. In the proposed 

technique, the ‘complete’ criterion is used. The ‘complete’ criterion, also referred to as the 
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farthest neighbour criterion, uses the largest distance between the data points in the two 

clusters. The resulting cluster can be represented as: 

𝑓௣ା௤ = 𝑚𝑎𝑥{ 𝑑𝑖𝑠𝑡(𝑢௫, 𝑢௬) ∶    𝑢௫ ∈ 𝑓௣,   𝑢௬ ∈ 𝑓௤ }  (5.3) 

where 𝑓௣ା௤ is the cluster formed using the ‘complete’ linkage between the two clusters, 𝑓௣ 

and 𝑓௤, and 𝑑𝑖𝑠𝑡 is the distance function of the pairwise distances of the data points in the 

cluster. The commonly used distance functions are Euclidean, Hamming, and Manhattan, 

to name a few. Alternatively, a custom distance measure can also be used. The iterative 

clustering process is then carried out until all the data points are combined into a single 

cluster.  

 

 

Figure 5.2: A sample dendrogram is 
shown at the top of the figure. The rest 
of the figure (shown in colour) shows 

the state attribute data points. The 
aggregations of state attributes are 
shown by clusters f1, f2, f3 and f4. 

 

 

The result of hierarchical agglomerative clustering is represented in a hierarchical tree of 

clusters called a dendrogram. The dendrogram shows an edge between the two closest 

clusters merged at a particular hierarchy level. As shown in Figure 5.2, the data points are 

arranged such that the state attributes 𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, …, 𝑢௧

௡ (i.e. the attributes that make up a 

state vector) are arranged as columns, and the values of the state attributes which make up 

the experienced state appear as rows. Initially, each state attribute 𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, …, 𝑢௧

௡ is 

considered a cluster of its own. As per hierarchical agglomerative clustering, iteratively, 

the pairs of clusters are merged until all clusters have been combined into one big cluster. 

That means the algorithm’s output is hierarchical clusters of state attributes, which can be 

visualised as regions within the state space, as shown in Figure 5.3.  
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The height of the edge of the dendrogram corresponds to the distance between the two 

clusters. The algorithm takes the threshold criterion as an input which can be specified in 

terms of the height of the dendrogram’s edge or the total number of desired clusters. In the 

proposed technique, the total number of clusters is specified. Figure 5.2 shows the 

threshold criterion using a blue dotted line, resulting in four clusters. Depending on the 

threshold criterion, either fewer but coarser clusters or many fine-grained clusters are 

generated. The clustered/grouped state attributes, i.e. regions in the state space, can be 

represented as {𝑓ଵ, 𝑓ଶ, … 𝑓௜} where f is the cluster, i.e. aggregation of two or more state 

attributes, 𝑖 is the number of clusters identified due to the aggregation of state attributes 

such that 𝑖 < 𝑛 and 𝑛 is the number of state attributes. 

 

   

 
Figure 5.3: A symbolic representation of the state attributes aggregation resulting in regions within the 
state space. The figure shows state-space in a 2D representation, and hexagons represent the regions 
within the state space. Varying the threshold criteria results in coarser to finer aggregations/groups. 

 

The aggregation reduces a larger set of state attributes to a smaller set while preserving 

most of the information represented by the large set, hence reducing cardinality [124]. Such 

compressed representation of the state can be shown as: 

𝑠 = [𝑓ଵ,  𝑓ଶ, … , 𝑓௜]  (5.4) 

These aggregations are then further processed by the next step of the proposed technique 

to generate tasks of varying complexity. 
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5.3.3 Step 3: Generate tasks 

The next step in the process is to generate tasks. This step is further divided into the 

following:  

i. enabling the region(s) of the state space by providing it with a value. These values 

can be a maximum, minimum or average value that the respective attributes can 

take, or if one has the domain knowledge, they can be the domain-specific value.  

ii. combining the above mentioned enabled regions using operators such as ‘OR’ and 

‘AND’ to form a valid state vector.  

 

 

   
max(f1), 

avg(f2), 

min(f3) ˄ max(f4), 

… 

max(f1) ˄ avg(f2) ˄ min(f3), 

min(f2) ˄ avg(f3) ˄ max(f4), 

avg(f3) ˄ max(f4) ˄ min(f5) ˄ 
avg(f6), 

… 

max(f1) ˄ min(f2) ˄ avg(f3) ˄ 
max(f4) ˄ min(f5), 

avg(f3) ˄ max(f4) ˄ min(f5) ˄ 
min(f6) ˄ max(f7), 

min(f4) ˄ max(f5) ˄ avg(f6) ˄ 
max(f7) ˄ avg(f8) ˄ max(f9), 

… 

Figure 5.4: Tasks, ranging from simple to complex, generated by enabling and combining different 
groups/aggregations. A few sample tasks are shown in the figure. The green, blue, yellow and red colour 
indicates that the aggregation is enabled using one of the functions such as min, max and avg. The grey 

colour indicates that the aggregation is not enabled and will be masked/ignored.  

 

The resulting state vector is one of the states in the state space of the agent. As detailed in 

Chapter 4, such a state can then be treated as a state to maintain, approach, or avoid 

resulting in the state being called a maintenance, approach, or avoidance task. When just 
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the single region is enabled, it results in a relatively simple task, and when multiple regions 

are enabled and combined, it creates a more complex task, as shown in Figure 5.4.  

Table 5.2 lists the sample tasks. The first few rows list primitive tasks, and the following 

rows list complex tasks. To generate these tasks, it is assumed that the state space is a 

discretised metric state space. The functions ‘minimum’, ‘maximum’, ‘average’, and 

‘specific value’ are used to enable the aggregated group. The groups are then combined by 

applying operators such as ‘OR’ and ‘AND’. Any combination of the operators can be 

used, and any number of groups can be chained together, resulting in a procedural 

generation of rich and expressive tasks. 

 

Table 5.2: Examples of the tasks that can be generated using the proposed task generation mechanism. 

Task  Task Description 

𝒎𝒊𝒏( 𝒇𝟏) Minimize the value of the group  

𝒎𝒂𝒙( 𝒇𝟏) Maximize the value of the group  

𝒂𝒗𝒈( 𝒇𝟏) Attain an average value of the group  

𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄( 𝒇𝟏, 𝒗𝒂𝒍𝒖𝒆) Attain a specific value of the group 

𝒎𝒊𝒏( 𝒇𝟏) ∧  𝒎𝒊𝒏( 𝒇𝟐) Minimize group1 as well as group2  

𝒎𝒂𝒙( 𝒇𝟏) ∨  𝒎𝒂𝒙( 𝒇𝟐) Maximize either group1 or group2 or both  

𝒎𝒂𝒙( 𝒇𝟏) ∨ 𝒎𝒂𝒙( 𝒇𝟐) ∧ 𝒎𝒊𝒏( 𝒇𝟑) Maximize group1 or maximize group2 and minimize group3 

𝒎𝒂𝒙( 𝒇𝟏) ∧ 𝒎𝒂𝒙( 𝒇𝟐) ∧ 𝐦𝐚𝐱( 𝒇𝟑) 
∧ 𝒎𝒂𝒙( 𝒇𝟒) ∧ 𝒎𝒂𝒙( 𝒇𝟓) ∧ 𝒎𝒂𝒙( 𝒇𝟔) 

Maximize group1 and maximize group2 and maximize group3 and maximize group4 
and maximize group5 and maximize group6 

 

5.3.4 Step 4: Task pruning  

The task generation process starts with states experienced by the agent. Those experience 

data points are then clustered, processed and procedurally combined to generate tasks. This 

processing results in tasks that are the states that the agent may never have experienced 

before. That may mean that the generated tasks can be invalid or difficult to reach states. 

Also, as shown in Table 5.2, such task generation results in a combinatoric explosion 

resulting in a vast number of tasks. That would hinder instead of guiding the learning of 

the overall system detailed in Chapter 3. This issue is not unique to the technique proposed 

in this chapter but a problem of the techniques that use procedurally-generated tasks, as 

acknowledged in [125] and [126]. Wang et al. [125] and the open-ended learning team 

[126] use procedurally generated environments for their open-ended learning agents to 
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increase their general competence. However, a sizeable percentage of the environments are 

invalid or unlearnable and have to be discarded. Considering that, the next step for the 

proposed technique is to prune the tasks. For this, selection criteria should be used that 

prunes the potential tasks resulting in a final list of tasks. The criteria can be domain-

dependent, requiring domain knowledge or some external intervention. Alternatively, the 

criteria can be intrinsic motivation based to keep the task generation process autonomous. 

For example, the criteria can be based on: i) novelty, in which case, only the potential tasks 

with high dissimilarity with other tasks are selected as tasks, or ii) current competency level 

of the agent’s skill for similar tasks, in which case, only the similar potential tasks are 

selected as tasks. The rest of the potential tasks are categorised as non-tasks.  Figure 5.5 

shows the detailed steps of the task generation technique.   

 

 

Figure 5.5: The detailed steps of the proposed task generation technique.  
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5.3.5 Integration with continuous learning architecture 

When the threshold (i.e. the cut-off) criterion of the hierarchical clustering algorithm is 

varied, it results in aggregations of different granularity, as shown in Figure 5.3. Low cut-

off would result in fewer but coarser aggregations, and high cut-off would result in several 

fine-grained aggregations. When those aggregations are used to generate tasks, it may 

result in different tasks compared to the tasks generated with the previous level of 

aggregation. It, however, does not render the previously generated tasks obsolete. All the 

aggregations are added to the list of unique aggregations, and the aggregations of different 

sizes can be combined as long as it forms a valid state vector. Thus the proposed technique 

is suitable for continuous learning. The proposed technique can be integrated with the agent 

architecture detailed in Chapter 3. Algorithm 5.1 shows this integration. 

 

Algorithm 5.1: Task Generation and Learning Cycle  

 
Start 
 
    do  
 
        /* Experience Gathering */ 
        for steps = 1: max_exploration_steps 
            Gather experience by interacting with the environment 
        end for 
 
        /* Task Generation */ 
        /* Aggregate State Attributes */ 
        if state attribute aggregation is not already done 
            Aggregate state attributes 
        end if 
        /* Create Tasks */ 
        Combine aggregated state attributes to form tasks 
        Store the tasks in the task_list 
 
       /* Task Learning */ 
        for task = 1: task_list 
            Learn the task 
            Store the learned knowledge  
        end for 
 
    while (environment has changed) 
 
end 
 

 



107 

5.3.6 Examples of tasks of varying complexity 

To discuss the examples of tasks of varying complexity, consider an autonomous vacuum 

cleaner, a practical application of a mobile robot. The reinforcement learning state of such 

a machine would comprise values of the following: proximity sensors, accelerometer, 

vacuum-cleaning motor and battery charge indicator. A simple task for the vacuum cleaner 

can be to clean the floor irrespective of the inclination of the surface, i.e. on a ramp or a 

level surface. In this case, the task representation ignores the accelerometer values. A more 

complex task can be cleaning only the level floor, i.e. avoid any surfaces with a 

considerable inclination. In this case, the task representation considers the accelerometer 

and proximity sensor values. Another simple task could be to clean the floor while avoiding 

obstacles irrespective of the battery charge level. In this case, the vacuum cleaner will not 

attempt to make its way back to the charging station when the battery level dips below a 

certain level. A more complex task can be to consider the battery charge level. Such a task 

would be represented as cleaning the floor while avoiding obstacles, avoiding inclined 

surfaces, and being aware of the battery charge level. These use-cases can be extended to 

other mobile robot applications such as a lawnmower. 

As another example, consider a humanoid robot whose reinforcement learning state vector 

comprises the speed and orientation of the motors in its arms and legs, the orientation of 

the motor in its neck, accelerometer and some form of representation of what its camera 

sees. A relatively simple task, albeit not primitive, can be that the robot walks forward on 

a flat surface at a constant gait. A more complex task can be that it walks forward on a flat 

surface while carrying an object in its arms. Another complex task can be climbing a 

ramp/steps or walking on an uneven surface while carrying/balancing an object in its arms.             

 

5.4 Mobile Robot Experiments 

The previous section proposed a task generation technique. The experiments in this section 

will validate that technique. The experiments will use the e-puck mobile robot. The robot 
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will randomly move around in its environment to gather experience. Those experience data 

points will then be used to generate tasks of varying complexity.   

5.4.1 Objectives of the experiments 

The objectives of the experiments in this section are:  

 Validate the task generation. 

 Update the environment dynamically to check if the newly created unique 

aggregated state attributes can be integrated with the previous list, keeping the 

previously generated tasks valid.     

5.4.2 Methods and materials  

The experiments in this chapter used an e-puck mobile robot. To simulate the e-puck and 

to create arenas, Webots was used. The reinforcement learning agent was written using 

MATLAB and integrated with Webots to control the mobile robot.  

Robot and its Environment 

For the experiments in this chapter, the e-puck’s eight proximity sensors labelled: Front-

Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left, Left-Diagonal, Front-Left, and 

three ground sensors labelled Left, Centre, Right were used. Discrete binary values were 

used for both proximity and ground sensors. Also, the wheel speeds represented as ωL and 

ωR were used in the state vector to represent the speeds of the left and the right wheels, and 

they too were discretised to binary values. The state vector for the experiments was 

represented as [ωL  ωR  pFR  pRD  pR  pRR  pRL  pL  pLD   pFL  gL  gC  gR]. The action space for 

the experimentation comprised ‘Turn Left’, ‘Step Forward’ and ‘Turn Right’. Figure 5.6 

shows a sketched top view with the labelled proximity sensors, ground sensors and wheels.  
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Figure 5.6: A plan view representation of e-
puck with all its state attributes (proximity 

sensors, ground sensors and wheels) labelled. 

 

State Vector: 

[ωL  ωR  pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR]  

 

Actions: 

        {  
             1 – Turn Left, 
             2 – Step Forward, 
             3 – Turn Right, 
        } 

 

For the experiments, the same three arenas as detailed in Chapter 3 were used. Figure 5.7,  

Figure 5.8 and Figure 5.9 show the maze arena, circular arena with tracks, and arena with 

obstacles.  

 

 
Figure 5.7: Top view of the maze 

arena. 

 
Figure 5.8: Top view of the 
circular arena with tracks. 

 
Figure 5.9: Top view of the 

arena with obstacles. 

 

Learning Algorithm 

For the experiments, a reinforcement learning algorithm called Dyna-Q (detailed in 

Chapter 2) was implemented using MATLAB. The epsilon-greedy action selection strategy 

was used for the experiments, and the epsilon parameter was set to 0.1 with linear decay.     
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5.4.3 Results and analysis 

Step 1: Gather experience 

The first step for the e-puck mobile robot was to gather the experience data points. For this, 

the robot was made to wander around in its environment. The aim here is not for the robot 

to explore as much of the arena as possible but to explore its internal state space as possible. 

This step is akin to body babbling. In this phase, the robot essentially follows a 

reinforcement learning exploration policy where it does not receive a reward for any action. 

For this, the epsilon-greedy action selection strategy’s epsilon parameter is set to 1, which 

encourages exploration of its state space. When the robot collides with an object/wall, 

Webots simulates the dynamics of the environment resulting in the next state of the robot. 

This phase was continued for 10,000 steps, and the data points were recorded.  

 

 
Figure 5.10: Trajectory, shown 

in blue colour, of the e-puck 
randomly exploring the maze 
arena. The states experienced 

during this exploration would be 
related to “being close to a 

wall”, “being in an open space”, 
to name a few. 

 
Figure 5.11: Trajectory, shown 

in blue colour, of the e-puck 
randomly exploring the circular 

arena with tracks. The states 
experienced during this 

exploration would be related to 
“being on a track”, “not on a 

track”, to name a few. 

 
Figure 5.12: Trajectory, shown in 

blue colour, of the e-puck 
randomly exploring the arena 

with obstacles. The states 
experienced during this 

exploration would be related to 
“being close to an obstacle”, 

“being in an open space”, to name 
a few. 

 

A similar exploration was carried out for all three arenas, as shown in Figure 5.10, Figure 

5.11 and Figure 5.12. Of these 10,000 data points, a list of unique data points was 

generated. That is so that the frequently observed states and the states experienced only a 

few times have an equal representation. This list of unique data points formed the input for 

the next step. The size of this list depends on how many unique states of its internal state 
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space the e-puck was able to visit during the experience gathering phase and can vary 

between 1 and 10,000.  

Step 2: State attribute aggregation 

The next step was to cluster the state attributes for which the proposed technique uses 

hierarchical agglomerative clustering. The clustering algorithm requires a distance metric 

to calculate the dissimilarity between the data points and decide which cluster the data 

point should be added to. In the experiments, Euclidean distance was used as a distance 

measure. The clustering algorithm also requires a linkage criterion, essentially a metric that 

calculates the dissimilarity between the cluster pairs. That distance measure is then used to 

link up the clusters in a bottom-up manner. In the experiments, ‘complete’ linkage was 

used, which represents the largest distance between the two clusters. The clustering 

technique can be run i) in a batch mode, i.e. cluster all the data points, ii) in online mode, 

i.e. cluster a constant stream of data points, or iii) in a semi-online mode where a small set 

of data points are clustered in one round. The clustering was run in the semi-online mode 

in the experiments. That was done to demonstrate that the proposed technique is suitable 

for continuous learning. The algorithm also requires a cut-off/threshold criterion, which is 

used to determine the number of clusters that should be generated. In the experiments, that 

number was set to 6.  

Table 5.3 shows the output of the agglomerative clustering. The five rows for each of the 

arenas are the output of the five rounds of clustering (semi-online mode). Each time the 

algorithm generates six clusters, i.e. assigns the state attributes to one of the clusters. 

Consider the first row for the maze arena for which the output is  “1 2 4 3 3 6 6 5 5 4 6 6 6”. 

That output means that: 

 the first state attribute (ωL, i.e. the left wheel speed) is added to cluster #1,  

 the second state attribute (ωR, i.e. the right wheel speed) is added to cluster #2,  

 the fourth and fifth state attributes (Right-Diagonal and Right proximity sensors) 

are added to cluster #3,  

 the third and the tenth state attributes (Front-Right and Front-Left proximity 

sensors) are added to cluster #4,  
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 the eighth and ninth state attributes (Left and Left-Diagonal proximity sensors) are 

added to cluster #5, and  

 the last three state attributes (ground sensor attributes) are added to cluster #6. 

 

Table 5.3: Output of hierarchical agglomerative clustering for the maze arena, the circular arena and the 
arena with obstacles. Row #1 and #3 also contain a graphical view of the clustering technique’s output in 

terms of aggregation of the e-puck’s state attributes. 

Iteration # Maze Arena Circular Arena Arena with Obstacles 

1 
 

1 2 4 3 3 6 6 5 5 4 6 6 6 
 

3 4 5 5 5 2 2 2 6 6 1 1 1 
 

5 3 4 1 1 2 2 6 6 4 2 2 2 

2 

 

3 1 2 4 4 6 6 5 5 2 6 6 6 

 

3 6 2 2 5 5 5 4 4 1 5 5 5 

 

5 3 4 4 6 6 6 2 2 1 6 6 6 

3 

 

 
3 4 1 1 5 5 5 5 6 6 2 2 2 

 

 
4 5 3 3 2 2 2 6 6 6 1 1 1 

 

 
5 6 1 1 3 3 3 3 2 2 4 4 4 

4 

 

3 4 1 2 2 5 5 6 6 6 5 5 5 

 

4 5 6 6 3 3 3 2 2 2 1 1 1 

 

5 6 2 2 4 4 4 4 1 1 3 3 3 

5 

 

3 4 5 5 2 1 1 1 6 6 2 2 2 

 

4 5 6 6 3 3 3 2 2 2 1 1 1 

 

5 6 4 4 2 2 2 2 3 3 1 1 1 

 

The first and the third row of the table also show a graphical view of the aggregation of the 

state attributes, i.e. proximity sensors, ground sensors and wheel speeds. The digit near the 

group is the cluster number. As seen in the graphical representation, some groups consist 

of just a single state attribute, whereas others consist of more than two state attributes. The 

results show that the output of the clustering algorithm may be the same regardless of the 

arena. To understand this consider the maze arena and arena with obstacles. Both arenas 
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have walls; hence the experienced data points may be similar, leading to the same output 

by the clustering algorithm. 

The proposed technique then takes this output from the clustering algorithm and identifies 

unique groups/aggregations. For example, the ground sensors always seem to belong to the 

same cluster, forming a unique aggregation. From the output shown in Table 5.3, all the 

unique groups of the state attributes are extracted. Table 5.4 shows those unique groups. 

The column ‘Aggregated State Attributes’ shows the attribute(s) in the group. The 

description column is a manually added description to provide an intuition as to what that 

group means and is not required for the working of the technique. The state attribute in the 

group is represented with a ‘#’, and all other attributes are represented using a ‘-’. As an 

example, consider just the following two outputs 1 2 4 3 3 6 6 5 5 4 6 6 6 and 3 1 2 4 4 6 6 5 5 2 

6 6 6. The unique aggregations from that are  # - - - - - - - - - - - - -, - # - - - - - - - - - - - - -, - - # - - - - 

- - - # - - - and so on.  

 

Table 5.4: Unique groups of state attributes obtained from further processing the results shown in Table 
5.2. 

Group 
Id 

Aggregated State Attributes Description 

f1 # - - - - - - - - - - - - Group consisting of just the left wheel attribute 

f2 - # - - - - - - - - - - - Group consisting of just the right wheel attribute 

f3 - - # # # - - - - - - - - Group consisting of front right and the two right sensors 

f4 - - # # - - - - - - - - - Group consisting of front right and the right diagonal sensor 

f5 - - # - - - - - - # - - - Group consisting of the two front sensors 

f6 - - # - - - - - - - - - - Group consisting of the front right sensor 

f7 - - - # # - - - - - - - - Group consisting of the two right sensors 

f8 - - - - # # # # - - - - - Group consisting of the right, two back and left sensors 

f9 - - - - # # # - - - # # # Group consisting of the right, two back and three ground sensors 

f10 - - - - # # # - - - - - - Group consisting of right and two back sensors 

f11 - - - - # - - - - - # # # Group consisting of right and the three ground sensors 

f12 - - - - - # # # - - - - - Group consisting of two back and the left sensor 

f13 - - - - - # # - - - # # # Group consisting of two back and three ground sensors 

f14 - - - - - - - # # # - - - Group consisting of two left and front left sensors 

f15 - - - - - - - # # - - - - Group consisting of two left sensors 

 

f16 - - - - - - - - # # - - - Group consisting of left and left front sensors 

f17 - - - - - - - - - # - - - Group consisting of just the front left sensor 

f18 - - - - - - - - - - # # # Group consisting of the three ground sensors 
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Figure 5.13: Varying levels of aggregation of the e-puck’s proximity sensors. 

 

During this step, varying the cluster threshold criterion will result in a varying granularity 

of aggregation. Figure 5.13 shows a graphical representation of how varying the threshold 

criterion results in the varying levels of aggregations of the e-puck’s proximity sensors.   

Step 3: Generate tasks  

The final step of the proposed technique was to generate tasks. That was done by generating 

a state vector with one or more groups shown in Table 5.4 enabled. A group is considered 

enabled when it has a value assigned to it. For example, all the attributes in the group are 

assigned a maximum value. If the group is not enabled, it is ignored. The other way to 

enable a group is to: (i) assign a minimum value to all the attributes in the group and (ii) 

assign a set value to all the attributes in the group. Assigning a set value may require domain 

knowledge. Only ‘min’ and ‘max’ functions were used in this experiment. Further, as per 

the proposed technique, these groups are to be combined using operators to form a valid 

state vector. Any number of groups can be chained together as long as they form a valid 

state vector. This experiment used ‘AND’ and ‘OR’ operators.  

Table 5.5 shows sample tasks. They vary in complexity from simple, more primitive tasks 

to complex. The ‘Task’ column details which group was used to create those tasks and how 
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the groups were combined, i.e. min or max functions are applied to the relevant group using 

‘#’.  Value of ‘0’ was used when the function min was applied, and ‘1’ was used when the 

function max was applied. That was because all the state attributes (wheel speeds, 

proximity and ground sensors) in this experiment use discrete binary values. The task 

description is also provided in the table to indicate what that task means. A manual semi-

structured approach was used to create this task list. In this approach, the aim was not to 

generate all possible tasks (as this leads to combinatorial explosion) but to ensure that all 

the aggregated state attributes f1 to f18 are used. The tasks were generated using both ‘AND’ 

and ‘OR’ operators, and each of the aggregated state attributes f1 to f18 was used at least 

once. The aim was to ensure that there is a good representation of both primitive and 

compound tasks formed by combining multiple aggregated state attributes. Based on that, 

seventeen tasks G1 to G17 were generated. For example, G11 (- - - - - - 0 0 1 1 1 0 0 0), which 

was created by minimizing f13 (- - - - - # # - - - # # #), i.e. (- - - - - 0 0 - - - 0 0 0) ‘AND’ maximizing 

f14 (- - - - - - - # # # - - -), i.e. (- - - - - - - 1 1 1 - - -).  

All the tasks in this table were considered maintenance tasks for which the reinforcement 

learning agent learned the skills. The columns ‘Metric – M1’ (the same metric proposed in 

Chapter 4) and ‘Reward per Episode’ are the metrics to measure agent performance. Metric 

M1 measures how often the maintenance attempt was regained, and reward per episode 

measures the total positive reward gained by the agent during the 25,000 step learning trial. 

The trial for each task was run ten times. Metrics columns show the results averaged for 

those ten trials, and the standard deviation was recorded as shown in Table 5.5.  

 

Table 5.5: A list of handcrafted compound tasks (created in a semi-structured way) and results from 
learning those tasks. Metrics M1 and reward per episode measured for ten trials with standard deviation 

shown. 

Task 
Id  

Task Description of the task Metric – M1 Reward per 
Episode 

Is Task 
Valid? 

G1 𝑚𝑖𝑛( 𝑓ଵ)  Turn left or stay still 

 

1466 ± 44 23258 ± 60 Yes 

G2 𝑚𝑎𝑥( 𝑓ଷ)  High sensor values of Front-Right and 
Right sensors 

 

305 ± 135 17423 ± 2783 Yes 

G3 𝑚𝑎𝑥( 𝑓ହ)  High sensor values of front sensors 

 

45 ± 18 24364 ± 587 Yes 

G4 𝑚𝑖𝑛( 𝑓 ) Low sensor value of the Right, back, and 
Left sensors 

65 ± 34 23950 ± 1205 Yes 
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G5 𝑚𝑎𝑥( 𝑓ଵ଴) High sensor values of Right and back 
sensors 

 

0 ± 1 0 ± 3 Yes 

G6 𝑚𝑖𝑛( 𝑓ଵସ) Low sensor values of Left and Front-Left 
sensors 

 

89 ± 35 20227 ± 1586 Yes 

G7 𝑚𝑖𝑛( 𝑓ଵ) ∧  𝑚𝑖𝑛( 𝑓ଶ) Stay still 

 

0 ± 0 0 ± 0 No 

G8 𝑚𝑖𝑛( 𝑓ଷ) ∨  𝑚𝑖𝑛( 𝑓ସ) No obstacle/wall at the front and right 

 

69 ± 45 21533 ± 1483 Yes 

G9 𝑚𝑖𝑛( 𝑓଻) ∧  𝑚𝑎𝑥( 𝑓 ) No obstacle/wall at the right, but obstacle 
/wall at the back and left 

 

0 ± 0 0 ± 0 Yes 

G10 𝑚𝑖𝑛( 𝑓ଽ) ∨  𝑚𝑎𝑥( 𝑓ଵ଴) Obstacle/wall at the right and back while 
the robot is not on a track 

 

0 ± 0 0 ± 0 Yes 

G11 𝑚𝑖𝑛( 𝑓ଵଷ) ∧  𝑚𝑎𝑥( 𝑓ଵସ) No obstacle/wall on the back but 
obstacle/wall on the left and front left 
while the robot is not on a track 

 

338 ± 174 21265 ± 2252 Yes 

G12 𝑚𝑎𝑥( 𝑓ଵହ)  ∨  𝑚𝑖𝑛( 𝑓ଵ଺) Obstacle/wall on the left 

 

378 ± 134 7939 ± 1893 Yes 

G13 𝑚𝑎𝑥( 𝑓ଵ) ∧  𝑚𝑎𝑥( 𝑓ଷ) Move forward or turn right, obstacle/wall 
at the front and right 

 

1441 ± 182 18488 ± 2799 Yes 

G14 𝑚𝑎𝑥( 𝑓ହ) ∨  𝑚𝑎𝑥( 𝑓଻) Obstacle/wall at the front and right 

 

645 ± 238 15980 ± 3317 Yes 

G15 𝑚𝑖𝑛( 𝑓ଶ) ∧  𝑚𝑖𝑛( 𝑓ସ)
∧  𝑚𝑖𝑛( 𝑓଺) 

Stay still or turn right; no obstacle/wall 
on the front and right 

 

1172 ± 235 17243 ± 5801 Yes 

G16 𝑚𝑎𝑥( 𝑓ଵ) ∨  𝑚𝑎𝑥( 𝑓ଶ)
∧  𝑚𝑎𝑥( 𝑓ଵ଼) 

Move forward while on a track 

 

113 ± 81 23121 ± 1469 Yes 

G17 𝑚𝑎𝑥( 𝑓ଵ) ∧ 𝑚𝑖𝑛( 𝑓ହ) ∨
max( 𝑓ଵସ) ∧  𝑚𝑖𝑛( 𝑓ଵ଻)  

Move forward or turn right, obstacle/wall 
on the left and no obstacle/wall at the 
front 

720 ± 179 4889 ± 1346 Yes 

 

The metrics show that the e-puck learns most but not all tasks. As mentioned above, the 

tasks were generated in a semi-structured way. Domain knowledge was not used in 

generating those tasks; hence not all generated tasks may be valid. That validity is indicated 

by the “Is Task Valid?” column. Also, a task, which is the robot’s state, may not have been 

visited during the exploration phase and could be a state that is difficult to reach. Results 

show that the e-puck is not able to learn G7, G9 and G10. The task G7 means that irrespective 

of the proximity sensor values or the ground sensor values, it is to stay still, i.e. regardless 

of its position on the board, whether it is near a wall or an obstacle, whether it is on a black 

region on the ground or not, it is to stay still. As per the design of the action space in this 

experiment, there is no way the e-puck can stay still. The only valid actions are to turn left, 
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step forward or turn right. Thus, task G7 is not a valid task. Task G9 means that the e-puck 

is supposed to maintain a state where there is no obstacle/wall to the right, but there is a 

wall close to its back. This task is valid however appears difficult to learn.  

Similarly, task G10 means that the e-puck is supposed to maintain a wall/obstacle on its 

right side and behind while not on a black region on the ground. This task is valid; however, 

it also appears difficult to learn. If the proposed technique is used to implement the task 

generation module of the agent architecture detailed in Chapter 3, then the knowledge 

management module of the architecture can be responsible for pruning the tasks that are 

invalid or very difficult to learn given the design of its action space. The metrics show that 

the rest of the tasks are learnable.  

The task description column provides an intuition of the meaning of the tasks that are 

generated by the proposed technique. Rather than a semi-structured approach to generate 

the tasks, a structured approach could be used if one had the domain knowledge, resulting 

in the generation of useful tasks. Regardless, varying the cut-off criterion would result in 

coarser to finer aggregation units. That and the way these aggregations are combined would 

result in tasks of varying complexity. That validates the proposed task generation 

technique. Also, as shown in the above experiment, the whole process can be run iteratively 

without making the previous aggregations obsolete. Thus, this technique is suitable for 

continuous learning.  

 

5.5 Summary 

To exhibit open-ended learning, the agent should be able to self-generate tasks. As the 

system learns solutions to ‘attain’ those tasks, its overall knowledge increases. However, 

not all tasks in the real world are primitive or flat. Hence, the task generation mechanism 

should be able to generate tasks of varying complexity—primitive as well as compound. 

This chapter proposed such a mechanism. The process is divided into the following phases: 

i) explore the environment and store the experience as data points, ii) using aggregation 

technique, discover salient groups in the data points, and iii) using domain-independent 

knowledge, form general tasks or using domain knowledge, form tasks specifically 
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valuable for that domain. In this chapter, the state attribute aggregation is done using 

hierarchical clustering, whose parameters can be varied to create fewer but coarser clusters 

or a larger number of fine-grained clusters. When the task generation step is carried out 

using these aggregations, it results in tasks of varying complexity—thus filling the gap in 

the literature.   

This chapter also showed that the whole process could be repeated in a cycle when the 

environment changes. The resulting aggregated state attributes can be assimilated with 

previous unique aggregations; thus, newer aggregations do not make the previously 

generated tasks obsolete. This is important not only to preserve the system's integrity but 

also to continuously improve its knowledge of the environment without having to restart 

all over again when something changes in the environment. Also, it is essential, especially 

for the robotics domain, where it is not always possible to learn all the skills from scratch 

due to the sample inefficiency of reinforcement learning. The agent architecture proposed 

in Chapter 3 is continuously learning, i.e. constantly increasing the overall knowledge. It 

would be worthwhile to leverage the learned knowledge and reuse it to know the solutions 

to future tasks. That could be an alternative approach to reinforcement learning’s sample 

inefficiency and would result in a continuous learning system more suitable for the real 

world. That is the subject of the next chapter. It will investigate how the learned knowledge 

can be reused to learn solutions for future tasks.     
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CHAPTER 6     REUSE OF LEARNED KNOWLEDGE BY SKILL 

COMPOSITION 

Parts of this chapter have been published in: P. Dhakan, K. Kasmarik, P. Vance, I. Rano, and N. 
Siddique, “Concurrent Skill Composition using Ensemble of Primitive Skills.” IEEE Transactions 

on Cognitive and Developmental Systems, Accepted for publication – 10th May 2022. 
 

6.1 Introduction 

A key characteristic of an open-ended learning system is that it can learn to perform 

multiple tasks. For that, it should be able to determine what tasks it should learn [19] [20] 

and also be able to exploit the learned knowledge to improve the performance of the task 

at hand [127]. Chapter 5 proposed a task generation technique so the agent can select ‘what 

to learn’, which was the contribution related to the task generation module of the 

architecture proposed in Chapter 3. Once the agent has built up a repository of skills, a 

logical next step is to enable it with the capability to combine the skills it has already 

learned to solve new tasks. In reinforcement learning, which is used in the learning module 

of the architecture, an agent learns by interacting with its environment. In many cases, the 

amount of interaction needed to learn a task is quite large [29], making it impractical for 

many robotics applications. While the reinforcement learning community is conscious of 

this drawback and has proposed sample-efficient algorithms [41] and, different approaches 

such as imitation learning [33] [76], transfer learning [128] [129] are used. However, 

further benefits can be gained by reusing the previously learned knowledge to create a 

solution for future tasks. The literature review shows that these approaches have not 

previously been considered in open-ended learning architectures, specifically in an 

intrinsically motivated reinforcement learning setting. That is the contribution of this 

chapter. 

This chapter will detail how the previously learned skills can be combined to form skills 

for new tasks. The responsibility of deciding what skills to combine and how to combine 

those skills lies with the architecture’s knowledge management module. This chapter’s 

contribution is thus related to that module. Figure 6.1 shows the knowledge management 

module in green, highlighting the focus of this chapter.  
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Figure 6.1: Modular Continuous Learning Architecture revisited. Skill composition, the focus of this 
chapter, is a contribution related to the Knowledge Management Module. 

 

Chapter 4 showed that one of the task categorisations is whether they can be considered 

atomic. A task is ‘primitive’ if it cannot be further divided into simpler tasks and 

‘compound’ if it is formed by a combination of simpler tasks. That combination can be 

‘sequential’, i.e. multiple primitive tasks are carried out in a sequence, or ‘concurrent’, i.e. 

multiple primitive tasks are carried out at the same time (i.e. interleaved in parallel). The 

literature review showed that option is a common method used to combine the tasks in 

sequential order in reinforcement learning. A primitive skill can be packaged as an option, 

and many such options can be sequenced together to form a skill for a compound task. The 

literature review also showed a few ways of combining the skills concurrently, namely 

using the Gaussian Mixture Model [130] and a Mixture of Experts [131] [132]. Integration 

of the concept of options into the architecture proposed in Chapter 3 gives it the capability 

to sequentially combine the skills for the primitive tasks without the need for any additional 

task-dependent knowledge. However, integrating the concurrent combination techniques 

found in the literature review requires additional task-dependent knowledge or human 

intervention. Inspired by Modular Neural Networks [133], this chapter proposes a method 

of combining reinforcement learning policies represented using a neural network. It is a 

method to combine the primitive tasks concurrently without requiring other task-dependent 
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knowledge. When such skill composition is integrated with the Modular Continuous 

Learning Architecture, it enables continuous learning of skills of increasing complexity. 

This chapter also proposes a Kullback-Leibler divergence based metric to measure the 

difficulty level of a task and the agent’s skill competency. These metrics enable the 

Modular Continuous Learning Architecture to select an appropriate task to learn given the 

current level of expertise of the system as a whole. That is suggested as a future task in 

Chapter 7. 

The learned knowledge used as a building block is typically learned in the same non-

scaffolded environment as the other compound skills resulting in inefficiently learned 

primitive skills. This thesis hypothesizes that skill composition is more effective when the 

primitive skills are learned in specialized/scaffolded environments. The hypothesis is based 

on the premise that a scaffolded environment provides the agent with a better learning 

opportunity. As seen in Chapter 4, some tasks were not learned due to a lack of opportunity. 

Thus, scaffolded environments are created for the robot to learn primitive skills. The 

experiments will show how the composition of primitive skills learned in a scaffolded 

environment can be used as a skill for a more complex task. The results of primitive skills 

learned in a scaffolded are compared with the same skills learned in a non-scaffolded 

environment to demonstrate the effectiveness of learning in a scaffolded environment. The 

primitive skills learned in the scaffolded environment are then combined to generate a skill 

for the compound tasks. The composed skill is compared with the skills learned from 

scratch to demonstrate the effectiveness of the proposed skill combination method. Thus, 

this chapter’s contributions are (i) two variants of a novel ensemble method to compose 

policies for compound tasks that are concurrent combinations of disjoint tasks, (ii) a 

comparison of the performance of the skill learned in scaffolded and non-scaffolded 

environments and also a comparison of the skill learned from scratch with composed skill 

whose constituent primitive skills are learned in a scaffolded environment and (iii) a 

Kullback-Leibler divergence based metric to measure the task difficulty level and agent’s 

skill competency. The rest of this chapter is organised as follows: Section 6.2 reviews the 

literature on skill composition. Section 6.3 proposes how primitive skills can be 

concurrently combined. Section 6.4 proposes the metrics to measure the task difficulty 
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level and the agent’s skill competency. Section 6.5 describes the setup of the experiments 

and discusses the results. Finally, Section 6.6 provides the concluding remarks.   

 

6.2 Skill Composition  

For an open-ended lifelong learning system, a critical characteristic is that it learns skills 

for multiple tasks. It should be able to determine what tasks it should learn [19] [20] and 

when it should learn them [20]; also, to be efficient and be aware of its capabilities [57], it 

should be able to exploit the learned knowledge to improve the performance of the task at 

hand [57] [127]. As detailed in previous sections, reinforcement Learning is most suitable 

for open-ended learning. However, in many cases, the amount of interaction needed to 

learn a task is quite large [29], making it impractical for many robotics applications. While 

the reinforcement learning community is conscious of this drawback and is continually 

inventing sample efficient algorithms [41] and using different approaches such as imitation 

learning [33] [76], further benefits can be gained by re-using the previously learned 

knowledge to create a solution for the future tasks.  

The reinforcement learning literature review shows several approaches to re-using 

previously learned knowledge to create a solution for future tasks. Since the aim is to 

integrate this with the continuous learning agent architecture, the scope of the review in 

this section is limited to approaches where the reinforcement learning policies for simpler 

tasks are combined to form a policy for a more complex task. In saying that, other 

approaches that re-use previously learned knowledge to form solutions for future related 

or unrelated tasks are listed to provide a broader context. Then the review focuses on 

techniques that combine the reinforcement learning policies to form solutions for 

compound tasks.    

In reinforcement learning, a solution to achieve the task is called a policy. Two or more 

policies can then be combined to learn solutions for compound tasks. Existing literature 

reveals two common ways of combining reinforcement learning policies: (1) Sequentially 

[134] [135] – where the policies for the subtasks are invoked in a sequence to solve a more 

complex task. The subtasks may or may not be organised in a hierarchy; however, this 
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technique broadly falls under hierarchical reinforcement learning. For example, consider 

that a mobile robot picks up an object from destination A and delivers it to destination B. 

Both these tasks have to be carried out one after the other in order. To form a compound 

skill, the skill to solve the first task is sequentially combined with the skill to solve the 

second task. (2) Concurrently  [127] [136] – where the policies of the subtasks are merged 

to form a combined policy that is used to solve the complex task. Such a technique is called 

compositionality. Consider, for example, that the mobile robot has to follow a moving 

target while avoiding obstacles along the way. In that case, both primitive skills are 

combined in a concurrent manner to form the compound skill, i.e. they are simultaneously 

active. Another approach seen in the literature is called a modular combination of skills in 

which the skills are enabled and disabled based on a trigger. For example, consider that a 

mobile robot is following a track on the floor and comes across an obstacle. It navigates 

around the obstacle and again starts to follow the track. In this case, the robot stops using 

the first skill when the second skill is triggered.  

First, to provide a broader context, the following subsection reviews approaches that either 

reuse previously learned knowledge or aim to learn a solution to compound tasks. That is 

followed by a more detailed review of the work that focuses on combining reinforcement 

learning policies.   

6.2.1 Multi-task learning 

In the explanation based neural network [137], Thrun uses domain knowledge to provide 

a context of the data for the agent to generalise the knowledge. That enables the agent to 

use previously learned knowledge from the n-1 related tasks to learn the nth task more 

efficiently. While this approach reduces the amount of training data the reinforcement 

learning agent requires, the approach applies only to the related tasks. The approach 

focuses on generalising the knowledge and applying it to newer tasks, which may or may 

not be more complex than the previous n-1 tasks. Drummond [138] also uses a similar 

concept of transfer of knowledge from related tasks. Both the techniques mentioned above 

apply only to related tasks. For an open-ended learning agent, that would be considered a 

significant limitation.  
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In multi-task / multi-objective / feudal reinforcement learning [139], the agent trains to 

learn multiple tasks at the same time. A compound task, seen from a different viewpoint, 

is considered a set of multiple tasks. The multi-objective reinforcement learning agent aims 

to find a policy that satisfies multiple tasks instead of just one. The reward function, in this 

case, is a vector instead of a scalar value, and the agent aims to learn all policies. When 

compared to compositionality, the difference is that in the case of multi-objective 

reinforcement learning, the tasks are usually contradictory, and the challenge for 

reinforcement learning is to find a policy that optimally satisfies all the tasks. While the 

aim of multi-task reinforcement learning is to learn the skill to solve multiple tasks, since 

the skill to solve those tasks is learned as a single policy, there is no way to reuse the skill. 

The policy cannot be sliced and diced to generate policies for constituent tasks. Hence if 

one of the tasks in the set of multiple tasks were replaced with a new task, it would mean 

that the learning has to begin from scratch.    

6.2.2 Sequential combination of policies 

In this approach, the policies are combined in sequential order. That is akin to a planning 

problem where the previously learned policies are sequenced to accomplish a complex task. 

The tasks may or may not be hierarchically structured; however, the same concept of 

sequentially combining the policies can be applied to both. Broadly this can be considered 

hierarchical reinforcement learning.  

Hierarchical reinforcement learning [140] aims to decompose the task into subtasks, 

commonly represented using options [42], learn the policies for each of the subtasks, and 

then treat that policy as a macro action. The solution to the complex task is a policy that 

sequentially invokes these macro actions. This has been an extensively researched area, 

ranging from auto-generation of options [141] to integrating this with the core 

reinforcement learning algorithm to form algorithms such as option-critic [142]. MAXQ 

[143] introduces mechanisms for abstraction and sharing in reinforcement learning for it 

to be able to solve tasks that have complex hierarchical structures. The concept exploits the 

regularities found when a complex task is decomposed. Such techniques of a sequential 

combination of skills can be integrated with the agent architecture proposed in Chapter 3.   
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6.2.3 Modular reinforcement learning 

Modular reinforcement learning is similar to the sequential combination of reinforcement 

learning policies. It switches from one policy to another; however, the decision to sequence 

the policy is made at a run time based on the initiation trigger or termination state.  

Modular reinforcement learning [144] [145] [146] [147] decomposes a task, and each 

module solves a portion of the task. For the final solution, at runtime, a selector then selects 

the policy of the subtask in sequence. Although not based on reinforcement learning, a 

technique worth mentioning here is the subsumption architecture [70].  It is a layered 

architecture where the lower layers represent more primitive behaviours, whereas higher 

layers represent high-level behaviours. Like modular reinforcement learning, a behaviour 

is triggered when a specific condition is satisfied, which is akin to switching the policy 

based on a trigger. The techniques that fall under the modular reinforcement learning 

category too can be integrated with the agent architecture proposed in Chapter 3.    

6.2.4 Concurrent combination of policies 

The final category is where the reinforcement learning policies are combined concurrently 

to form a single policy. This concept is termed as compositionality [136] [148] [149]. The 

policies of constituent tasks are combined, and they act in unison to form a solution for the 

compound task. The reinforcement learning policy can be represented as a Q-table, neural 

network, or basis function. When the policies are represented as a Q-table, the Q function 

for the compound task is generated by averaging the constituent Q functions [127] [145] 

[150] [151]. When the policies are represented as a neural network, the literature review 

shows that the combined policy is generated using voting, a Mixture of Experts [131] [132], 

policy distillation [152] [153] and action selection using a Gaussian Mixture Model [130]. 

Also, compositionality can be further enhanced by combining the concept of 

compositionality with modular reinforcement learning, where the final policy is generated 

by combining multiple policies concurrently [151]. 

Haarnoja et al. [150] demonstrated the combination of policies for different sets of 

behaviours. Using a robotic manipulator arm, it was shown how the policy to move an 
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object on a vertical strip and the policy to move the object on a horizontal strip are 

combined to form a policy for the robot to be able to move the object to the intersection 

position of the two strips. Todorov [154] developed a theory of compositionality applicable 

to a general class of stochastic optimal control problems. Niekerk et al. [127] apply the 

concept of compositionality to the lifelong learning agent. Using a high-dimension video 

game use case, it is demonstrated how an agent can combine skills from its library of 

already learned skills to solve a new task. Niekerk et al. conclude that learning a policy for 

a composite task can be difficult because of the tendency to collapse into learning a single 

task without exploring the alternatives. Hence, it is better to learn primitive skills and then 

combine them to produce an optimal solution for the compound task.  

6.2.5 Gap in the state-of-the-art 

The literature review shows that primitive skills can be combined sequentially or 

concurrently for skill reuse and that the current research focus is on the former, highlighting 

a research opportunity. Unlike the case of the sequential combination of policies where the 

technique of options is commonly used, there is no common method for the concurrent 

combination of skills. While the concurrent composition of reinforcement learning policies 

has attracted attention in recent years, much remains to be done. Compositionality enables 

mixing and matching primitive skills to form solutions to various compound tasks. For 

example, when a robot learns skills A, B, C and D. Solutions to compound tasks can be 

composed by combining the skills such as A+B, A+B+C, A+B+D, A+C+D, A+B+C+D. 

That can be especially useful for the reinforcement learning robot since it may not always 

be possible for the robot to learn every skill from scratch. For the ones it can, such reuse 

of knowledge leads to sample efficiency.  

The review has shown that option is a commonly used technique to store policy for 

sequentially combined tasks. That can be integrated with the architecture proposed in 

Chapter 3. However, the methods found in the literature for the concurrent combination are 

not task-independent or abstract enough to be easily integrated with the architecture 

proposed in this thesis. That raises a question: How does one design a module to 

concurrently compose known skills to form a solution for a compound task with the added 
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requirement that the technique is compatible with the proposed agent architecture? The 

following section will aim to answer that question.  

 

6.3 Concurrent Skill Composition 

A key characteristic of a continuously learning system is learning skills for multiple tasks 

and using the learned skill to solve future tasks. The agent architecture proposed in Chapter 

3 uses reinforcement learning to acquire skills. In reinforcement learning, the common 

practice is to train the agent for every task from scratch. That is not only time-consuming 

but also impractical, especially for many robotics applications. That is because the very 

nature of reinforcement learning requires the agent to find itself in a situation to be able to 

try different actions, and also, the agent may need to be reset to an initial/random starting 

state for retries [155]. That is because reinforcement learning relies on several similar 

learning opportunities so that the agent can explore available actions to create a mapping 

between states and actions, i.e. generate a policy. This sample inefficiency is a significant 

challenge in reinforcement learning [156]. This inadequacy of reinforcement learning 

becomes apparent when learning solutions to complex tasks.  

With the agent architecture, such as the one proposed in Chapter 3, the system is 

continuously enhancing its knowledge base. This knowledge is stored in the knowledge 

management module of the architecture. In reinforcement learning, the solution to the task, 

i.e. the skill, is stored as a policy. A policy can be represented using a Q-table or using a 

neural network. Policies represented using Q-tables can be concurrently combined by 

averaging the constituent Q-values [150]. This section will detail a similar technique for 

the policies represented using neural networks. The technique provides the best of both 

worlds. It provides the simplicity and understandability of the concurrent combination used 

in the Q-table based representation and the neural network’s scalability. This concurrent 

combination of the neural network skills is similar to the average model weight ensemble 

[36] [37].  

A compound task’s reinforcement learning policy can be formed by averaging the learnable 

parameters of the constituent tasks’ networks. Starting with learning primitive tasks first, 
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it then moves on to learning compound tasks. With a repository of primitive skills in place, 

it is only logical to extend the system’s capabilities to reuse the learned primitive skills to 

form solutions for compound tasks. The advantage of this simple averaging technique 

becomes apparent in a multi-agent reinforcement learning setting where the agents are 

learning different primitive skills building a repository of skills. Those skills can then be 

combined as required to create a solution for a compound task.  

A compound task can be considered as a sequential or concurrent combination of the 

constituent primitive tasks. Further, a concurrent combination can be an ‘AND’ or an ‘OR’ 

combination. In an ‘AND’ combination, for successful execution, all the constituent tasks 

are executed simultaneously. Whereas, in the case of an ‘OR’ combination, the execution 

is considered successful if one of the constituent tasks is executed successfully. That is, the 

combined policy can solve either of the constituent tasks, but not all at the same time. When 

learning multiple tasks, the two tasks can be said to be ‘competing’ if the actions required 

to accomplish one task are opposite to the actions necessary to accomplish another task. 

The tasks are said to be ‘complementary’ if the actions required to accomplish one task are 

the same as the actions necessary to accomplish another task and ‘disjoint’ if they are 

neither competing nor complementary. Like any other multi-task learning method, this 

approach’s limitation is that the tasks should not be contradictory. Since, for such 

contradictory tasks, the actions may be competing in nature. The scope of this chapter’s 

contribution is limited to the ‘AND’ combination of disjoint tasks. 

For example, consider a set of disjoint primitive tasks for a vacuum cleaning robot: (a) 

detect the dirt, (b) clean the dirt, (c) avoid obstacles, and (d) detect an edge of the floor to 

keep the robot from falling off the stairs. A compound task with an ‘AND’ combination 

would be the combination of tasks such as (i) the robot detecting the dirt while avoiding 

obstacles and avoiding falling off the stairs, and (ii) the robot cleaning the dirt while 

avoiding obstacles and avoiding falling off the stairs. As a non-mobile robot example, 

consider the following hypothetical set of disjoint tasks. Consider a primitive task of 

juggling and another primitive task of riding a unicycle. The compound task would be to 

ride a unicycle while juggling. As one can imagine, this can be further extended where the 

compound task can be to juggle while riding a unicycle and balancing on a tight rope at the 

same time. Once the primitive tasks are learned, they can be considered layers/modules of 
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the reactive architecture where the learned behaviour is executed when triggered or 

multiple behaviours are combined to execute a more complex behaviour. 

6.3.1 Compositionality for Q-table and neural network based policy representation 

Consider that an agent implemented using the agent architecture proposed in Chapter 3 has 

generated several potential tasks. Further, consider that the tasks are both primitive tasks 

that can be represented as 𝑝ଵ, 𝑝ଶ, … , 𝑝௡ and compound tasks that are combinations of those 

primitive tasks. Also, consider that the policy for the primitive task 𝑝ଵ is represented as 𝜋ଵ 

and the policy for the task 𝑝ଶ is represented as 𝜋ଶ and so on. Similarly, the policy for the 

compound task 𝐶 is represented as 𝜋஼.  

Q-table, which is one of the ways to represent a reinforcement learning policy, stores the 

Q-values. Those Q-values are used by the action selection strategy to select the best action 

in a particular state. That forms the mapping between state and action, i.e. a policy akin to 

a skill. The calculation of Q-values using Q-Learning is detailed in Chapter 2, Equation 

(2.5). It denotes how good taking a particular action in each state is, i.e. it denotes the action 

that should be taken in each state to maximize the cumulative reward. In simple terms, it 

indicates a reward that can be received if a particular action is taken, i.e. it encodes future 

reward. Chapter 2, Table 2.1 shows a sample Q-table. Thus, if the Q-table for every 

primitive task encodes the potential reward for each action in each state, the policy for the 

compound task, i.e. the coordination of multiple behaviours, can be generated by a 

summation of the constituent Q-tables [157] [127] [150], i.e. the primitive skills such as 

𝜋ଵ, 𝜋ଶ, … , 𝜋௡ learned independently can then be combined to form a policy 𝜋஼ for a 

compound task. The policies for individual tasks can also act as modules and then mixed 

and matched as required to form a skill for a compound task [145]. A normalized 

representation generated by averaging the constituent Q-tables is shown in Equation (6.1), 

where 𝑛 is the number of constituent tasks. 

𝑄஼(𝑠𝑡, 𝑎𝑡) =  
1

𝑛
෍ 𝑄௜(𝑠𝑡, 𝑎𝑡)

௡

௜ୀଵ

  (6.1) 
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The corresponding reward for the compound task 𝐶, if the reinforcement learning agent 

were to attempt to solve it from scratch, can be represented as an average of the rewards 

[158] for primitive tasks 𝑝ଵ, 𝑝ଶ, … , 𝑝௡, as shown in Equation (6.2):  

𝑟஼(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =
1

𝑛
෍ 𝑟௜(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

௡

௜ୀଵ

  (6.2) 

where the reward for each of the primitive tasks is within the same range and 𝑟ଵ(𝑠௧, 𝑎௧, 𝑠௧ାଵ) 

is the reward for the task 𝑝ଵ, 𝑟ଶ(𝑠௧ , 𝑎௧, 𝑠௧ାଵ) is the reward for the task 𝑝ଶ and so on. 

Parameters 𝑠௧, 𝑎௧ and 𝑠௧ାଵ are the agent’s state, the action that the agent takes in that state 

and the resulting state of the agent when that action is taken.  

The concept of averaging the Q-tables to form solutions for compound tasks is well-

researched [145] [157] [127] [150]; however, Q-table based approaches do not scale well. 

The other way to represent a policy is by neural networks; for example, the Deep Q 

Network algorithm (DQN) [159] uses neural network-based policy representation. In such 

algorithms, in essence, the learnable parameters of the neural network store the Q-values, 

which means the concept of averaging Q-tables can be extended to the policies represented 

by neural networks.  

A concept of averaging the neural network model weights is used for supervised machine 

learning problems, albeit to solve the optimization challenge where the training process of 

neural networks fails to converge. That average model weight ensemble (Polyak 

Averaging) [36] technique averages the network’s learnable parameters (i.e. the weights) 

and is shown to generate more robust solutions. In this technique, the desirable solution is 

achieved by averaging the weights of multiple trained models where the sets of weights 

from the individual model can often be noisy but averaging results in a robust solution. 

Also, a similar concept of combining the learnable parameters is used in Modular Neural 

Networks [133] and the Mixture of Experts [160] techniques seen in general machine 

learning as well as reinforcement learning literature [144] [146] [147] [131] [132], where 

an individual network is an expert in its domain and is built and trained independently for 

its specific task with the final decision made based on the results of these individual 

networks. That allows for building a bigger network for solving compound tasks using 
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smaller independently trained/re-trained modules resulting in quicker training than 

monolithic networks. However, it requires additional infrastructure such as a decision or 

gating network. The decision network can be implemented using some rule or could be 

based on voting or a mathematical operation such as summation or averaging. For example, 

consider the Modular Neural Networks shown in Figure 6.2. The individual modules could 

be trained on specific tasks such as tracking an object using a camera or detecting an 

obstacle using proximity sensors. The decision network can then combine the results from 

the individual modules to make the final decision for solving a compound task such as 

tracking an object while avoiding obstacles.  

 

 

Figure 6.2: An example of Modular Neural Networks 

 

Extending the concept of averaging Q-tables and inspired by the techniques such as average 

model weight ensemble and Modular Neural Networks, this chapter proposes a technique 

to form policy for a compound task by averaging learnable parameters of policies of the 

constituent primitive tasks represented using neural networks. The proposed skill 

composition in this chapter is limited to the ‘AND’ combination of disjoint tasks. Since the 

tasks are disjoint, unlike the techniques seen in the literature [146] [131] [132], there is no 

overlap in state space, and hence the proposed technique does not require any additional 

decision/gating network infrastructure for the action arbitration in the overlapping region. 
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That results in a much simpler architecture for an open-ended continuous learning agent. 

Also, the policies for compound tasks generated using the proposed technique can be stored 

and recalled to be combined with additional policies compared to policies generated at run 

time, as is the case for modular reinforcement learning techniques. A compound task 𝐶 be 

represented as 𝐶 =  𝑝ଵ  ∧   𝑝ଶ  ∧ … ∧  𝑝௡ and the policy 𝜋஼ for such compound task can be 

represented as a combination of the policies for the constituent tasks as shown in Equation 

(6.3). The combined policy formed this way can be used as an initial policy that can then 

be refined as the agent gets an opportunity to learn more regarding a particular region of 

its state space. 

𝜋஼ =
1

𝑛
෍ 𝜋௜

௡

௜ୀଵ

  (6.3) 

6.3.2 Skill composition using average model weight ensemble 

The technique proposed in this chapter is based on the actor-critic reinforcement learning 

algorithm [41], where the actor and the critic are implemented using neural networks. 

Reinforcement learning consists of algorithms that are either value-based methods where 

the agent learns the value function that determines how good it is to take a particular action 

in a specific state or policy-based methods where the agent directly optimizes the policy 

by sampling several rollouts of the episode. The actor-critic family of algorithms is a hybrid 

approach where the critic is trained to estimate the value function and provides feedback 

to the actor to optimize the policy. At each time step t, the state 𝑠௧ is passed as an input to 

both actor and critic networks. The actor, represented as 𝜋(𝑠௧, 𝑎௧, 𝛳), takes an action 𝑎௧ in 

the environment receives the reward 𝑟௧ାଵ and transitions to a new state 𝑠௧ାଵ. Based on that, 

the critic, represented as 𝑞ො(𝑠௧, 𝑎௧, 𝑤), assesses how good it was to take that action and 

accordingly adjusts the weights 𝑤 of the critic network. That is then provided as feedback 

to the actor, resulting in the update to the weights 𝛳 of the actor network. 

Now, consider that 𝑎𝑐𝑡𝑜𝑟ଵ, 𝑐𝑟𝑖𝑡𝑖𝑐ଵ are the actor and critic networks for the primitive task 

𝑝ଵ; 𝑎𝑐𝑡𝑜𝑟ଶ, 𝑐𝑟𝑖𝑡𝑖𝑐ଶ are the actor and critic networks for the task 𝑝ଶ and so on. The actor 

and critic networks for the compound task 𝐶 can be created by averaging the learnable 
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parameters of the constituent actor networks and the constituent critic networks, as shown 

in Equation (6.4). 

𝑎𝑐𝑡𝑜𝑟஼ =  
1

𝑛
෍ 𝑎𝑐𝑡𝑜𝑟௜

௡

௜ୀଵ

 

and 

𝑐𝑟𝑖𝑡𝑖𝑐஼ =  
1

𝑛
෍ 𝑐𝑟𝑖𝑡𝑖𝑐௜

௡

௜ୀଵ

 
 (6.4) 

where 𝑎𝑐𝑡𝑜𝑟௖ , 𝑐𝑟𝑖𝑡𝑖𝑐௖ are the actor and critic networks for the compound task 𝐶 and can 

then be used to construct a reinforcement learning agent for the compound task. Typically, 

the networks will be multi-layer. That means the actor or the critic network of the 

compound task is constructed by taking an arithmetic average of the learnable parameters 

of the individual layers of the networks of the constituent primitive tasks. Consider the 

actor-network first. The learnable parameters are averaged for each layer of the actor 

networks of corresponding primitive tasks. Those average values are then set as the 

learnable parameters of the corresponding layer of actor network of the compound task. 

This is repeated for all the layers to construct the actor network for the compound task. The 

critic network is constructed by following the same process using the corresponding critic 

networks of the primitive tasks.  

Chapter 5 showed how tasks could be generated by enabling and combining different 

aggregations of the state space. For disjoint tasks, these aggregations do not overlap. 

Hence, when the tasks are represented using the same state vector (termed representation 

#1 in this chapter), a compound skill can be constructed by effectively stacking the 

primitive skills that make up that compound task. A graphical representation of this is 

shown in Figure 6.3. It shows four skills, with its state space represented by a coloured and 

a grey area. This combination method is termed method #1 from here on in this chapter. In 

the diagram, the neural network based reinforcement learning policy for the skill is a 

combination of actor and critic neural networks. Both networks take the agent’s state vector 

as the input. The actor network’s output is the probability for each of the actions in the 
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agent’s action space, and the output of the critic network is the feedback to the actor 

indicating how good it was to take a particular action in that state. 

 

 

Figure 6.3: Skill composition method #1 – same state vector for the constituent tasks (representation #1). 

 

As an extension to the task generation technique proposed in Chapter 5, the state vector for 

the task can constitute just the individual aggregation (termed representation #2 in this 

chapter). In such a case, the state vector of each primitive task depends on the task being 

learned. As shown in Figure 6.4, the construction of the skill for such a compound task can 

be done by aligning the state vectors for the constituent primitive tasks. This mechanism is 

particularly beneficial in multi-agent reinforcement learning, where each agent is 

responsible for learning a particular skill. Those constituent skills can then be combined to 

form a compound skill. This combination method is termed method #2 from here on in this 

chapter. To learn primitive skills, the agent starts with a state space comprising only the 

required state attributes. Same as in method #1, the neural network based reinforcement 

learning policy for the skill shown is a combination of actor and critic neural networks. 
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However, the state-space of each task (shown using different coloured pieces) depends on 

the skill being learned. Reduced dimensionality leads to smaller state spaces and quicker 

learning. Then as required, different primitive skills are combined (by aligning to the state 

vector for the compound task), resulting in a skill for the compound task. 

 

 

Figure 6.4: Skill composition method #2 – task-specific state vector (representation #2). 

 

While each composition method has its merits and demerits, both lead to reduced training 

time for the compound skills. That is not just because the agent is not required to learn the 

skill from scratch but also because different agents can learn the constituent policies in 

parallel. Algorithm 6.1 shows the pseudo-code for skill composition. The constituent 

networks’ learnable parameters are averaged to construct a new combined actor-critic 

reinforcement learning agent that has the skill to solve the compound task. Next, this 

chapter proposes the task difficulty and skill competency metrics.  

 

Algorithm 6.1: Skill Composition 

 
Assumption 
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6.4 Metrology for Task Difficulty and Skill Competency 

The knowledge management module detailed in Chapter 3 stores the learned skills and the 

metadata regarding the skills, such as the task’s difficulty and the agent’s skill competency 

for a similar task. Such metadata can be used to assess the newly discovered task’s 

similarity (in terms of difficulty level) with the other tasks in its knowledge base. That, in 

turn, could be used to prioritize which task to learn. Also, it could be used to decide which 

primitive skills to combine to find a solution for a compound task.  

This section proposes the metrics to compute the task difficulty and agent’s competency 

for a skill for an environment with a discrete state and action space. However, the concept 

can be extended to an environment with a continuous state or action space. The following 

are the assumptions made in this section:  

There is an array of learned policies for primitive skills stored in policy[] 
 
Start 
 
    /* Initialize variables */ 
    combinedActor = create actor network    // untrained actor network     
    combinedCritic = create critic network    // untrained critic network  
    combinedActorParams = null 
    combinedCriticParams = null 
 
    /* Ensemble of actor and critic networks */ 
    for i = 1: numberSkills 
        actor_i = getActor(policy(i)) 
        actor_i_params = getLearnableParameters(actor_i) 
        combinedActorParams = combinedActorParams + actor_i_params 
        critic_i = getCritic(policy(i)) 
        critic_i_params = getLearnableParameters(critic_i) 
        combinedCriticParams = combinedCriticParams + critic_i_params 
    end for 
 
    /* Calculate the average of learnable parameters */ 
    combinedActorParams = combinedActorParams / numberSkills 
    combinedCriticParams = combinedCriticParams / numberSkills 
     
    /* Create combined agent */ 
    setLearnableParameters(combinedActor, combinedActorParams) 
    setLearnableParameters(combinedCritic, combinedCriticParams) 
    combinedAgent = RLAgent(combinedActor, combinedCritic) 
 
end 
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i. An optimal policy is available. An optimal policy is a policy where the agent 

executes the skill flawlessly, i.e. the agent executing the optimal policy can be said 

to have mastered the skill. This policy can be obtained when another reinforcement 

learning algorithm learns the same skill.  

ii. The policy is represented using a neural network (for example, the actor-critic 

algorithm detailed in section 6.3).  

The actor-network output is a probability distribution of the agent’s actions in a particular 

state. This probability distribution can be compared with the probability distribution of 

action of an optimal policy to generate a measure of the agent’s competency. Also, when 

the action probability distribution of the optimal policy is compared with that of a randomly 

acting agent, it provides a measure of task difficulty. A Kullback-Leibler (KL) divergence 

can be used to compare the probability distributions. The metric calculated this way does 

not require any task-related knowledge and is hence suitable for an autonomous agent. 

These metrics can also be used to derive competence-based intrinsic motivation for task 

prioritization and selection.  

KL divergence [161] compares the difference between any two probability distributions, 

say X and Y. The divergence between Y to X is denoted by 𝐷௄௅(𝑋||𝑌) and is computed as 

follows: 

𝐾𝐿൫𝑋(𝜂) ⟶ 𝑌(𝜂)൯ =  𝐷௄௅(𝑋||𝑌) = ෍ 𝑋(𝜂)𝑙𝑜𝑔ଶ ቆ
𝑋(𝜂)

𝑌(𝜂)
ቇ

௔

  (6.5) 

The divergence has the following properties:  

 The difference is directed, which means that 𝐷௄௅(𝑋||𝑌) ≠  𝐷௄௅(𝑌||𝑋). 

 The difference is non-negative, i.e. 𝐷௄௅(𝑋||𝑌) ≥ 0. 

 The divergence is additive for the independent distributions. Consider X1, Y1, and 

X2, Y2 are independent distributions for η and κ, respectively; their joint distribution 

is computed as 𝑋(𝜂, 𝜅) =  𝑋ଵ(𝜂)𝑋ଶ(𝜅) and 𝑌(𝜂, 𝜅) =  𝑌ଵ(𝜂)𝑌ଶ(𝜅). The additive 

property of KL divergence would mean that 𝐷௄௅(𝑋||𝑌) =  𝐷௄௅(𝑋ଵ||𝑌ଵ) +

 𝐷௄௅(𝑋ଶ||𝑌ଶ). 
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6.4.1 Metric to measure the difficulty level of a task 

Task difficulty is hard to quantify; however, it can be said that accomplishing a difficult 

task requires more time and effort than a simpler task. A term corresponding to task 

difficulty in software engineering is code complexity, primarily measured using connected 

code paths using graph-centric approaches [162]. However, similar metrics do not exist for 

robotics tasks [163]. The approach in this section compares the optimal reinforcement 

learning policy for the task, i.e. the policy that indicates skill mastery, with that of a 

randomly acting agent. For a randomly acting agent, it can be assumed that the probability 

of taking any action would be the same.  

Consider that the state space S of the agent is expressed as {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , s௩}, where 𝑣 is 

the number of states in the state space, and the action space A expressed as 

{𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠} where 𝑚 is the number of actions in the action space. Also, consider 

that the joint probability distributions for the optimal policy and the initial policy (randomly 

acting agent) are denoted by X and Y. The probability distribution of actions for a randomly 

acting agent in the state 𝑠௜ (and all the other states) will be uniform. However, when the 

agent has mastered the solution to accomplish the task, the probability distribution will be 

different for one or more states. The KL divergence for state 𝑠௜ can be denoted as 

𝐷௄௅൫𝑋(𝑠௜)||𝑌(𝑠௜)൯. Then the KL divergence for each state is computed and added to 

calculate the total divergence. This total divergence can be used to denote the task’s 

difficulty level.  

𝑡𝑎𝑠𝑘_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

=  𝐷௄௅൫𝑋(𝑠ଵ) || 𝑌(𝑠ଵ)൯ +  𝐷௄௅൫𝑋(𝑠ଶ) || 𝑌(𝑠ଶ)൯ + ⋯ +  𝐷௄௅൫𝑋(𝑠௩) || 𝑌(𝑠௩)൯ 

 

(6.6) 

As per one of the KL divergence’s properties, the divergence will be a non-negative value; 

thus, the total divergence will also be non-negative. It can be imagined that the greater the 

difficulty level of the task, the more the number of constituent KL divergences will be non-

zero, thus more the total divergence.  
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6.4.2 Metric to measure agent’s competency for a skill 

Competence is defined as the quality of being capable of accomplishing a task. This section 

proposes a metric to calculate an agent’s competency for a skill. This is done by comparing 

the agent’s current reinforcement learning policy with an optimal policy.   

Similar to the previous subsection, consider that the state space S of the agent is expressed 

as {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , s௩}, where 𝑣 is the number of states in the state space, and the action space 

A expressed as {𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠} where 𝑚 is the number of actions in the action space. 

Also, consider that the probability distributions of actions for the agent’s current policy 

and the optimal policy are denoted by Z and X. When learning to accomplish a task, the 

agent can be said to be aiming to emulate the optimal policy. The measure of the difference 

in the probability distributions across all the states provides an indication of the agent’s 

current level of competence for the skill. The KL divergence for state 𝑠௜ can be denoted as 

𝐷௄௅൫𝑍(𝑠௜)||𝑋(𝑠௜)൯. Then the KL divergence for each state is computed and added to 

calculate the total divergence. Thus, the agent’s competency for the skill can be represented 

as:  

𝑠𝑘𝑖𝑙𝑙_𝑖𝑛𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦 

=  𝐷௄௅൫𝑍(𝑠ଵ) || 𝑋(𝑠ଵ)൯ +  𝐷௄௅൫𝑍(𝑠ଶ) || 𝑋(𝑠ଶ)൯ + ⋯ + 𝐷௄௅൫𝑍(𝑠௩) || 𝑋(𝑠௩)൯ 
 

𝑠𝑘𝑖𝑙𝑙_𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑎𝑠𝑘_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 − 𝑠𝑘𝑖𝑙𝑙_𝑖𝑛𝑐𝑜𝑚𝑝𝑡𝑒𝑛𝑐𝑦  (6.7) 

A randomly acting agent is considered highly incompetent as it will have a maximum total 

divergence value, the same as the task difficulty. As the agent masters the skill, this total 

divergence tends towards zero, thus increasing the measure of the agent’s competency for 

the skill. 

 

6.5 Mobile Robot Experiments 

The previous sections proposed a skill composition technique and task-related metrics. 

This section will show the results of the experiments to validate the concurrent composition 
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of skills. The experiments will use the e-puck mobile robot. The robot will learn a few 

primitive skills in scaffolded and non-scaffolded environments. Those skills will be 

combined to form a skill for a compound task. The agent performance of such combined 

skills will then be compared with the skills learned from scratch. 

6.5.1 Objectives of the experiments 

The objectives of the experiments are as follows: 

 Compare the results of primitive skills learned without and with a scaffolded setup. 

 Measure the effectiveness of the skill composition. 

 Compare the composed skill with the skill for the compound task learned from 

scratch. 

6.5.2 Methods and materials 

The experiments in this chapter used Webots software to simulate an e-puck mobile robot 

and to create arenas. The agent is implemented using MATLAB Reinforcement Learning 

Toolbox’s Advantage Actor-Critic algorithm. The specialized/scaffolded environments are 

created for the e-puck to learn primitive skills. Those environments are designed to provide 

a better opportunity for the robot to learn those primitive skills. Further, a few non-

scaffolded environments are created to test and compare the skills for compound tasks 

learned from scratch with the skill generated by combining previously learned primitive 

skills.   

Robot  

For the experiments in this chapter, e-puck’s eight proximity sensors, labelled in a 

clockwise direction: Front-Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left, Left-

Diagonal, Front-Left; three ground sensors labelled Left, Centre, Right and camera 

represented using ‘c’ were used. The camera was to detect a specific blue robot created in 

some of the arenas. The experiment’s state vector was represented as [pFR  pRD  pR  pRR  pRL  

pL  pLD   pFL  gL  gC  gR  c]. Figure 6.5 is a sketched top view of an e-puck with the labelled 
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proximity sensors, ground sensors and wheels. The action space consisted of (i) Turn Left, 

(ii) Step Forward, and (iii) Turn Right. 

 

 

Figure 6.5: A plan view of e-puck with 
labelled state attributes (proximity sensors, 

ground sensors, wheels and camera). 

 

State Vector: 

    [pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR  c] 

 
 
Actions: 

    {  
         1 - Turn Left, 
         2 - Step Forward, 
         3 - Turn Right  
     } 

 

Same as the experiments in previous chapters, the proximity sensors, ground sensors and 

camera values were discretised into binary values. The camera was used to identify the 

randomly moving blue coloured robot. Webots API was used for the recognition. API 

returns the number of blue-coloured objects recognized in the frame. When the blue-

coloured robot was in the view and recognized, the camera output was considered 1 and 0 

otherwise. 

Training Environment 

For the experiments, several arenas were created in Webots. Figure 6.6, Figure 6.7, and 

Figure 6.8 show the scaffolded training arenas used to train the e-puck to learn the specific 

primitive skill. 
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Figure 6.6: Training arena with obstacles. Specially 
constructed arena for scaffolded setup 

(Training_Arena_1). 

 
Figure 6.7: Training arena with a randomly 

moving blue robot. Specially constructed arena for 
scaffolded setup (Training_Arena_2). 

 

Figure 6.8: Training arena with a coloured pattern on the floor. Specially constructed arena for scaffolded 
setup (Training_Arena_3). 

 

Figure 6.6 is a 2m x 2m walled arena with obstacles. In this arena, an e-puck can learn the 

primitive skill of avoiding obstacles/walls. Figure 6.7 is a 2m x 2m walled arena with a 

blue-coloured robot. This blue robot moves in a straight line, and when it detects an 

obstacle, it changes its direction and continues moving in a straight line. In this arena, an 

e-puck can learn the primitive skill of following the blue robot. Figure 6.8 is a 2m x 2m 

arena where the robot can learn a primitive skill of detecting the coloured floor, i.e. learn 

skills related to ground sensors. Such a specialized/scaffolded set of environments allows 

investigation of the algorithm’s performance under controlled conditions.   

Test Environment 

Figure 6.9, Figure 6.10, Figure 6.11, and Figure 6.12 show the 2m x 2m test/non-scaffolded 

arenas. Figure 6.9 is a walled arena with several black regions on the floor and a few 

scattered obstacles. Figure 6.10 is a walled arena with black regions on the floor and has a 

randomly moving blue robot. Figure 6.11 is a walled arena with a few scattered obstacles 

and a randomly moving blue robot. Figure 6.12 is a walled arena with obstacles, a randomly 

moving blue robot and black regions on the floor.  
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Figure 6.9: Test arena with black regions on the 
floor and obstacles (Test_Arena_1). 

 

Figure 6.10: Test arena with black regions on the 
floor and randomly moving blue robot 

(Test_Arena_2). 

 

Figure 6.11: Test arena with obstacles and 
randomly moving blue robot (Test_Arena_3). 

 

Figure 6.12: Test arena with obstacles, a randomly 
moving blue robot and black regions on the floor 

(Test_Arena_4). 
 

Learning Algorithm 

For the experiments in this chapter  6, Advantage Actor-Critic (detailed in Chapter 2) was 

chosen to demonstrate that the proposed ensemble technique is not merely averaging the 

Q-values. The algorithm implementation consists of an actor network that determines what 

action to take when in a particular state and the critic network that provides feedback to the 

actor network regarding how good it was to take that action. The agent was implemented 

using MATLAB’s Advantage Actor-Critic algorithm from its Reinforcement Learning 

Toolbox. The reinforcement learning reward function for the ‘maintenance’ task type 

proposed in Chapter 4 was used to learn the solution to the tasks. The learning rate 

parameter was set to 0.01, and the EntropyLossWeight, the parameter that promotes 

exploration, was set to 0.03. The actor and the critic networks were created using the same 

architecture.  
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(a) 

 
(b) 

Figure 6.13: Neural network architecture used for the experiments in this chapter. The number of nodes 
in the input layer depends on attributes that make up the state; for example, representation #1 has 12 
attributes. (a) The actor-network. The output is the probability for each of the three actions. (b) The 

critic-network. Its output is the ‘advantage’ calculated by the algorithm. 

 

As shown in Figure 6.13, the networks consisted of an input layer (with the number of 

nodes depending on the state vector), a fully connected layer of 16 nodes, and a ‘leaky 

RELU’ layer followed by a fully connected output layer. A non-linear activation function 

(leaky RELU) is used to show that the proposed technique does not just linearly aggregate 

the learning parameters. The number of nodes in the actor network’s output layer is 3, i.e. 

number of actions in the action space. Each node represents the probability of that action. 

The number of nodes in the critic network’s output layer is 1, and it outputs the ‘advantage’. 

The' advantage' is calculated by the A2C algorithm, as detailed in Chapter 2 (Equation 2.6). 

Primitive and Compound Tasks 

For the experiments, primitive tasks listed in Table 6.1 were manually selected. The 

compound tasks were then formed by combining those primitive tasks, as shown in Table 

6.1. The primitive tasks are the elemental tasks, whereas the compound tasks show the 

constituent tasks’ composition. The column ‘Task Id’ shows the notation used to represent 

the task. Prefix ‘p’ is used to represent a primitive task, and ‘C’ is used to represent a 

compound task. Column ‘Task Composition’ details the compound task composition. The 
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‘Task Description’ column describes the task. ‘Arena where Trained’ column details the 

arena in which the training of the task took place.  

 

Table 6.1: A list of handcrafted primitive and compound tasks that will be used for the experiments in this 
chapter. 

Task 
Id 

Task Composition Task Description 

 

Arena where Trained 

p1 N/A Maintain avoiding obstacles. 

 

Scaffolded environment – Figure 6.6 

Non-scaffolded environment – Figure 6.12 
 

p2 N/A Follow the randomly moving blue robot.  

 

Scaffolded environment – Figure 6.7 

Non-scaffolded environment – Figure 6.12 
 

p3 N/A Maintain avoiding the black regions on the floor.  

 

Scaffolded environment – Figure 6.8 

Non-scaffolded environment – Figure 6.12 
 

C1 p1 AND p3 Maintain avoiding obstacles AND maintain 
avoiding the black regions on the floor. 

Figure 6.9 

C2 p2 AND p3 Follow the blue robot AND maintain avoiding the 
black regions on the floor. 

Figure 6.10 

C3 p1 AND p2 Maintain avoiding obstacles AND track the blue 
robot. 

Figure 6.11 

C4 p1 AND p2 AND p3 Maintain avoiding obstacles AND follow the blue 
robot AND maintain avoiding the black regions on 
the floor. 

Figure 6.12 

 

Skill composition method #1 for skills 
represented using representation #1 (same state 

vector for all the tasks) 

Skill composition method #2 for skills 
represented using representation #2 (task-

specific state vector) 
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State Vector for primitive tasks p1, p2, and p3: 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR  c] 

State Vector for compound tasks C1, C2, C3, and C4: 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR  c] 

State Vector for the primitive task p1: 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL] 

State Vector for the primitive task p2: 

[c] 

State Vector for the primitive task p3: 

[gL  gC  gR] 

State Vector for the compound task C1= (p1+ p3): 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR] 

State Vector for the compound task C2= (p2+ p3): 

[gL  gC  gR  c] 

State Vector for the compound task C3= (p1+ p2): 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  c] 

State Vector for the compound task C4= (p1+ p2+ p3): 

[pFR  pRD  pR  pRR  pRL  pL  pLD  pFL  gL  gC  gR  c] 

 

The state vectors for the primitive and compound tasks for the two ways of skill 

composition that this chapter proposes are shown above. The compound tasks C1, C2, C3 

and C4, can be represented as follows: 

𝐶ଵ =  𝑝ଵ  ∧  𝑝ଷ 𝐶ଶ =  𝑝ଶ  ∧  𝑝ଷ 

𝐶ଷ =  𝑝ଵ  ∧  𝑝ଶ 𝐶ସ =  𝑝ଵ  ∧  𝑝ଶ  ∧  𝑝ଷ 

6.5.3 Results and analysis 

Primitive Tasks Performance 

Table 6.2 shows the results of the training for primitive tasks. The training consisted of 

running 50 episodes of 20,000 steps each. The tasks are considered ‘maintenance’ tasks. 

Hence, unlike in the ‘achievement’ task type, the episode does not end once the agent 

reaches the desired state. So the term ‘episode’ merely means a collection of 20,000 steps. 

The task is learned in a scaffolded and non-scaffolded environment with the same vector 

for all the tasks (representation #1) and also scaffolded and non-scaffolded with a task-

specific state vector (representation #2). Reward per episode was used to measure the agent 

performance, i.e. the average cumulative reward for the episode of 20,000 steps. A trial (50 
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episodes of 20,000 steps each) was run ten times for each task with different start positions 

of the e-puck mobile robot. Reward columns show the results averaged over those ten trials, 

and the standard deviation was calculated. The figure number shown in the square bracket 

is the training arena where the training for the primitive task took place.  

The table also shows results from a statistical comparison of the training in scaffolded 

versus non-scaffolded environments for state vector representation #1 and scaffolded 

versus non-scaffolded environments for state vector representation #2. Since the results 

data is not normally distributed, a non-parametric method was run to compare the data 

points. The status quo or the Null hypothesis H0 is that the cumulative reward received by 

the agent training in the non-scaffolded environment will be greater than or equal to that 

received by the agent training in the scaffolded environment. That is to say, a scaffolded 

environment does not lead to better training. Mann-Whitney U-Test was run on the 50 data 

points (average of ten trials for each episode) to determine if the status quo hypothesis H0 

should be rejected or not. The alpha value for this statistical test was 0.05. The Null H0 and 

the alternative H1 hypothesis can be represented as:  

𝐻଴: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

⩾  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

𝐻ଵ: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

<  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

 

Table 6.2: Results of the learning phase for the primitive tasks. Reward per episode was measured for ten 
trials in the scaffolded and non-scaffolded environment and compared using Mann-Whitney U-Test.  

Task 
Id 

Reward per 
episode for 
training in 
scaffolded 
environment and 
state vector 
representation #1. 

[Training Arena]          

Reward per 
episode for 
training in a non- 
scaffolded 
environment and 
state vector 
representation #1. 

[Training Arena]         

Mann-Whitney 
U-Test of the 
results shown in 
the previous 
two columns. 

 

Hypothesis H0 
Vs H1? 

Reward per 
episode for 
training in 
scaffolded 
environment and 
state vector 
representation #2. 

[Training Arena]          

Reward per 
episode for 
training in a non-
scaffolded 
environment, 
multi-agent 
learning and state 
vector 
representation #2. 

[Training Arena] 

Mann-
Whitney U-
Test of the 
results shown 
in the 
previous two 
columns. 

 

Hypothesis 
H0 Vs H1? 

p1 14816 ±3450 

[Figure 6.6] 

 

11077 ±1594 

[Figure 6.12] 

p-value = 0.00 

Reject H0 

15976 ±471 

[Figure 6.6] 

15880 ±566 

[Figure 6.12] 

p-value = 0.21 

Reject H0 

p2 13117 ±2445 

[Figure 6.7] 

-1369 ±4366 

[Figure 6.12] 

p-value = 0.00 

Reject H0 

11796 ±2346 

[Figure 6.7] 

8255 ±688 

[Figure 6.12] 

p-value = 0.00 

Reject H0 
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p3 11799 ±5337 

[Figure 6.8] 

11077 ±1594 

[Figure 6.12] 

p-value = 0.03 

Reject H0 

13206 ±4764 

[Figure 6.8] 

19885 ±51 

[Figure 6.12] 

p-value = 1.00 

Fail to Reject 
H0 

 

Table 6.2 shows a statistically significant difference in the agent’s performance for the 

scaffolded versus non-scaffolded environment for all the tasks. Results in bold indicate the 

best performance for the primitive task. The Mann-Whitney U-Test results show that for 

tasks p1, p2, and p3 tasks represented using state vector representation #1, data support the 

alternative hypothesis H1 that training in a scaffolded environment leads to better learning. 

That is because a scaffolded environment minimizes triggering the non-skill specific 

sensors and allows the agent to focus on learning just one skill.  

 

 
Figure 6.14: Reward hacked for task p3. E-puck seen at the top left corner of the arena has stumbled 

upon a situation where it keeps pushing itself against the wall to gain a positive reward.  

 

For tasks represented using state vector representation #2, Mann-Whitney U-Test results 

show that the data for p1 and p2 also supports the alternative hypothesis H1, i.e. training in 

a scaffolded environment leads to better learning. Task p3, where the agent performance in 

the non-scaffolded environment seems better is an anomaly. Upon closer examination, it 

was seen that it was a case where the agent had come up with an unexpected way of gaining 

the reward. As shown in Figure 6.14, the agent found a way to push itself against a wall 

while on the floor’s non-black region. In this case, both wheels keep turning to move 

forward (and it is on the non-black region, i.e., task p3); albeit, the wall does not allow 

forward motion. Once the agent stumbles upon such a situation, it exploits it by remaining 

in that situation. Even though the agent accumulates a high reward, it does not learn the 

skill to avoid black regions on the floor. That cannot happen in a scaffolded environment, 
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and for this reason, the skills learned in the non-scaffolded environment are not used for 

skill composition in the next set of experiments. 

In the scaffolded environment, the agent gets more opportunities to learn the skills. 

Although the same is true for the state vector representation #2, the advantage is not as 

pronounced. While the environment can trigger non-skill specific sensors on e-puck, those 

sensors are not part of the agent’s state vector and hence do not interfere in the agent’s 

learning of the skill in any way. For the compound task experiments in the following 

subsection, only the state vector representation #1 is used.  

Compound Tasks Performance 

Firstly, to check the composed skills’ validity, the performance of the combined policies 

was first tested in the test arenas. Figure 6.15, Figure 6.16, and Figure 6.17 show the e-

puck robot’s trajectory executing the combined policies for tasks C1, C2, and C3, 

respectively. For this visual validation, the primitive skills learned in a scaffolded 

environment were combined using method #1. 

The combined policy for C1 shows the behaviour of avoiding obstacles as well as the black 

region. Figure 6.15 shows the top view of the test arena with black regions on the floor and 

obstacles with the trajectory of the e-puck shown in navy colour, starting from the ‘start’ 

position. It shows that the e-puck is avoiding obstacles as well as black regions on the floor. 

The combined policy for C2 shows the behaviour of the e-puck following the blue robot 

and avoiding the black region. Figure 6.16 shows the top view of the test arena with a 

randomly moving blue robot and black regions on the floor with the trajectory of the e-

puck shown in navy colour starting from the position marked ‘start’. It shows that the e-

puck is following the blue robot, and when it reaches the black region on the floor, it 

changes its direction to avoid the region. The combined policy for C3 shows the behaviour 

of the e-puck following the blue robot while avoiding obstacles. Figure 6.17 shows the top 

view of the test arena with a randomly moving blue robot and obstacles with the trajectory 

of the e-puck shown in navy colour, starting from the ‘start’ position. It shows that the e-

puck is avoiding obstacles and following the blue robot at the same time. 
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Figure 6.15: Trajectory (in navy colour) of e-puck 
executing the combined policy for C1 (avoiding 

obstacles and avoiding black regions on the 
ground). The e-puck starts from the location 

marked ‘start’.  

 

Figure 6.16: Trajectory (in navy colour) of e-
puck executing the combined policy for C2 
(following a blue robot and avoiding black 

regions on the ground). The e-puck starts from 
the location marked ‘start’. 

 

Figure 6.17: Trajectory (in navy colour) of e-puck executing the combined policy for C3 (following a 
blue robot and avoiding obstacles). The e-puck starts from the location marked ‘start’. 

 

Following the skill composition validation, the training was carried out for the compound 

tasks C1, C2, C3, and C4. Table 6.3 shows the results of the agent learning the compound 

task from scratch. The column ‘Task Composition’ shows the compound task’s 

composition and ‘Task Description’ describes the task. The training for the compound tasks 

constituted 50 episodes of 20,000 steps each. Ten trials were run for each task with different 

start positions of the e-puck mobile robot. Reward columns show the results averaged over 

ten trials, and the standard deviation was generated. That shows the agent’s performance 

in attaining the respective tasks, i.e. the average cumulative reward for the episode of 

20,000 steps. The experiments were run on a Dell G3 machine with Intel 10th Gen I7 6-

core CPU and 16 Gb RAM. Webots was used in the ‘Fast Mode’ with no graphical 

rendering resulting in ~16x the real-time speed. The compound tasks’ average learning 
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time was approximately 35 minutes for each 50 episode run of 20,000 steps, i.e., 560 

minutes if the experiment was run at the real-time speed. 

The compound skills were tested for 50 episodes for this further validation, each 

comprising 20,000 steps. A trial for each task was run ten times with a different starting 

position of the e-puck. Table 6.3 shows the results for a compound skill learned from 

scratch and the composition of skills learned in the scaffolded environment by method #1. 

The table shows results for compound tasks C1, C2, C3, and C4. The last column shows the 

output indicating if the results for a compound skill learned from scratch and the composed 

skill results show a statistically significant difference. Since the results data is not normally 

distributed, a non-parametric method was run to determine if the data shows a statistically 

significant difference. The status quo or the Null hypothesis H0 is that the reward received 

in the test phase by the agent using the policy learned from scratch is greater than the 

composed policy. That is to say, the agent using a composed policy will not perform as 

well as the agent using the policy learned from scratch. Mann-Whitney U-Test was run on 

the 50 data points (average of ten trials for each episode) to determine if that status quo 

hypothesis should be rejected or not. The alpha value for this statistical test was 0.05. The 

null H0 and the alternative H1 hypothesis can be represented as: 

𝐻଴: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ 

>  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 

𝐻ଵ: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑝𝑜𝑙𝑖𝑐𝑦 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ 

⩽  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 

 

Table 6.3: Results for compound tasks. Reward per episode measured for ten trials with standard deviation 
shown. Mann-Whitney U-Test based comparison of the skill learned from scratch and using the composed 

skill.  

Task 
Id 

Task Composition 

 

Reward per 
episode during 
the learning 
phase for the 
skills learned 
from scratch. 

[Training  Arena] 

Reward per 
episode during 
the test phase for 
the compound 
skill learned from 
scratch. 

[Tested in the 
arena shown in 
Figure 6.12] 

Reward per episode 
during the test 
phase for skills 
learned in a 
scaffolded 
environment and 
combined using 
method #1. 

[Tested in the  
arena shown in 
Figure 6.12] 

Mann-Whitney U-Test 
of the results shown in 
the previous two 
columns. 

 

Hypothesis H0 Vs H1? 

C1 p1 AND p3 9059 ±7675 16338 ±45 15018 ±60 p-value = 1.00 
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 [Figure 6.9] Fail to Reject H0 

C2 p2 AND p3 

 

-5023 ±3638 

[Figure 6.10] 

203 ±1537 1141 ±632 p-value = 0.00 

Reject H0 

C3 p1 AND p2 

 

3875 ±1016 

[Figure 6.11] 

7027 ±376 4071 ±182 p-value = 1.00 

Fail to Reject H0 

C4 p1 AND p2 AND p3 

 

642 ±2990 

[Figure 6.12] 

1673 ±796 3065 ±702 p-value = 0.00 

Reject H0 

 

Mann-Whitney U-Test results show that for C1 and C3, the data support the H0 hypothesis, 

i.e., the policy learned from scratch is better than the composed policy. However, for C2 

and C4, the test shows that the data suggests the rejection of the H0 hypothesis, i.e., 

statistically, there is no difference between the policy learned from scratch and the 

composed policy and that the alternative hypothesis H1 should be accepted. Figure 6.18, 

Figure 6.19, Figure 6.20, and Figure 6.21 show the graphical representation of Table 6.3 

results. The shaded plot in red is the episode reward for the policy learned from scratch, 

and the shaded plot in blue is the episode reward for the agent using the combined policy 

(primitive skills learned in the scaffolded environment and combined using method #1). 

Tasks vary in complexity, resulting in a difference in skill acquisition. Generally, the 

hyperparameters such as the learning rate and EntropyLossWeight are tuned to ensure 

optimal results or policy convergence. However, in our experiments, the hyperparameters 

were the same for all the tasks. That may be the reason why, in some cases, the skills of 

the task learned from scratch are better, and for other tasks, the composed skills are better. 

Regardless, the average episode reward value for the composed skills is significant for all 

compound tasks, which indicates that the agent is demonstrating the right behaviour. Thus, 

in a good case scenario, the composed skill is as good as the skill learned from scratch and 

in a worst-case scenario, the composed skill can be used as an initial policy that can then 

be refined further. In either case, the composition of skills results in time saved in learning 

the compound task’s skill, thus demonstrating the advantage of using the proposed skill 

composition. When integrated with the continuous learning architecture proposed in 

Chapter 3, such skill composition enables the agent to learn the skills faster. 
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Figure 6.18: Episode reward plot for C1 (maintain 
avoiding obstacles AND maintain avoiding the 

black regions on the floor). 

 
Figure 6.19: Episode reward plot for C2 (follow the 

blue robot AND maintain avoiding the black 
regions on the floor). 

 

Figure 6.20: Episode reward plot for C3 (maintain 
avoiding obstacles AND track the blue robot). 

 
Figure 6.21: Episode reward plot for C4 (maintain 

avoiding obstacles AND follow the blue robot 
AND maintain avoiding the black regions on the 

floor). 
 

 

6.6 Summary 

Learning every skill from scratch is time-consuming, and even with the ever-improving 

sample efficiency of reinforcement learning, it remains a problem, especially for robotics 

applications. As the continuously learning system gains new knowledge, the logical next 

step is to use the learned knowledge to enable faster learning of future tasks. That learned 

knowledge used as a building block is typically learned in the same non-scaffolded 
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environment as the other complex skills resulting in inefficiently learned primitive skills. 

First of all, this chapter hypothesizes that the skill composition is more effective when the 

constituent skills are learned in a specialized/scaffolded environment. It compares the 

results of primitive skills learned in scaffolded versus non-scaffolded environments to 

demonstrate the effectiveness of learning in a scaffolded environment. Further, this chapter 

proposes two variants of a skill composition method for reinforcement learning policies 

represented by neural networks. It shows how the reinforcement learning policies for 

compound tasks can be generated by a concurrent combination of the policies for primitive 

disjoint tasks. Those primitive skills that are the constituent skills of the composed skill are 

learned in a scaffolded environment. Using mobile robot based experiments, it was shown 

how the combination of primitive skills could be used as a solution for a compound task 

with little or no additional training. A statistical comparison is used to demonstrate the 

effectiveness of the proposed skill combination method. In the best-case scenario, the 

composed policy is as good as the policy learned from scratch, and in a worst-case scenario, 

it can be used as an initial policy for further training. In either case, such reuse of the 

previously learned knowledge reduces the overall training time of multiple skills [164]. 

That also results in a versatile system that can mix and match the skills, an essential 

requirement for a continuously learning agent, especially in the robotics domain, where it 

may not always be feasible to learn solutions to all the tasks from scratch autonomously. 

When such skill composition is integrated within the agent architecture proposed in 

Chapter 3, it results in an open-ended autonomous learning agent capable of continuously 

learning new skills. The contribution of this chapter provides a much-needed functionality 

to the knowledge management module of the architecture. That completes the contributions 

toward each of the modules of the proposed architecture. With that, the next chapter now 

provides the concluding remarks.     
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CHAPTER 7     CONCLUSION AND FUTURE WORK 

 

7.1 Introduction 

This chapter recalls the aims of this research and how this thesis fulfils the questions asked 

at the beginning. Chapter 1 listed the essential aspects required in the self-learning agent 

and raised the first question, which was “What are the modules of an open-ended and 

continuous reinforcement learning architecture?”. Chapter 3 proposed the agent 

architecture to fulfil that question. The architecture comprises a task generation module 

required for open-ended learning, a knowledge management module required to store the 

learned skills and list of tasks and a learning module implemented using reinforcement 

learning. The architecture allowed flexibility in terms of the addition of modules and 

techniques used to implement each of the modules. The second question asked was, “How 

does one design a module to generate task-independent reward functions for different types 

of tasks, including when the primitive tasks are combined to form a compound task?”. 

Those reward functions were proposed in Chapter 4. It meant that once the task is 

assumed/determined to be of a specific type, a reward function for that task type can be 

used regardless of the task, requiring no external intervention during the learning phase. 

The third question asked was, “How does one design a module to self-generate tasks of 

varying complexity?”. Chapter 5 proposed a task generation technique using agglomerative 

hierarchical clustering to generate tasks ranging in complexity from simple to complex 

tasks. Finally, the fourth research question was, “How does one design a module to 

compose a skill for a compound task by combining primitive skills?”. Chapter 6 proposed 

an average model weight ensemble technique of combining primitive skills to solve a 

compound task. Thus, with all the four questions fulfilled, this chapter now summarises 

the contributions of this thesis.  

The rest of this chapter is organised as follows. Section 7.2 summarises the contributions 

of this thesis, maps them back to the research questions and details how they fulfil the 

questions. Section 7.3 lists the future directions for this research, and finally, Section 7.4 

provides concluding remarks.    
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Figure 7.1: A graphical view of how the proposed architecture relates to the other contributions of this 

thesis. 

 

7.2 Summary of Contributions 

This section will summarise the contributions made by this thesis and show how they fulfil 

the research questions listed in Chapter 1. Firstly, see Figure 7.1, which shows a graphical 

view of the contributions of this thesis. 
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7.2.1 A modular agent architecture for open-ended continuous reinforcement 

learning  

Chapter 1 identified that the key aspects for a self-learning agent are that it should: (i) be 

able to learn in an open-ended manner, which provides the direction to its learning; (ii) be 

able to assimilate the new knowledge to continuously improve its skills and be able to reuse 

that learned knowledge to solve future tasks; and (iii) be able to learn with minimal external 

intervention. With that in mind, the first research question was: what are the modules of an 

open-ended and continuous reinforcement learning architecture?  

A review of the literature showed that architectures such as the ones proposed by Santucci 

et al. [12] and Merrick et al. [11] focus on open-ended learning aspects such as what the 

agent should learn next. Then, architectures such as [50] [165] focus on lifelong learning 

aspects such as knowledge assimilation and its reuse to solve future tasks. However, neither 

of those architectures fulfils all the key aspects listed above. The architectures that focus 

on open-ended learning emphasize the importance of task generation to direct the learning; 

however, it lacks the module that assimilates the new knowledge and its usage to solve 

future tasks. The architectures that focus on lifelong learning emphasize the importance of 

the reuse of learned knowledge; however, they lack the module that generates a constant 

stream of tasks to direct the learning.   

This thesis proposed a modular learning architecture detailed in Chapter 3. It comprises (i) 

a task generation module fulfilling the criteria of making the architecture capable of open-

ended learning, (ii) a knowledge repository that stores learned skills, fulfilling the criteria 

of making the architecture capable of continuous learning, and (iii) a learning module 

implemented using reinforcement learning fulfilling the requirement of learning by 

interacting with its environment with minimal external intervention. This flexible 

architecture interoperates with task generation techniques such as SART-based clustering 

[38] or novelty-based methods [69], as seen in the literature. The skill storage can be 

implemented in different ways, for example, using the option, Q-table or neural network-

based policy representation seen in the reinforcement learning literature. Using an e-puck 

mobile robot based experiments, Chapter 3 showed how the robot self-generates its tasks, 

learns the skills, and continues that throughout its lifetime, thus gradually improving its 
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capabilities in an open-ended and continuous manner. Therefore, the main modules of the 

proposed architecture are the modules required for an open-ended and continuous 

reinforcement learning architecture, thus fulfilling the first research question.  

Also, as seen from the review of the motivated reinforcement learning literature, the focus 

of those architectures is on learning autonomy, and the focus of goal-oriented agent 

architectures is on generating tasks to direct the agent’s learning. Thus, neither of them 

forms open-ended continuous learning agent architecture. The architecture proposed in 

Chapter 3 has a task generation module, and its learning module can be implemented using 

motivated reinforcement learning, thus creating a motivated reinforcement learning agent 

architecture with the capability to learn in an open-ended and continuous manner. 

Therefore this contribution extends the literature on motivated reinforcement learning 

agent architecture.     

7.2.2 Task-independent reward functions based on the type of task  

The learning in the case of a self-learning agent should be autonomous, i.e., with no 

external intervention. Considering that, at the outset, the learning framework chosen for 

the agent architecture was reinforcement learning, where the agent learns by directly 

interacting with its environment. In reinforcement learning, the learning is driven by 

reward, which in most cases are human-designed. For open-ended learning, the tasks that 

the agent will require to learn are not known upfront; hence it is not possible to design the 

reward functions in advance. Thus, for open-ended learning, reward design is an important 

consideration. That led to the second question: how does one design a module to generate 

task-independent reward functions for different types of tasks, including when the 

primitive tasks are combined to form a compound task?  

A review of the literature showed that intrinsic motivation is commonly used to generate a 

task-independent reward function [83] [45] [44]. Intrinsic motivation is either knowledge-

based, i.e., based on some form of prediction error or competence-based, i.e., based on the 

current competency to solve the task [85]. In either case, while the reward function based 

on intrinsic motivation is task-independent, additional domain-specific information is 

required to integrate intrinsic motivation into open-ended learning agent architecture. For 
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instance, for a knowledge-based intrinsic motivation using novelty, one needs to specify 

what constitutes novelty.  

As an alternative, Chapter 4 proposed a reinforcement learning reward design based on 

categorising how the tasks are considered to be attained. The common categories of such 

categorisation are achievement, maintenance, avoidance and approach [32]. Since the 

reward design based on such categorisation exploits the inherent property of how the tasks 

are attained, it makes them task-independent. Chapter 4 proposed the reward design for the 

maintenance, achievement, approach and avoidance types. This is the first time a broad 

spectrum of task types has been considered in a motivated reinforcement learning setting. 

Metrics were also designed to measure how well agents complete these tasks. The 

experiments in Chapter 4 showed how the robot using the proposed reward functions learns 

to attain tasks of different types. It also showed that such reward design could be extended 

to be used for compound tasks—thus fulfilling the second research question. 

A reward is considered task-independent when the same reward function can be used for 

different tasks. For example, since the proposed reward design is based on the inherent 

property of the task’s type, the same reward can be used for all the tasks considered as 

achievement tasks making the reward design task-independent. On similar lines, there is 

another concept called the domain-independent reward function. For example, consider a 

task of ‘achievement’ type from the games domain where the aim of the character is to 

navigate through a maze to reach the target and robotics domain where the aim of the robot 

is to pick and place an object. Since the proposed reward design is based on the task type, 

the same reward function can be used. That means the proposed reward design is domain-

independent as well. This reward design based on task type adds to the repository of the 

various ways in which autonomous reward functions can be designed, extending the 

literature on reinforcement learning reward design.     

7.2.3 A technique to self-generate tasks of varying levels of complexity  

Open-ended learning, one of the key aspects of a self-learning agent, directs the learning 

of the agent. That direction depends on the tasks that the agent has to learn, and in many 

cases, those tasks cannot be predetermined. Thus, the agent should be able to design its 
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own task set, starting with learning relatively simpler tasks first and then progressing on to 

learning more complex tasks. That led to the third question: how does one design a module 

to self-generate tasks of varying complexity?  

A review of the literature showed that the task generation techniques either generate single 

level tasks [12] [38] [63] [69] or generate sub-tasks given an over-arching task [112] [115]. 

While any of these task generation techniques can be used with the agent architecture 

proposed in this thesis, the review highlights a gap in the literature. There are no techniques 

that can generate tasks of varying complexity.  

Chapter 5 proposed a task generation technique based on agglomerative hierarchical 

clustering with that research opportunity in mind. The clustering generates regions within 

the agent’s state space. The size of regions or aggregations can be varied by adjusting the 

number of generated clusters, resulting in fewer clusters, i.e. coarser aggregations, to more 

clusters, i.e. granular aggregations. These aggregations can then be enabled and combined 

to generate tasks of varying complexity, ranging from simple to complex. Using simulated 

e-puck mobile robot experiments, Chapter 5 showed how the robot self-generates the tasks 

of varying complexity—thus fulfilling the third research question. 

Also, the proposed technique is designed so that as newer aggregations become available, 

they can be integrated within the existing unique list of aggregations, which can be used to 

generate new tasks. That means that newer tasks of varying complexity can be generated 

without making the previously generated tasks obsolete, thus enabling directed and 

continuous learning. As mentioned above, the literature review on task generation showed 

that existing techniques fall under one of the two categories: (i) generating single level 

tasks and (ii) generating sub-tasks given an overarching task. Since the proposed technique 

does not fall under either of those, it extends the literature on the auto-generation of tasks.   

7.2.4 A technique to concurrently compose primitive skills to form solutions for 

compound tasks  

Most real-world tasks are compound tasks. A compound task can be composed of primitive 

tasks that are sequenced together or are concurrently combined. It is a logical next step for 

a continuously learning agent to reuse the learned primitive skills to solve compound tasks. 
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Such skill reuse saves time and is also a solution to the problem that learning every skill 

from scratch may not always be possible. While there are solutions found in the literature 

for sequentially combined tasks [43], the concurrent combination of tasks lacks a similar 

level of research. That led to the fourth question: How does one design a module to 

compose a skill for a compound task by combining primitive skills? 

A review of the literature showed that a reinforcement learning policy for the compound 

task that is a concurrent combination of constituent tasks could be created by averaging the 

Q-values of the constituent policies [127] [145] [150] [151]. The Q-table based approaches, 

however, are not scalable. Recently, several techniques have been proposed for the policies 

represented by a neural network. In those techniques, the combined policy is generated 

using techniques such as voting, a mixture of experts and action selection using a mixture 

model [136] [131] [130].  

First of all, Chapter 6 proved the hypothesis that learning in a specialized/scaffolded 

environment is more efficient compared to a non-scaffolded environment. The results for 

primitive skills learned in the scaffolded were compared with the skills learned in the non-

scaffolded environment to prove the hypothesis. Then, the chapter proposed two variants 

of a skill composition method for reinforcement learning policies represented by neural 

networks. It was shown how the reinforcement learning policies for compound tasks could 

be generated by a concurrent combination of the policies for primitive disjoint tasks. Using 

a mobile robot-based experiment, it was shown how the combination of primitive skills 

could be used as a solution for a compound task requiring little or no additional training. 

This results in a composed policy that is as good as the policy learned from scratch in the 

best-case scenario and a policy that can be considered a good initial policy in the worst-

case scenario. In either case, such reuse of the previously learned knowledge reduces the 

overall training time of multiple skills. That also results in a versatile system that can mix 

and match the skills, an essential requirement for a lifelong learning agent, especially in 

the robotics domain, where it may not always be feasible to learn solutions to all the tasks 

from scratch autonomously—thus, fulfilling the fourth research question.   

Also, the proposed technique provides an alternative to the concurrent skill composition 

techniques found in the literature. It offers the simplicity of combining Q-table based 
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policies while maintaining the scalability provided by the neural network based policies.  

Thus, contributing to the literature on skill composition. 

7.2.5 Metrology for agent performance, task difficulty and agent competency 

In the case of reinforcement learning, the commonly used metric to measure an agent’s 

performance is the reward gained by the agent in each episode. That metric, however, is 

only applicable to achievement type tasks, i.e. when the desired state is reached, the episode 

is considered to be completed, which can be used to calculate the cumulative reward 

received during that episode. For the tasks of other types, such as maintenance, avoidance 

and approach, that metric cannot be used. For instance, maintenance tasks are non-ending; 

thus, the concept of the episode is not relevant. Chapter 4 proposed metrics such as the 

regain attempts, a critical measure for non-episodic tasks.  

Also, Chapter 6 proposes a metric to measure the difficulty level of a task and the agent’s 

competency for a skill. These are useful for a continuous learning agent that always has a 

list of tasks waiting to be learned and needs to prioritize the skills that it can aim to learn. 

Not all tasks are learnable. Also, there will be tasks that are not learnable, given the agent’s 

current knowledge level. With sufficient training on similar tasks, those previously 

unlearnable tasks may become learnable. Thus, the need for a metric to measure the task 

difficulty and agent competency. Using Kullback-Leibler divergence as a measure, Chapter 

6 proposed metrics to measure these. Thus, contributing to the literature on metrics. 

 

7.3 Future Work 

While this thesis has proposed an agent architecture and made contributions towards open-

ended and continuous learning, that results in only a small step towards creating a truly 

autonomous agent. This section lists the future directions directly related to this thesis’s 

topic and for which it provides stepping stones.  
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7.3.1 Long term autonomy for a robot in real-world – overcoming the limitations of 

the proposed architecture 

The experiments in this thesis are based on the e-puck mobile robot. By design, all the 

concepts of the agent architecture proposed in Chapter 3 are general enough to be 

compatible with other robot types. However, this has not been examined in this thesis. 

Also, in the experiments in this thesis, discrete state and action space was used, and the 

mobile robot’s sensor values were discretised to binary values. The architecture or its 

modules or the reinforcement learning algorithm used did not dictate that but was done to 

keep the experiments focused on validating the core claim of the contributions. As a first 

step, the agent architecture detailed in this thesis should be used on another mobile robot 

model, using finer discretisation or continuous state/action space. That should be followed 

by its application to other robots, such as humanoid or animal-shaped robots or robotic 

arms, which may require robot specific implementation of the individual modules of the 

architecture. Following this, to validate the open-ended and continuous learning aspects 

that the architecture provides, it should be tried on service robots (wheeled/non-wheeled) 

that are expected to carry out real-world tasks, keeping in mind that the architecture only 

provides the capability to learn perception-action skills and not language-based 

communication skills. 

An ultimate aim of autonomous agent research is to create agents that can function 

autonomously forever, i.e. the focus is on executing the tasks and not on the learning aspect. 

The architecture proposed in Chapter 3 focuses on developmental learning, such as 

determining what to learn, when to learn, and storage and recall of skills. That aspect would 

help when the sensors, actuators, and features are upgraded over the robot’s lifetime. While 

the factory settings would provide such a robot with some skills, others would have to be 

learned ‘on the job’ when required, taking into consideration the enhanced capabilities of 

the upgraded software and hardware. However, even for such learning-focused 

architecture, there are other aspects to consider for real-world robotic applications capable 

of long-term autonomy. For example, (i) for the robot’s tasks, that learning has to be carried 

out safely, i.e., without any damage to itself or its environment [166], and (ii) there has to 

be a smooth transition from one task to the next [135], as it is not always possible to reset 
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the robot back to a known starting state before the next task is executed. Such seemingly 

minor ‘engineering’ issues have to be factored in the robot’s design for it to learn in a real-

world setting.     

7.3.2 Sequential combination of tasks 

Tasks in the real world are generally compound tasks, and even a task that is defined as a 

single task can be broken down into subtasks. For example, consider a mobile robot task 

of “follow the wall to the left” that was considered in Chapter 4. As shown in that chapter, 

the task can be broken down into a series of situations, such as the robot learning to 

negotiate a concave corner, a convex corner, and a straight stretch, to name a few. The 

complexity of that task and the skills that the robot would require depends on the wall’s 

contour, i.e. its environment. It may not be possible to envisage in advance all the possible 

contour designs and hence not possible for the task designer to design upfront the wall 

following skills that the robot will require. In that chapter, hand-crafted if-then-else rules 

were used to solve a compound task that is a sequential combination of primitive tasks. 

Results showed how the agent learns the compound task quite quickly compared to learning 

such a task from scratch. So is it possible for an autonomous agent to self-generate such 

rules?  

 

 

Figure 7.2: Trajectory (shown in blue colour) of the e-
puck learning to follow the wall. The red arrows show the 

direction of the path. This figure is the same as Figure 
4.11(c). It is repeated here for convenience. 

 

To answer the question, recall the hand-crafted if-then-else rule for the wall following task 

in the maze arena and the resulting trajectory from that experiment, shown in Figure 7.2 

for a quick reference. If the agent was to learn that wall following task from scratch, 

typically, reinforcement learning will take a long time. However, once the primitive tasks 
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are learned, they can be combined using the if-then-else rules, resulting in much quicker 

learning. As elaborated in Chapter 6, such reuse of learned knowledge is essential for a 

continuous learning agent. One potential solution could be to treat this as a planning 

problem. Once the tasks are planned, they are executed in sequential order. However, such 

a solution requires a planning module in the agent architecture. Another solution is to adapt 

the layered control system (subsumption architecture) proposed by Rodney Brooks [70]. 

In both these cases, the reinforcement learning policy can be packaged as an option with a 

trigger condition and an end state.  

7.3.3 Self-generation of high-level achievement tasks 

Chapter 2 mentioned that one of the task categorisations is based on the functional aspect 

of how the task is accomplished, resulting in tasks of achievement, maintenance, avoidance 

and approach type. Also, another categorisation of tasks is based on whether the tasks are 

low-level, relating to actuators of a robot’s joints or high-level, relating to the robot’s 

behaviour that can be identified. In the experiments in Chapter 4, the achievement tasks 

were generated by the definition of an event represented by Equation 7.1. The event, as 

detailed in Chapter 2, models the transition between the states. 

𝐸௧ = 𝑠௧ −  𝑠௧ିଵ  (7.1) 

An action taken by a reinforcement learning agent can cause a transition, and an event is 

used to represent that transition. However, this definition of the transition considers the 

transition of a one-time step, and Merrick et al. [38] use that to generate achievement tasks. 

Such achievement tasks can be seen as low-level tasks. So, that raises a question. Can this 

concept of event be extended to generate high-level achievement tasks?  

A potential solution can be to extend the event transition to encompass n time steps instead 

of just one. In such a case, the event/achievement task is the whole trajectory as opposed 

to the ‘task’ or the ‘goal’ being a single state that has to be achieved. That results in a high-

level achievement task. An event in such a case can be represented, as shown in Equation 

7.2. 

𝐸௧ = 𝑠௧ −  𝑠௧ି௡  (7.2) 
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Take, for example, an achievement task of a robot gripping a bottle or opening the lid of a 

bottle or a Nao humanoid robot learning to walk or wave. In order to attain such tasks, the 

robot has to learn to execute the steps in a particular order. Only then does it result in the 

task being achieved. The experiments in this thesis used the e-puck mobile robot. It would 

be interesting to use a different type of robot, for example, the Nao robot, to self-generate 

such high-level achievement tasks as follow-on research. 

7.3.4 Task prioritization using agent’s general competency 

Using the architecture proposed in Chapter 3, the agent constantly increases its overall 

knowledge of the environment, improving its general competency from being a novice to 

an expert. The open-ended learning architecture can provide a list of tasks; however, if that 

list is not an ordered list, the learning would be unstructured, thus making this journey to 

becoming an expert longer than it should be. That raises the following questions: (i) For a 

continuous learning agent, how does one determine the agent’s current level of general 

competency? (ii) Is it possible to order the list of tasks to be learned based on the agent’s 

current level of general competency?   

The solution to the second question can be to use the agent’s intrinsic motivation to order 

the list of tasks. As seen in Chapter 3, the agent architecture proposed by Santucci et al. 

[12] used the motivation signal based on the learning progress to select a task from the list 

of tasks. Competence is one of the main motivating factors for humans to carry out a task 

[167], and the perceived challenge can be used to derive intrinsic motivation [95]. These 

concepts can be extended to the continuous learning agent and implemented in the 

knowledge management module of the architecture proposed in Chapter 3. As the agent 

progresses from a beginner to an intermediate level to an expert level, the tasks it perceives 

as challenging change. Based on the challenge-point hypothesis [168], tasks that lead to an 

optimal challenge result in the highest motivation signal. Those tasks can be prioritized for 

learning at that point in time.  

Regarding the first question, it is difficult to quantify the agent’s general competency. Such 

a metric will also enable one to determine if the agent is a beginner or an expert. It would 

be interesting to pursue such quantification as follow-on research.  
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7.4 Concluding Remarks 

At the very start, based on the review of the literature, this thesis stated that the key aspects 

of the architecture to create an autonomous agent are open-ended learning, with its 

emphasis on a meta-cognitive aspect such as ‘what to learn’, continuous learning with its 

emphasis on the cognitive aspect of assimilation of the new knowledge and reinforcement 

learning providing an interactive solution for ‘how to learn’. This research proposed a 

‘Modular Continuous Learning Architecture’ that has the components that satisfy those 

aspects, namely a task generation module that provides the direction for learning, a 

knowledge management module that is a skills repository and a learning module 

implemented using reinforcement learning. All these components were put into action and 

demonstrated using an e-puck mobile robot to show how the agent starts with having no 

knowledge of its environment, continuously learns in an open-ended manner, and 

autonomously increases its overall knowledge. Though the proposed modular architecture 

can interoperate with existing techniques, the review of the literature showed: (i) a lack of 

task-independent reward design for the agent to operate autonomously, (ii) a lack of a 

mechanism to generate tasks of varying complexity for it to continuously increase its 

overall knowledge by learning simpler tasks and then progressing on to learning more 

complex tasks and (iii) lack of technique for an agent to reuse its learned knowledge to 

solve compound tasks that are a concurrent combination of its constituent tasks. This thesis 

made contributions in each of those areas by proposing a reinforcement learning reward 

design based on the type of the task, a task generation technique for generating tasks of 

varying complexity and a skill composition technique that reuses learned knowledge to 

solve tasks that are a concurrent combination of simpler tasks. Although much remains to 

be done, the contributions of this research fill some gaps found in the literature, enabling 

one to take a step further to create a truly autonomous and self-learning agent.  
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APPENDIX A:  SURVEY OF MOTIVATED REINFORCEMENT LEARNING 

ARCHITECTURES 

 

Chapter 3, Section 3.2 reviewed the different motivated reinforcement learning and goal-

oriented agent architectures. This appendix section continues that review. It does a side by 

side comparison of those architectures and lists the metrics used to measure the agent 

performance.   

A.1 Comparison of Motivated Reinforcement Learning Agent Architectures  

Table A.1 compares the motivated reinforcement learning architectures seen in the 

literature. The comparison is based on the agent’s overall learning rate implemented using 

the architecture, the agent’s learning efficiency, and how scalable the architecture is in 

terms of recall of learned skills. It also lists the publications that use that architecture.  

 

Table A.1: Comparison of motivated reinforcement learning agent architectures. 

 Agent Learning Rate Agent Learning 
Efficiency 

Scalability of Skill 
Recall 

Publications 
that Use the 
Architecture 

Motivated Flat 
Reinforcement 
Learning 

The learning rate of 
MFRL is significantly 
faster increases compared 
to other models. The 
policy adapts to represent 
the task to be learned.  

The learning policy 
cannot be recalled; hence 
the policy will have to be 
re-learned if the task 
becomes motivating on 
more than one occasion. 

The learning policy 
cannot be recalled 

[45] [44] [169] 
[170] [171] 
[172] [173] 
[174] [175] 
[176] [177] 
[178] [49] 
[179] [180] 
[181] [163] 
[182] [91] 
[183] 

Motivated 
Multi-Option 
Reinforcement 
Learning 

Because MMORL learns 
multiple skills, the 
learning rate appears 
slow; however, it is still 
faster than having to learn 
a single goal N number of 
times, as is the case with 
MFRL. 

The learning policy can 
be recalled. 

MMORL is more 
scalable than 
MHRL in terms of 
recalling the 
options. 

[44] [184] 
[185] [186] 
[187]   

Motivated 
Hierarchical 

Because of the ability to 
reuse the recalled 
behaviour, the learning 

The learning policy can 
be recalled and reused. 

The skills are 
arranged in a 
hierarchical fashion; 

[188] [49] [44] 
[189] [190] 
[187] [191] 
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Reinforcement 
Learning 

rate can be sped up if the 
appropriate options are 
chosen. 

hence it is not as 
scalable as 
MMORL. 

[192] [115] 
[98] [193] 
[194] [96] 
[195] 

Motivated 
Introspective 
Reinforcement 
Learning 

The MIRL is able to learn 
quicker than the 
motivated RL agent 
without introspection. 

In comparison to the 
architectures that lack 
introspection, the agent 
with introspection is 
better able to focus on 
complex goals. 

The MIRL agents 
can store and recall 
partially learned 
solutions. Thus 
those skills do not 
need to be relearned 
from scratch. That 
makes the recall 
more scalable. 

[11] 

 

From this table, several observations arise. First, all the architectures except the motivated 

introspective learning architecture seem to be derived from motivated flat reinforcement 

learning. The main difference is the type of reinforcement learning algorithm used in 

architecture. The key attribute that differentiates the architectures is options, which is 

primarily a reinforcement learning construct. So far, there have been no attempts to design 

architectures that distinguish the way the key intrinsically motivated reinforcement 

learning attribute, namely motivation, is incorporated into the architecture. Different 

architectures could be formed using the way the motivation signal is either combined with 

reward or used exclusively. Also, it can be seen from the review of the architectures that 

most of the literature seems to use simpler architectures like motivated flat reinforcement 

learning and motivated hierarchical reinforcement learning. Even though architectures like 

motivated multi-option reinforcement learning and motivated introspective reinforcement 

learning appear to be more comprehensive and capable of representing and learning 

complex sets of skills, they seem to be seldom used. In addition, no architectures are 

currently proposed to combine motivation with other types of reinforcement learning 

algorithms, such as multi-agent reinforcement learning and multi-objective reinforcement 

learning, although motivation has recently been examined in a deep reinforcement learning 

setting [96][97]. These observations show that although intrinsically motivated 

reinforcement learning is a promising framework, much remains to be done as far as the 

architectures are concerned. 
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A.2 Performance Measures for Agents 

One of the main reasons for combining intrinsic motivation with reinforcement learning is 

to be able to create an agent that can learn a different skill with little or no external 

intervention. That raises a question regarding the evaluation of such an agent’s 

performance compared to a simple reinforcement learning agent. This section reviews the 

performance metrics used in the intrinsically motivated reinforcement learning literature 

to compare different aspects of agent performance.  

Macindoe et al. [163] proposed learning efficiency, behavioural variety, and complexity as 

metrics to measure the performance of intrinsic motivation. The learning efficiency was 

calculated by using the number of steps taken by the agent to converge to a stable policy. 

Behavioural variety was calculated using the number of tasks for which a stable policy was 

learned, and behavioural complexity was calculated using the total number of actions 

required to accomplish a task. Merrick and Maher [173] generated behaviour patterns in 

non-player game characters to measure the effectiveness of intrinsic motivation. This was 

then used to show that these non-player game characters adapt better to the game’s 

changing environment. Merrick et al. [196] extended this further to a behaviour structure 

concept that is then used to evaluate the emergent behaviour of a motivated reinforcement 

learning agent.  

As an alternative, as shown by Barto et al. [188] [184], one of the ways to compare the 

performance of an intrinsically motivated reinforcement learning agent to a reinforcement 

learning agent is to use an intrinsically motivated reinforcement learning implementation 

where the motivation signal is used in addition to the reinforcement learning reward. One 

can then quickly measure the two agents’ performance by adding or removing the 

motivation signal. Stout and Barto [90] introduced competence progress as a measure to 

determine which skill the agent can learn at a particular point in time. Low competence 

progress signal is generated for the skills that are either learned or are too difficult to learn.  

In general, it appears that the performance metrics seem to fall into one of the following 

categories:  
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 Metrics that compare the performance of an intrinsically motivated reinforcement 

learning agent with a reinforcement learning agent: This determines how intrinsic 

motivation improves the performance of reinforcement learning.  

 Metrics that characterise the performance of a chosen motivation function: This 

determines how good or bad the motivation function is. 

 Metrics that characterise an emergent behaviour: This shows how intrinsic 

motivation influences the behaviour of an agent.  

 

Table A.2: Classification of the performance measures seen in the literature on motivated reinforcement 
learning agent architectures. 

Performance Measure Publications That Use These Metrics 

Metrics comparing the performance of an 
intrinsically motivated reinforcement learning 
agent with a simple reinforcement learning agent 

[45] [188] [184] [171] [197] [193] [96] [195] [97]  

Metrics for characterising the performance of a 
chosen motivation function 

[190] [98] [184] [192] [189] [87] [183] [191] [194]  

Metrics for characterising an emergent behaviour [90] [169] [171] [172] [173] [174] [176] [177] [180] [181] [182] 
[198] 

Other metrics [199] [170] [93] [175] [185] [178] [186] [187] [200] [201]  

 

Table A.2 classifies the literature according to the category of performance measure used. 

This classification shows that several techniques have been proposed for evaluating 

intrinsically motivated reinforcement learning. However, as with many other aspects of 

intrinsically motivated reinforcement learning, there is not yet an agreement on which of 

these techniques should be used as a benchmark for comparing the different architectures.  
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APPENDIX B:  COMPARISON OF REINFORCEMENT LEARNING 

ALGORITHMS FOR Q-TABLE BASED APPROACHES 

 

This appendix section does a side by side comparison of the Q-Learning [39] and Dyna-Q 

[40] reinforcement learning algorithms. Both the algorithms are detailed in Chapter 2. Q-

Learning is the most commonly used algorithm. It is widely used because it has the least 

number of parameters to tune and its simplicity. Dyna-Q combines Q-Learning with model 

learning, i.e. has an internal representation of the transition model. The Q-values are 

improved using the actual experiences by interacting with its environment and imaginary 

experiences generated by the transition model. That reduces the actual interactions with the 

environment making it more performant, especially for robotics applications where the 

actual interaction can be expensive. These experiments do not make an exhaustive 

comparison (that already exists in the literature [40]), but the aim is to compare the 

performance of these algorithms for different task types and help put the results in 

perspective. The algorithms were tested on the standard benchmark cart-pole problem, a 

maintenance task, and a maze navigation problem, an achievement task. These task types 

are defined in detail in Chapter 4.   

Problem Definition 

Shown in Figure B.1 is a cart-pole problem. A cart carrying a hinged pole is placed on a 

finite track, and the reinforcement learning agent aims to keep the pole balanced for as long 

as possible. It is primarily a control problem and can be represented in both continuous and 

discrete state and action space. For the experiment in this section, discrete state and action 

space are used. The state space comprises the position of the cart, velocity of the cart, angle 

of the pole with respect to the cart and angular velocity of the pole. The action space 

comprises pushing the cart to the left and pushing the cart to the right.  

Shown in Figure B.2 is the maze problem. In this contrived problem, the maze consists of 

a start state and an end state with random walls throughout the maze. The reinforcement 

learning agent aims to find its way from the start state to the end state. The state space 
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comprises the x and y position numbers of the square blocks of the maze. The action space 

comprises moving left, right, up and down.   

 

 

Figure B.1: Cart-pole problem. A cart that 
carries a hinged pole is placed on a finite 
track. The aim of the agent is to learn to 

keep the pole balanced for as long as 
possible.   

 

Figure B.2: Maze problem. The square marked ‘S’ is the 
start state, and the one marked ‘G’ is the end state. Grey 
squares are the walls, and the black square is the agent. 
The aim of the agent is to find its way through the maze 
from the square marked as ‘S’ (bottom left) to the square 

marked ‘G’ (bottom right).  

 

Results of the experiment with the cart-pole problem 

For both algorithms, the reward for the problem was a small positive value of 1 for every 

step the pole is kept balanced and a relatively large negative value of -10 when the pole 

falls. The episode ended when the pole fell or 1000 steps. The experiment was run 10 times 

for a trial of 300 episodes each. The epsilon-greedy action selection strategy was used with 

the epsilon parameter set to 0.1 with no decay.  
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Figure B.3: Q-Learning results for the cart-pole 
problem. It shows the number of steps for which 
the pole was balanced. A higher number of steps 

indicates good performance.  

Figure B.4: Dyna-Q results for the cart-pole 
problem. It shows the number of steps for which 
the pole was balanced. A higher number of steps 

indicates good performance. 
 

The plots in Figure B.3 and Figure B.4 show the results for the two algorithms during the 

training phase. They show the number of steps for which the pole was balanced. The results 

are for 10 trials, with the black line showing the average number of steps for which the 

pole was balanced and the shaded region showing the standard deviation. 

Results of the experiment with the maze problem    

For both algorithms, the reward for the problem was a small negative value of -1 for every 

step the agent takes and a relatively large positive value of 10 when the agent reaches the 

goal state. The episode ended when the agent reached the goal state or after 5000 steps. 

The experiment was run 10 times for a trial of 300 episodes each. The epsilon-greedy action 

selection strategy was used with the epsilon parameter set to 0.1 with no decay.  

 

 

Figure B.5: Q-Learning results for the maze 
problem. It shows the number of steps the agent 
takes to reach the goal. A lower number of steps 

indicates good performance. 

 

Figure B.6: Dyna-Q results for the maze problem. 
It shows the number of steps the agent takes to 

reach the goal. A lower number of steps indicates 
good performance. 

 

The plots in Figure B.5 and Figure B.6 show the results for the two algorithms during the 

training phase. They show the number of steps taken by the agent to reach the goal state. 

The results are for 10 trials, with the black line showing the average number of steps taken 

by the agent to reach the goal state and the shaded region showing the standard deviation. 
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Discussion and comparison of the algorithms 

Results for the cart-pole problem show that, on average, the agent using Dyna-Q can 

balance the pole for more steps than the agent using Q-Learning, and the results for the 

maze problem show that, on average, the agent using Dyna-Q can reach the goal state in 

fewer steps than the agent using Q-Learning. Also, in both cases, the agent’s performance 

using Dyna-Q is more stable than the agent using Q-Learning, i.e. Dyna-Q converges, and 

the agent reaches the optimal solution in fewer episodes. This comparison with 

maintenance and achievement task types helps put the performance of the algorithms in 

perspective. The table below lists the pros and cons of each of the algorithms.    

 

Table B.1: Comparison of Q-Learning and Dyna-Q algorithms.  

Algorithm Pros Cons 

Q-Learning 1. Simple implementation, no state transition 
model required. 

 

1. Slower convergence compared to Dyna-Q 

2. Less stable learning compared to Dyna-Q 

 

Dyna-Q 1. Faster convergence compared to Q-Learning. 

2. Stable learning compared to Q-Learning. 

3. Since there is an internal state transition model, 
it requires fewer interactions with the real world 
and is suitable for robotics applications where 
interaction with the real world can be expensive. 

1. Slightly complex implementation compared 
to Q-Learning. Implementation requires a loop 
for interaction with the real world and a loop for 
iteration within the internal state transition 
model.  

 

Considering the benefits of the Dyna-Q algorithm, it was selected as an algorithm for the 

experiments in Chapters 3, 4 and 5.  
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