
i

OPEN-ENDED CONTINUOUS REINFORCEMENT

LEARNING FOR MOBILE ROBOTS

A Dissertation Presented

by

Paresh Dhakan

Submitted for the degree of

Doctor Of Philosophy

to

Ulster University

Faculty of Computing, Engineering and the Built Environment

May 2022

ii

ABSTRACT

Creating an intelligent agent capable of open-ended learning and long term autonomy is

still an active research area. Reinforcement learning, where an agent learns by interacting

with its environment, is suitable for agent autonomy and its extensions, such as motivated

reinforcement learning and goal-oriented agent architectures, with their focus on meta-

cognitive aspects such as ‘what to learn’, enable autonomous multitask learning. The other

essential aspect is the cognitive aspect of ‘how to learn’, a focus area of lifelong learning

architectures. When these aspects are combined, it creates a comprehensive agent

architecture that would endow an agent to learn new skills with minimal human

intervention. The first contribution of this thesis is an agent architecture consisting of a task

generation module, knowledge management module and learning module, providing the

agent with open-ended, continuous and autonomous learning capabilities. Further, this

thesis contributes to each of the modules of this architecture as follows.

In reinforcement learning, the agent learns by interacting with its environment, guided by

reward. However, for many dynamic environments, it is unknown upfront what tasks the

agent will need to learn, and research has acknowledged the benefits of generating subtasks

to direct learning. Depending on how the broken-down subtasks are considered to be

accomplished, they can be an achievement, maintenance, approach or avoidance type. The

second contribution of this thesis, related to the learning module of the proposed

architecture, is a reward design based on these different types of tasks. For a continuously

learning agent, tasks direct what the agent learns. Typically, the task design requires

external intervention, thus hindering the agent’s autonomy. The third contribution of this

thesis, related to the task generation module of the proposed architecture, is a mechanism

to generate tasks at different levels of complexity. That enables the agent to learn simpler,

more primitive tasks first, followed by more difficult compound tasks.

Furthermore, one of the key characteristics of continuous learning is that the agent should

be able to use its existing knowledge to solve future tasks. Compound tasks can be either

a sequential or a concurrent combination of primitive tasks. The fourth contribution of this

thesis, related to the knowledge management module of the proposed architecture, is a

compositionality technique whereby the agent can combine its primitive skills for disjoint

iii

tasks to solve a compound task that is a concurrent combination of those tasks. Finally, the

fifth contribution of this thesis is metrics to measure task difficulty, agent’s competency

for a particular skill and agent performance for tasks of different types. A mobile robot is

used for all the experiments to show how the agent generates new tasks, learns solutions to

those tasks and combines the skills to accomplish compound tasks, thus demonstrating

autonomous behaviour of continuous learning in an open-ended way.

iv

TABLE OF CONTENTS

 Page

Chapter 1 INTRODUCTION ...1

1.1 Introduction ..1

1.2 Research Questions ..3

1.3 Contributions and Significance ..6

1.3.1 A modular agent architecture for open-ended continuous

reinforcement learning ...6

1.3.2 Task-independent reward functions based on the type of task7

1.3.3 A technique to self-generate tasks of varying levels of

complexity..7

1.3.4 A technique to concurrently compose primitive skills to form

solutions for compound tasks...7

1.3.5 Metrology for agent performance, task difficulty and agent

competency ..8

1.4 Organisation of the Thesis ...8

Chapter 2 METHODS, MATERIALS AND CONCEPTS..12

2.1 Introduction ..12

2.2 Algorithms ...12

2.2.1 Reinforcement Learning ...12

2.2.2 Adaptive Resonance Theory ...21

2.3 Mobile Robot and Simulation Software ..22

2.4 Other Concepts used in this Thesis ..25

v

Chapter 3 AGENT ARCHITECTURE FOR OPEN-ENDED AND CONTINUOUS

LEARNING ...28

3.1 Introduction ..28

3.2 Agent Architectures for Open-Ended Learning ...29

3.2.1 Motivated reinforcement learning agent architectures29

3.2.2 Goal-oriented autonomous agent architectures33

3.2.3 Other architectures ..35

3.2.4 Gap in the state-of-the-art ...36

3.3 Modular Continuous Learning Architecture ..37

3.3.1 Task generation module ..39

3.3.2 Knowledge management module ..40

3.3.3 Learning module ...41

3.3.4 Continuous learning ..41

3.3.5 Architecture extensions ...42

3.3.6 Architecture applications ..44

3.4 Mobile Robot Experiments ..46

3.4.1 Objectives of the experiments ...46

3.4.2 Methods and materials ..47

3.4.3 Results and analysis ..50

3.5 Summary ..58

Chapter 4 REWARD DESIGN FOR AUTONOMOUS LEARNING60

4.1 Introduction ..60

4.2 Task-Independent Reward Design ...62

4.2.1 Intrinsic motivation ...64

vi

4.2.2 Reward shaping ...66

4.2.3 Gap in the state-of-the-art ...67

4.3 Reward Functions based on the Type of the Task ...68

4.3.1 Reward function for a maintenance task ...69

4.3.2 Reward function for an approach task ..70

4.3.3 Reward function for an avoidance task ...71

4.3.4 Reward function for an achievement task ...72

4.4 Metrology for Agent Performance ...73

4.4.1 Number of times for which the non-episodic task is attained

(M1) ..73

4.4.2 The longest period of maintenance task (M2)74

4.4.3 Number of times task not avoided (M3) ..74

4.5 Mobile Robot Experiments ..75

4.5.1 Objectives of the experiments ...75

4.5.2 Methods and materials ..76

4.5.3 Results and analysis ..78

4.6 Summary ..92

Chapter 5 SELF GENERATION OF TASKS TO DIRECT THE LEARNING94

5.1 Introduction ..94

5.2 Self-Generation of Tasks ...96

5.2.1 Task generation ...96

5.2.2 Subtask generation ..97

5.2.3 Gap in the state-of-the-art ...98

5.3 Self-Generation of Tasks of Varying Complexity ...99

vii

5.3.1 Step 1: Gather experience ...99

5.3.2 Step 2: State attribute aggregation using hierarchical clustering

..100

5.3.3 Step 3: Generate tasks ...103

5.3.4 Step 4: Task pruning ...104

5.3.5 Integration with continuous learning architecture106

5.3.6 Examples of tasks of varying complexity107

5.4 Mobile Robot Experiments ..107

5.4.1 Objectives of the experiments ...108

5.4.2 Methods and materials ..108

5.4.3 Results and analysis ..110

5.5 Summary ..117

Chapter 6 REUSE OF LEARNED KNOWLEDGE BY SKILL COMPOSITION119

6.1 Introduction ..119

6.2 Skill Composition ..122

6.2.1 Multi-task learning ..123

6.2.2 Sequential combination of policies ...124

6.2.3 Modular reinforcement learning ...125

6.2.4 Concurrent combination of policies ..125

6.2.5 Gap in the state-of-the-art ...126

6.3 Concurrent Skill Composition ...127

6.3.1 Compositionality for Q-table and neural network based policy

representation ...129

6.3.2 Skill composition using average model weight ensemble132

6.4 Metrology for Task Difficulty and Skill Competency136

viii

6.4.1 Metric to measure the difficulty level of a task138

6.4.2 Metric to measure agent’s competency for a skill139

6.5 Mobile Robot Experiments ..139

6.5.1 Objectives of the experiments ...140

6.5.2 Methods and materials ..140

6.5.3 Results and analysis ..146

6.6 Summary ..153

Chapter 7 CONCLUSION AND FUTURE WORK ..155

7.1 Introduction ..155

7.2 Summary of Contributions ...156

7.2.1 A modular agent architecture for open-ended continuous

reinforcement learning ...157

7.2.2 Task-independent reward functions based on the type of task158

7.2.3 A technique to self-generate tasks of varying levels of

complexity..159

7.2.4 A technique to concurrently compose primitive skills to form

solutions for compound tasks...160

7.2.5 Metrology for agent performance, task difficulty and agent

competency ..162

7.3 Future Work ...162

7.3.1 Long term autonomy for a robot in real-world – overcoming

the limitations of the proposed architecture163

7.3.2 Sequential combination of tasks ...164

7.3.3 Self-generation of high-level achievement tasks165

7.3.4 Task prioritization using agent’s general competency....................166

ix

7.4 Concluding Remarks ..167

Appendix A: SURVEY OF MOTIVATED REINFORCEMENT LEARNING

ARCHITECTURES ...168

A.1 Comparison of Motivated Reinforcement Learning Agent Architectures

..168

A.2 Performance Measures for Agents ..170

Appendix B: COMPARISON OF REINFORCEMENT LEARNING

ALGORITHMS FOR Q-TABLE BASED APPROACHES ...172

x

LIST OF TABLES

 Page

Table 2.1: An example of a Q-table. A tabular representation of the state and action pairs where

the intersection cell stores the Q-value. ..16

Table 3.1: Table showing the focus areas of each architecture category reviewed in this

literature review section. ...37

Table 3.2: Cluster representatives generated for the arena with obstacles.52

Table 3.3: Cluster representatives generated for the maze arena...53

Table 3.4: Cluster representatives generated for the circular arena with tracks.53

Table 4.1: Results for maintenance tasks. Metrics M1, M2 and reward per episode measured for

ten trials with standard deviation shown. ..79

Table 4.2: Results for approach tasks. Metric M1 measured for ten trials with standard deviation

shown. ...82

Table 4.3: Results for avoidance tasks. Metrics M1 and M3 measured for ten trials with standard

deviation shown. ...84

Table 4.4: Results for achievement tasks. Metric reward per episode measured for ten trials

with a standard deviation shown. ..86

Table 4.5: Results for compound tasks. Metrics M1, M2 and reward per episode measured for

ten trials with standard deviation shown. ..91

Table 5.1: Table showing the focus areas of each category reviewed in this section.99

Table 5.2: Examples of the tasks that can be generated using the proposed task generation

mechanism. ...104

xi

Table 5.3: Output of hierarchical agglomerative clustering for the maze arena, the circular

arena and the arena with obstacles. Row #1 and #3 also contain a graphical view of

the clustering technique’s output in terms of aggregation of the e-puck’s state

attributes. ...112

Table 5.4: Unique groups of state attributes obtained from further processing the results shown

in Table 5.2. ..113

Table 5.5: A list of handcrafted compound tasks (created in a semi-structured way) and results

from learning those tasks. Metrics M1 and reward per episode measured for ten trials

with standard deviation shown..115

Table 6.1: A list of handcrafted primitive and compound tasks that will be used for the

experiments in this chapter. ..145

Table 6.2: Results of the learning phase for the primitive tasks. Reward per episode was

measured for ten trials in the scaffolded and non-scaffolded environment and

compared using Mann-Whitney U-Test..147

Table 6.3: Results for compound tasks. Reward per episode measured for ten trials with

standard deviation shown. Mann-Whitney U-Test based comparison of the skill

learned from scratch and using the composed skill. ...151

Table A.1: Comparison of motivated reinforcement learning agent architectures.168

Table A.2: Classification of the performance measures seen in the literature on motivated

reinforcement learning agent architectures. ..171

Table B.1: Comparison of Q-Learning and Dyna-Q algorithms. ..175

xii

LIST OF FIGURES

 Page

Figure 1.1: A graphical view of the organisation of the thesis. ...9

Figure 2.1: Graphic representation of reinforcement learning. ..13

Figure 2.2: Graphic representation of intrinsically motivated reinforcement learning.20

Figure 2.3: e-puck mobile robot ...23

Figure 2.4: Top view of the arena created in Webots. ...24

Figure 2.5: A plan view of e-puck with labelled sensors (proximity sensors, ground sensors,

and camera) and wheels. ...24

Figure 3.1: Concept of intrinsically motivated reinforcement learning. The reward received by

the reinforcement learning agent is a combination of external reward and motivation

signal. ..31

Figure 3.2: Motivated introspective learning; diagram adapted from Merrick [11]34

Figure 3.3: Modular Continuous Learning Architecture. ..38

Figure 3.4: A consolidated view of the Modular Continuous Learning Architecture showing

functional details of each module and multi-agent capability of the Task Generation

Module and the Learning Module...43

Figure 3.5: Top view of e-puck with labelled proximity sensors. Red lines show the direction

in which the proximity is detected. ...48

Figure 3.6: Top view of the arena with obstacles. ...48

Figure 3.7: Top view of the maze arena. ...48

xiii

Figure 3.8: Top view of the circular arena with tracks. ...48

Figure 3.9: Example locations of the e-puck (shown in blue colour) in the maze arena for the

state “move forward with the wall to its left”. ..50

Figure 3.10: Trajectory, shown using blue line overlay of the e-puck randomly exploring the

arena with obstacles. The states experienced during this exploration would be related

to “being close to an obstacle”, “being in an open space”, to name a few.51

Figure 3.11: Trajectory, shown using blue line overlay of the e-puck randomly exploring the

maze arena. The states experienced during this exploration would be related to “being

close to a wall”, “being in an open space”, to name a few.51

Figure 3.12: Trajectory, shown using the blue line overlay of the e-puck randomly exploring

the circular arena with tracks. The states experienced during this exploration would

be related to “being on a track”, “not on a track”, to name a few.51

Figure 3.13: Reward gained when learning the selected tasks. Tasks for the arena with

obstacles are shown in green, tasks for the maze arena are shown in blue, and the

tasks for the circular arena are shown in purple. ..55

Figure 3.14: Trajectory of e-puck (shown using blue line overlay) avoiding obstacles/walls in

the arena with randomly scattered obstacles. The starting location is shown with the

red dot. ..56

Figure 3.15: Trajectory of e-puck (shown using blue line overlay) following the wall to its right

in the maze arena. The starting location is shown with the red dot.56

Figure 3.16: Trajectory of e-puck (shown using the blue line overlay) following the black track

in the circular arena. The starting location is shown with the red dot.56

Figure 3.17: Continuous Learning cycle of generating tasks and learning skills in different

arenas. With this open-ended continuous learning cycle, the e-puck discovers a

xiv

unique set of tasks in each arena and then learns skills to accomplish those tasks, thus

increasing its overall knowledge base. ..57

Figure 4.1: Modular Continuous Learning Architecture revisited. Task-independent reward

design, the focus of this chapter, is the contribution related to the Learning Module

of the architecture. ..61

Figure 4.2: Top view of e-puck with labelled proximity sensors. Red lines show the direction

in which proximity is detected. ...76

Figure 4.3: Top view of the simple vast walled arena. ..77

Figure 4.4: Trajectory (shown in black colour) of e-puck learning task G1. Note the straight-

line trajectory. Even during this learning phase, the behaviour of “moving forward at

high speed” is apparent. ..80

Figure 4.5: Trajectory (shown in black colour) of the e-puck learning task G3. Note the straight-

line trajectory. Even during this learning phase, the behaviour of “moving backwards

at high speed” is apparent. ..80

Figure 4.6: The green overlay shows the region where the e-puck could receive a reward for

tasks G1, G3 and G12. E-pucks are shown scattered to indicate that the location of the

e-puck can be anywhere in that region. ..81

Figure 4.7: The green overlay on the arena shows the region where the e-puck could receive a

reward for tasks G5 and G8. E-pucks are shown scattered to indicate that the location

of the e-puck can be anywhere in that region. ..81

Figure 4.8: The green overlay shows the region where the e-puck could cross the threshold

from ‘approach’ to ‘achieve’ for tasks G5, G8, and G9. ..83

Figure 4.9: Top view of the maze arena. ...89

Figure 4.10: Top view of the arena with obstacles. ...89

xv

Figure 4.11: (a), (b) and (c) show different stages of the e-puck learning the wall-following

task in the maze arena. The blue line is the trajectory of the e-puck, with the red

arrows showing the e-puck’s direction. The e-puck starts at the bottom third of the

arena, goes straight until it is close to a wall and then follows the wall to its left.

Attempts 1, 2, 3 are the trajectory of the e-puck trying to go all the way around the

wall. Similarly, at the top half of the arena, it takes the e-puck four attempts to go all

the way around the wall and then it continues following the wall.91

Figure 5.1: Modular Continuous Learning Architecture revisited. Task generation, the focus of

this chapter, is a contribution related to the Task Generation Module.95

Figure 5.2: A sample dendrogram is shown at the top of the figure. The rest of the figure (shown

in colour) shows the state attribute data points. The aggregations of state attributes

are shown by clusters f1, f2, f3 and f4. ..101

Figure 5.3: A symbolic representation of the state attributes aggregation resulting in regions

within the state space. The figure shows state-space in a 2D representation, and

hexagons represent the regions within the state space. Varying the threshold criteria

results in coarser to finer aggregations/groups. ..102

Figure 5.4: Tasks, ranging from simple to complex, generated by enabling and combining

different groups/aggregations. A few sample tasks are shown in the figure. The green,

blue, yellow and red colour indicates that the aggregation is enabled using one of the

functions such as min, max and avg. The grey colour indicates that the aggregation is

not enabled and will be masked/ignored. ..103

Figure 5.5: The detailed steps of the proposed task generation technique.105

Figure 5.6: A plan view representation of e-puck with all its state attributes (proximity sensors,

ground sensors and wheels) labelled...109

Figure 5.7: Top view of the maze arena. ...109

Figure 5.8: Top view of the circular arena with tracks. ...109

xvi

Figure 5.9: Top view of the arena with obstacles. ...109

Figure 5.10: Trajectory, shown in blue colour, of the e-puck randomly exploring the maze

arena. The states experienced during this exploration would be related to “being close

to a wall”, “being in an open space”, to name a few. ...110

Figure 5.11: Trajectory, shown in blue colour, of the e-puck randomly exploring the circular

arena with tracks. The states experienced during this exploration would be related to

“being on a track”, “not on a track”, to name a few. ..110

Figure 5.12: Trajectory, shown in blue colour, of the e-puck randomly exploring the arena with

obstacles. The states experienced during this exploration would be related to “being

close to an obstacle”, “being in an open space”, to name a few.110

Figure 5.13: Varying levels of aggregation of the e-puck’s proximity sensors.114

Figure 6.1: Modular Continuous Learning Architecture revisited. Skill composition, the focus

of this chapter, is a contribution related to the Knowledge Management Module. 120

Figure 6.2: An example of Modular Neural Networks ..131

Figure 6.3: Skill composition method #1 – same state vector for the constituent tasks

(representation #1). ...134

Figure 6.4: Skill composition method #2 – task-specific state vector (representation #2). ...135

Figure 6.5: A plan view of e-puck with labelled state attributes (proximity sensors, ground

sensors, wheels and camera). ..141

Figure 6.6: Training arena with obstacles. Specially constructed arena for scaffolded setup

(Training_Arena_1). ...142

Figure 6.7: Training arena with a randomly moving blue robot. Specially constructed arena for

scaffolded setup (Training_Arena_2). ..142

xvii

Figure 6.8: Training arena with a coloured pattern on the floor. Specially constructed arena for

scaffolded setup (Training_Arena_3). ..142

Figure 6.9: Test arena with black regions on the floor and obstacles (Test_Arena_1).143

Figure 6.10: Test arena with black regions on the floor and randomly moving blue robot

(Test_Arena_2). ..143

Figure 6.11: Test arena with obstacles and randomly moving blue robot (Test_Arena_3). ..143

Figure 6.12: Test arena with obstacles, a randomly moving blue robot and black regions on the

floor (Test_Arena_4). ...143

Figure 6.13: Neural network architecture used for the experiments in this chapter. The number

of nodes in the input layer depends on attributes that make up the state; for example,

representation #1 has 12 attributes. (a) The actor-network. The output is the

probability for each of the three actions. (b) The critic-network. Its output is the

‘advantage’ calculated by the algorithm. ..144

Figure 6.14: Reward hacked for task p3. E-puck seen at the top left corner of the arena has

stumbled upon a situation where it keeps pushing itself against the wall to gain a

positive reward. ...148

Figure 6.15: Trajectory (in navy colour) of e-puck executing the combined policy for C1

(avoiding obstacles and avoiding black regions on the ground). The e-puck starts

from the location marked ‘start’. ..150

Figure 6.16: Trajectory (in navy colour) of e-puck executing the combined policy for C2

(following a blue robot and avoiding black regions on the ground). The e-puck starts

from the location marked ‘start’. ..150

Figure 6.17: Trajectory (in navy colour) of e-puck executing the combined policy for C3

(following a blue robot and avoiding obstacles). The e-puck starts from the location

marked ‘start’. ...150

xviii

Figure 6.18: Episode reward plot for C1 (maintain avoiding obstacles AND maintain avoiding

the black regions on the floor). ...153

Figure 6.19: Episode reward plot for C2 (follow the blue robot AND maintain avoiding the

black regions on the floor). ...153

Figure 6.20: Episode reward plot for C3 (maintain avoiding obstacles AND track the blue

robot). ..153

Figure 6.21: Episode reward plot for C4 (maintain avoiding obstacles AND follow the blue

robot AND maintain avoiding the black regions on the floor).153

Figure 7.1: A graphical view of how the proposed architecture relates to the other contributions

of this thesis. ...156

Figure 7.2: Trajectory (shown in blue colour) of the e-puck learning to follow the wall. The

red arrows show the direction of the path. This figure is the same as Figure 4.11(c).

It is repeated here for convenience. ..164

Figure B.1: Cart-pole problem. A cart that carries a hinged pole is placed on a finite track. The

aim of the agent is to learn to keep the pole balanced for as long as possible.173

Figure B.2: Maze problem. The square marked ‘S’ is the start state, and the one marked ‘G’ is

the end state. Grey squares are the walls, and the black square is the agent. The aim

of the agent is to find its way through the maze from the square marked as ‘S’ (bottom

left) to the square marked ‘G’ (bottom right). ..173

Figure B.3: Q-Learning results for the cart-pole problem. It shows the number of steps for

which the pole was balanced. A higher number of steps indicates good performance.

 174

Figure B.4: Dyna-Q results for the cart-pole problem. It shows the number of steps for which

the pole was balanced. A higher number of steps indicates good performance.174

xix

Figure B.5: Q-Learning results for the maze problem. It shows the number of steps the agent

takes to reach the goal. A lower number of steps indicates good performance.174

Figure B.6: Dyna-Q results for the maze problem. It shows the number of steps the agent takes

to reach the goal. A lower number of steps indicates good performance.174

xx

ACRONYMS

AC Actor-Critic

ART Adaptive Resonance Theory

BDI Belief Desire Intention

IMOL Intrinsically Motivated Open-Ended Learning

IMRL Intrinsically Motivated Reinforcement Learning

KL divergence Kullback-Leibler divergence

MDP Markov Decision Process

MFRL Motivated Flat Reinforcement Learning

MIRL Motivated Introspective Reinforcement Learning

MMORL Motivated Multi-Option Reinforcement Learning

NN Neural Network

RL Reinforcement Learning

SART Simplified Adaptive Resonance Theory

TD Temporal Difference

xxi

PUBLICATIONS FROM THIS THESIS

1. P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, “Modular Continuous Learning
Framework,” 2018 Joint IEEE 8th International Conference on Development and
Learning and Epigenetic Robotics, ICDL-EpiRob 2018. Tokyo, Japan, pp. 107–112,
2018.

 This forms part of Chapter 3 of this thesis (Agent Architecture For Open-
Ended and Continuous Learning).

2. P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, “Intrinsic rewards for

maintenance, approach, avoidance, and achievement goal types,” Frontiers in
Neurorobotics, vol. 12, no. October. 2018.

 This forms part of Chapter 4 of this thesis (Reward Design for Autonomous
Learning).

3. P. Dhakan, K. Kasmarik, I. Rano, and N. Siddique, “Open-Ended Continuous

Learning of Compound Goals,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 13, no. 2. pp. 274–285, 2019.

 This forms part of Chapter 5 of this thesis (Self-Generation of Tasks to Direct
the Learning).

4. P. Dhakan, K. Kasmarik, P. Vance, I. Rano, and N. Siddique, “Concurrent Skill

Composition using Ensemble of Primitive Skills.”. IEEE Transactions on Cognitive
and Developmental Systems, Accepted for publication – 10th May 2022.

 This forms part of Chapter 6 of this thesis (Reuse of Learned Knowledge by
Skill Composition).

5. N. Siddique, P. Dhakan, I. Rano, and K. E. Merrick, “A review of the relationship

between novelty, intrinsic motivation and reinforcement learning,” Paladyn, Journal
of Behavioral Robotics, vol. 8, no. 1. pp. 58–69, 2017.

1

CHAPTER 1 INTRODUCTION

1.1 Introduction

Designing an intelligent agent is complex [1] [2] [3]. In the case of living organisms, while

some skills are self-learned, others need to be taught. While some learning is structured,

most of it is unstructured. Moreover, the reason to attempt to learn some skills ranges from

survival to social and sometimes just for its sake [4]. In any case, for a living organism,

there appears to be an ecosystem that initiates, drives and sustains learning. To create an

artificial agent, all of this has to be thought of and designed [5] [6] [7] [8]. The reason, the

drive, the motivation, and the cause to learn something new is all a piece of code or some

form of a programmable circuit. The knowledge representation, in its simple form, is a

relationship mapping between data points. The knowledge repository, in its simplest form,

is a data store. In the 1980s and 1990s, this used to be a very active research area [9] [10].

Since then, several tangible and intangible advances have been made in everything even

remotely related to the intelligent agent, from hardware (processing power, sensor

technologies, to name a few) and software (learning frameworks, knowledge

representation, to name a few) to our understanding of what intelligence is [3]. In recent

years researchers have started to examine self-motivated, continuous learning agents [11]

[12] [13]. However, there remain few established architectures that empower the agents to

self-direct their learning. That is the topic of this thesis.

An agent or a robot, in most cases, is designed to do a particular task or a set of tasks.

Undoubtedly, those repetitive tasks are carried out with high precision and better than

humans in many cases. However, due to one failure in hardware or software or one change

to the environment, such an agent’s behaviour becomes highly unpredictable. Even if the

agent has the capability to adapt to programmed predictable uncertainty, such as sudden

road closure requiring the mapping software to recalculate the route, in many cases, any

unexpected change in the normal working condition leads to failure. Such adaptability

requires the agent to learn continuously, sort of rewiring some of the internal

representations of the model of its world on a constant basis, and this should continue for

2

the whole lifetime of the agent. That is commonly referred to as lifelong or continual

learning [14] [15]. That learning behaviour is reactive since the learning is triggered by an

event [2]. On the other hand, a proactive learning behaviour can be where the agent, like

living organisms, learns a skill to prevent some mishap or find a more optimal solution

without being asked to do that [2]. That requires the agent to be able to create a plan, a sort

of curriculum of what it should learn next, or do next, given its current level of knowledge.

Such structured learning is referred to as incremental or curriculum learning [16] [17].

When the agent does this with no immediate benefit to itself, it is called motivated learning

[18] and the behaviour exhibited by the agent is said to be open-ended learning [4]. Open-

ended learning enables the agent to self-direct its learning based on its interaction with the

environment. With its focus on the meta-cognitive aspects such as what to learn [19] and

when to learn [20], it is envisaged to empower the agent such that constant supervision will

no longer be necessary. When intrinsic motivation [4], in particular, curiosity, is used to

direct what the agent learns, it creates an intrinsically motivated open-ended learning

framework [12] [21]. Consider a service robot in a real-world situation. Since the

environment is dynamically changing, it is not possible to contemplate all the skills that

the service robot will require [22]. Since it is not practical to provide the agent with constant

guidance regarding which environment-specific skills to learn, it would be essential that

the agent can decide by itself which skills to acquire, i.e. learn in an open-ended manner.

Closely related to the above is lifelong learning, whose general characteristics are that it

learns continuously, accumulates and incorporates new learning into its knowledge

repository, and can reuse the learned knowledge to find solutions to future tasks [15] [23].

That enables the agent to continuously increase the overall knowledge of its environment.

From the literature review, it appears that the questions that lifelong learning is aiming to

find answers to are: (i) how to overcome the “Frame Problem”, i.e. if the system is limited

by what it models, is it possible to make the same system learn other things as well [24],

(ii) if all the knowledge is stored in a single representation, how does one overcome the

problem of catastrophic forgetting when a new task is to be learned [25], (iii) what is a

representation of the core commonality of the related tasks and how best to transfer known

skill to a related new task, and (iv) learning how to learn [23] [26]. That shows that this

research area’s focus is on the cognitive aspect.

3

For a comprehensive agent architecture, both open-ended learning, with its focus on the

meta-cognitive aspect, and lifelong learning, with its focus on the cognitive aspect, are

required [27]. The third aspect of all this is the agent’s ability to learn independently or

with minimal intervention from other agents/humans [28]. Most real-world situations

cannot easily be divided into training and test samples, so the agent should be able to gather

its data and make a deliberate attempt to learn aspects of the skill it is uncertain about.

Since the learning rate of different skills is not going to be the same, the agent should be

able to tune its learning parameters. Autonomy, defined as the system’s ability to make its

own decisions, is required for the agent to be classified as a functional artificial agent [28].

Reinforcement learning is a learning method where the agent interacts with its environment

and learns new skills by trial and error. The agent is not instructed what action it should

take in a particular state of its world but must figure out by itself the best action it should

take from all the available actions. Over time, it forms a policy, i.e., mapping between

states and actions akin to skill. A policy can be packaged and stored. It can also be used as

a macro-action and can be recalled based on a trigger. It executes the packaged behaviour

and terminates when a final state is reached. These attributes have made reinforcement

learning an ideal starting point for lifelong learning architectures [29] [30] [31]. However,

as the literature review shows, there is no agreement on the necessary components to take

reinforcement learning from reliable task-oriented learning to reliable lifelong open-ended

learning.

With that gap as the starting point, Section 1.2 lists the research questions. The solutions

to those questions, i.e. the contributions of this research, are summarised in Section 1.3.

Then, Section 1.4 details the organisation of this thesis.

1.2 Research Questions

This research starts with the premise that the essential aspects of the architecture of a

functional self-learning agent are that it should be able to learn in an open-ended manner

throughout its whole life and use reinforcement learning to carry out the learning with

4

minimal external intervention. With that in mind, the following are the questions that this

research will aim to contribute towards.

 Question 1: What are the modules of an open-ended and continuous reinforcement

learning architecture?

By the end of Chapter 2, this thesis identifies that an open-ended architecture: i) should be

able to decide what new skill it should acquire, ii) should have a memory module where

the skills are stored, and iii) the agent should be able to assimilate the knowledge acquired

and use that knowledge to solve future tasks. The agent architecture should be modular in

that it should be able to add/remove/plugin the auxiliary modules required. The scope of

this thesis is limited to reinforcement learning as the learning method. The learning,

however, should be domain-independent and hence flexible in the choice of task generation

technique and knowledge store technology. With these points in mind, the subsequent

research questions focus on the design of specific modules that will sit within an open-

ended, continuous reinforcement learning architecture.

 Question 2: How does one design a module to generate task-independent reward

functions for different types of tasks, including when the primitive tasks are combined to

form a compound task?

In reinforcement learning, the learning is guided by feedback, commonly referred to as a

reward. How well the agent learns is often determined by how well the reward function is

designed. Typically, the reward design is task-dependent and requires significant domain

knowledge. That, however, limits the autonomy of the agent. A review of the literature in

the area of task-independent reward function design shows that a concept called ‘intrinsic

motivation’ can be used. The agent generates such a reward based on its perceived novelty

of the task or an internal prediction error. As an alternative, one could exploit the inherent

property of the task type, which would make the reward task-independent. Tasks can be

classified as achievement, maintenance, avoidance and approach type [32]. This question

focuses on the design of reward functions based on such task classification. Also, one may

wonder could such a reward design be extended to be used when the primitive tasks are

combined to form a compound task.

5

 Question 3: How does one design a module to self-generate tasks of varying

complexity?

To exhibit open-ended learning, the agent should be able to self-generate the tasks to direct

what it learns. Also, since the architecture allows continuous learning and requires minimal

external intervention, the architecture should support agents to progressively build their

knowledge of their environment. For that, the agent must be able to generate tasks of

varying complexity, not necessarily hierarchical. It will initially start by learning to attain

simpler tasks and gradually, as it gains more knowledge to attain complex tasks [22].

Existing task generation techniques either generate flat tasks or hierarchical tasks. Often

tasks are a combination of primitive tasks. For example, consider a task for a robot to open

the lid of a bottle. It is a complex task that comprises grasping the bottle and opening the

lid. It is a combination of tasks that are not hierarchical. A literature review in the area of

self-task generation shows that technique to generate tasks of varying complexity does not

exist. Such a technique would enable the agent to start with little or no knowledge of its

environment and improve its capabilities over time. Also, it will enable the agent to reuse

its skills for primitive tasks to learn compound tasks.

 Question 4: How does one design a module to compose a skill for a compound task

by combining primitive skills?

The reinforcement learning community’s focus has mostly been on devising algorithms to

enable faster learning; however, reinforcement learning is sample inefficient by nature.

That is because the agent has to try out all the actions when in a particular state to be able

to build an accurate model of its environment. Techniques such as imitation learning are

employed to make learning more sample efficient [33]. Since the agent architecture has the

capability to learn continuously and assimilate the learned knowledge into its repository,

an alternative approach to enable faster learning is to reuse the learned knowledge. For

related tasks, the knowledge learned from previous tasks can be used [34]; however, not

always are the tasks related. Again, consider the example of a robot learning to open the

lid of a bottle. The task of grasping is not necessarily related to the task of opening the lid.

One approach to learning such compound tasks is using multitask reinforcement learning

[35], where the agent can learn multiple/complex tasks from scratch, which, however, is

6

not “sample efficient”. As an alternative approach, compositionality can be used, where

the skills of primitive tasks are combined to form solutions for compound tasks. In

reinforcement learning, this typically has been used when the skills, i.e. policies, are

represented as Q-tables. However, such policy representation does not scale to problems

with high dimensional or large state spaces. Another way to represent a policy is by using

a neural network. In the last few years, the composition of skills represented by the neural

network has been an active area of research. Such composition serves as an alternative to

‘sample efficient reinforcement learning’ and forms a repository of primitive skills that can

be mixed and matched to create a variety of sophisticated skills.

1.3 Contributions and Significance

This research makes the following contributions to fulfil the questions listed in the previous

section.

1.3.1 A modular agent architecture for open-ended continuous reinforcement

learning

This research proposes a modular learning architecture detailed in Chapter 3, Section 3.3.

It comprises (i) a task generation module fulfilling the criteria of making the architecture

capable of open-ended learning, (ii) a knowledge repository that stores learned skills,

fulfilling the criteria of making the architecture capable of continuous learning, and (iii) a

learning module which can be any reinforcement learning algorithm. The architecture is

flexible and allows any self-task generation technique to be used and any form of

knowledge store to be used. The skills can be stored as individual policies, making them

easy to recall and combine as required. Using simulated e-puck mobile robot based

experiments, Section 3.4 shows how the robot experiences its environment, self-generates

its task, learns the skills, and continues that throughout its lifetime. Thus gradually

improving its capabilities in an open-ended and continuous manner.

7

1.3.2 Task-independent reward functions based on the type of task

Tasks can range in abstraction from high-level to low-level. Another categorisation is based

on the functional aspect and how it is considered to be attained. The common categories

are achievement, maintenance, avoidance and approach [32]. The inherent nature of this

categorisation makes them task-independent. When a robot opens the lid of a bottle, the

task is said to be achieved. A mobile robot moving along a marked track is an example of

a maintenance task. Reward functions can be based on this categorisation of tasks, thus

making them task-independent. In Chapter 4, Section 4.3, this research proposes reward

functions based on task types. Using simulated e-puck mobile robot based experiments,

Section 4.5 shows how the robot using the proposed reward functions learns to attain

maintenance, achievement, approach, and avoidance tasks.

1.3.3 A technique to self-generate tasks of varying levels of complexity

In Chapter 5, Section 5.3, this research proposes a novel task generation technique. The

proposal uses agglomerative hierarchical clustering to generate regions within the agent’s

state space. The number of clusters or regions generated can be varied, generating fewer

clusters, i.e. higher-level abstract regions, to more clusters, i.e. granular abstractions. These

aggregated state attributes are then used to generate tasks. Furthermore, a change in its

environment triggers a continuous learning agent to explore its environment and regenerate

the aggregations. These new unique aggregations are integrated within the list of previous

unique aggregations, making them suitable for continuous learning. Using simulated e-

puck mobile robot experiments, Section 5.4 demonstrates the task generation.

1.3.4 A technique to concurrently compose primitive skills to form solutions for

compound tasks

A compound task can be composed of primitive tasks sequenced together or concurrently

combined primitive tasks. This research proposes a novel concurrent skill combination

technique for the reinforcement learning policies represented by neural networks. Policies

combined using this technique provide simplicity and understandability of Q-table based

8

representation and scalability of neural networks. In Chapter 6, Section 6.3, this research

proposes the generation of policy for compound tasks using a method similar to the average

model weight ensemble [36] [37]. The policy comprises average learnable parameters of

the constituent primitive tasks. Using simulated e-puck mobile robot experiments, Section

6.5 demonstrates how the combined primitive policies can be used as a solution for a

compound task with little or no additional training.

1.3.5 Metrology for agent performance, task difficulty and agent competency

The metrics generally used to measure a reinforcement learning agent’s performance is the

reward gained by the agent in each episode. That is appropriate for achievement type tasks,

i.e. when the desired state is reached, the episode is considered to be completed. However,

maintenance tasks are non-ending, and the concept of the episode is not relevant; thus, the

commonly used metric is not an effective way to measure an agent’s performance. This

thesis proposes new metrics to measure an agent’s performance for maintenance,

achievement, approach, and avoidance task types. Chapter 4, Section 4.4, details the

proposed agent performance metrics. A measure of task difficulty and agent’s competency

for a skill can be used for task prioritisation and even as intrinsic motivation. Chapter 6,

Section 6.4, proposes metrics to measure the task difficulty and agent competency.

1.4 Organisation of the Thesis

This chapter introduces the topic of the thesis, provides the motivation behind this research,

details the research questions, and lists the contributions of this thesis. The rest of the thesis

is organised as described below and shown in a graphic format in Figure 1.1.

9

Figure 1.1: A graphical view of the organisation of the thesis.

Chapter 2: Methods, Materials and Concepts

Chapter 2 details the methods, materials and concepts used in this thesis. It starts by

describing reinforcement learning concepts and algorithms, followed by the adaptive

resonance theory algorithm. It then provides the details of the e-puck mobile robot,

followed by other key concepts used throughout this thesis.

Chapter 3: Agent Architecture for Open-Ended and Continuous Learning

10

Chapter 3 will describe the proposed agent architecture for open-ended and continuous

learning, i.e. contribution #1 of this thesis. It will describe the essential components of the

architecture and how they are integrated to form a ‘Modular Continuous Learning

Architecture’. Using simulated e-puck mobile robot based experiments, it will show how

the architecture results in agent learning in an open-ended and continuous manner.

Chapter 4: Reward Design for Autonomous Learning

Chapter 4 will describe a novel approach to reward function design, a contribution related

to the task learning module. It will detail task-independent reward functions that are based

on the type of task. The experiments will use the various types of tasks generated by

Merrick et al. [38] and a simulated e-puck mobile robot to demonstrate how it learns to

attain those tasks. The learning will be measured using the proposed agent performance

metrics. This chapter will also show how the proposed task-independent reward functions

can be used to learn compound tasks.

Chapter 5: Self Generation of Tasks to Direct the Learning

Chapter 5 will detail a novel task generation technique capable of generating tasks of

varying complexity, a contribution related to the task generation module. It will then detail

the results of the experiments related to the proposed task generation technique. Using a

simulated e-puck mobile robot, it will be demonstrated how the attributes that form a

robot’s state space are aggregated to form features that are then used to create tasks ranging

from simple to more complex.

Chapter 6: Reuse of Learned Knowledge by Skill Composition

Chapter 6 will detail a novel skill composition technique for the reinforcement learning

policies represented by neural networks, a contribution related to the knowledge

management module of the architecture proposed in Chapter 3. It will then detail the results

of the experiments related to the proposed skill composition technique. Using a simulated

e-puck mobile robot, this chapter will demonstrate how the robot can combine primitive

skills to form solutions to attain compound tasks with little or no additional training. It will

compare those results with the results of learning to attain the compound task from scratch.

11

Chapter 7: Conclusion and Future Work

Chapter 7 will revisit the research questions, summarise how the contributions of this

research answer those questions and extend the current state-of-the-art. The final section

of this chapter will list the future direction of this research.

12

CHAPTER 2 METHODS, MATERIALS AND CONCEPTS

2.1 Introduction

This chapter details the methods, materials and concepts used in this thesis. It starts with

reinforcement learning used in the learning module of the architecture proposed in this

thesis, followed by the adaptive resonance theory algorithm. Section 2.3 details the

simulation software and the mobile robot used in this thesis. Section 2.4 then details other

key concepts used throughout this thesis.

2.2 Algorithms

This section will detail the algorithms and fundamental reinforcement learning concepts

used in this thesis. The algorithms include reinforcement learning used in all the chapters

and adaptive resonance theory used in Chapter 3.

2.2.1 Reinforcement Learning

Reinforcement learning is a method of learning where the agent learns by interacting with

its environment. It is not instructed what actions it should take while in a particular situation

but must figure out by itself by trying different actions, i.e. the agent learns by trial and

error. As shown in Figure 2.1, the agent perceives the state of the environment, takes action

in the current state and receives positive or negative feedback called a reward. The agent

must compute the most favourable action by selecting and attempting an action from the

available set of actions. Over time, reinforcement learning forms a policy, a mapping

between states and actions that help decision-making.

13

Figure 2.1: Graphic representation of reinforcement learning.

State Space

In reinforcement learning, an agent’s state 𝑠 is a vector of parameters that describes its

representation in the environment. That ‘state’ can be expressed as:

𝑠 = [𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … 𝑢௡]

 (2.1)

where each attribute 𝑢௜ is typically a numerical value that describes an external or internal

variable, and 𝑛 is the number of attributes of the state. For example, consider a state of a

mobile robot represented in terms of its side and front proximity sensors as the state

attributes. Further, consider that the state attributes are discretised binary values. Thus, the

state can be represented using vector [0 0 0 0]. As will be detailed in the next subsection,

this state indicates that all the proximity sensor readings are 0, i.e. no object in close

proximity of the mobile robot.

The state space 𝑆, also sometimes referred to as an observation space, is a collection of all

agent states. The state space can be discrete or continuous. If all the vector attributes that

make up the state of the agent are discrete, then the state space is said to be discrete. A

discrete state space is represented as shown in the equation below, where 𝑣 is the number

of states in the state space 𝑆. If one or more attributes are continuous, then the state space

is said to be continuous.

𝑆 = {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , 𝑠௩} (2.2)

14

Continuing with the same mobile robot example as above where the state is represented in

terms of its side and front proximity sensors and the attributes are discretised into binary

values. The state space will be {[0 0 0 0], [1 0 0 0], [0 1 0 0], …, [1 1 1 1]}.

Action Space

The set of available actions is called the action space of the agent. Action space, too, can

be discrete or continuous. In the case of discrete action space, represented as shown in the

equation below, the agent can select an action from a finite set of 𝑚 actions.

𝐴 = {𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠} (2.3)

Consider the mobile robot example again. Consider that it can take actions related to

turning and moving forward in each of its states. The action space of the robot will be{turn

left, move forward, turn right}. Thus, in the state [0 0 0 0] i.e. 𝑠ଵ, it can take either of the

actions 𝑎ଵ, 𝑎ଶ, 𝑎ଷ and similarly in other states 𝑠ଶ, 𝑠ଷ, … , 𝑠௩, it can take those actions.

Reinforcement Learning Representation

The reinforcement learning problem is formulated using Markov Decision Process, whose

main components are:

 A set of states 𝑠 ∈ 𝑆, where 𝑆 is the state space

 A set of actions 𝑎 ∈ 𝐴 the agent can take, where 𝐴 is the action space.

 A transition function (also referred to as the transition model) 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) that

defines the transition probability of landing in the state 𝑠௧ାଵ when an action 𝑎௧ is

taken in the state 𝑠௧, that is, 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = 𝑇(𝑠௧ାଵ|𝑠௧, 𝑎௧)

 Feedback received from the environment for taking action 𝑎௧ in state 𝑠௧ and landing

in the state 𝑠௧ାଵ, that is, a reward 𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ)

 A policy 𝜋 which determines what action to take in a particular state

Reinforcement learning aims to maximise cumulative reward. Thus, many reinforcement

learning algorithms find this policy by estimating a value function that computes how good

it is for the agent to be in each state. For example:

15

𝑉௧ାଵ(𝑠௧) ← 𝑚𝑎𝑥
௔

෍ 𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ)[𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) + 𝛾𝑉௧(𝑠௧ାଵ)]
௦೟శభ

 (2.4)

where 𝑉 is the value, i.e. the expected utility of state, 𝛾 is the discount factor, and 𝑡 is a

time step.

Policy

A reinforcement learning agent is not instructed what actions it should take while in a

particular situation but must figure out by trying different actions. In each state, the agent

takes action and lands in the next state. Using algorithms such as Q-Learning, the agent

determines how good it was to take that particular action. Once the reinforcement learning

algorithm converges, i.e. the Q-values stabilise, learning is considered complete. These Q-

values help form a mapping between states and actions called policy. This mapping

suggests that regardless of how the agent arrived at a particular state, it should take action

as per the policy as that action will lead to optimal reward in the future. The policy is akin

to skill (detailed in Section 2.4) and is represented as 𝜋. The commonly used storage

mechanisms for policy are Q-table and neural networks. Both mechanisms allow the

storage and recall as required. When the agent has mastered the skill, the policy is said to

be optimal policy.

Consider the Q-table shown in Table 2.1. A Q-table is a tabular representation of the state

and action pairs where the cells store the Q-values. Q-values, the calculation using Q-

Learning detailed in Equation (2.5), denotes the action that should be taken to maximize

the cumulative reward, i.e. it encodes the future reward. The following is an example of a

Q-table for state space of size 𝑣 and action space of size 5. The cells show the Q-value that

is used to determine how good taking a particular action in each state is. Once the learning

is complete, using the Q-values, it should be possible to derive the best action to select in

a particular state, i.e. the action with the highest Q-value. Such derived mapping is the

policy. For example, consider that the policy uses the epsilon-greedy (detailed in the

subsection below) action selection strategy, which selects the action with the highest Q-

value in each state. Thus, for the Q-table shown in Table 2.1, the state-action mapping, i.e.

the policy would select action 2 when in state 1, action 4 when in state 2, action 1 when in

state 3 and continue that for all the states.

16

Table 2.1: An example of a Q-table. A tabular representation of the state and action pairs where the
intersection cell stores the Q-value.

 action 1 action 2 action 3 action 4 action 5

state 1 1.2 4.3 0.4 0.8 3.2

state 2 0.3 6.0 0.1 6.9 2.1

state 3 5.7 2.2 3.2 5.2 1.2

state 4 7.9 3.1 5.7 1.7 8.0

…

state v 0.0 0.0 0.9 6.2 3.4

Action Selection Strategy

A key challenge with reinforcement learning algorithms involves finding the right balance

between exploration and exploitation so that it does not converge to a suboptimal solution.

Through a trial and error procedure, the agent takes action, records the reward it receives

and explores the value function in different regions of the environment. To reach new areas

of the state space, reinforcement learning algorithms try out different untried actions

randomly. That is called exploration. Too much exploration may prevent maximizing the

short term reward because of the lower reward yielded by some actions. On the other hand,

the agent can choose to maximize the reward by using the knowledge gained from previous

successful actions. That is called exploitation. Too much exploitation, however, prevents

the agent from maximizing long term reward because the action chosen may not be optimal.

The perceived maxima may be a local maxima.

For Q-table based algorithms, techniques such as the epsilon-greedy and softmax can be

used for action selection to balance exploration and exploitation. The epsilon-greedy

strategy is used for the experiments in Chapters 3, 4 and 5. The epsilon-greedy strategy has

the epsilon parameter that determines the exploration/exploitation ratio, i.e. what

percentage of time steps will the agent take random steps to explore new actions versus

selecting the best action based on the current policy. The value of the parameter ranges

from 0 to 1. For example, when that parameter is set to 0.1 with no decay, 90% of the time,

the agent selects the best action according to the current policy; however, 10% of the time,

it will randomly select an action. “No decay” indicates that even when the agent has

learned, it continues to take random action 10% of the time. The other options are to end

17

the exploration completely when the learning is complete and “linear decay”, where the

exploration is gradually reduced as the learning progresses.

Q-Learning

Q-Learning [39] is a reinforcement learning algorithm proposed by C.H. Watkins and P.

Dayan. The state-action value function 𝑄 estimates the value for selecting an action 𝑎௧ in

a state 𝑠௧ at time step 𝑡 is given as:

𝑄௧
௡௘௪(𝑠௧, 𝑎௧)

= 𝑄௧(𝑠௧, 𝑎௧) + 𝛼 [𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) + 𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) − 𝑄௧(𝑠௧, 𝑎௧)]
(2.5)

Where 𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) is the reward received for carrying out an action 𝑎௧ in the state 𝑠௧, 𝛼

is the learning rate (0 < 𝛼 < 1) and 𝛾 is the discount factor (0 < 𝛾 < 1). The algorithm

is generally used to learn the policy for domains that can be represented by discrete state

and action spaces. The algorithm starts by initializing the Q-table and then begins the

learning loop. In this loop, the agent takes action in the current state and receives a reward

and lands in the next state. This reward is used to update the Q-value as per Equation (2.5),

and the process repeats in the next state. The algorithm maintains and updates a Q-table

that contains the action values, i.e. Q-value for each state-action pair. It is model-free

learning, i.e. it does not use the transition model for learning, and all the learning happens

through actual interactions with the environment, which are typically expensive. The core

logic of the algorithm, as shown by the equation, is that the Q-function is calculated based

on the expected utility for taking the best action in a state and assuming that the optimal

policy is followed after that, i.e. the algorithm uses the current estimates of the Q-function

to obtain a new (better) estimate of Q.

Dyna-Q

Dyna-Q [40], a combination of Dyna architecture with Q-Learning, was proposed by R.

Sutton. In Dyna-Q, the Q-Learning is supplemented with the transition model

𝑇(𝑠௧, 𝑎௧, 𝑠௧ାଵ) thus combining both model-based and model-free learning, i.e. Dyna-Q has

additional internal planning steps to speed up learning. Thus, in addition to the Q-

Learning’s loop, the additional steps initialise the transition model, iterate through the

internal model (also called hallucinate experience) and update the Q-value based on those

18

imaginary experiences. The Q-table is updated using Equation (2.5), as detailed in the Q-

Learning section above. These imaginary experiences are updated using the actual

experiences with the environment, creating an internal model that keeps track of the state

transitions of the agent and the reward that the agent receives during that transition. Thus

the algorithm improves its Q-values using the actual interactions with its environment

(expensive) and imaginary experiences generated by the transition probability model

(typically not expensive). The number of internal planning cycles is set to be greater than

the actual interaction with the environment, thus speeding up learning because, typically,

actual interactions can be costly in many cases, such as robotic applications.

Algorithm 2.1: Dyna-Q

Initialize 𝑄(𝑠௧ , 𝑎௧) to 0 for all states 𝑠௧ ∈ 𝑆 and action 𝑎௧ ∈ 𝐴
Initialize the transition model 𝑇(𝑠௧ , 𝑎௧ , ∶) to 0 for all states 𝑠௧ ∈ 𝑆 and action 𝑎௧ ∈ 𝐴

for steps = 1:max_learning_steps

 /* Q learning steps */
 Interact with the environment and perceive the current state 𝑠௧
 Choose action 𝑎௧ as per the action selection strategy
 Execute action 𝑎௧ in the environment
 Perceive the next state 𝑠௧ାଵ and receive reward 𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ)
 𝑄௧

௡௘௪(𝑠௧ , 𝑎௧) = 𝑄௧(𝑠௧ , 𝑎௧) + 𝛼 [𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) + 𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) − 𝑄௧(𝑠௧ , 𝑎௧)]

 /* Dyna-Q specific steps - update the transition model */

 𝑇(𝑠௧ , 𝑎௧ , 1) = 𝑠௧ାଵ

 𝑇(𝑠௧ , 𝑎௧ , 2) = 𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ)

 /* Dyna-Q specific steps – internal simulation */

 for simulation_steps = 1:max_simulation_steps
 Randomly select a previously visited state 𝑠௧ as per the transition model 𝑇
 Randomly select an action 𝑎௧ previously taken in that state 𝑠௧
 Execute action 𝑎௧ in simulation
 Perceive the next state 𝑠௧ାଵ and receive reward 𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) as per the transition model 𝑇
 𝑄௧

௡௘௪(𝑠௧ , 𝑎௧) = 𝑄௧(𝑠௧ , 𝑎௧) + 𝛼 [𝑟(𝑠௧ , 𝑎௧ , 𝑠௧ାଵ) + 𝛾 max
௔೟శభ

𝑄௧ାଵ(𝑠௧ାଵ, 𝑎௧ାଵ) − 𝑄௧(𝑠௧ , 𝑎௧)]

 end for

end for

A comparison between Q-Learning and Dyna-Q is detailed in Appendix B. Considering the

pros and cons of each algorithm and the performance comparison as detailed in Appendix

B, Dyna-Q is the algorithm of choice for the experiments in Chapters 3, 4 and 5. Dyna-Q

19

was implemented using MATLAB. The mobile robot used this algorithm to learn skills, i.e.

the robot is not instructed using an explicit control program on how to attain the tasks or

exhibit certain behaviours but instead learns by itself using reinforcement learning. The

number of planning cycles for model learning was set to 25, i.e. before attempting one

action with the real environment, the algorithm attempted 25 actions in internal simulation

using imaginary experiences.

Advantage Actor-Critic (A2C)

Reinforcement Learning consists of algorithms that are either value-based methods where

the agent learns the value function that determines how good it is to take a particular action

in a specific state or policy-based methods where the agent directly optimizes the policy by

sampling several rollouts of the episode. The actor-critic family of algorithms is a hybrid

approach where the critic is trained to estimate the value function and provide feedback to

the actor that aims to optimize the policy. When implemented using a neural network, the

actor network determines what action to take when in a particular state, and the critic

network determines how good that action was and provides feedback to the actor network.

The Advantage Actor-Critic (A2C) [41] uses the ‘Advantage’ instead of the ‘Value’

function, which leads to learning stability. The advantage is calculated as:

𝐴𝑑𝑣(𝑠௧, 𝑎௧) = 𝑄(𝑠௧, 𝑎௧) − 𝑉(𝑠௧) (2.6)

where 𝑉(𝑠௧) is the value at 𝑠௧ and 𝑄(𝑠௧, 𝑎௧) is the Q-value function. In the experiments in

Chapter 6, the A2C algorithm from MATLAB’s Reinforcement Learning Toolbox was

used, and the mobile robot used this algorithm to learn primitive and compound skills.

Option

Reinforcement learning literature also describes the concept of temporal abstractions that

take control of the execution for a period, follow a learnt policy and eventually end

execution and relinquish control. This abstraction is called an ‘option’, a closed-loop policy

for taking actions over a period [42][43]. Thus, an option is a well-defined macro action

denoted by a tuple comprising: an initiation set of states I, termination condition β, and the

closed-loop policy π. It is like a subroutine that gets called when the agent is in one of the

specific sets of states, i.e. triggered when a particular starting condition is satisfied. When

20

invoked, it follows a learned policy and ends when the termination condition is satisfied

and relinquishes control. That allows existing behaviours to be used while learning new

behaviours, thus speeding up learning [44].

Intrinsically Motivated Reinforcement Learning

For many dynamic environments, upfront knowledge of the tasks to be learnt is unknown,

and hence it is not possible to design the reinforcement learning reward for the task. More

recent work has considered the idea of reward modelled using the psychological concept

of motivation. Broadly, motivation can be categorised into two types: intrinsic and

extrinsic. Intrinsic motivation can be used to model reward functions that can lead to the

emergence of task-oriented performance without making strong assumptions about which

specific tasks will be learned before the interaction with the environment. When intrinsic

motivation is combined with reinforcement learning, it creates a mechanism whereby the

system designer is no longer required to program a task-specific reward. Thus, the

combination of intrinsic motivation with reinforcement learning results in intrinsically

motivated reinforcement learning [45].

Figure 2.2: Graphic representation of intrinsically motivated reinforcement learning.

Figure 2.2 shows a representation of intrinsically motivated reinforcement learning.

Motivation signal is typically computed online as a function of the current experienced

state, and some representation of all the states experienced so far, i.e. is independent of

task-specific factors in the environment. The signal may drive the acquisition of knowledge

or a skill that is not immediately useful but could be useful later on [45]. An agent generates

21

this signal because the task is inherently enjoyable, leading to further exploration of its

environment, manipulation/play, or learning the skill.

2.2.2 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) [46] and its variants are neural networks based

clustering algorithms. ART1 (used in Chapter 3 for task generation) is an unsupervised

learning variant that takes binary vector data points as input. ART1 consists of a

comparison field layer, recognition field layer and vigilance parameter. The comparison

field layer takes the data points as input. The data points are compared and transferred to

the best match in the recognition field layer that represents the category or the cluster. The

comparison is based on the concept of ‘resonance’, which is a similarity measure. If a

match is not found, a new category is created. The maximum number of categories is not

determined up front but depends on the data points; hence the algorithm is considered

‘adaptive’. The vigilance parameter determines how granular the categories are, in turn

determining how many categories/clusters are generated. A higher vigilance value

generates fine-grained clusters, and a lower vigilance value generates a coarse-grained

cluster.

Typically, a task generation process can be divided into the experience gathering phase that

collects the data points and the clustering phase that generates potential tasks. During this

phase, the states experienced by the agent are recorded. That experience forms the data

points for the ART1 algorithm for the clustering phase. ART1 begins by considering the

first data point as a new category. It then processes the data points one by one by comparing

their similarity with the existing categories. If the data point being processed is a close

enough match, it is added to the existing category; else, a new category is created. The

granularity and number of categories created depend on ART1’s vigilance parameter.

Once the data points have been categorised/clustered, the next step is to select a

representative data point. That can be done in several ways (such as selecting a

representative or calculating the cluster centroid), with each method having its pros and

cons. In the experiments in Chapter 3, the first data point in the category was selected as a

22

representative for simplicity. This representative data point is then considered a ‘potential

task’.

2.3 Mobile Robot and Simulation Software

Webots

The simulation software Webots (www.cyberbotics.com) was used to create various

environments and simulate the robot’s dynamics. Webots integrates with multiple

programming languages enabling the robot control program to be written in any supported

language. The experiments in this thesis use MATLAB to implement the reinforcement

learning algorithm, which is used as a control program for the simulated e-puck.

E-Puck

An e-puck mobile robot (www.e-puck.org) is used for the experiments throughout this

thesis. An e-puck, as shown in Figure 2.3, is a small (~7 cm diameter and ~5 cm height)

two-wheeled mobile robot. It is a differential wheeled robot, i.e. the two wheels can be

separately controlled. It has eight infrared proximity sensors to measure the robot’s

distance from an obstacle. The range of those sensors is 6 cm. It has accelerometers to

measure acceleration along all three axes; a 52x39 pixels resolution colour camera, a

compass, a microphone and speakers. As an add-on capability, it can be fitted with ground

sensors. That provides three infrared ground sensors that can be used to detect edges for

fall detection and black/white bands on the ground for applications such as line following.

In Webots, the proximity sensor value for e-puck ranges from 0 to 2000, with a high value

indicating that an object is nearby. The ground sensor value ranges from 0 to 1000, with a

high reading indicating that the sensor is detecting dark area / black colour on the ground.

Using such granular values does not result in any benefit for the experiments in this thesis.

In fact, since the Dyna-Q algorithm, which uses Q-table to represent the policy, is used in

Chapters 3, 4 and 5, the actual sensor values result in huge state space and corresponding

slow learning. Hence the proximity and ground sensor values are discretised. Discretising

to 3 (object nearby; not so nearby; far away) or another relatively small number would not

23

result in much detrimental effect from an algorithm performance point of view; however,

doing that is not beneficial either. Hence for simplicity, binary discretisation is used in

those chapters. Also, for consistency, the binary discretisation is continued in Chapter 6,

where the A2C algorithm, which uses a neural network to represent the policy, is used.

Figure 2.3: e-puck mobile robot

For the proximity sensors, the value 1 indicates that an object is in close proximity, and 0

indicates no object nearby. The proximity sensor’s binary value is considered 1 if the actual

sensor reading is greater than 500, otherwise considered 0, i.e. if the actual value is greater

than 500, the object is considered nearby. This value of 500 was determined based on trial

and error to eliminate any false positives due to sensor noise. For ground sensors, the value

1 indicates that the sensor detects black colour, and 0 indicates that it detects white. The

ground sensor’s binary value is considered 1 if the actual sensor value is greater than 300,

otherwise considered 0. Again, this value of 300 was determined based on trial and error

to eliminate any false positives due to sensor noise. For simplicity and consistency, binary

values are used to represent the left and right wheel speed. A value of 1 indicates that the

wheel is moving forward, and 0 indicates that it is moving backwards.

E-Puck Learning a Task using Reinforcement Learning

In the following chapters, a different combination of sensors is used based on the

experiments, and each of the chapters details the state representation. Shown here is an

example of a state vector used to detail how reinforcement learning agent learns policies

24

for certain tasks. Consider that the left wheel, right wheel, the side and front proximity

sensors (labelled in a clockwise direction: Front-Right, Right-Diagonal, Right, Left, Left-

Diagonal, Front-Left) are used as the attributes to represent the state vector, i.e. the vector

can be represented as [ωL ωR pFR pRD pR pL pLD pFL]. Figure 2.5 is a sketched top view

of an e-puck with the labelled wheels, proximity sensors, ground sensors and camera.

Consider that the action space consisted of turning left, stepping forward, and turning right.

Further, consider that the task is for the e-puck to learn to avoid obstacles in the arena shown

in Figure 2.4. That task can be represented as maintaining [1 1 0 0 0 0 0 0] state, i.e.

maintaining:

𝑚𝑎𝑥(𝑙𝑒𝑓𝑡_𝑤ℎ𝑒𝑒𝑙_𝑠𝑝𝑒𝑒𝑑) ∧ 𝑚𝑎𝑥(𝑟𝑖𝑔ℎ𝑡_𝑤ℎ𝑒𝑒𝑙_𝑠𝑝𝑒𝑒𝑑) ∧ 𝑚𝑖𝑛(𝑎𝑙𝑙_𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦_𝑠𝑒𝑛𝑠𝑜𝑟𝑠)

The e-puck receives a positive reward in that state and a negative reward in all other states.

Figure 2.4: Top view of the arena created in

Webots.

Figure 2.5: A plan view of e-puck with labelled
sensors (proximity sensors, ground sensors, and

camera) and wheels.

State Vector:

 [ωL ωR pFR pRD pR pL pLD pFL]

Actions:

 {
 1 - Turn Left,
 2 - Step Forward,
 3 - Turn Right
 }

When e-puck starts learning, it tries different actions in the current state. When an action is

taken in a particular state, it lands in a different state. For example, when the e-puck has an

obstacle in front, it may try out an action to turn right. That would result in the e-puck

having the obstacle to its left, a different state per the state representation. The e-puck may

choose to move forward in this state, thus moving away from the obstacle. Over time, by

25

trying such actions, it learns to maintain the desired state, i.e. it learns that when it is near

an obstacle or a wall, it should turn away from it to maintain zero sensor values of its

proximity sensors and gain positive reward. When the algorithm converges, the skill is said

to be learned. When this learned policy is tested, the e-puck will exhibit the behaviour of

avoiding obstacles while moving forward.

2.4 Other Concepts used in this Thesis

Task

A task is defined as a piece of work that is attempted. A typical definition of a task is an

objective that the agent should achieve [47]. The term ‘task’ is also interchangeably

referred to as ‘goal’ in the literature. Tasks can range from simple, primitive tasks to

complex, composite tasks and have been categorised based on the following criteria:

categorisation abstraction from ‘high level’ tasks covering functional or behavioural

aspects to ‘low level’, concrete tasks that cover the fine-grained definition of what those

aspects mean [47] and categorisation from ‘hard’ tasks, which can be validated

straightforwardly, to ‘soft’ tasks that are difficult to validate [47]. Further, Van Riemsdijk

et al. [48] have classified tasks as state-based/declarative, where the task is to reach a

specific desired situation, and action-based/procedural, where the task is to execute actions.

The declarative tasks are further classified into the ‘query’, ‘achieve’ and ‘maintain’ tasks

and the procedural tasks are further classified into ‘perform’ tasks. That is, tasks have been

categorised based on the way they are attained. That categorisation leads to ‘maintenance’,

‘achievement’, ‘approach’, ‘test’, and ‘optimisation’ types, to name a few [32].

Skill

A solution to the task is defined as a skill, i.e. learned knowledge. It is the ability of an

agent to solve the task and is acquired by training. A primitive skill is a solution to a

primitive task, and a compound skill is a composition of primitive skills. In reinforcement

learning, a skill is represented as a policy that maps states and actions and is learned by

training. Further, the primitive skills can be combined in sequential order or concurrently

26

to form solutions for compound tasks. For a sequential combination, a concept of temporal

abstraction called option (detailed above) is commonly used. When multiple such temporal

abstractions are sequenced together, it forms a solution for a compound task. Although not

a well-researched area, there are mechanisms to combine the skills concurrently. That is

further explored in Chapter 6 of this thesis.

Event

When the agent is in a state 𝑠௧ and takes action 𝑎௧, it transitions to a new state. This

transition can be called an event 𝐸௧ and represented as:

𝐸௧ = [𝑒௧
ଵ, 𝑒௧

ଶ, 𝑒௧
ଷ, … , 𝑒௧

௡] (2.7)

where each attribute that makes up an event is 𝑒௧
௜ = 𝑢௧

௜ − 𝑢௧ିଵ
௜ and 𝑠௧ =

 [𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, … , 𝑢௧

௡]. That is, an event can also be represented as:

𝐸௧ = 𝑠௧ − 𝑠௧ିଵ = [(𝑢௧
ଵ − 𝑢௧ିଵ

ଵ) , (𝑢௧
ଶ − 𝑢௧ିଵ

ଶ) , … , (𝑢௧
௡ − 𝑢௧ିଵ

௡)] (2.8)

An event, thus, is a vector of difference of the state attributes and models the state

transitions caused by the action. In such representation, the event is unaware of any task-

specific assumptions about the values of the state attributes, thus making this representation

ideal for defining the transition in a task-independent manner [49].

Experience

This thesis defines an experience consisting of three elements: i) the states 𝑠௧ encountered

by the agent, ii) the state transitions or the events 𝐸௧ and iii) the actions 𝑎௧ that the agent

has performed. The experience, denoted by 𝑋, is a trajectory denoted in the equation below.

As will be seen later in the thesis, it forms the input data points from which the tasks can

be constructed.

𝑋 = {𝑠௧, 𝐸௧, 𝑎௧| 𝑡 = 1,2,3, … } (2.9)

There is a similar concept used in reinforcement learning called ‘rollout’. A rollout,

however, refers to the trajectory when the agent is attempting to learn a particular task.

This thesis uses the term experience to refer to the trajectory of the agent when it is in the

body-babbling / experience-gathering phase.

27

With the algorithms detailed and concepts defined, the next chapter proposes the agent

architecture for open-ended and continuous learning.

28

CHAPTER 3 AGENT ARCHITECTURE FOR OPEN-ENDED AND

CONTINUOUS LEARNING

Parts of this chapter have been published in: P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique,
“Modular Continuous Learning Framework,” 2018 Joint IEEE 8th International Conference on

Development and Learning and Epigenetic Robotics, ICDL-EpiRob 2018. Tokyo, Japan, pp. 107–
112, 2018.

3.1 Introduction

The focus of lifelong/continuous learning research is to overcome the “Frame Problem”

[24], i.e. the focus is on the cognitive aspect of learning and representation of the core

commonality of the related tasks to learn skills for multiple tasks. The essential components

of such architectures are ways to represent a skill, a memory to store the skills and a

mechanism to transfer the skills to solve new tasks [50]. Thus, continuous learning in itself

cannot form a complete agent architecture since, in the real world, the environment is

dynamically changing, and it is not always possible to determine in advance all the skills

that the agent will require [22]. On the other hand, open-ended learning is focused on the

meta-cognitive aspects of ‘what to learn’ [19] and ‘when to learn’ [20]. That behaviour is

envisaged to empower the agent such that it will be able to decide by itself which skills to

acquire. Open-ended learning and continuous learning (the two complementary aspects)

are required to create a comprehensive agent architecture. The third aspect is learning

autonomy, i.e. self-sufficiency, in deciding ‘how to learn’ the task. Reinforcement learning

is a method of learning where the agent learns by interacting with its environment making

it a good fit for the required third component of the agent architecture.

The review of the literature on architectures that provide an agent with an open-ended

learning capability [12] [51] [52] [53] [54] shows that they have the following modules: (i)

a module for task generation and (ii) a module for learning the skills for the tasks generated.

Many of those learning architectures also use reinforcement learning as the learning

module [12] [51] [52]. However, they lack either the knowledge repository or the

continuous learning aspect. The contribution of this chapter is an agent architecture for

open-ended and continuous learning. This chapter will show how open-ended learning,

29

knowledge store and continuous learning are combined to form the modular learning

architecture. Using a simulated e-puck mobile robot, the experiments in this chapter will

demonstrate the validity of the architecture. It will show that the e-puck when placed in

different arenas, autonomously generates new tasks and then learns skills to solve them—

thus demonstrating the capability of autonomously learning new skills in an open-ended

way.

The rest of this chapter is organised as follows: Section 3.2 reviews the literature on agent

architectures for autonomous, open-ended and continuous learning. Section 3.3 details the

proposed agent architecture. Section 3.4 elaborates on the experimental setup and results

of the experiments demonstrating open-ended and continuous learning. Finally, Section 3.5

provides concluding remarks.

3.2 Agent Architectures for Open-Ended Learning

Broadly, agents are classified to be reflex, goal-oriented, adaptive and autonomous [6]. An

autonomous agent, a broad classification in itself [55], can sense its environment and take

action to accomplish a specific goal. That category is further classified into several

subcategories, of which executive autonomy is one that is related to the setting and

execution of goals [28]. In the last fifteen years, motivated reinforcement learning is

emerging as a popular way to achieve such autonomy [56]. Motivated behaviour is argued

to be crucial for an agent to gain the competence that is essential for autonomy [45]. This

competence is gained in a task-independent manner [22], resulting in the development of

an entity capable of accomplishing varied activities compared to an agent capable of

accomplishing only one specific or a few related activities [57] [58]. The following

subsection will review motivated reinforcement learning agent architectures.

3.2.1 Motivated reinforcement learning agent architectures

Reinforcement learning is a form of learning in which an agent learns by interacting with

its environment [40]. The agent is not provided with a rule book, instructions on what to

30

do in a particular situation or prior knowledge of its environment but must figure it out by

itself by trying out the available actions. The agent senses its environment, takes action and

receives feedback from the environment, called ‘reward’. This reward guides the learning

by providing the agent with a sense of which actions to take in different situations. The

broad aim of the reinforcement learning agent is to maximise this cumulative reward. In

early work, the reward was typically defined to be specific to a particular task. However,

for many dynamic environments, it is not known upfront which tasks are to be learned. As

a solution, the idea of reward modelled using the psychological concept of motivation has

gained popularity, and in the last decade, intrinsically motivated reinforcement learning

has attracted particular interest. When motivation is combined with reinforcement learning,

it creates a mechanism whereby a task-specific reward is no longer required to be

programmed. It creates a motivated reinforcement learning agent that can select a task to

be learned [11] and learn that task autonomously. That results in an autonomous learning

agent that can learn complex behaviours in a task-independent and open-ended way.

Figure 2.1 shows a general intrinsically motivated reinforcement learning architecture in

which, in addition to the environment provided feedback, the agent internally generates a

signal, and in combination, both of those form the basis for its actions. The intrinsic

motivation signal can either be combined with the extrinsic reward using certain criteria or

can be used exclusively, that is, instead of the extrinsic reward. Broadly speaking, the

architecture introduces a meta-learning layer, where the role of the motivation signal is to

enable the learning algorithm to focus the learning [45]. These software architectures are

essentially formed by combining the basic building blocks of reinforcement learning

algorithms and the blocks that generate motivation signals. The different intrinsically

motivated reinforcement learning architectures detailed in this section are then formed by

combining the motivation generator block with different types of reinforcement learning

algorithms and blocks responsible for managing the learned skills. The subsections below

describe the flat, hierarchical and multi-option architectures found in the motivated

reinforcement learning literature.

31

Figure 3.1: Concept of intrinsically motivated
reinforcement learning. The reward received by

the reinforcement learning agent is a combination
of external reward and motivation signal.

Motivated Flat Reinforcement Learning: Perhaps the most basic variant of intrinsically

motivated reinforcement learning [45] is where only one policy is learned. This variant is

termed motivated flat reinforcement learning (MFRL) by Merrick and Maher [44]. MFRL

combines motivation with a single non-hierarchical (or ‘flat’) reinforcement learning

algorithm forming an adaptive architecture for performing multiple tasks. Because MFRL

only learns a single policy, that policy adapts to represent a different behaviour at different

times [44]. That leads to an advantage in a highly dynamic environment. MFRL is arguably

the simplest form of motivated reinforcement learning and is well represented in Figure

2.1. The downside of MFRL is that it does not implement the option; hence there can be

no recall of skills. Each learned skill is overwritten when a new skill is learned. Alternatives

to MFRL discussed in the following sections overcome this weakness.

Motivated Multi-Option Reinforcement Learning: When an option is combined with

reinforcement learning, it creates multi-option reinforcement learning. Knowledge is

accumulated by continuously creating additional options representing a solution to a task.

When motivation is combined with multi-option reinforcement learning, it creates

motivated multi-option reinforcement learning (MMORL). In the case of MMORL, the

reinforcement learning block is the multi-options reinforcement learning algorithm.

MMORL learns multiple skills, each implemented using options. For each skill, an

initiation state triggers the respective option. The policy of that option guides it to reach

the termination state, which accomplishes a task. Learning how to accomplish each of the

N possible tasks is going to be time-consuming, but this will still be cheaper than N times

32

the work of learning to achieve a single task [59]. MMORL can be equated to the

implementation of multiple motivated flat reinforcement learning with a parent layer

triggering the recall of the relevant option. The additional meta-layer is responsible for the

addition and deletion of the options. Thus the agent implemented with multi-option

reinforcement learning is able to achieve multiple goals. This architecture provides a recall

of multiple options at the same level, whereas motivated hierarchical reinforcement

learning, detailed in the following subsection, provides a recall of options at a different

level, all arranged in a hierarchy.

Motivated Hierarchical Reinforcement Learning: A hierarchical reinforcement

learning algorithm is one in which a policy can be decomposed into a hierarchy of sub-

policies. This enables the reuse of policies to form a solution to a more complex problem.

Similar to multi-option reinforcement learning, hierarchical reinforcement learning is also

implemented using options. An option can invoke other options as actions, thus leading to

a hierarchical structure of learning and recalling the learned behaviours. When motivation

is combined with hierarchical reinforcement learning, it creates motivated hierarchical

reinforcement learning (MHRL) [44]. MHRL, like motivated multi-option reinforcement

learning, can learn multiple skills. However, the skills are hierarchical skills, arranged from

the most basic skills at the bottom-most level of the hierarchy to the complex skills that

build upon these basic skills at the higher level, ordered by increasing complexity.

Likewise, the skill recall in the case of MHRL is hierarchical too. Thus the MHRL

architecture can resolve fairly complex tasks.

Appendices Section A.1 compares the different motivated reinforcement learning

architectures in detail. For completeness, this thesis also compares performance measures

of these architectures found in the literature, which are detailed in Appendices Section A.2.

However, none of the architecture detailed fulfils the criteria for open-ended continuous

learning architecture. That is because the focus of these architectures is on learning

autonomy, i.e. automation of ‘how to learn’, and they fail to consider the open-ended

learning aspect of ‘what to learn’, i.e. what all tasks the agent should be learning. The next

subsection reviews the architectures that overcome that limitation.

33

3.2.2 Goal-oriented autonomous agent architectures

While the focus of the architectures in the previous subsection was on generating task-

independent reward functions, the architectures detailed in this subsection focus on task

generation to direct the learning.

Goal Discovering Robotic Architecture for Intrinsically Motivated Learning

(GRAIL): Santucci et al. proposed GRAIL architecture [12] [60] and, subsequently, an

extension of C-GRAIL that is context-aware for the cases where the solution to the same

task may require different skills [61]. In this multi-layered architecture, the agent, a

simulated iCub robot, detects changes to its environment (considered tasks) and forms their

representations for storage. Another layer of architecture then generates a competence-

based signal based on the learning progress to select a task from a list of tasks. The agent

then aims to learn a solution to achieve that task. Santucci et al. demonstrate how the

architecture generates tasks and then autonomously determines which iCub’s arms to use

to reach a specified object. The architecture, however, lacks an organised mechanism to

store and recall the learned knowledge, one of the essential requirements for lifelong

learning architecture.

Motivated Introspective Reinforcement Learning: Merrick [11] introduces the concept

of combining introspection with intrinsically motivated reinforcement learning. The

architecture introduces a meta-layer of introspection that guides the motivated

reinforcement learning framework using an options model to activate a skill, suspend the

activation, and delete a skill. This motivated introspective reinforcement learning (MIRL)

architecture incorporates a task life cycle model with motivated reinforcement learning,

thus removing the common reinforcement learning assumption of a fixed set of tasks. With

such an architecture, an agent can create tasks online and automatically decide which skills

to learn and when. Introspection is used to create and delete options in relation to the

discovery of skill acquisition. Here too, the option is used to learn skills that achieve those

tasks. Similar to the motivated multi-option reinforcement learning detailed in the previous

subsection, it uses a multi-option reinforcement learning algorithm. However, unlike

motivated multi-option reinforcement learning, it has a meta-layer, i.e. an introspective

layer that manages the life cycle of the skills and provides a mechanism to add, update and

34

remove the skills. The skill recall scalability of MIRL will be comparable to motivated

multi-option reinforcement learning [11]. Figure 2.2 shows the MIRL architecture. The

additional introspective learning and goal management layers are responsible for managing

the life cycle of the skills, i.e. autonomously selecting when to learn a skill to achieve a

goal, when to activate and deactivate a particular skill and when to delete a skill. The

reinforcement learning agent is implemented using a multi-option reinforcement learning

algorithm. The rest of the components in this architecture are the same as the motivated

flat reinforcement learning, i.e. the agent senses the environment (represented as a state),

takes action, and receives a reward and a motivation signal.

Figure 3.2: Motivated introspective learning;
diagram adapted from Merrick [11]

Self-Motivated Incremental Learning (SMILe): Bonarini [52] proposed SMILe, an

intrinsically motivated learning architecture that generates a hierarchy of tasks that are then

learned using a three-phase process. In the first phase, termed a babbling phase, the agent

explores its environment to create a state transition model. In the second phase, the

architecture identifies the tasks, i.e. interesting events, using intrinsic motivation. In the

final phase, the agent then learns a solution to a task. This architecture lacks a mechanism

to store and recall the learned knowledge, thus not satisfying all the criteria for an open-

ended continuous learning agent architecture.

35

Jaidee et al. [62] proposed a task-driven architecture with a focus on task formulation and

task management. The agent learns using case-based reasoning and reinforcement learning.

The task formulation process starts with the agent comparing observation to expectation.

If a discrepancy is found, it tries to reason based on the existing knowledge of case-based

reasoning. If the discrepancy is not resolved, it is considered a new task for which the skill

should be acquired. The new tasks are added to the set of tasks pending to be learned. The

task manager selects a task based on priority and assigns it to the learning algorithm.

Hanheide et al. [63] present an architecture that autonomously generates tasks to

demonstrate how task-directed behaviour is more adaptive in dynamic environments. In

their experiments, a mobile robot explores an unknown environment, generates a map and

then categorises the rooms, which is the task. The architecture’s main feature is a

knowledge management module that activates and suspends the tasks and prioritises them

based on their importance. This architecture can autonomously generate tasks in a new

environment and manage those tasks; however, it lacks a learning module to acquire skills

to solve those tasks, thus not satisfying all the criteria for an open-ended continuous

learning agent architecture.

3.2.3 Other architectures

In addition to the architecture categories mentioned above, several more architecture

categories exist. The most popular is cognitive architecture. Broadly the main focus of such

architectures is on problem-solving and knowledge management and lacks the mechanism

to self-generate tasks. This subsection reviews some of the architectures from this category.

However, the scope of the review in this thesis is limited to architecture categories that are

an extension of motivated reinforcement learning and focus on either learning autonomy,

open-ended learning or continuous learning aspects.

SOAR Cognitive Architecture: Laird [64] proposed architecture for agents dealing with

an uncertain and dynamic environment. The architecture has a procedural memory

consisting of if-then-else rules as well as a reinforcement learning based module. The

permanent memory stores the world model, primitive skills and broad general knowledge.

Laird states that architecture enables building knowledge over time and can be pre-seeded

36

and shared by multiple robots. The architecture stores snapshot of experiences that guides

future behaviour. The learning can be with or without reinforcement learning and can be

using the stored snapshot of experiences or direct interaction with the environment. This

architecture has the memory to store knowledge and the capability to learn new skills;

however, it lacks the continuous stream of tasks that the agent can aim to learn, thus falling

short of fulfilling all the criteria of open-ended continuous learning architecture.

Deferred Restructuring of Experience in Autonomous Machines (DREAM): Doncieux

et al. [65] proposed a modular cognitive architecture with open-ended learning capability.

Tasks are generated using the babbling approach, where the agent explores its environment

to form a list of objects that it can grasp (one task) and objects that it can push (another

task). Multiple tasks can be learned, with the learning in the wakeful state, where the agent

interacts with the environment and dreaming state, where the agent mulls over the learning

without any interaction with the environment, making the architecture suitable for robotic

applications since learning can be time-consuming if the robot has to interact with the

environment constantly. The architecture also has a cognitive module, a knowledge store

that enables the transfer of skills between tasks. From a basic building blocks point of view,

this architecture is similar to the architecture proposed in this thesis.

3.2.4 Gap in the state-of-the-art

It is evident from the literature review that progressing reinforcement learning beyond

single-task learning and that too, in an open-ended manner, is an active research area. As

summarised in Table 3.1, motivated reinforcement learning architecture focuses on

learning autonomy such that learning the tasks does not require handcrafted reward

functions. On the other hand, goal-oriented agent architectures focus on task generation so

that agents can self-direct their learning. Thus, neither of the architectures by themselves

form an agent architecture capable of open-ended, continuous and autonomous learning.

That raises the question, what are the modules of an open-ended and continuous

reinforcement learning architecture?

37

Table 3.1: Table showing the focus areas of each architecture category reviewed in this literature review
section.

Focus area Motivated reinforcement learning agent
architectures

Goal-oriented autonomous agent
architectures

Learning autonomy

Task generation (i.e. ‘what to learn’)

Continuous learning

While neither of the architectures mentioned above satisfies the criteria, they can be

combined since they are complementary. It creates an architecture that enables the agent

to self-direct its learning and also enables it to learn the skills with little to no external

intervention. The following section explores this further and proposes an architecture with

a mechanism to self-discover tasks to learn, a repository to manage the tasks, and a

mechanism to learn self-discovered tasks.

3.3 Modular Continuous Learning Architecture

Tasks direct the learning as they are the reason for the agent’s actions [32]. For an

autonomous agent, a well-formed curriculum is vital for it to learn new and complex skills.

Thus, task generation is an essential component of agent architecture, with the primary

responsibility of generating tasks for the agent. However, the task generation mechanism

may not provide any information regarding the usefulness or similarity of the task with the

other tasks, thus leading to a proliferation of tasks that could hinder as opposed to direct the

agent’s learning. Thus, task management is an important consideration. The task

management component can be responsible for keeping track of the tasks that are yet to be

learned, similar tasks, and tasks that are not useful or obsolete tasks and hence need to be

pruned. It can also be responsible for prioritising the tasks based on the current skill level

of the agent. That is especially useful in the case of robots with limited computational

resources, as learning every skill from scratch can be very time-consuming. The third

essential component is the learning algorithm, enabling the agent to acquire the skill for the

prioritized tasks. Thus, to create a comprehensive continuous learning architecture capable

38

of open-ended learning, task generation, task management, and learning algorithm are the

main components.

This chapter proposes an agent architecture that satisfies all those criteria. It proposes a

generic, domain-independent, and modular architecture termed ‘Modular Continuous

Learning Architecture’ capable of open-ended learning. The following are the essential

modules:

1. ‘Task Generation Module’, that generates the tasks in an open-ended manner,

2. ‘Knowledge Management Module’, which is a repository of skills, and

3. ‘Learning Module’, that learns skills to solve those tasks.

Figure 3.3: Modular Continuous Learning Architecture.

This task generation and skill acquisition are implemented in a continuous loop. That

enables the agent to adapt to the dynamic changes in its environment and continuously

improve its skills in an open-ended manner. Figure 3.3 shows the proposed Modular

39

Continuous Learning Architecture that forms the basis for this thesis’s work. The following

subsections discuss each of the essential components of this architecture in detail.

3.3.1 Task generation module

The ‘Task Generation Module’ is responsible for directing the agent’s learning by

autonomously generating a list of tasks to learn. This module makes the architecture capable

of open-ended learning and enables the agent to self-direct its learning. It enables the agent

to learn more than one task, makes it more adaptive to dynamic environments and is

required for it to behave autonomously in the real world. The task generation process, in

most cases, begins with the agent gathering the experience by moving about randomly in

its environment. That is the same as body babbling described in the developmental robotics

literature, where the agent aims to discover its body and its relationship with the

environment. That experience is then used to generate a set of potential tasks. The literature

review shows that task generation is an active research area and that there are several ways

to generate tasks. Tasks can be generated in one or more of the following ways:

 Using artificial curiosity, seek novel situations that form the potential tasks.

 Using the agent’s previous experience as data points, generate clusters of unique

situations using an unsupervised learning algorithm. The cluster centroids form

potential tasks.

 In its simplest form, an externally supplied domain-dependent list of tasks.

The types of tasks generated depend on the implementation of this module, i.e. the module

can be designed to generate: i) flat tasks, i.e. non-hierarchical tasks, ii) hierarchy of tasks

ranging from top-level tasks to its corresponding sub-tasks, iii) a curriculum of related tasks

ranging in complexity from primitive to compound tasks. Typically, the curiosity-based

implementations would generate single level tasks. To generate a hierarchy of tasks,

options discovery methods [66][67] can be used, and methods such as the one detailed in

Chapter 5 can be used to generate a curriculum of tasks.

40

3.3.2 Knowledge management module

The ‘Knowledge Management Module’ is a knowledge repository. Its primary role is to

manage the tasks and store the learned skills. For certain environments, a vast number of

tasks can be generated by the task generation module, and it is not always possible or

practical to learn all the tasks, especially for robotic applications. Hence, there should be a

mechanism to ascertain the task’s usefulness and gauge the task’s similarity with other

tasks, both of which may require domain knowledge. Based on that, it should prune and

prioritize the tasks. The module should be able to store the skill and recall it when required.

Also, it should be able to combine the skills to form solutions for compound tasks.

Considering that, the primary responsibilities of this module are:

 Add and delete the tasks to its internal list.

 Maintain the status of the task indicating whether it is learned or not.

 Update the priority of tasks based on similarity with the learned tasks.

 Store and recall the skills.

 Generalize the skills to form a consolidated knowledge representation.

In addition to the above, in most cases, the ability to unlearn or forget a skill is an important

consideration for real-world applications. That will be required if the task is no longer valid

or an alternative way of attaining the task is learned—the deleting of skill results in freeing

up memory and optimising the skill search. Also, task prioritisation is vital as learning

every skill is not possible, especially for robots. Such prioritisation can be implemented

based on a similarity index generated by the task clustering algorithm [68], novelty-based

motivation [11] or based on the current competency level of the agent for similar skills.

For example, consider that the task generation module is implemented using a clustering

algorithm. Such algorithms internally use similarity indices to generate clusters, i.e. tasks

in this case. Those indices can be used to determine the similarity of a newly generated

task with other tasks in the knowledge management module. The implementation of the

knowledge repository can be based on reinforcement learning packaged policy per skill

rather than the approach of one large neural network. That also enables easier storage,

recall and composition of the skills as required in the future.

41

3.3.3 Learning module

The ‘Learning Module’ is responsible for learning the skill required to solve the task. This

thesis started with the premise that reinforcement learning is suitable for autonomous

learning; hence this module should be implemented using one of the reinforcement learning

algorithms. Section 3.4 shows how this module can be implemented using the Dyna-Q

algorithm. In reinforcement learning, the agent learns interactively. It perceives the state of

its environment, takes action from all the available actions that it can take in that state and

receives feedback called ‘reward’. Over time reinforcement learning forms a policy. The

learning in reinforcement learning is guided by reward, either received when a milestone is

reached or for every step. Reinforcement learning aims to maximize this cumulative reward.

Once a task is learned, or the learning cycle is finished, the learning module receives the

next task to learn from the ‘Knowledge Management Module’ that maintains a prioritized

list of tasks. The outcome of the learning process can be that the task is learned or that it is

not learned in the given time frame. If the task is learned, the policy, i.e. the skill, is sent to

the ‘Knowledge Management Module’ for storage. The reason a task cannot be learned can

be either that the task is too difficult to learn at this time or because it is invalid. The

knowledge management module records this.

3.3.4 Continuous learning

The cycle of task generation, skill learning, and knowledge management is shown in Figure

3.3 and detailed in Algorithm 3.1. The knowledge management module, which maintains

the list of tasks, supplies the learning module with a task to learn. When all the tasks from

that list are learned or when a change is detected in the environment, the task generation

module generates a new set of tasks. Thus, there are two loops. One is an internal loop

between the knowledge management and learning modules. That loop ensures that all the

tasks that are not yet learned are learned. The other loop is an outer loop that checks if there

is any change to the environment, and if so, the task generation module generates new

potential tasks. That loop can be beneficial if the agent’s environment is dynamically

changing. These cycles continue for the whole lifetime of the agent, forming continuous

learning. Also, task generation and learning can happen concurrently, with one agent

42

scanning the environment and generating new tasks while the other agent is learning the

skills for those tasks. This continuous learning results in an ever-increasing knowledge

base of the system.

Algorithm 3.1: Modular Continuous Learning

Repeat

 /* 1a - Experience gathering phase */
 for steps = 1: max_exploration_steps
 Interact with the environment using exploration policy
 Gather experience
 end for

 /* 1b – Task generation phase */
 Cluster the tasks using the experience as the data points

 /* 2 – Knowledge management phase */
 From the list of potential tasks, add unique tasks to the task_list
 Sort the task_list

 /* 3 - Learning phase */
 for task = 1:task_list
 for steps = 1:max_learning_steps
 Interact with the environment according to epsilon-greedy
 Simulate and update Reinforcement Learning Q-table using Dyna-Q
 end for
 if Q Learning has converged
 Mark the task as learned
 Store the learned policy for the task
 end if
 end for

until forever

3.3.5 Architecture extensions

The flexibility of the architecture allows multiple agents to collaborate in order to generate

tasks. Similarly, multiple agents can collaborate to learn those tasks. Figure 3.4 shows the

architecture with the task generation and the learning modules with multiple blocks stacked

on top of each other, indicating that they can be implemented as multi-agent modules. All

the skills are stored in a single repository, thus enabling the transfer and sharing of

knowledge between agents. Such transfer between the agents can be advantageous when

using simulated and real robots in tandem with the simulated robot carrying out activities

that can be too risky or time consuming for the real robot.

43

Figure 3.4: A consolidated view of the Modular Continuous Learning Architecture showing functional
details of each module and multi-agent capability of the Task Generation Module and the Learning

Module.

The literature review detailed the following two categories of open-ended learning agent

architectures. The first category was motivated reinforcement learning agent architecture

with architectures such as motivated multi-option reinforcement learning (MMORL),

where motivation is used to design a task-independent reward. In the architecture proposed

in this chapter, the learning module can be implemented with a motivation based task-

independent reward design. The second category of agent architecture was goal-oriented

autonomous agent architectures with architectures such as goal discovering robotic

architecture for intrinsically motivated learning (GRAIL), where motivation is used to

generate tasks that direct what the agent learns. In the architecture proposed in this chapter,

the task generation module can be implemented using novelty detection, for example, as

shown by Marsland et al. in [69], where a neural network can be trained to detect novel

perceptions, and such perceptions can then be considered as tasks. In addition, the

44

knowledge management module can be implemented using a competence-based task

selector where the system selects which task to learn (from the list of tasks provided by the

task generation module) based on the difficulty level of the task and the current competency

level of the agent for a similar task. When motivation is used in the design of either of the

modules of the proposed architecture, it creates an architecture that can be termed as

“motivated open-ended continuous reinforcement learning agent architecture”.

Figure 3.4 shows a consolidated view of the architecture with each module’s multi-agent

capability and functional details. Each module of the architecture also represents a phase

of the whole learning cycle. These phases of task generation, learning and knowledge

storage can be explicit stages or implemented to work in a continuous way where the agent

receives a continuous stream of experience akin to learning online. The architecture allows

flexibility in terms of the addition of other external modules, each of which could be

responsible for a particular functionality. Also, since the architecture is designed to have

low coupling between the modules, there is flexibility in terms of the techniques used to

implement each of the modules.

3.3.6 Architecture applications

The proposed agent architecture is envisaged to be applied to robotics, in particular

developmental robotics. Different robots have different sensors and actuators, providing

them with different capabilities. They locomote and interact with the environment

differently. For these robots to be useful, the typical approach is for a designer to write a

control program for these robots to be able to carry out specified tasks. However, for

dynamically changing environments, even the designer will not know upfront what tasks

the robot will need to carry out. Thus, it is difficult to determine upfront what skills the

robot will require, and hence not possible to write the control program corresponding to

those skills. Moreover, these control programs are specific to the capabilities of the robot’s

sensors and actuators. Any change to the hardware requires rewriting/optimising the

control programs. Developmental robotics’ approach to this is to endow the robot with the

capability of open-ended and lifelong learning of new skills of increasing difficulty. The

architecture proposed in this chapter is a generic architecture with the required modules to

45

empower the robot to accomplish such open-ended and lifelong learning. The architecture,

however, does not have modules that allow the robot to learn language-based

communication skills; thus, the scope of this architecture is limited to learning

sensorimotor skills.

In developmental robotics, the robot is not provided with any innate knowledge. It starts

with body babbling to acquire knowledge of its body and environment, creates

sensorimotor associations and determines what to learn. The architecture’s task generation

module is proposed with just that in mind. Further, in developmental robotics, the robot

should be able to learn the skills by itself, store and recall skills as required and

progressively increase its overall knowledge. The architecture’s knowledge management

and learning modules are proposed with just that in mind. To put it in perspective, the tasks

generated by the robot implemented using the proposed architecture will be dependent on

their sensors’ and actuators’ capabilities (one such implementation is detailed in Chapter

5). The architecture enables the robot to learn skills to accomplish those tasks

autonomously. The learned skills can be stored and recalled when required. They can be

combined to generate solutions for more complex tasks (one such implementation is

detailed in Chapter 6).

The learned behaviour exhibited by the robot will be as per its inherent capabilities

depending on the types of sensors and actuators that make up the robot, thus demonstrating

skills acquisition in an open-ended manner. During such execution mode, the architecture

can be considered as a reactive robot architecture where the learned primitive skills are

equivalent to the layer/module of a reactive architecture, such as the subsumption

architecture [70]. In such reactive architectures, the world is considered the best model, i.e.

there is no internal representation of the external world, or that representation is just a

current estimate of the world. The behaviour exhibited by the robot is based on a mapping

from state to action, i.e. the learned reinforcement learning policy for a task in the case of

the proposed architecture. Such a policy can be triggered based on specific criteria

exhibiting the learned behaviour. Also, the primitive skills can be combined (one such

implementation is detailed in Chapter 6) to execute a more complex behaviour.

46

Take, for example, a vacuum cleaning robot with primitive tasks such as (i) detecting the

dirt, (ii) cleaning the dirt, (iii) avoiding obstacles, and (iv) detecting an edge of the floor to

keep the robot from falling off the stairs. The task generation module will generate such

tasks, and the skills will be learned and the learned policy stored in the knowledge

management module. During the execution mode, the primitive task of avoiding an

obstacle is triggered when the vacuum cleaning robot detects an obstacle in its proximity.

Similarly, the primitive task of cleaning the dirt is triggered when the robot detects dirt on

the floor. For cases where multiple tasks are triggered simultaneously, such as (a) the robot

detecting the dirt while avoiding obstacles and (b) the robot cleaning the dirt while avoiding

obstacles and avoiding falling off the stairs, the skill is generated by combining the policies

of the constituent primitive tasks.

The following section details the experiments that validate the claims of the architecture.

Those experiments use a mobile robot; however, the concept can be extended to robots of

other types. Some of the challenges related to such an extension are discussed in the future

work section in Chapter 7.

3.4 Mobile Robot Experiments

The previous section proposed an open-ended continuous learning architecture. The

experiments in this section validate the basic claims of the architecture—i.e. the open-

ended and continuous learning aspects. The scope of the experiments is limited to

validating the end-to-end working of the Modular Continuous Learning Architecture.

3.4.1 Objectives of the experiments

The objectives of the experiments in this section are:

 Using a basic task generation mechanism, verify identified tasks that the agent

architecture can learn in an open-ended manner.

 Verify, by observing learning progress, that the agent architecture enables

continuous learning.

47

3.4.2 Methods and materials

The experiments in this chapter use a simulated e-puck mobile robot. The simulation

software Webots was used to create various environments and simulate the robot’s

dynamics. This section describes an implementation of each component of the Modular

Continuous Learning Architecture described in the previous section.

Robot and its Environment

In the experiments in this chapter, only proximity sensors and ground sensors of the e-puck

mobile robot were used. As seen in Figure 3.5, the eight proximity sensors are labelled in

a clockwise direction as Front-Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left,

Left-Diagonal, Front-Left. The three ground sensors are labelled as Left, Centre, Right. The

red directional lines in Figure 3.5 show the direction in which the proximity sensors

measure the distance to an obstacle. An abbreviated name of each sensor is shown beside

the directional lines.

In the experiments in this chapter, binary discretisation was used for state space attribute

values, as detailed in Chapter 2. The action space constituted of the following three actions:

(i) Turn Left, (ii) Step Forward, and (iii) Turn Right. There was no action representing

standing still or moving backwards. The proximity and ground sensors and the left and the

right wheels form the state vector of the e-puck, represented by [ωL ωR pFR pRD pR pRR

pRL pL pLD pFL gL gC gR]. ωL and ωR are the motion direction of the left and the right

wheels, respectively.

For the experiments, three environments were created in Webots. The arenas, shown in

Figure 3.6, Figure 3.7 and Figure 3.8, were 2m x 2m in size. Figure 3.6 shows a top view

of the arena with obstacles with a few cylindrical and cuboid objects randomly scattered in

the arena. This environment can provide an opportunity to exhibit behaviour, such as

avoiding obstacles. Figure 3.7 shows a top view of the maze arena, providing the robot

with lots of walls and an opportunity for the robot to exhibit behaviours such as following

a wall. Figure 3.8 shows a top view of the circular arena with black tracks on the ground

providing the robot with an opportunity to exhibit behaviour such as following a track.

48

Figure 3.5: Top view of e-puck with

labelled proximity sensors. Red lines show
the direction in which the proximity is

detected.

State Vector:

 [ωL ωR pFR pRD pR pRR pRL pL pLD pFL gL gC gR]

Actions:

 {
 1 - Turn Left,
 2 - Step Forward,
 3 - Turn Right
 }

Figure 3.6: Top view of the arena

with obstacles.

Figure 3.7: Top view of the

maze arena.

Figure 3.8: Top view of the
circular arena with tracks.

Learning Algorithm

In the experiments in this chapter, a reinforcement learning algorithm called Dyna-Q

(detailed in Chapter 2) was implemented using MATLAB. In the experiments, the potential

tasks to be learned were considered ‘maintenance’ tasks, where the aim is to maintain a

target state [32]. That is to say, the mobile robot aimed to maintain the desired state. That

makes learning non-episodic. Thus, the concept of ‘trial’ was used to represent the start and

end of an attempt. Each trial consisted of 50,000 steps, after which the trial was ended. The

epsilon parameter of the epsilon greedy action selection was set to 0.1 with no decay for

the experiments.

49

Chapter 4 details the maintenance task type and other types of tasks when categorised by

how they are considered attained. In the experiments in this section, the following generic

reinforcement learning reward function was used:

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = ቄ
 1 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑

−0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.1)

where r is the reward received by the mobile robot in step 𝑠௧. Also, for the experiments, the

learnability of a task was determined by calculating the average cumulative reward 𝑅 for a

configured number of trials. That configured number was 5, i.e. after five attempts, the task

was deemed unlearnable if this cumulative reward was less than the threshold. As shown

by the equation,

 𝑅 < −(0.4 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙) (3.2)

it was concluded that the system was unable to learn to maintain that task state, resulting in

the task being removed from the list of potential tasks.

Task Generation Technique

The experiments in this chapter used the ART1 (detailed in Chapter 2) clustering algorithm

as the task generation technique. For the experiments in this chapter, the vigilance

parameter value was set to 0.3, resulting in relatively fewer categories. Once the data points

have been categorized/clustered, the next step is to select a representative data point. In the

experiments, for simplicity, the first data point in the category was selected as a

representative data point, which was then considered a ‘potential task’.

Consider a hypothetical state [1 1 0 0 0 0 0 0 1 1 0 0 0] that is selected as a potential task.

If this task is treated as a maintenance task, it would mean that the e-puck has to maintain

moving forward with the high sensor values of its Left-Diagonal, Front-Left sensors. Since

the state vector does not comprise position or orientation attributes, this task can be attained

at any location near the wall/obstacle. Figure 3.9 shows the top view of the maze arena

with example locations of the e-puck in the maze arena. The mobile robots are shown in

blue colour with red directional lines for the Left-Diagonal, Front-Left sensors. The task is

considered maintained as long as the e-puck moves forward with high sensor values of its

50

Left-Diagonal, Front-Left sensors, i.e., to maintain that task e-puck is following a wall to

its left.

Figure 3.9: Example locations of the e-puck (shown in blue colour) in the maze arena for the state “move
forward with the wall to its left”.

3.4.3 Results and analysis

This section demonstrates the performance of each of the key modules of the architecture

introduced in the previous section. The experiments in this chapter focus on the qualitative

evaluation of the set of tasks generated and the architecture’s continuous learning capacity.

Chapter 4 introduces quantitative metrics to examine further these and other aspects of the

architecture’s performance.

Task Generation Performance

The architecture design allows any task generation mechanism to be used; however, the

experiments in this chapter used ART1 based clustering algorithm to generate potential

tasks. ART1 takes the experience gained by the mobile robot during the experience-

gathering phase as the data points. Since there is no arena specific attribute in the agent’s

state space, this exploration phase, i.e. the experience gathering phase, aims not to explore

the different parts of the arena but enables the agent to experience the different states in its

state space. For example, it may be able to explore the black region on the floor or obstacle

on one of its sides that are represented as different states in its state space. In this phase, the

e-puck moves around randomly in the arena. That is done by making it follow an

exploration policy. In this policy, the epsilon parameter of reinforcement learning’s epsilon-

51

greedy action selection strategy is set to 1, and the reward received is 0 for all the state

action combinations. Webots simulates the dynamics of the environment, i.e. the collision

behaviour. Thus, when the e-puck collides against an obstacle, it is not allowed to move

forward anymore, and hence as per the exploration policy, it will randomly select a new

action, landing in a new location in the arena and internally in a new state within its state

space. This phase was carried out for 15,000 steps. The trajectory of the e-puck while in the

experience-gathering phase is shown in Figure 3.10, Figure 3.11 and Figure 3.12.

The task generation mechanism takes the data points gathered during the exploration as the

input and creates clusters as per the ART1 algorithm. Table 3.2, Table 3.3 and Table 3.4

show the cluster representatives for each of the three arenas. The first column of each table

shows the task Id; the second shows the task attributes (robot’s state)—these are the cluster

representatives identified by ART1. The third column shows the manually provided

description of those tasks. The architecture does not require that description but is done to

provide an intuition of what those states mean. The fourth column shows whether the task

previously existed in the knowledge management module’s list or is a unique new task

identified in this arena. The fifth column shows whether the task is valid or invalid.

Figure 3.10: Trajectory, shown
using blue line overlay of the e-

puck randomly exploring the
arena with obstacles. The states

experienced during this
exploration would be related to

“being close to an obstacle”,
“being in an open space”, to

name a few.

Figure 3.11: Trajectory, shown
using blue line overlay of the e-

puck randomly exploring the
maze arena. The states
experienced during this

exploration would be related to
“being close to a wall”, “being in
an open space”, to name a few.

Figure 3.12: Trajectory, shown
using the blue line overlay of

the e-puck randomly exploring
the circular arena with tracks.
The states experienced during

this exploration would be
related to “being on a track”,

“not on a track”, to name a few.

52

For the first arena, ten clusters are generated; for the second and the third arena, nine

clusters are generated. The vigilance parameter for the ART1 algorithm influences the

number of clusters generated by varying the similarity between the clusters. The output of

the task generation provides a fair idea of the different cluster representatives, i.e. it

provides an insight into the states experienced by the e-puck. From Table 3.2, it can be seen

that the states experienced by the mobile robot are related to obstacles to its right or left

while it is either moving forward or turning right or left. For example, one of the cluster

representatives is To9. This state indicates that the mobile robot is turning right when there

is an obstacle to its right. Table 3.3 shows the results for the maze arena (Figure 3.7), which

can be considered similar to the arena with obstacles (Figure 3.6) since it has walls that also

act as obstacles. That similarity is evident from the result, as many of the cluster

representatives are the same as in Table 3.2. For example, one of the cluster representatives

is Tm7. This state indicates that the mobile robot is moving forward with the wall to its right.

Table 3.4, on the other hand, shows that the robot experiences the states that denote that it

is partially or entirely over the black region on the ground. For example, one of the cluster

representatives is Tc3, which indicates that the robot is moving forward while on a black

track.

Table 3.2: Cluster representatives generated for the arena with obstacles.

Task Id Task Attributes Description of the task state Unique
task?

Is Task
Valid?

To1 1 1 0 0 0 0 0 0 0 0 0 0 0 Moving forward, no obstacle anywhere nearby Yes Yes

To2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no obstacle/wall nearby Yes Yes

To3 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, obstacle/wall on the left at the side Yes Yes

To4 1 0 1 0 0 0 0 0 1 1 0 0 0 Turning right, obstacle/wall on the left at the front Yes Yes

To5 0 1 1 1 0 0 0 0 0 1 0 0 0 Turning left, obstacle/wall on the right at the front and
obstacle/wall on the left at the front

Yes Yes

To6 1 0 1 1 1 0 0 0 0 0 0 0 0 Turning right, obstacle/wall on the right at the front and side Yes Yes

To7 1 0 0 0 0 0 0 1 1 0 1 1 1 Appears to be invalid sensor readings. Ground sensors should be 0
for this arena.

Yes No

To8 1 1 0 0 0 0 1 1 0 0 0 0 0 Moving forward, obstacle/wall on the left at the back Yes Yes

To9 1 0 0 1 1 0 0 0 0 0 0 0 0 Turning right, obstacle/wall on the right at the side Yes Yes

To10 0 1 1 0 1 0 0 0 0 1 0 0 0 Turning left, obstacle/wall at the front and right at the side Yes Yes

53

Table 3.3: Cluster representatives generated for the maze arena.

Task Id Task Attributes Description of the task state Unique
task?

Is Task
Valid?

Tm1 1 1 0 0 0 0 0 0 0 0 0 0 0 Moving forward, no wall anywhere nearby No Yes

Tm2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no wall anywhere nearby No Yes

Tm3 1 1 1 0 0 0 0 0 1 1 0 0 0 Moving forward, a wall at the front and left Yes Yes

Tm4 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, the wall on the left at the side No Yes

Tm5 1 0 1 1 0 0 0 0 0 1 0 0 0 Turning right, a wall at the front and right Yes Yes

Tm6 1 1 1 1 0 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the front Yes Yes

Tm7 1 1 0 1 1 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the side Yes Yes

Tm8 1 0 0 0 0 0 0 0 0 0 1 1 1 Appears to be invalid sensor readings. Ground sensors should
be 0 for this arena.

Yes No

Tm9 1 1 1 1 0 0 0 1 1 1 0 0 0 Moving forward, a wall at both the front right and left. Yes Yes

Table 3.4: Cluster representatives generated for the circular arena with tracks.

Task Id Task Attributes Description of the task state Unique
task?

Is Task
Valid

Tc1 1 0 0 0 0 0 0 0 0 0 0 0 0 Turning right, no wall anywhere nearby, and the robot is not on
the black track

Yes Yes

Tc2 0 1 0 0 0 0 0 0 0 0 0 0 0 Turning left, no wall anywhere nearby, and the robot is not on
the black track

No Yes

Tc3 1 1 0 0 0 0 0 0 0 0 1 1 1 Moving forward, no wall anywhere nearby, and the robot is on
the black track

Yes Yes

Tc4 0 1 0 0 0 0 0 0 0 0 1 1 1 Turning left, no wall anywhere nearby, and the robot is on the
black track

Yes Yes

Tc5 1 1 1 1 0 0 0 0 0 1 0 0 0 Moving forward, a wall at the front on the right and left Yes Yes

Tc6 1 1 0 1 1 0 0 0 0 0 0 0 0 Moving forward, a wall on the right at the side and the robot is
not on the black track

No Yes

Tc7 1 1 0 0 0 0 0 0 1 1 0 0 0 Moving forward, a wall on the left at the front and the robot is
not on the black track

Yes Yes

Tc8 1 1 0 0 0 0 0 1 1 0 0 0 0 Moving forward, a wall on the left at the side and the robot is
not on the black track

No Yes

Tc9 1 1 0 0 0 0 0 1 1 0 1 1 1 Appears to be invalid sensor readings. There is no track near the
wall.

Yes No

Scanning through the manually provided description of the tasks, i.e. cluster

representatives, most of the tasks appear to be valid. However, a few appear to be invalid

cluster representatives, for example, state To7 in Table 3.2 and the state Tm8 in Table 3.3.

There are no dark coloured regions on the floor in either of those arenas. Examining the

raw data points from the exploration phase also shows the presence of those states. The

only explainable reason for those data points and subsequently identified cluster

representatives is the sensor noise. However, this also shows that the task generation

54

mechanism is correctly identifying the uniqueness of the clusters. The knowledge

management module will prune such invalid tasks.

Knowledge Management Performance

In the experiment, the knowledge management module maintains a list of cluster

representatives identified by the task generation module and their status, indicating whether

they are learned or not. These cluster representatives are termed as ‘potential tasks’, i.e.

unique states that the e-puck has experienced. The knowledge management module also

stores the reinforcement learning policy, i.e. the Q-table as the learned knowledge. Q-table

can be persisted as a text file and stored. They can be recalled back into memory when

required. Comparing the results shown in Table 3.2, Table 3.3 and Table 3.4, it can be seen

that several ‘potential tasks’ are common to the different arenas, such as state To1, Tm1 and

Tc1. This state means that the e-puck is moving forward while in an open space and not on

the black region on the floor. The knowledge management module is responsible for

keeping track of such similarities, as indicated by the third column of Table 3.2, Table 3.3

and Table 3.4. Initially, for the first arena, the task generation module will identify a large

number of tasks that are added to the list of tasks to be learned by the knowledge

management module. However, the number of tasks added will be fewer for the arenas that

are explored subsequently, as only the unique tasks are added to the list. Once a task is

learned, it is marked as learned, and its policy is stored in the repository. If a task cannot be

learned, it is marked as such and left on the list for later attempts. The task cannot be learned

because it is too difficult at that point in time or because it is an invalid task. The learning

was attempted up to five times, after which such tasks were removed from the list.

Learning Performance

The design of the proposed architecture permits the usage of any reinforcement learning

algorithm. However, since the experiments in this chapter aim to focus on the validity of

the proposed architecture, the task representation uses discrete state and action space, and

the Dyna-Q reinforcement learning algorithm was used. Once the ‘potential task’ generated

by the task generation module was learned, the policy, i.e. the learned knowledge, was

55

stored in the knowledge management module. The learning module was then assigned

another task to learn, and the cycle continued.

In the experiments, the tasks were considered ‘maintenance’ tasks, i.e. the aim of the agent

was to maintain the task state, and the reward detailed by Equation 3.1 was used by the

algorithm. Using the intuition provided by the description column of Table 3.2, Table 3.3

and Table 3.4, five tasks were selected for each arena, the results for which are shown in

Figure 3.13. These tasks were selected as follows: one task of particular interest, one invalid

task and the remaining three were randomly chosen. The five tasks for each of the arenas

are shown in the legend of the figure.

Figure 3.13: Reward gained when learning the selected tasks. Tasks for the arena with obstacles are

shown in green, tasks for the maze arena are shown in blue, and the tasks for the circular arena are shown
in purple.

Figure 3.13 shows that the invalid tasks are not learned. The cumulative reward for them is

-25000, the lowest that can be in the experiments. For the other tasks that are valid, the

learning performance depends on the opportunity that the e-puck gets to learn a particular

task. Results show that some tasks are learned, others are not. In this experiment, the aim

was to perform qualitative analysis; hence the experiment for each task was run for only

50,000 steps. By very nature, in reinforcement learning, the learning requires that the agent

56

tries out different actions in a particular state. For this, the agent has to find itself in that

state to try out other available actions. Some states are easy to regain the maintenance

attempt whereas others are not, thus the difference in the opportunity to learn certain tasks.

Chapter 4 introduces metrics to measure this, and an experiment in Chapter 6 shows that

the learning performance can be better in specially constructed environments as it provides

a better learning opportunity. The task To2 (turning left, no wall nearby) in the maze arena

appears to be easy to learn. The e-puck finds plenty of opportunities (open area) and keeps

turning left. For the tasks that appear to be difficult to learn, in the experiment, if the

cumulative reward was less than the threshold as shown by Equation 3.2, it was considered

a failed learning attempt and such task was added to a list to be reattempted. After five

attempts, the task was considered unlearnable and removed from the task list.

Figure 3.14: Trajectory of e-
puck (shown using blue line

overlay) avoiding
obstacles/walls in the arena with

randomly scattered obstacles.
The starting location is shown

with the red dot.

Figure 3.15: Trajectory of e-puck
(shown using blue line overlay)
following the wall to its right in

the maze arena. The starting
location is shown with the red dot.

Figure 3.16: Trajectory of e-

puck (shown using the blue line
overlay) following the black

track in the circular arena. The
starting location is shown with

the red dot.

Regarding the tasks of particular interest for each of the arenas, the learning was continued

for one million steps. For the arena with obstacles, the task state of particular interest is To1.

To maintain this state, the e-puck has to maintain zero sensor values of all its proximity

sensors while moving forward, i.e. avoid obstacles. In learning this task, the e-puck exhibits

the behaviour of avoiding obstacles. Figure 3.14 shows the learned behaviour that the e-

puck is avoiding obstacles. For the maze arena, the task state of particular interest is Tm6.

To maintain this state, the e-puck has to maintain high sensor values of its Front-Right,

Right-Diagonal proximity sensors and zero value for the rest of its proximity sensors while

57

moving forward. In learning this task, the e-puck exhibits the behaviour of following the

wall to its right. Figure 3.15 shows learned behaviour. For the circular arena with tracks,

the task state of particular interest is Tc3. To maintain this state, the e-puck has to maintain

zero sensor values of all its proximity sensors and high sensor values of its ground sensors

while moving forward. In learning this task, the e-puck exhibits the behaviour of following

the track. Figure 3.16 shows the learned behaviour of the e-puck following the black track.

Continuous Learning and Overall Architecture Performance

The continuous learning cycle starts with the exploration phase, where the e-puck moves

around randomly in its arena. The states experienced during this phase are used by the task

generation module to generate potential tasks. Those tasks are then learned, and the

knowledge is stored in the knowledge management module. The robot is then placed in

another arena, and the cycle continues. Figure 3.17 summarises this continuous learning.

When the e-puck is placed in a new arena, it forms new tasks and learns those tasks, i.e.

when placed in a new environment, it autonomously discovers new tasks specific to that

environment and then learns to attain those tasks, thus continuously improving its

knowledge of its environment.

Figure 3.17: Continuous Learning cycle of generating tasks and learning skills in different arenas. With
this open-ended continuous learning cycle, the e-puck discovers a unique set of tasks in each arena and

then learns skills to accomplish those tasks, thus increasing its overall knowledge base.

58

Again consider a few examples from each of the three arenas. As seen in Table 3.2, when

the e-puck is in the arena with obstacles, the potential tasks generated are related to the

presence of an obstacle in its proximity (for example, To8) or that it is in an open space

(state To1). When learning tasks such as To1, the e-puck exhibits behaviour akin to avoiding

obstacles. Next, when the e-puck is placed in the maze arena, as shown in Table 3.3, it

forms tasks related to being beside a wall (for example, Tm7). When learning to maintain

such a task state, the e-puck exhibits behaviour akin to following the wall on its right. Then,

when the arena is changed again to the circular arena with tracks, as shown in Table 3.4, it

forms tasks related to being over a track (for example, Tc3 or Tc4). In learning to maintain

such task states, the e-puck exhibits behaviour akin to following the track.

Thus, the e-puck goes from having no knowledge of its environment or even its own state

space to exhibiting identifiable behaviours. At the start and when the environment changes,

the e-puck self-generates the tasks specific to that environment and learns skills to

accomplish those tasks, thus, continuously improving its overall knowledge. That shows

the validity of the proposed continuous learning architecture.

3.5 Summary

This chapter proposed the Modular Continuous Learning Architecture—an agent

architecture with a ‘Task Generation Module’ that enables the agent to decide what to learn,

a ‘Knowledge Management Module’ which is a skills repository and a ‘Learning Module’

implemented using reinforcement learning. The task generation, learning, storing, and

recalling of the skill continues in a cycle, thus continuously improving the system’s overall

capability without external intervention. Mobile robot experiments were run in a

dynamically changing environment to demonstrate how the agent can switch from learning

to exploring and continuing that in an open-ended manner, with basic definitions for the

key components: tasks, skills and rewards. When the Task Generation Module is

implemented using novelty-based or curiosity-based motivation or the Learning Module is

implemented using intrinsic motivation based reward, it creates a ‘motivated open-ended

continuous learning’ architecture. The literature review showed that the focus of the

59

motivated reinforcement learning agent architectures was on generating task-independent

reward functions and the focus of goal-oriented autonomous agent architectures was on

generating tasks to self-direct the learning, both of which lacked lifelong learning

capability. This new architecture fulfils that gap in the literature.

The architecture presented in this chapter provides the foundation for investigating open-

ended continuous reinforcement learning by mobile robots in the rest of this thesis. The

next chapter will examine the types of tasks and the design of generic rewards for different

task types in the context of the proposed architecture. Later chapters will examine

compound task generation (Chapter 5) and skill composition (Chapter 6).

60

CHAPTER 4 REWARD DESIGN FOR AUTONOMOUS LEARNING

Parts of this chapter have been published in: P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique,
“Intrinsic rewards for maintenance, approach, avoidance, and achievement goal types,”

Frontiers in Neurorobotics, vol. 12. October. 2018.

4.1 Introduction

The previous chapter showed the modules that make up the Modular Continuous Learning

Architecture. Those modules form essential components for the agent architecture’s open-

ended and continuous learning aspects. Another crucial aspect that was mentioned in

Chapter 1 was autonomous learning, which is the main reason for using reinforcement

learning in architecture. In reinforcement learning, the agent is not provided labelled data.

It is not told what the positive and negative samples are. Neither is there a control program

consisting of if-else conditions instructing the agent what to do. Instead, the agent must

figure out what action it should take in which state. That mapping from state to action is

called policy, and the learning is driven using ‘reinforcement’, which can be a negative or

a positive reward. Typically, the reward in single task reinforcement learning is a

handcrafted function that may require significant domain knowledge in many cases. For

agent autonomy, it is essential that the rewards are task-independent. The literature review

shows that either intrinsic motivation or reward shaping can be used as a task-independent

reward function. However, another way of designing the task-independent reward function

is basing it on the type of the task. That is what will be discussed in this chapter.

Tasks, also interchangeably referred to as goals, have been among the main research areas

of the Beliefs, Desires, Intentions community [71] and the agent community [72]. As seen

in Chapter 2, a categorisation based on how the tasks are attained leads to ‘maintenance’,

‘achievement’, ‘approach’ and ‘avoidance’. In a reinforcement learning problem

formulation, albeit somewhat unknowingly, this task categorisation is already considered.

Take, for instance, the cart-pole benchmark problem, which is a maintenance task. A maze

navigation problem is an achievement task. Similarly, problems solved with positive

reward have properties of approach task, and the problems solved using negative reward

have properties of avoidance task. Thus, the concept of using task types for generating a

61

reward seems promising. Encouraged by that, this chapter proposes a task-independent

reward function for different types of tasks.

Figure 4.1: Modular Continuous Learning Architecture revisited. Task-independent reward design, the
focus of this chapter, is the contribution related to the Learning Module of the architecture.

This chapter will propose reward functions for achievement, approach, avoidance and

maintenance task types. Also, tasks can be ‘primitive’, i.e. elementary tasks that logically

cannot be broken down into subparts and ‘compound’ that are a combination of the

primitive tasks. This chapter will further explore the possibility of extending the proposed

reward functions to be used with the compound tasks. It will also propose metrics to

measure the performance of the agent. Using simulated e-puck based experiments, this

chapter will demonstrate the use of the proposed reward functions, i.e. the robot will learn

the different types of tasks. One of the experiments will also show a hand-coded example

of how a compound task can be broken into sub-tasks, which could be treated as one of the

aforementioned types. Then using the proposed reward functions for those sub-tasks, the

experiment will find a solution for the compound task.

Figure 4.1 is the Modular Continuous Learning Architecture, as detailed in Chapter 3. The

‘Task Learning Module’, shown in green, uses reinforcement learning. The task-

independent reward function design, the focus of this chapter, is a research contribution

62

related to that learning module. The rest of this chapter is organised as follows: Section 4.2

will review the literature on task-independent reward design. Section 4.3 proposes the

reward functions for different types of tasks. Section 4.4 proposes the metrics to measure

the agent’s performance. Section 4.5 will detail the setup of the experiments and discuss

the results. Finally, Section 4.6 will then provide the concluding remarks.

4.2 Task-Independent Reward Design

Reinforcement Learning, where an agent learns by interacting with its surroundings, is

most suitable for autonomous learning. The learning is guided by reinforcement,

commonly known as ‘reward’. The reinforcement learning agent aims to maximise the

cumulative reward and, in doing so, find the optimal mapping between states and actions,

i.e. learn the task. Thus, reward design is most crucial in reinforcement learning. ‘Reward

engineering’ is one of the active research areas. That research focuses on the principles of

construction of reward that empowers efficient learning [73]. Typically, designing a good

reward function requires task-dependent knowledge. However, if the reward is task-

dependent, it hinders autonomy. Thus, this section will review the literature on a specific

aspect of reward engineering, the one that is concerned with task-independent reward

design.

Consider the following example of a predefined value assignment reward function:

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = ቄ
 1 𝑖𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.1)

where 𝑟(𝑠௧) is the per-step reward at time step t. Such reward is suitable for certain tasks;

however, consider a benchmark cart-pole (or the similar inverted pendulum) example used

in reinforcement learning research. In this problem, there is a cart that moves along a track

with a pole attached. The agent’s task is to balance that pole by moving the cart to the right

or left along the track. The following equation gives the reward function where 𝑢𝑡
1 and 𝑢𝑡

ଶ

are its state attributes, the position of the cart and the pole’s angle with respect to the cart.

G is the goal state with attributes 𝑔ଵ and 𝑔ଶ, the desired position and angle.

63

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = −𝑐2 ∗ (𝑔ଵ − 𝑢௧
ଵ)ଶ − 𝑐3 ∗ (𝑔ଶ − 𝑢௧

ଶ)ଶ (4.2)

As can be seen from the reward function, such reward design requires significant task-

dependent knowledge. In essence, the control logic is encoded in the reward function,

instructing the agent what action to take when in a particular situation. Consider another

example of a ball paddling game. The game consists of a ball attached to a paddle by an

elastic string. The aim is to bounce the ball on the paddle. To design a good reward

function, one has to consider not just that the end task is accomplished but also how the

task is accomplished. Thus, the reward function should consist of a condition for bouncing

the ball and a condition for bouncing it above the paddle and not hitting it towards the

ground, again illustrating the need for task-dependent knowledge to design a reward

function. If the design is incorrect, the agent will learn an incorrect behaviour [74]. Even

if the design is correct, the agent might find an alternative way to gain maximum

cumulative reward, i.e. ‘hack’ the reward [74], resulting in the right behaviour but achieved

in an unforeseen way. Thus, a good reward design usually consists of a primary reward

responsible for guiding the agent towards the goal and a secondary reward that guides the

agent in the way the goal is to be achieved.

Also, for some domains, it is only possible to design a ‘sparse reward’. This is where the

reward is assigned to a small proportion of situations making the learning difficult since,

in such cases, the reinforcement learning agent gets very little feedback for its actions.

Alternatives proposed in the literature include ‘hallucinating’ positive rewards [75].

Another solution is to use imitation learning [33] [76] and inverse reinforcement learning

[77] [78] that provide a near-optimal policy, and the reward can then be derived from these

human demonstrations. However, this does not allow the fully autonomous development

of the agent. Dewey [73] concluded that to create an autonomous agent, one cannot use

handcrafted rewards, and that is a considerable challenge since the task-independent design

of reward resulting in desired behaviours is complex. While earlier, the focus of the

reinforcement learning research was on efficient learning of an arbitrary given task, recent

research has recognised that the design of a reward function can either restrict or facilitate

autonomy. Also that the reward function can enable open-ended learning, allowing

reinforcement learning to progress beyond single-task learning. The following few

subsections review work that focuses on this area.

64

4.2.1 Intrinsic motivation

Although the concept of novelty [79] and curiosity [80] has been used with reinforcement

learning for decades, this usage was to find novel tasks to learn or assist with exploring the

state-space. Singh et al. [45] introduced the idea of reward modelled using the

psychological concept of motivation. Motivation is defined as a reason to perform a task

and is broadly classified as either intrinsic or extrinsic [81]. When a task is carried out for

internal satisfaction without any external influencing factor, it is said to be carried out due

to ‘intrinsic motivation’. When a reward signal is generated internally within an agent using

an inherent attribute without an external influence, it is classified as an intrinsic reward

[45]. It can depend on the state components from the agent’s internal environment in

addition to the components from its external environment and is task-independent [82]. It

is, in short, an agent’s perception of the scalar reward and an example of an engineered

reward leading to open-ended learning [83] [84].

The computation of the reward can be based on experienced states, specific events, or

actions. The central aspect is that it is independent of the previous task-specific knowledge.

The motivation signal may lead to learning a specific skill of no immediate benefit but

could be beneficial later [45]. An agent may generate this signal because a task is inherently

‘motivating’, which in turn results in further exploration of its environment or acquisition

of the skill and is composed of the agent’s perception along with components from its

external environment.

𝑟 = 𝑟௘ + 𝑟௜ (4.3)

Intrinsic motivation, i.e. the ‘motivation function’, is a reward model that leads to task-

oriented performance. Equation (4.3) shows that the reward r is a summation of the

extrinsic or hand-coded task-specific reward re and the intrinsic reward ri. However, the

intrinsic reward may be used along with or instead of a task-specific reward signal. When

used along with the task-specific reward, the agent achieves more adaptive learning. When

used instead of the task-specific reward signal, it results in a true task-independent learner

since it reduces the handcrafting of the task-specific reward [44]. Also, alternatively, the

intrinsic reward can be gradually decreased or increased as required. When intrinsic

motivation is used in reward design, it serves the following two purposes: (i) state-space

65

exploration and (ii) controllability, i.e. to provide an internally generated positive or

negative feedback to manipulate the agent’s behaviour. In this section, the review is

restricted to the latter form of intrinsic motivation. Section 2.4 reviews the former use of

intrinsic motivation.

Intrinsic motivation is categorised by Oudeyer and Kaplan [85] into the following two

categories: knowledge-based and competence-based. The signal is considered knowledge-

based motivation if it is based on an internally generated prediction error [86]. This error

is generated based on the comparison between what actually happens versus the agent’s

expectation of what is supposed to happen when a particular action is executed and is also

sometimes referred to as ‘surprise’ [87]. On the other hand, novelty identifies new patterns

that have never been seen before [79] [88]. Intrinsic reward is generated only by a novel or

unexpected event. The system compares the predicted next state to the actual next state,

and if the prediction is incorrect, a novelty signal is generated. Competence refers to an

organism’s ability to interact with the environment and the development of its ability to

change it in specific ways. It is the sense of mastery that the organism has for a particular

skill. The central concept for a competence-based model is an appropriate level of learning

a challenge; that is, the activity is at a correct level of learnability given the agent’s current

level of mastery of that skill [89]. The model gauges the agent’s competence in achieving

the self-determined goals. The signal is considered competence-based motivation if it is

generated based on a progress indicator metric [86]. Such motivation generates a maximum

signal when the task’s difficulty level matches the agent’s mastery of the skill required to

accomplish that task.

The following is a small subset of examples of how intrinsic motivation is derived. Oudeyer

et al. [54] use the distance measure between the terminal state when the goal-reaching

attempt is finished and the actual goal state as a measure of competence to derive an

intrinsic reward. Stout and Barto [90] used the expected pseudo return of the options to

derive the competence-based reward. Bonarini et al. [91] use a ‘level of interest’ in visiting

the states as an intrinsic measure to generate subgoals. They propose that the states that are

difficult to reach during random exploration, once reached and easily exited, generate a

high level of interest. Sequeira et al. [92] propose using an agent’s emotions such as

surprise, in control, and situation pleasantness as intrinsic motivation. Temel et al. [93] and

66

Grzyb et al. [94] use the frustration of the robot in grasping the objects as a measure of

competence progress. They showed that low or high frustration results in exploitative

behaviour, whereas an optimal level of frustration results in explorative behaviour. Along

similar lines, Ma et al. [95] have an optimal level of challenge between the task’s difficulty

level and one’s competency is essential to maintain a higher level of intrinsic motivation.

Motivation has been examined in a deep reinforcement learning setting as well. Kulkarni

et al. [96] present a hierarchical DQN framework where motivation is used to identify the

goals for the agent in a data-efficient manner. Bellemare et al. [97] use intrinsic motivation

generated using the count-based exploration method to measure the learning progress and

demonstrate its advantage on Atari 2600 games and how this leads to better state space

exploration.

Santucci et al. [98] compare the different knowledge-based and competence-based intrinsic

motivations. The motivation generated for the state predictor, the state-action predictor and

the task predictor is compared using prediction error and prediction error improvement

measures. Their results show that just knowledge-based motivation is insufficient for an

agent to learn skills for multiple tasks, whereas some but not all types of competence-based

motivation are sufficient. Whether knowledge-based or competence-based, information

regarding what constitutes prediction error or mastery level competency must be defined.

However, they can be based on the attributes from the agent’s internal state-space or

components from its external environment but independent of task-specific factors. The

following subsection reviews the literature on reward shaping.

4.2.2 Reward shaping

Another technique that generates task-independent reward is a concept called ‘shaping’

[99] [100] [101]. In reward shaping, one starts with a basic reward function that is then

shaped either statically or dynamically. Thus, shaping can guide the learning process by

favouring certain behaviours [102] and accelerating learning [103]. In the literature related

to reward shaping, the reward is seen as a programmer’s bias. The native task reward, the

initial bias, is shaped by providing a positive or negative artificial increment to encourage

or discourage behaviours. In essence, ‘shaping’ is a mathematical representation of a bias

67

that will establish a preference for action [102]. Thus, shaping, in a way, is similar to the

concept of intrinsic motivation seen in the previous subsection and can be called a

precursor to it. The shaped reward 𝑟̃ can be represented using the following equation where

𝑟 is the native task reward, f is the shaping function, (𝑠௧, 𝑎௧, 𝑠௧ାଵ) are the state, action and

next state resulting from taking action 𝑎௧.

𝑟̃(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = 𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) + 𝑓(𝑠௧, 𝑎௧, 𝑠௧ାଵ) (4.4)

In the case of static shaping, the reward function is modified using predetermined criteria,

often hand-coded, i.e. it does not vary with experience. However, since this predetermined

criterion is often hand-coded, it requires significant domain knowledge and external

manual intervention. However, this concept can be further extended by modifying the

reward dynamically. One approach is to derive the dynamic shaping function using the

agent’s initial experiences with the environment [103]. Another approach is to shape the

reward based on the progress indicator [104], where the reward is shaped based on the

evaluation of the progress in attaining a task.

Although shaping is said to be a powerful technique, it is also acknowledged that a poorly

shaped reward function might cause the learning to converge on a non-optimal solution

[105]. Also, designing a good shaping function that reduces learning time requires a task

or environment-specific knowledge [106]. Thus, reward shaping is not the type of task-

independent reward function that can be used for autonomous learning and is not explored

further in this thesis. In saying that, the modular nature of the architecture proposed in

Chapter 3 allows the ‘Learning Module’ to be implemented using reward shaping.

4.2.3 Gap in the state-of-the-art

Intrinsic motivation is the most commonly used approach to generate a task-independent

reward function for reinforcement learning. While intrinsic motivation can be used instead

of or along with other reward functions and leads to learning autonomy for an agent, it

requires additional albeit general information. That information may or may not be task-

independent in all cases. In the case of knowledge-based motivation, which is derived from

the prediction error, the information on what constitutes novelty is required. In the case of

competence-based motivation, which is derived from the difference between the mastery

68

level competence and the current competence level, information on what constitutes

mastery level competency is required. The other technique for generating task-independent

reward found in the literature is using reward shaping. That, too, requires an additional

input of either determining criteria for the static shaping update or determining what

constitutes a dynamic update to the reward function. Thus, none of the existing task-

independent techniques enables full autonomy.

Early work on reinforcement learning focused on generating reward, using intrinsic

motivation directly from the environment. However, in many cases, especially where the

rewards are sparse, research has acknowledged the benefits of generating subtasks, i.e.

transitional milestones, to direct the learning [12] [38]. This approach enables the agent to

break down a monolithic task, and the intrinsic reward for the subtasks increases the reward

density for the overarching task. The agent can exhibit behaviours such as achieving,

avoiding or maintaining these subtasks. That leads to an interesting alternative approach

where the reward function is generated based on different types of tasks. That raises the

question, how does one design a module to generate task-independent intrinsic reward

functions for different types of tasks? The following section will aim to answer that

question.

4.3 Reward Functions based on the Type of the Task

In reinforcement learning, the learning process is guided by reward. Typically the reward

is hand-designed and often task-dependent. However, it is not always possible, especially

in dynamic environments, to know upfront which tasks the agent should learn, making it

challenging to design the reward function. This chapter proposes reward functions based

on the type of task, which is the categorisation of tasks based on the functional aspect of

how the task is considered to be attained. The common types based on this categorisation

are achievement, maintenance, avoidance, approach, optimisation, test, query, and cease

type [32]. The ‘optimisation’ type means maximising or minimising a particular value. The

‘test’ type determines if a particular condition holds. The ‘query’ type is used for

information retrieval, and the ‘cease’ type is the opposite of the ‘achieve’ task type. These

69

task types are more appropriate for data-driven agents than robotics applications [38]. The

scope of this chapter is limited to the types of tasks whose “attainment” can be verified in

the context of reinforcement learning. Hence optimisation, test, query, and cease task types

are not considered further in this chapter. The remaining task types, achievement,

maintenance, avoidance, and approach, as seen earlier, are already considered in the

reinforcement learning problem formulation. Based on that criteria, this chapter proposes

reward functions for those types. The basis of the reward design starts with the generic

reward function, as shown in Equation (4.5).

𝑟(𝑠௧, 𝑎௧, 𝑠௧ାଵ) = ቄ
 1 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
 1 − ε 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑒𝑠

 (4.5)

where r is the per time step reward when action 𝑎௧ is taken in the state 𝑠௧. ε is a non-

negative constant; typically, its value would be greater than 1 so that there is a per step

penalty which incentivises the agent to find an optimal solution. The rest of this section

defines different representations of tasks and representations of the meaning of “reached”

or “attained”.

4.3.1 Reward function for a maintenance task

A type of task where the aim is to preserve the desired state is classed as a maintenance

task. Thus, for a maintenance task, the distance between the current state and the desired

state is monitored, and if that distance increases beyond a set threshold, the agent aims to

re-establish the desired state. To do that, the agent’s action selection should take into

account both the triggering and constraining conditions of the task [107]. For example,

consider a vacuum cleaning robot where the task is to remove dirt and dust from an area

supposed to be “maintained clean”. Examples of the mobile robot include following a wall

or staying within a track. Other maintenance tasks are air conditioners maintaining a

specific temperature in the room or cruise control maintaining a certain driving speed.

Maintaining a task state can be never-ending. Thus, compared to “typical” reinforcement

learning tasks, the maintenance tasks are non-episodic. Therefore, new metrics are required

to measure the agent’s performance. Those metrics are detailed in Section 4.4.

70

To represent the reward design, consider that the desired state is denoted by 𝐺 and the

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also,

consider that 𝑑(.) is a measure of distance and 𝜌 is a permissible threshold distance. Thus,

if the distance between the current and desired state is below the threshold, the aim can be

considered fulfilled. The reward function is as shown in Equation (4.6):

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = ൜
 𝜎 𝑖𝑓 𝑑(𝑠௧, 𝐺) < 𝜌
𝜑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.6)

In the equation, when the aim is attained, the reward is 𝜎 and 𝜑 otherwise. Generally 𝜎 >

0, i.e. a positive reward, but there is no particular recommendation regarding the maximum

value of 𝜎. 𝜑 is less than 𝜎 in order to incentivise the agent to find an optimal solution.

4.3.2 Reward function for an approach task

A type of task where the aim is to get closer to the desired state is classed as an ‘approach’

task. Compared to the maintenance task detailed in the previous subsection, the difference

lies in how the task is fulfilled. There is a ‘desired state’ in both cases, and the agent’s aim

is related to that state. For a maintenance task, as long as the distance between the current

state and the desired state remains under a certain threshold, it is considered fulfilled. For

an approach type task, it is considered fulfilled as long as the distance between the current

state and the desired state is decreasing [108]. The approach attempt is said to have ended

once that distance is shorter than a certain threshold, thus making the approach task

transient in nature. The task is classified as an approach type task as long as the distance

between the current and desired states is getting shorter. However, once that distance is

shorter than the threshold, the task is no longer considered ‘approaching’. For example,

consider a vacuum cleaning robot starting from the middle of a room with the aim/task of

following the wall. For that robot, the initial task would be to approach the wall and then

start the next task of maintaining a set distance from the wall while following the wall.

To represent the reward design, consider that the desired state is denoted by 𝐺, and the

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also,

consider that 𝑑(.) is a measure of distance and 𝜌 is a permissible threshold distance. The

approaching attempt is measured by comparing the distance between the current 𝑠௧ and

71

desired state 𝐺 with the state at the previous time step 𝑠௧ିଵ and the desired state 𝐺. The

equation also has a second condition which ensures that while the agent is approaching the

desired state, the distance remains more than the defined threshold 𝜌. That is so that the

fulfilment remains an “approach” endeavour and not “approach and achieve”. The first

condition in the equation is also the progress indicator and can be used on its own. Such

progress indicators can be used to represent an agent’s competence and derive a

competence specific intrinsic motivation signal. The reward function is as shown in

Equation (4.7):

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = ൜
𝜎 𝑖𝑓 𝑑(𝑠௧, 𝐺) < 𝑑(𝑠௧ିଵ, 𝐺) 𝑎𝑛𝑑 𝑑(𝑠௧, 𝐺) > 𝜌
𝜑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.7)

In the equation, when the aim is attained, the reward is σ and φ otherwise. Also, generally

σ > 0, i.e. a positive reward and φ is less than σ in order to incentivise the agent to find an

optimal solution.

4.3.3 Reward function for an avoidance task

The type of task where the aim is to remain away from the desired state is classed as an

avoidance task. It is the opposite of the approach task detailed in the previous subsection.

As the name suggests, avoidance is a behaviour where an agent stays away from a particular

state or an object [108]. The task is considered fulfilled as long as the agent stays away

from the state it should avoid, making this type of task transient in nature. For example,

consider a robotic vacuum cleaner cleaning rooms while avoiding obstacles or an

autonomous lawnmower cutting grass while avoiding obstacles.

To represent the reward design, consider that the desired state is denoted by 𝐺, and the

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also,

consider that 𝑑(.) is a measure of distance and 𝜌 is a permissible threshold distance. The

equation has two conditions. The first measures the avoidance attempt by comparing the

distance between the current 𝑠௧ and desired state 𝐺 with the state at the previous time step

𝑠௧ିଵ and the desired state 𝐺. The second condition ensures that while the agent is staying

away from the desired state, the distance remains more than the defined threshold 𝜌. It is a

72

more intuitive way to represent the avoidance attempt. Either of the two expressions can

be used on their own as well. The reward function is as shown in Equation (4.8):

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = ൜
𝜎 𝑖𝑓 𝑑(𝑠௧, 𝐺) > 𝑑(𝑠௧ିଵ, 𝐺) 𝑎𝑛𝑑 𝑑(𝑠௧ିଵ, 𝐺) > 𝜌
𝜑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.8)

As is the case for the maintenance and the approach reward functions, when the aim is

attained, the reward is σ and φ otherwise. Also, generally σ > 0, i.e. a positive reward and

φ is less than σ in order to incentivise the agent to find an optimal solution.

4.3.4 Reward function for an achievement task

A type of task where the aim is to attain the desired state is classed as an achievement task

[109]. The task is considered fulfilled when that desired state is reached. That makes the

learning episodic in nature, i.e. a starting or an initial state of an agent and an end state. In

the case of reinforcement learning, the learning process can start at the starting state and

then end when the desired state is reached. That starting state can be different for each

episode to make the learning more robust. The concept of ‘event’ (detailed in Chapter 2)

is used to represent an achievement task. An event describes the transition of states of the

agent. An achievement task is considered fulfilled when that transition is accomplished.

Examples of achievement tasks are a vacuum cleaning robot making its way out of the

room once it is cleaned or finding its way through the room back to the charging station.

To represent the reward design, consider that the desired state is denoted by 𝐺, and the

agent’s state at the time step 𝑡 is denoted by 𝑠௧ and that it takes action 𝑎௧ in that state. Also,

consider that 𝑑(.) is a measure of distance and 𝜌 is a permissible threshold distance. The

reward function is as shown in Equation (4.9):

𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = ൜
𝜎 𝑖𝑓 𝑑(𝐸௧, 𝐺) < 𝜌
𝜑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.9)

Similar to equations in the previous subsections, when the aim is attained, the reward is σ

and φ otherwise. Also, generally σ > 0, i.e. a positive reward and φ is less than σ in order

to incentivise the agent to find an optimal solution.

73

4.4 Metrology for Agent Performance

As seen in the previous section, tasks can be of various types when categorized based on

their functional aspect. However, the reinforcement learning tasks are typically assumed to

be of achievement type. Even the tasks that do not necessarily fit the definition of

achievement task are treated as one. The task has a start state and the desired end state. A

trial, a run or a rollout is considered episodic where the episode is considered to have ended

when either (i) the end state is reached, (ii) a configured undesired state, such as a robot

has fallen down, is reached, or (iii) the number of steps in the episode has exceeded the set

limit. Typically, the agent’s per episode aggregate reward is used as a metric. The agent is

said to be performing well if this per episode reward increases or reaches a set maximum.

Such a metric is not sufficient for all the task types detailed in the previous section. This

section proposes metrics to measure the agent’s performance for non-episodic tasks. For

instance, maintenance tasks are non-ending; thus, the concept of an episode is not relevant.

Thus, a metric such as the regain attempt, a critical measure for non-episodic tasks, is

proposed. Another metric is the number of times the agent was not able to avoid the state

that it was supposed to avoid. These metrics evaluate the reward functions for those task

types and are measured over a fixed period T of the agent’s life. The proposed metrics can

be used in conjunction with the reinforcement learning’s standard per-episode reward

metric to provide additional insight into the agent’s learning performance.

4.4.1 Number of times for which the non-episodic task is attained (M1)

This metric is applicable to maintenance, approach and avoidance tasks. It counts how

often the agent maintains/approaches/avoids the desired state for two or more consecutive

steps during a period P. For maintenance, approach and avoidance tasks, the process of

‘attaining’ the desired state is never-ending, and the learning ‘episode’ is not ended at the

first occurrence of the task being maintained/approached/avoided. That is to say that the

learning is not stopped when the desired state is ‘reached’; the agent’s position is not reset

back to a pre-determined or random initial state; instead, the training continues. The

maintained state could be lost for such unending tasks, or the approaching/avoiding attempt

is lost; however, since the process is never-ending, the reinforcement learning agent

74

reattempts to maintain/approach/avoid. The metric M1 counts the number of times the agent

reattempts. Thus, it provides a measure of the agent’s competence in regaining the

approach/avoidance/maintenance task.

𝑀ଵ = 𝑐𝑜𝑢𝑛𝑡
௧ୀଶ…௉

(𝑡) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑟௧ = 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ ≠ 𝜎 (4.10)

where depending on the type of the task, Equations (4.6), (4.7) or (4.8) provide rt and rt-1.

In the equation, 𝜎 is used as an example positive reward for 𝑟௧ and 𝑟௧ିଵ.

4.4.2 The longest period of maintenance task (M2)

This metric is also used for maintenance tasks and calculates the longest stretch in terms

of time steps for which the task was maintained. Once the reinforcement learning agent has

learned the skill, the expectation would be that this metric would be of higher value than

the agent who has not learned or partially learned the skill. Thus, this metric indicates the

agent’s competence in maintaining the task, with longer stretches indicating better agent

performance. However, a lower value of this metric could result from a lack of learning

opportunities for the agent or an unsuitable environment. This metric requires keeping track

(or calculated from experience) of the maintenance attempt segments (represented as an

array J). The maintenance attempt segment starts when 𝑟௧ = 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ ≠ 𝜎 and ends

when 𝑟௧ ≠ 𝜎 𝑎𝑛𝑑 𝑟௧ିଵ = 𝜎 (𝜎 is used in the equation as an example of a positive reward).

M2 is the longest segment in the array J.

𝑀ଶ = 𝑚𝑎𝑥
௝ୀଵ…௃

(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑗) (4.11)

4.4.3 Number of times task not avoided (M3)

This metric is applicable to avoidance tasks. For approach and avoidance tasks, the

reinforcement learning agent may actually end up ‘reaching’ the state that it is approaching

or avoiding. In such cases, the approaching or the avoiding attempt ends. For the avoidance

type tasks, that ‘reaching’ is considered a failure. This metric measures how often such

75

failure occurred, i.e. it counts how often the agent fails to avoid the task state over a fixed

period P.

𝑀ଷ = 𝑐𝑜𝑢𝑛𝑡
௧ୀଵ…௉

(𝑡) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑠௧, 𝐺) < 𝜌 (4.12)

where 𝑑(.) is the distance between the current and the task state and 𝜌 is the distance

threshold.

4.5 Mobile Robot Experiments

Previous sections proposed the task-independent reward functions and metrics to evaluate

an agent’s performance. This section uses those metrics to verify the effectiveness of the

reward functions to guide learning. The experiments in this section will use the e-puck

mobile robot. An experiment will be performed to measure the effectiveness of each of the

reward functions proposed in the previous section. Also, an experiment will be performed

to measure the suitability of the proposed reward functions for compound tasks.

4.5.1 Objectives of the experiments

Following are the objectives of the experiments:

 Experiment 1: Measure the effectiveness of the reward function proposed in

Section 4.3.1 for maintenance tasks.

 Experiment 2: Measure the effectiveness of the reward function proposed in

Section 4.3.2 for approach tasks.

 Experiment 3: Measure the effectiveness of the reward function proposed in

Section 4.3.3 for avoidance tasks.

 Experiment 4: Measure the effectiveness of the reward function proposed in

Section 4.3.4 for achievement tasks.

 Experiment 5: Measure the suitability of the proposed reward functions for

compound tasks.

76

4.5.2 Methods and materials

The experiments in this chapter used Webots software to simulate e-puck and create arenas.

A reinforcement learning algorithm was written using MATLAB and integrated with

Webots to control the mobile robot. The tasks used in the experiments were as generated

by Merrick et al. [38], and for consistency, the agent’s state and the action space used were

also as defined by Merrick et al. [38].

Robot and its Environment

Figure 4.2: Top view of e-puck with labelled
proximity sensors. Red lines show the direction in

which proximity is detected.

State Vector:

 [ωR ωL θ pL pR pFL pFR pRL pRR]

Actions:

 {
 1 – left_wheel_speed + δ,
 2 – right_wheel_speed + δ,
 3 – left_wheel_speed – δ,
 4 – right_wheel_speed – δ,
 5 – No change to wheel speeds
 }

For the experiments in this chapter, the e-puck detailed in Chapter 2 was used. The

reinforcement learning state vector used was as defined by Merrick et al. [38]. It consists

of six proximity sensors labelled as Front-Right, Right, Rear-Right, Rear-Left, Left, and

Front-Left. Figure 4.2 shows the top view of the e-puck with the abbreviated labels shown

beside the red directional lines along which the sensors detect an obstacle.

The value of the sensor reading indicates the proximity to an object. In the experiments,

discretised binary values were used for the proximity sensors. The value 1 indicated that

an object was nearby, and 0 indicated no object nearby. The state vector also consisted of

angular velocities of the wheels, represented as ωR and ωL with the range -π to π radians

per second. These velocities were discretised into nine values. The robot’s orientation angle

θ was also used in the state vector, and its range -π to π too was discretised into nine values.

77

Thus, the state of the e-puck comprised nine attributes [ωR ωL θ pL pR pFL pFR pRL pRR].

The action space comprised five actions: 1) increase the left wheel speed by δ, 2) increase

the right wheel speed by δ, 3) decrease the left wheel speed by δ, 4) decrease the right

wheel speed by δ, and 5) no change to the left or the right wheel speeds. The value of δ

used was π/2.

Figure 4.3: Top view of the simple vast walled arena.

The mobile robot environment used for the experiments with primitive tasks was the same

as used by Merrick et al. [38]. Figure 4.3 shows the top view of a large 5m  5m arena that

was created for the experiments with the primitive tasks. It is a simple arena with four walls

at its periphery and no walls/objects/obstacles in its open area. However, based on the

findings from those experiments, two new arenas were created, for the experiment with

compound tasks, as detailed in Experiment 5.

Learning Algorithm

In the experiments, a reinforcement learning algorithm called Dyna-Q (detailed in Chapter

2) was implemented using MATLAB. The epsilon-greedy action selection strategy was

used for all the experiments, and the epsilon parameter was set to 0.15 with linear decay,

i.e. the epsilon was reduced linearly.

78

Tasks used for the Experiments

For the experiments with the maintenance, approach, avoidance and achievement tasks, the

tasks generated by Merrick et al. [38] were used. To generate those tasks, Merrick et al.

[38] use Simplified Adaptive Resonance Theory (SART) [110], a clustering technique

similar to ART (detailed in Chapter 2), with the main difference being that it works with

non-binary values of its data points. Merrick et al. [38] generated two categories of tasks.

One category of potential tasks is formed using the experienced states. These tasks can be

used as maintenance, approach and avoidance tasks. The second category of tasks is

generated using events. These tasks are treated as achievement tasks since the robot aims

to achieve those event transitions.

4.5.3 Results and analysis

Experiment 1: Experiment with maintenance tasks

Using the SART clustering technique, Merrick et al. [38] generated two sets of tasks. One

set of tasks was based on the clustering of states, and the other set of tasks was based on

the clustering of events. For the experiment in this section, tasks based on the clustering of

states were used. In this experiment, the tasks are treated as maintenance tasks, i.e. the

agent seeks to maintain the task state. The tasks detailed in the ‘Task Attributes’ column

of Table 4.1 are the same maintenance tasks described by Merrick et al. [38]. The ‘Task

Description’ column is merely to provide a human-readable meaning of the task state.

Columns M1 and M2 are the metrics proposed in this chapter. The column ‘Is Task Valid’

is an evaluation of whether the task appears to be a valid task or generated in error by the

clustering algorithm.

Since the learning phase for a maintenance task is non-episodic, a concept of the trial was

used. Each trial lasted for 25,000 steps, and the trial for each task was repeated ten times.

Learning was not carried over between trials, i.e. e-puck’s state and position were reset. A

random starting state was chosen for each trial. Metrics columns show the results averaged

over ten trials along with the standard deviation. Equation (4.6) was used as the reward

function with the following parameter values: ρ was 0.9, σ was 1, φ was -1, and d was the

Euclidian distance.

79

Table 4.1: Results for maintenance tasks. Metrics M1, M2 and reward per episode measured for ten trials
with standard deviation shown.

Task
Id

Task Attributes Task Description Reward per
Episode

M1 M2 Is
Task
Valid?

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 493 ± 91 37 ± 8 154 ± 7 Yes
G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 568 ± 124 121 ± 25 88 ± 0 Yes
G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backwards at high speed 888 ± 179 88 ± 8 188 ± 9 Yes
G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 866 ± 110 192 ± 28 71 ± 0 Yes
G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for an obstacle in front 3 ±3 1 ± 1 5 ± 0 Yes
G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 601 ± 106 142 ± 24 37 ± 1 Yes
G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate

speed
848 ± 127 157 ± 26 53 ± 2 Yes

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for an obstacle behind 0 ± 0 0 ± 0 0 ± 0 Yes
G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 0 ± 0 0 ± 0 2 ± 0 Yes
G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate

speed
763 ± 105 162 ± 23 52 ± 2 Yes

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for an obstacle in front 0 ± 0 0 ± 0 0 ± 0 No
G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate

speed
427 ± 85 100 ± 18 36 ± 1 Yes

Once the agent learns to attain the maintenance task, it strives to maintain that task state.

There could, however, be reasons why it loses the maintenance attempt. In which case, it

will attempt to regain the state; the metric M1 measures such attempts. A higher value does

not necessarily indicate better performance. However, the value of 0 means that the agent

did not learn to maintain the task state at all. For example, consider G1 (move forward at

high speed). While in an open area, the e-puck can maintain that state; however, it loses

that state when it reaches the wall. The e-puck has to learn to turn around and regain the

G1 state. A higher value of reward per episode metric indicates better agent performance.

The metric M2 counts the longest stretch for which the task state was maintained. A higher

value of this metric indicates the continued opportunity that the agent receives in

maintaining the task state. For example, tasks G1 to G4 require an obstacle-free area. In

contrast, tasks G8 and G9 require the e-puck to be closer to an obstacle/wall. Thus the design

of the arena will determine the opportunity that the agent gets to learn the tasks.

The reward per episode metric is high for G1 to G4, G6, G7, G10 and G12, indicating that the

e-puck can maintain those tasks. The corresponding values for metrics M1 and M2 are also

high for those tasks. Thus, those tasks appear to be easy to maintain. Also, the design of

80

the arena provides the required opportunity to learn to maintain those tasks. For G11,

however, all metrics show 0 value. The agent’s performance for that task is poor because

that task is invalid. For the agent to learn that task, it has to find itself close to a wall in a

particular orientation (wall at its Right and Front-Left but not the Front-Right). It is hard

to imagine where the e-puck should find itself in the arena to be in such a state. It appears

to be unreasonable and marked as such in the ‘Is Task Valid?’ column. This state could be

due to clustering error. It appears that the cluster centroid is not a correct representation of

the cluster in this case.

Figure 4.4: Trajectory (shown in black colour) of
e-puck learning task G1. Note the straight-line
trajectory. Even during this learning phase, the
behaviour of “moving forward at high speed” is

apparent.

Figure 4.5: Trajectory (shown in black colour) of
the e-puck learning task G3. Note the straight-line

trajectory. Even during this learning phase, the
behaviour of “moving backwards at high speed” is

apparent.

For tasks G5, G8 and G9, which are valid, the metrics M1 and reward per episode are very

low, indicating that the e-puck cannot maintain those tasks. That is not because the

maintenance reward design is inadequate, but because of the arena’s design. To learn those

tasks, the agent requires a wall/obstacle in proximity. Due to the size of the arena, the agent

does not get sufficient opportunity to learn and subsequently be able to maintain those task

states that require a wall/obstacle in proximity. That is evident from M2 values, which are

low for those tasks. Consider G5, for example. The agent has to find itself close to the wall

at the front. Considering the size of the arena, the chance of such an opportunity is relatively

small. That is discussed below by comparing the set of tasks that can be learned in an open

area with tasks requiring a wall/obstacle in close proximity.

81

Figure 4.4 shows the trajectory of the e-puck for task G1 during one of the learning trials,

i.e. the trajectory indicates the learning progress as opposed to the learned behaviour.

Admittedly, the trajectory of the e-puck during the learning phase appears uninteresting for

most of the tasks; however, as will be seen in Experiment 5 for the compound tasks, the

trajectory during the learning phase provides a valuable insight into the learning process.

The straight line stretches in Figure 4.4 indicate the maintenance of the high speed while

moving forward at a particular orientation.

Figure 4.6: The green overlay shows the region
where the e-puck could receive a reward for tasks

G1, G3 and G12. E-pucks are shown scattered to
indicate that the location of the e-puck can be

anywhere in that region.

Figure 4.7: The green overlay on the arena shows
the region where the e-puck could receive a reward
for tasks G5 and G8. E-pucks are shown scattered
to indicate that the location of the e-puck can be

anywhere in that region.

Similarly, Figure 4.5 shows the trajectory of the e-puck learning task G3. Tasks such as G1

to G4, G6, G7, G10 and G12 can only be maintained in the arena’s open area. When the e-

puck reaches the wall for these tasks, it has to learn to turn around and regain the desired

task state. The green overlay in Figure 4.6 shows where the e-puck can maintain these task

states. The arena used in the experiment was 5m x 5m in size, and with the sensor range of

0.06m, the chance of the e-puck being in the green zone can be calculated as follows.

Consider that the arena is divided into squares of 0.06m. That would create an 83x83 grid.

Subtracting one square from all sides (for the region closer to the walls) gives the size of

the green overlay as 8181 grid. The chances of the e-puck finding itself in the green zone

is (8181)/(8383)=95.2%. That shows that the arena provides the e-puck with plenty of

opportunities to learn those task states.

82

The e-puck does not learn tasks G5
 and G8. For the e-puck to learn those tasks, it should be

near the wall at a particular orientation. The green overlay in Figure 4.7 shows the area

where the e-puck should be to learn those tasks. The chances of e-puck being in that region

are (81)/(83x83)=1.2%. That shows that the arena does not provide the e-puck with many

opportunities to learn those task states. While those tasks are valid, the e-puck does not

learn those tasks due to a lack of opportunity. In order to confirm this hypothesis, the

experiment for those two tasks was continued in a smaller arena. The arena’s size was

reduced from 5m x 5m to 0.25m  0.25m, i.e. a reduction by the factor of 400. Thus, in

that smaller arena, the e-puck’s chance of finding itself in the right situation is increased

400 times. An experiment in Chapter 6 further explores the usage of specialized arenas,

sometimes referred to as a scaffolded environment.

Experiment 2: Experiment with approach tasks

The experiment with approach tasks uses the same set of tasks generated by Merrick et al.

[38] as used in the experiment with maintenance tasks. Table 4.2 lists those tasks along

with the results for metric M1 used to measure the effectiveness of the reward design for

approach task type. The states detailed under the ‘Task Attributes’ column are treated as

approach tasks. The same as maintenance tasks, learning for approach tasks is non-

episodic. Hence, like the previous experiment, the trial constituted 25,000 steps. The trial

was repeated ten times for each task, with no learning carried over between them. A random

starting state was chosen for each trial. The metric M1 column shows the results averaged

over ten trials and the standard deviation. The reward function, as detailed by Equation

(4.7), was used. That equation’s parameter values were as follows: ρ was 0.9, σ was 1, φ

was -1, and d was the Euclidian distance.

Table 4.2: Results for approach tasks. Metric M1 measured for ten trials with standard deviation shown.

Task
Id

Task Attributes Task Description M1

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 756 ± 16

G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 800 ± 21

G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 839 ± 14

G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backwards at low speed 852 ± 11

G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 884 ± 34

83

G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 874 ± 19

G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 876 ± 22

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 873 ± 22

G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 860 ± 26

G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backwards at moderate speed 824 ± 23

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 874 ± 26

G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 740 ± 17

Figure 4.8: The green overlay shows the region
where the e-puck could cross the threshold from
‘approach’ to ‘achieve’ for tasks G5, G8, and G9.

The metric M1 shows that the approach tasks are relatively straightforward to attain. Tasks

G5, G8 and G9 that were difficult to maintain due to lack of opportunity appear to be easy

to attain when treated as approach tasks. That is because the reward function, Equation

(4.7), is designed to reward the approach attempt regardless of its distance from the desired

task state. Take, for example, G5. That task means stopping for an obstacle in front at a

particular orientation. As long as the distance between the current and the desired state

reduces, the agent receives a positive reward. The metric M1 counts the number of instances

of that. If the agent reaches too close to the task state, the ‘approach’ attempt becomes the

‘achieve’ attempt, resulting in the agent not receiving a positive reward anymore. Tasks

G5, G8 and G9 relate to stopping either because the obstacle is to the front or the back. The

green overlay in Figure 4.8 shows the region where the ‘approach’ attempt becomes the

‘achieve’ attempt for all those tasks.

Experiment 3: Experiment with avoidance tasks

The experiment with avoidance tasks uses the same set of tasks generated by Merrick et al.

[38] as used in the experiment with maintenance tasks. Table 4.3 lists those tasks along

with the results for metrics M1 and M3 used to measure the effectiveness of the reward

84

design for avoidance task type. The states detailed under the ‘Task Attributes’ column are

treated as avoidance tasks. The same as maintenance tasks, learning for avoidance tasks is

non-episodic. Hence, like the previous experiment, the trial constituted 25,000 steps. The

trial was repeated ten times for each task, with no learning carried over between them. A

random starting state was chosen for each trial. Metrics columns show the results averaged

over ten trials. Metrics M1 also shows the standard deviation. The reward function, as

detailed by Equation (4.8), was used. The equation parameter values were as follows: ρ

was 0.9, σ was 1, φ was -1, and d was the Euclidian distance.

Table 4.3: Results for avoidance tasks. Metrics M1 and M3 measured for ten trials with standard deviation
shown.

Task
Id

Task Attributes Task Description M1 M3

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 863 ± 14 45
G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 805 ± 25 14
G3 (-2.4, -2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 753 ± 16 12
G4 (-0.4, -0.4, -1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 762 ± 14 12
G5 (0.0, 0.0, -2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 821 ± 30 1
G6 (-0.4, -0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 795 ± 25 16
G7 (-0.8, -0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 775 ± 22 13
G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 811 ± 18 0
G9 (0.0, -0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 831 ± 17 0
G10 (-1.9, -1.9, -2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 752 ± 16 6
G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 826 ± 33 0
G12 (1.2, 1.2, -2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 856 ± 20 7

For avoidance tasks, along with measuring the avoidance attempts M1, the avoidance

performance is also measured by metric M3, which counts how often the mobile robot failed

to avoid the desired task state. The reward function design for the avoidance task type

rewards the avoidance attempt, i.e. as long as the agent moves away and stays away from

the task state, it is rewarded. As metric M1 shows, the tasks are relatively easy to attain

when treated as avoidance tasks. The reason is that the attempt to avoid the task state is

rewarded. The distance from the task state does not matter. As long as it is increasing, the

agent is rewarded, i.e. as long as the mobile robot stays away from the task state, the attempt

is rewarded positively. For instance, G3, where the right and left wheel speed attributes

85

values are -2.4. That indicates moving backwards at high speed at a particular orientation

indicated by the third state attribute. Thus the task for the agent, as indicated in the ‘Task

Description’ column, is to avoid moving backwards at high speed. When learning to attain

that task, the agent receives a positive reward as long as it is able to avoid moving

backwards at high speed. That is to say, the agent will receive a positive reward when it is

moving forward or even moving backwards but at a low speed. The metric M1 measures

the number of times it receives the positive reward. There will, however, be instances when

the agent fails to avoid that state G3, i.e. during the learning attempt, for one or the other

reason, the agent will land in the state that it is supposed to avoid. Those failure instances

are measured by metric M3. The results show that tasks such as G5, G8 and G9 that are

difficult to maintain due to lack of opportunity are easier to avoid when treated as

avoidance tasks. However, the metric M3 that counts the failed avoidance attempts is very

low for those tasks, indicating that those tasks are difficult in general.

Experiment 4: Experiment with achievement tasks

The second set of tasks generated by Merrick et al. [38] was based on events. Table 4.4

lists those tasks. The ‘Task Attributes’ column shows the task’s event. An event, as detailed

in Chapter 2, is a transition represented by 𝑒௧
௜ = 𝑢௧

௜ − 𝑢௧ିଵ
௜ , where i is one of the state

attributes. The experiment in this section uses those tasks as ‘achievement’ tasks, and to

recall, the state vector is represented by the following nine state attributes: [ωR ωL θ pL

pR pFL pFR pRL pRR]. The aim of the achievement task is to achieve the event transition,

i.e. the task is considered achieved when the transition 𝑒𝑡
𝑖 is reached regardless of what the

state attribute 𝑢𝑡
௜ is. Consider task Ga5, for example. As per the description, the task is to

increase the right wheel speed by 0.9 and the left wheel speed by 0.6 in a single transition.

Thus, the task is considered achieved only when the right and left wheel speed change by

that amount in a single transition.

The learning in the case of achievement tasks is episodic. However, for uniformity with

the other experiments, the learning attempt for each task was run for 25,000 steps. The

metric reward per episode is used to measure the agent’s performance. Learning was not

carried over between trials, i.e. e-puck’s state and position were reset at the start of each

trial. A random starting state was chosen for each trial. The reward column shows the

86

results averaged over ten trials and the standard deviation. The column ‘Task Description’

is a manually provided description of the task to understand what that task means. Equation

(4.9) was used as the reward function with the following parameter values: ρ was 0.9, σ

was 1, φ was -1, and d was the Euclidian distance.

Table 4.4 shows that five tasks are marked as invalid, and of the remaining, the e-puck was

able to learn eight tasks. Firstly, let us analyse the Ga12, Ga18, Ga19, Ga20 and Ga22 marked as

invalid. For task Ga12, task attributes show transition for Right and Front-Left sensors

without any transition for Front-Right. It is hard to think of the mobile robot’s location in

the arena resulting in such a transition. For task Ga18, the wheel speed transition of 1.2 and

0.5 radians per second, the change in orientation should be more than |-0.1| radians. It

appears that that task is invalid. Regarding Ga19, a transition of 2.7 radians per second for

the left wheel speed and, regarding Ga22, a transition of 2.0 radians per second for the left

wheel speed is a big transition for one timestep. The maximum transition in the wheel

speeds can only be π/2 radians. Thus, those tasks are invalid. The results show that nearly

a quarter of the tasks are invalid. That raises a question regarding why the task generation

technique has nominated such unreasonable transitions as the cluster centroids. The

potential reasons could be i) noise, ii) delay in sensing, iii) issue with the simulation of the

e-puck resulting in an invalid event or iv) an error in clustering, resulting in cluster centroid

not being a correct representation of the cluster. If the issue were with the cluster centroids,

the solution would be to place a minimum threshold on the cluster size or shift the cluster

centroids to the nearest valid attribute value.

Table 4.4: Results for achievement tasks. Metric reward per episode measured for ten trials with a standard
deviation shown.

Task Id Task Attributes Task Description Reward per Episode Is Task
Valid?

Ga1 (0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0) Achieve no change 25000 ± 0 Yes
Ga2 (0.0, 0.0, 0.0, 0, 0, 1, 0, 0, 0) Detect obstacle in front 43 ± 21 Yes
Ga3 (-0.1, 0.0, 0.0, 0, 0, -1, 0, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes
Ga4 (-0.6, 0.0, -0.1, 0, 0, 0, -1, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes
Ga5 (0.9, 0.6, 0.0, 0, 0, 0, 0, 0, 0) Increase the speed of both wheels 6521 ± 268 Yes
Ga6 (-0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 Yes
Ga7 (0.1, 0.0, -0.1, 0, 0, 0, 0, 0, 0) Turn right 0 ± 0 Yes
Ga8 (0.1, -0.4, 0.0, 0, 0, 0, 0, -1, -1) Turn right to avoid obstacle behind 54 ± 17 Yes

87

Ga9 (-0.3, 0.4, -0.3, 0, 0, -1, -1, 0, 0) Turn left to avoid an obstacle on the right 0 ± 0 Yes
Ga10 (0.0, 0.5, 0.2, 0, 0, 1, 0, 0, 0) Turn left to detect obstacle on the right 29 ± 16 Yes
Ga11 (-0.6, -0.8, -0.2, 0, 0, -1, 0, 0, 0) Turn right to avoid an obstacle 10 ± 4 Yes
Ga12 (0.0, 0.7, 0.3, 0, -1, 1, 0, 0, 0) Turn left to sense obstacle on the right 0 ± 0 No
Ga13 (0.2, -0.8, -0.4, 0, 0, 0, 0, 1, 0) Turn right to sense obstacle on left 12 ±4 Yes
Ga14 (0.0, 0.6, 0.1, 0, 0, 0, 0, 1, 1) Turn to detect obstacle behind 0 ±0 Yes
Ga15 (0.0, -0.1, 0.0, 0, 1, 1, 0, 0, 0) Turn right to sense an obstacle in front 0 ±0 Yes
Ga16 (1.0, 0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn right to sense obstacle on left 0 ±0 Yes
Ga17 (0.7, 0.9, 0.3, 0.0, -1, 0, 0, 0, 0) Turn left to sense obstacle on left 18 ±3 Yes
Ga18 (1.2, 0.5, -0.1, 0, -1, 0, 0, 0, 0) Turn to avoid an obstacle on left 0 ±0 No
Ga19 (0.2, 2.7, -0.2, 0, -1, 0, 0, 0, 0) Turn to avoid an obstacle on left 0 ±0 No
Ga20 (-1.7, -0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on the right 0 ±0 No
Ga21 (-0.7, -1.2, -0.3, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on left 0 ±0 Yes
Ga22 (1.4, 2.0, 0.2, 0, 0, 0, 0, 0, 0) Turn left 0 ±0 No

The rest of the tasks are valid. However, results show that only eight of the seventeen show

non-zero reward per episode. Tasks Ga2, Ga8, Ga10, Ga11, Ga13, and Ga17 could be achieved

only a few times, whereas the tasks Ga4, Ga9, Ga14, Ga16, and Ga21 could not be achieved at

all. That is not because the reward function is insufficient but due to the lack of learning

opportunities. For example, to achieve Ga2 (where the task is to stay still when an object is

detected in front) or Ga8 (where the task is to turn right when an object is detected behind

the robot), the e-puck has to find itself close to the wall in a particular orientation to achieve

those transitions. Similarly, to achieve Ga4 (where the task is to learn to turn left to avoid

an obstacle on the right) or Ga16 (where the task is to turn right to sense the object on the

left), again, the e-puck has to find itself near the wall in a particular orientation to achieve

those transitions. Considering the size of the arena and the fact that walls are the only

objects in the arena, the chances of e-puck finding itself in those situations is very slim,

which results in the lack of learning opportunities. In the discussion for the maintenance

tasks (Experiment 1), the solution to such an issue was to reduce the arena’s size. That

solution will work for these tasks as well.

Tasks Ga3, Ga6, Ga7, and Ga15 are valid but could not be achieved. The reason for this

appears to be the choice of the granularity of discretisation used in this experiment.

Consider Ga3, for example. The task attribute for right wheel speed is a transition of -0.1.

Considering that the range of -π to π for wheel speeds and orientation was discretised into

88

nine values. That difference of -0.1 (between 𝑠௧ିଵ and 𝑠௧) is too fine-grained to be detected

by the relatively coarser nine values state space design and, as a result, will be treated as

0.0. The same is the case for Ga7. The task is to turn right by increasing the right wheel

speed by 0.1. Discretizing the range of -π to π (i.e. 2π radians) into nine buckets gives the

granularity of 0.7 radians. That makes any change less than 0.7 radians difficult to detect.

One of the solutions to this problem would be to discretise the wheel speed and orientation

attributes into more than nine values. That would increase the size of the state space and

the corresponding size of the Q-table and thus increase the time it will take for the mobile

robot to learn those tasks, which is not a problem per se; however, it was not done to keep

the state space uniform with other experiments in this chapter.

While experiments 1 to 4 validate that the proposed reward functions can be used for

primitive tasks, they have also highlighted flaws in the task generation technique, the

choice of state attributes and action space and granularity of discretisation. Based on the

observations, the following changes were made to the setup for the experiments in the next

subsection: i) the size of the arena was reduced, ii) a task-specific environment was created,

i.e. walls and obstacles were introduced to provide more learning opportunities, iii) the

orientation attribute was removed from the reinforcement learning state vector resulting in

more intuitive achievement type primitive tasks, for example, ‘achieve turning left’, and

iv) the action space was simplified.

Experiment 5: Experiment with a combination of tasks

Not all tasks are atomic. Consider the task of booking a meeting as detailed in [111]. As

such, it would appear that it can be represented as an achievement task. However, consider

a variant of such a task, i.e. booking a recurring meeting. Since people’s schedules change

or the meeting has to be adjusted for some participants due to the daylight savings time,

keeping the meeting current in the calendar of all the participants becomes a follow-on

task. Thus, the actual task is a sequence of tasks of different types and is better modelled

as “achieve then maintain”. Consider a mobile robot example where the robot’s task is to

follow a wall. As such, this example appears to be an atomic task. However, when one

considers the different start positions of the robot and the contour of the wall, it becomes

apparent that it is better to model the task as a sequence of tasks. The first task is to

89

approach a wall; the second task is to maintain a set distance from the wall. Other tasks

would be negotiating a corner, a cul-de-sac, or going around the wall opening. Such a task

is a compound task and best represented as “approach then maintain” in the simplest case.

The corresponding reward function can be built from the reward functions of the

constituent primitive tasks.

A compound task can be a sequential or a concurrent combination of the constituent

primitive tasks. Further, as will be seen in Chapter 6, a third way is implemented using

modular reinforcement learning. It is not related to how primitive tasks are combined but

when primitive skills are triggered. The experiment in this section, which is akin to modular

reinforcement learning, demonstrates the suitability of the proposed primitive reward

functions to learn compound tasks. It demonstrates the learning of a compound task by

using handcrafted if-then-else rules to identify and trigger different primitive reward

functions proposed in this chapter. It is, however, interesting to think about how this can

be done autonomously. That is discussed as an avenue for future work in Chapter 7. The

experiment also demonstrates how such a combination of tasks is a sample-efficient

learning method compared to learning the complex skill from scratch. That is further

explored in Chapter 6.

State Vector:

 [ωR ωL pL pR pFL pFR pRL pRR]

Actions:

 {
 1 – Turn Left,
 2 – Step Forward,
 3 – Turn Right
 }

Figure 4.9: Top view of the maze arena.

Figure 4.10: Top view of the arena with

obstacles.

90

For this experiment, two new 2m x 2m arenas, as shown in Figure 4.9 and Figure 4.10,

were created. As shown in Figure 4.9, the maze arena is an arena with walls to form a

simple maze. The e-puck learns the compound task of following a wall in this arena. The

learning is directed using Function 1, which details the if-then rules for the task.

Function 1) Wall following task in the maze arena

if wall on the left

 achieve turning left

elseif wall close on the left

 maintain moving forward

elseif wall on the right

 achieve turning right

elseif wall close on the right

 maintain moving forward

elseif wall at the front and left /* i.e. corner on the left */

 achieve turning right

elseif wall at the front and right /* i.e. corner on the right */

 achieve turning left

elseif wall at the front

 achieve turning right

elseif no wall nearby

 maintain moving forward

end

Figure 4.10 shows the arena with cylindrical and cuboid-shaped obstacles. In this arena,

the e-puck learns the compound tasks of learning to avoid obstacles using Function 2,

which details the if-then rules to attain that task. In this experiment, the state and action

space was modified based on the observations from the previous experiments. The state

space does not include orientation, and the action space comprises three actions: turn left,

step forward and turn right.

Function 2) Obstacle avoidance task in the arena with obstacles

if obstacle on the left

 achieve turning right

elseif obstacle on the right

 achieve turning left

elseif obstacle at the front and/or side

 achieve turning right

elseif obstacle at the back

 maintain moving forward

elseif no obstacle anywhere nearby

 maintain moving forward
end

91

Table 4.5 shows the results for the two tasks detailed above. Metrics M1, M2 and reward

per episode are used to measure the agent’s performance for the compound tasks. The table

shows the average metric value (with a standard deviation) for each task run ten times, with

a trial length of 25,000 steps. In the experiment, these metrics measure the cumulative

reward gained by the e-puck for all the primitive tasks combined, i.e. they measure the

reward for the compound task.

The metric ‘reward per episode’ shows the overall learning progress and indicates that the

agent has learned both tasks. Also, the significant value of metric M1 (number of times the

task maintenance attempt is regained) indicates that the e-puck learns to regain the task

state. Metrics M2 (the longest stretch of task maintenance), which depends on the design of

the arena, shows that the e-puck is able to maintain the task state for a significant number

of time steps.

Table 4.5: Results for compound tasks. Metrics M1, M2 and reward per episode measured for ten trials with
standard deviation shown.

Task Description Reward per Episode M1 M2

Wall following 16833 ±115 1373 ±29 78 ±6
Avoiding obstacles 13613 ±109 747 ±24 81 ±8

(a)

(b)

(c)

Figure 4.11: (a), (b) and (c) show different stages of the e-puck learning the wall-following task in the
maze arena. The blue line is the trajectory of the e-puck, with the red arrows showing the e-puck’s

direction. The e-puck starts at the bottom third of the arena, goes straight until it is close to a wall and
then follows the wall to its left. Attempts 1, 2, 3 are the trajectory of the e-puck trying to go all the way
around the wall. Similarly, at the top half of the arena, it takes the e-puck four attempts to go all the way

around the wall and then it continues following the wall.

92

Figure 4.11 shows the trajectory for one of the trials to follow the wall in the maze arena

while the agent is in the learning phase, i.e. it is not the trajectory of the learned behaviour.

Function 1 comprises if-then-else rules to trigger a specific skill to reach the wall, follow

the wall to the left, negotiate corners and go all the way around the wall. It is a hand-crafted

combination of achievement and maintenance task types, each of which is triggered in a

specific situation. The red arrow shows the direction of the e-puck. Initially, when there is

no wall in close proximity, it goes straight until it reaches a wall. That then triggers a new

skill of following the wall to the left. The attempt to go all the way around the wall seems

to require several attempts. That is indicated by the digits 1, 2, and 3 besides the trajectory.

For a reinforcement learning agent, that is an order of magnitudes quicker than the agent

attempting to learn the skill of following a wall from scratch. That validates the suitability

of proposed reward functions for learning compound tasks, i.e. the primitive reward

functions can be combined to form a skill for the compound task. Also, it indicates that

the proposed metrics are suitable to measure the agent’s performance for those compound

tasks.

4.6 Summary

Reward in reinforcement learning guides the learning. Those rewards, in most cases, are

handcrafted and often task-dependent. However, for dynamic environments, the tasks to

learn are not known in advance. Thus, for open-ended and continuous learning, the agent

architecture should be equipped with the ability to guide the learning with task-independent

reward. This chapter proposed reward functions for the ‘achievement’, ‘approach’,

‘avoidance’ and ‘maintenance’ tasks, a categorisation of tasks based on the functional

aspect of how they are considered ‘attained’. The reward design exploits the inherent

property of the type of the task, and hence the reward is task-independent.

This chapter also proposed metrics to measure the agent’s performance for these task types.

Those metrics clearly indicate that the e-puck is learning to attain the desired agent state in

the experiments. Experiments also showed that such reward design could be used to ‘attain’

compound tasks where the constituent primitive tasks use the proposed reward functions.

93

When such a task-independent reward design is integrated with a task generation

mechanism capable of generating compound tasks, it will result in an autonomous agent

capable of learning primitive as well as compound tasks. The literature review shows a

lack of a suitable autonomous compound task generation mechanism. The next chapter will

investigate the possibility of equipping the agent to generate tasks of varying complexity.

94

CHAPTER 5 SELF GENERATION OF TASKS TO DIRECT THE LEARNING

Parts of this chapter have been published in: P. Dhakan, K. Kasmarik, I. Rano, and N. Siddique,
“Open-Ended Continuous Learning of Compound Goals,” IEEE Transactions on Cognitive and

Developmental Systems, vol. 13, no. 2. pp. 274–285, 2019.

5.1 Introduction

Chapter 3 introduced an agent architecture for open-ended and continuous learning.

Continuous learning is an essential aspect for the agent to learn multiple skills over its

lifetime, but it is the open-ended learning that directs that learning. By that, it means

whether the agent increases the knowledge of its environment by gaining the breadth of the

knowledge first and then the depth or learns by using some hybrid approach depends on

the tasks generated by the task generation module. That is to say, to create an open-ended

learning agent, the meta-cognitive aspects such as ‘what to learn’ [19] [20] and ‘when to

learn’ [20] need to be considered. This chapter focuses on the question of ‘what to learn’.

Figure 5.1 is the Modular Continuous Learning Architecture proposed in Chapter 3. The

‘Task Generation Module’, shown in green colour, is the focus of this chapter.

Several task generation approaches have been proposed to provide an agent with the

capability to decide ‘what to learn’. Broadly they appear to be techniques that either

generate subtasks of the provided high-level task or generate just a flat high-level task. In

the case of subtask generation, the over-arching task is supplied, and the aim is to find its

subtasks. The literature review shows that this can be done by determining the frequency

of visited states [66], based on the identification of bottleneck states and graph partitions

that enables the transition in the state space [112] [113], based on relative novelty when

attempting to attain an overarching task [114] or by sequencing the skills [115]. The flat

high-level task generation techniques are where the agent looks for the changes to its

environment in real-time that can then be considered potential tasks [69] [63] [116] [53]

[117], and offline techniques where the tasks are generated based on the novel states

experienced during the agent’s exploration of its environment [38]. Chapter 2 showed the

different categorisation of tasks, one of which was based on the complexity of the task

ranging from ‘primitive’ to ‘compound’ tasks. From the literature review on self-task

95

generation, it is apparent that the existing task generation techniques do not focus on the

composition aspect of the task. That is to say, they do not focus on how a compound task

is built using its constituent primitive tasks. This chapter’s contribution is a task generation

technique that fulfils that gap.

Figure 5.1: Modular Continuous Learning Architecture revisited. Task generation, the focus of this
chapter, is a contribution related to the Task Generation Module.

This chapter proposes a domain-independent technique to generate tasks of varying

complexity. The tasks are generated by combining the low-level units that make up the

agent’s state. Using a granularity parameter, the size of these units can be varied from

coarser to finer units. These units are then used to create tasks of varying complexity. Using

simulated e-puck based experiments, this chapter will show how the agglomerative

hierarchical clustering is used to aggregate the state attributes, which are then used to form

tasks. It will also show how these primitive tasks can then be combined to form compound

tasks. The rest of this chapter is organised as follows: Section 5.2 reviews the literature on

task generation. Section 5.3 will detail the proposed task generation mechanism. Section

5.4 will detail the methodology and the results of the experiments, and finally, Section 5.5

will provide the concluding remarks.

96

5.2 Self-Generation of Tasks

As seen in Chapter 3, to progress reinforcement learning based agent architecture beyond

single-task learning, the architecture should be combined with a mechanism that can

generate a stream of tasks for the system to learn, i.e. make the architecture open-ended.

That is what directs the learning of the system and provides it with ‘what to learn’. This

section will review the literature on the self-generation of tasks.

‘Task’, as seen in Chapter 2, is defined as an objective that an agent should attain. Also, as

seen, they are categorised based on whether they are: i) hard or soft, ii) state-based or action-

based, and iii) low-level or high-level. The organisation of this literature review is based on

the third category. It details the techniques that generate the top-level tasks and techniques

that generate sub-tasks given a top-level task.

5.2.1 Task generation

Intrinsic motivation reviewed in the previous section can be used to explore the agent’s

state space. Task generation using novelty [118] or curiosity [119] [53] is one approach.

Forestier et al. [116] propose an intrinsically motivated task exploration technique. In this,

the agent iteratively samples the continuous and high-dimensional state space and sets a

task. A novelty heuristics then generates an intrinsic reward that is used to learn the task.

Further, this is used to ascertain the learnability of the task leading to the tuning of the task

exploration preferences. Baranes and Oudeyer [54] propose a task generation mechanism

using adaptive curiosity or a measure of interest. Marsland et al. [69] proposed an online

novelty detection algorithm that aims to discover novel situations from the states it has

experienced. A neural network is trained to ignore the normal perceptions that have been

experienced before. This leaves anything that has not been sensed before being treated as

‘novelty’. These novel situations are treated as tasks that the agent should aim to attain.

Santucci et al. propose a multi-layer GRAIL agent architecture [12] seen in the previous

section. Task generation is one of the layers of this architecture that detect a change in its

97

environment. These changes, if unique, are considered tasks. Mirolli and Baldassarre [89]

argue that skill acquisition should be cumulative and best represented using a hierarchical

structure for complex skills. In that case, one substructure, using knowledge-based intrinsic

motivation, can determine what to learn, and another substructure, using competence-based

motivation, can decide which task to learn.

Other approaches include the one shown by Rolf et al. [120], where the system auto-

generates tasks using inconsistencies during exploration. Hanheide et al. [63] have shown

how a service robot uses the states it has explored before to determine the gaps in the

knowledge, which are then used as tasks. Merrick et al. [38] proposed experience-based

task generation, where a mobile robot explores its environment to gather experience data.

Using a simplified adaptive resonance theory (SART), the data points, i.e. experienced

states, are clustered. The cluster centroids are then treated as tasks.

5.2.2 Subtask generation

As an alternative to task generation reviewed in the previous subsection, the subtask or

interim task or provisional task generation techniques are intended to generate a hierarchical

task structure with an assumption that the end task is provided. The subtask generation, also

referred to as subtask discovery, is not so much seen as a means for an agent to learn

multiple tasks but as a means to divide and conquer the monolithic end task. When used

with reinforcement learning, the reward for the subtasks act as interim rewards, simplifying

the reward design and accelerating learning. Santucci et al. [121] suggested that instead of

using intrinsic motivation directly for skill acquisition, it should be used to generate an

interim concept of tasks, and those tasks can then direct the acquisition of the skill. Simsek

and Barto [112] hypothesise that certain states are central in navigating the environment for

any problem. They term such measure of structural centrality as “betweenness”. The states

with a higher measure of betweenness than their neighbouring states are identified as

potential subtasks. Such subtasks help to navigate the interaction graph of the environment.

Thus, when the skills to achieve the subtasks are combined, they enable reaching other

regions of the interaction graph and eventually the end task.

98

In reinforcement learning, commonly, an option [42] is used to represent a macro action.

The end state of the option can be considered as a subtask. The discovery of options has

been an area of active research [122] [67]. Konidaris and Barto [115] extended the usage

of options to the continuous domain and proposed “skill chaining”, a subtask discovery

mechanism for reinforcement learning agents. Like Simsek and Barto [112], they too

hypothesise that a useful skill always lies in the solution path of the end task, i.e. a skill for

a useful subtask is critical to solving the main task. In the proposed technique, the

reinforcement learning agent works backwards. Starting with the end task, the agent creates

a short-range option to reach that end state and learns the skill to reach that end state. The

initial state of that option is then considered the next end task, and the aim of the agent is

to discover another short-range option and the skill to reach that state. This continues until,

eventually, the agent reaches the initial starting state, thus identifying all the subtasks along

the path. The learned skills are then chained, which forms the solution to traverse from the

starting state to the end state.

Recently, the usage of tasks to direct learning has also drawn the interest of the deep

learning community. Andrychowicz et al. [75] proposed training a deep neural network on

automatically generated interim tasks using the concept of experience replay. They showed

that the reinforcement learning agent could learn end tasks for the cases when the rewards

are sparse and even when those end tasks have never been observed during the training. In

a learning framework proposed by Held et al. [123], they automatically generated interim

tasks at a difficulty level that is just appropriate for the agent. That curriculum of tasks

directs the agent’s learning and enables the agent to learn a variety of skills without any

previous knowledge of its environment.

5.2.3 Gap in the state-of-the-art

While most of the task generation and the sub-task generation techniques found in the

literature can be integrated into the architecture proposed in this thesis, the review of the

literature showed that the current research either focused on generating top-level tasks or

focused on discovering subtasks given a top-level task. That highlights a research

opportunity as summarized in Table 5.1.

99

Table 5.1: Table showing the focus areas of each category reviewed in this section.

Focus area Task generation techniques Subtask generation techniques

Generate flat/high-level tasks

Generate subtasks of a given high-level task

Generate tasks of varying complexity

The existing techniques do not focus on generating tasks that vary in complexity. For a

continuous learning agent, it is essential that the agent is constantly learning new skills.

For that, it should be able to self-generate tasks of varying complexity ranging from

simpler, more primitive tasks to compound tasks that are, in essence, some combination of

primitive tasks. Such a task generation would enable the development of a learning

curriculum for the autonomous agent. That raises the question, how does one design a

module to self-generate tasks of varying complexity? The following section will aim to

answer that question.

5.3 Self-Generation of Tasks of Varying Complexity

Providing the system with the ability to decide ‘what to learn’ is essential for it to be called

an open-ended learning system. While any task generation mechanism can be plugged into

the Modular Continuous Learning Architecture, the literature review shows that no

mechanism exists that enables the system to generate tasks of varying complexity. Tasks

can be called ‘primitive’ if they are atomic in nature and cannot be further subdivided and

‘compound’ if they are composed of two or more primitive tasks. This section proposes a

task generation mechanism that can generate tasks of varying complexity ranging from

primitive to compound tasks.

5.3.1 Step 1: Gather experience

The task generation process starts with gathering experience data. In this stage, the agent

explores its environment by randomly moving around. The observations are recorded in

100

terms of states experienced by the agent. The agent’s location and the salient features of

the environment may or may not be part of the agent’s state vector. Hence the main aim of

this random exploration is not that the agent should visit all parts of its environment;

instead, for the agent to visit as many states of its internal state space as possible, akin to

body babbling as termed in developmental robotics literature. These visited states are

recorded as an experience and form data points for the next step of the process. The state

of the agent can be represented as a vector of its state attributes:

𝑠 = [𝑢ଵ, 𝑢ଶ, … , 𝑢௡]

 (5.1)

where ui
t is typically a numerical value that describes the agent’s internal or external

attribute, and n is the number of attributes in the state vector. The experience will contain

duplicate data points since the same state will be experienced several times. During the

next step, which is to cluster these data points, only unique data points are used. This is so

that the dominant states do not overpower the seldom visited states.

5.3.2 Step 2: State attribute aggregation using hierarchical clustering

The next step is to aggregate the related state attributes to create logical units or groups

which can be seen as regions in the state space. For this, hierarchical agglomerative

clustering [124], a bottom-up clustering algorithm, is used. The algorithm starts by treating

each data point as a cluster. Consider cluster 𝑓௣ and a data point 𝑢௫. The cluster can be

represented as:

𝑓௣ = { 𝑢௫ } (5.2)

The algorithm then carries out bottom-up clustering by successively merging the pairs of

clusters. This iterative process continues until all clusters have been combined into one big

cluster consisting of all the data points. This merging occurs based on the linkage criteria

that specify dissimilarity between the clusters. The algorithm can use the following linkage

criteria: ‘complete, ‘average’, ‘weighted’, ‘centroid’, ‘single’ and ‘ward’. In the proposed

technique, the ‘complete’ criterion is used. The ‘complete’ criterion, also referred to as the

101

farthest neighbour criterion, uses the largest distance between the data points in the two

clusters. The resulting cluster can be represented as:

𝑓௣ା௤ = 𝑚𝑎𝑥{ 𝑑𝑖𝑠𝑡(𝑢௫, 𝑢௬) ∶ 𝑢௫ ∈ 𝑓௣, 𝑢௬ ∈ 𝑓௤ } (5.3)

where 𝑓௣ା௤ is the cluster formed using the ‘complete’ linkage between the two clusters, 𝑓௣

and 𝑓௤, and 𝑑𝑖𝑠𝑡 is the distance function of the pairwise distances of the data points in the

cluster. The commonly used distance functions are Euclidean, Hamming, and Manhattan,

to name a few. Alternatively, a custom distance measure can also be used. The iterative

clustering process is then carried out until all the data points are combined into a single

cluster.

Figure 5.2: A sample dendrogram is
shown at the top of the figure. The rest
of the figure (shown in colour) shows

the state attribute data points. The
aggregations of state attributes are
shown by clusters f1, f2, f3 and f4.

The result of hierarchical agglomerative clustering is represented in a hierarchical tree of

clusters called a dendrogram. The dendrogram shows an edge between the two closest

clusters merged at a particular hierarchy level. As shown in Figure 5.2, the data points are

arranged such that the state attributes 𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, …, 𝑢௧

௡ (i.e. the attributes that make up a

state vector) are arranged as columns, and the values of the state attributes which make up

the experienced state appear as rows. Initially, each state attribute 𝑢௧
ଵ, 𝑢௧

ଶ, 𝑢௧
ଷ, …, 𝑢௧

௡ is

considered a cluster of its own. As per hierarchical agglomerative clustering, iteratively,

the pairs of clusters are merged until all clusters have been combined into one big cluster.

That means the algorithm’s output is hierarchical clusters of state attributes, which can be

visualised as regions within the state space, as shown in Figure 5.3.

102

The height of the edge of the dendrogram corresponds to the distance between the two

clusters. The algorithm takes the threshold criterion as an input which can be specified in

terms of the height of the dendrogram’s edge or the total number of desired clusters. In the

proposed technique, the total number of clusters is specified. Figure 5.2 shows the

threshold criterion using a blue dotted line, resulting in four clusters. Depending on the

threshold criterion, either fewer but coarser clusters or many fine-grained clusters are

generated. The clustered/grouped state attributes, i.e. regions in the state space, can be

represented as {𝑓ଵ, 𝑓ଶ, … 𝑓௜} where f is the cluster, i.e. aggregation of two or more state

attributes, 𝑖 is the number of clusters identified due to the aggregation of state attributes

such that 𝑖 < 𝑛 and 𝑛 is the number of state attributes.

Figure 5.3: A symbolic representation of the state attributes aggregation resulting in regions within the
state space. The figure shows state-space in a 2D representation, and hexagons represent the regions
within the state space. Varying the threshold criteria results in coarser to finer aggregations/groups.

The aggregation reduces a larger set of state attributes to a smaller set while preserving

most of the information represented by the large set, hence reducing cardinality [124]. Such

compressed representation of the state can be shown as:

𝑠 = [𝑓ଵ, 𝑓ଶ, … , 𝑓௜] (5.4)

These aggregations are then further processed by the next step of the proposed technique

to generate tasks of varying complexity.

103

5.3.3 Step 3: Generate tasks

The next step in the process is to generate tasks. This step is further divided into the

following:

i. enabling the region(s) of the state space by providing it with a value. These values

can be a maximum, minimum or average value that the respective attributes can

take, or if one has the domain knowledge, they can be the domain-specific value.

ii. combining the above mentioned enabled regions using operators such as ‘OR’ and

‘AND’ to form a valid state vector.

max(f1),

avg(f2),

min(f3) ˄ max(f4),

…

max(f1) ˄ avg(f2) ˄ min(f3),

min(f2) ˄ avg(f3) ˄ max(f4),

avg(f3) ˄ max(f4) ˄ min(f5) ˄
avg(f6),

…

max(f1) ˄ min(f2) ˄ avg(f3) ˄
max(f4) ˄ min(f5),

avg(f3) ˄ max(f4) ˄ min(f5) ˄
min(f6) ˄ max(f7),

min(f4) ˄ max(f5) ˄ avg(f6) ˄
max(f7) ˄ avg(f8) ˄ max(f9),

…

Figure 5.4: Tasks, ranging from simple to complex, generated by enabling and combining different
groups/aggregations. A few sample tasks are shown in the figure. The green, blue, yellow and red colour
indicates that the aggregation is enabled using one of the functions such as min, max and avg. The grey

colour indicates that the aggregation is not enabled and will be masked/ignored.

The resulting state vector is one of the states in the state space of the agent. As detailed in

Chapter 4, such a state can then be treated as a state to maintain, approach, or avoid

resulting in the state being called a maintenance, approach, or avoidance task. When just

104

the single region is enabled, it results in a relatively simple task, and when multiple regions

are enabled and combined, it creates a more complex task, as shown in Figure 5.4.

Table 5.2 lists the sample tasks. The first few rows list primitive tasks, and the following

rows list complex tasks. To generate these tasks, it is assumed that the state space is a

discretised metric state space. The functions ‘minimum’, ‘maximum’, ‘average’, and

‘specific value’ are used to enable the aggregated group. The groups are then combined by

applying operators such as ‘OR’ and ‘AND’. Any combination of the operators can be

used, and any number of groups can be chained together, resulting in a procedural

generation of rich and expressive tasks.

Table 5.2: Examples of the tasks that can be generated using the proposed task generation mechanism.

Task Task Description

𝒎𝒊𝒏(𝒇𝟏) Minimize the value of the group

𝒎𝒂𝒙(𝒇𝟏) Maximize the value of the group

𝒂𝒗𝒈(𝒇𝟏) Attain an average value of the group

𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄(𝒇𝟏, 𝒗𝒂𝒍𝒖𝒆) Attain a specific value of the group

𝒎𝒊𝒏(𝒇𝟏) ∧ 𝒎𝒊𝒏(𝒇𝟐) Minimize group1 as well as group2

𝒎𝒂𝒙(𝒇𝟏) ∨ 𝒎𝒂𝒙(𝒇𝟐) Maximize either group1 or group2 or both

𝒎𝒂𝒙(𝒇𝟏) ∨ 𝒎𝒂𝒙(𝒇𝟐) ∧ 𝒎𝒊𝒏(𝒇𝟑) Maximize group1 or maximize group2 and minimize group3

𝒎𝒂𝒙(𝒇𝟏) ∧ 𝒎𝒂𝒙(𝒇𝟐) ∧ 𝐦𝐚𝐱(𝒇𝟑)
∧ 𝒎𝒂𝒙(𝒇𝟒) ∧ 𝒎𝒂𝒙(𝒇𝟓) ∧ 𝒎𝒂𝒙(𝒇𝟔)

Maximize group1 and maximize group2 and maximize group3 and maximize group4
and maximize group5 and maximize group6

5.3.4 Step 4: Task pruning

The task generation process starts with states experienced by the agent. Those experience

data points are then clustered, processed and procedurally combined to generate tasks. This

processing results in tasks that are the states that the agent may never have experienced

before. That may mean that the generated tasks can be invalid or difficult to reach states.

Also, as shown in Table 5.2, such task generation results in a combinatoric explosion

resulting in a vast number of tasks. That would hinder instead of guiding the learning of

the overall system detailed in Chapter 3. This issue is not unique to the technique proposed

in this chapter but a problem of the techniques that use procedurally-generated tasks, as

acknowledged in [125] and [126]. Wang et al. [125] and the open-ended learning team

[126] use procedurally generated environments for their open-ended learning agents to

105

increase their general competence. However, a sizeable percentage of the environments are

invalid or unlearnable and have to be discarded. Considering that, the next step for the

proposed technique is to prune the tasks. For this, selection criteria should be used that

prunes the potential tasks resulting in a final list of tasks. The criteria can be domain-

dependent, requiring domain knowledge or some external intervention. Alternatively, the

criteria can be intrinsic motivation based to keep the task generation process autonomous.

For example, the criteria can be based on: i) novelty, in which case, only the potential tasks

with high dissimilarity with other tasks are selected as tasks, or ii) current competency level

of the agent’s skill for similar tasks, in which case, only the similar potential tasks are

selected as tasks. The rest of the potential tasks are categorised as non-tasks. Figure 5.5

shows the detailed steps of the task generation technique.

Figure 5.5: The detailed steps of the proposed task generation technique.

106

5.3.5 Integration with continuous learning architecture

When the threshold (i.e. the cut-off) criterion of the hierarchical clustering algorithm is

varied, it results in aggregations of different granularity, as shown in Figure 5.3. Low cut-

off would result in fewer but coarser aggregations, and high cut-off would result in several

fine-grained aggregations. When those aggregations are used to generate tasks, it may

result in different tasks compared to the tasks generated with the previous level of

aggregation. It, however, does not render the previously generated tasks obsolete. All the

aggregations are added to the list of unique aggregations, and the aggregations of different

sizes can be combined as long as it forms a valid state vector. Thus the proposed technique

is suitable for continuous learning. The proposed technique can be integrated with the agent

architecture detailed in Chapter 3. Algorithm 5.1 shows this integration.

Algorithm 5.1: Task Generation and Learning Cycle

Start

 do

 /* Experience Gathering */
 for steps = 1: max_exploration_steps
 Gather experience by interacting with the environment
 end for

 /* Task Generation */
 /* Aggregate State Attributes */
 if state attribute aggregation is not already done
 Aggregate state attributes
 end if
 /* Create Tasks */
 Combine aggregated state attributes to form tasks
 Store the tasks in the task_list

 /* Task Learning */
 for task = 1: task_list
 Learn the task
 Store the learned knowledge
 end for

 while (environment has changed)

end

107

5.3.6 Examples of tasks of varying complexity

To discuss the examples of tasks of varying complexity, consider an autonomous vacuum

cleaner, a practical application of a mobile robot. The reinforcement learning state of such

a machine would comprise values of the following: proximity sensors, accelerometer,

vacuum-cleaning motor and battery charge indicator. A simple task for the vacuum cleaner

can be to clean the floor irrespective of the inclination of the surface, i.e. on a ramp or a

level surface. In this case, the task representation ignores the accelerometer values. A more

complex task can be cleaning only the level floor, i.e. avoid any surfaces with a

considerable inclination. In this case, the task representation considers the accelerometer

and proximity sensor values. Another simple task could be to clean the floor while avoiding

obstacles irrespective of the battery charge level. In this case, the vacuum cleaner will not

attempt to make its way back to the charging station when the battery level dips below a

certain level. A more complex task can be to consider the battery charge level. Such a task

would be represented as cleaning the floor while avoiding obstacles, avoiding inclined

surfaces, and being aware of the battery charge level. These use-cases can be extended to

other mobile robot applications such as a lawnmower.

As another example, consider a humanoid robot whose reinforcement learning state vector

comprises the speed and orientation of the motors in its arms and legs, the orientation of

the motor in its neck, accelerometer and some form of representation of what its camera

sees. A relatively simple task, albeit not primitive, can be that the robot walks forward on

a flat surface at a constant gait. A more complex task can be that it walks forward on a flat

surface while carrying an object in its arms. Another complex task can be climbing a

ramp/steps or walking on an uneven surface while carrying/balancing an object in its arms.

5.4 Mobile Robot Experiments

The previous section proposed a task generation technique. The experiments in this section

will validate that technique. The experiments will use the e-puck mobile robot. The robot

108

will randomly move around in its environment to gather experience. Those experience data

points will then be used to generate tasks of varying complexity.

5.4.1 Objectives of the experiments

The objectives of the experiments in this section are:

 Validate the task generation.

 Update the environment dynamically to check if the newly created unique

aggregated state attributes can be integrated with the previous list, keeping the

previously generated tasks valid.

5.4.2 Methods and materials

The experiments in this chapter used an e-puck mobile robot. To simulate the e-puck and

to create arenas, Webots was used. The reinforcement learning agent was written using

MATLAB and integrated with Webots to control the mobile robot.

Robot and its Environment

For the experiments in this chapter, the e-puck’s eight proximity sensors labelled: Front-

Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left, Left-Diagonal, Front-Left, and

three ground sensors labelled Left, Centre, Right were used. Discrete binary values were

used for both proximity and ground sensors. Also, the wheel speeds represented as ωL and

ωR were used in the state vector to represent the speeds of the left and the right wheels, and

they too were discretised to binary values. The state vector for the experiments was

represented as [ωL ωR pFR pRD pR pRR pRL pL pLD pFL gL gC gR]. The action space for

the experimentation comprised ‘Turn Left’, ‘Step Forward’ and ‘Turn Right’. Figure 5.6

shows a sketched top view with the labelled proximity sensors, ground sensors and wheels.

109

Figure 5.6: A plan view representation of e-
puck with all its state attributes (proximity

sensors, ground sensors and wheels) labelled.

State Vector:

[ωL ωR pFR pRD pR pRR pRL pL pLD pFL gL gC gR]

Actions:

 {
 1 – Turn Left,
 2 – Step Forward,
 3 – Turn Right,
 }

For the experiments, the same three arenas as detailed in Chapter 3 were used. Figure 5.7,

Figure 5.8 and Figure 5.9 show the maze arena, circular arena with tracks, and arena with

obstacles.

Figure 5.7: Top view of the maze

arena.

Figure 5.8: Top view of the
circular arena with tracks.

Figure 5.9: Top view of the

arena with obstacles.

Learning Algorithm

For the experiments, a reinforcement learning algorithm called Dyna-Q (detailed in

Chapter 2) was implemented using MATLAB. The epsilon-greedy action selection strategy

was used for the experiments, and the epsilon parameter was set to 0.1 with linear decay.

110

5.4.3 Results and analysis

Step 1: Gather experience

The first step for the e-puck mobile robot was to gather the experience data points. For this,

the robot was made to wander around in its environment. The aim here is not for the robot

to explore as much of the arena as possible but to explore its internal state space as possible.

This step is akin to body babbling. In this phase, the robot essentially follows a

reinforcement learning exploration policy where it does not receive a reward for any action.

For this, the epsilon-greedy action selection strategy’s epsilon parameter is set to 1, which

encourages exploration of its state space. When the robot collides with an object/wall,

Webots simulates the dynamics of the environment resulting in the next state of the robot.

This phase was continued for 10,000 steps, and the data points were recorded.

Figure 5.10: Trajectory, shown

in blue colour, of the e-puck
randomly exploring the maze
arena. The states experienced

during this exploration would be
related to “being close to a

wall”, “being in an open space”,
to name a few.

Figure 5.11: Trajectory, shown

in blue colour, of the e-puck
randomly exploring the circular

arena with tracks. The states
experienced during this

exploration would be related to
“being on a track”, “not on a

track”, to name a few.

Figure 5.12: Trajectory, shown in

blue colour, of the e-puck
randomly exploring the arena

with obstacles. The states
experienced during this

exploration would be related to
“being close to an obstacle”,

“being in an open space”, to name
a few.

A similar exploration was carried out for all three arenas, as shown in Figure 5.10, Figure

5.11 and Figure 5.12. Of these 10,000 data points, a list of unique data points was

generated. That is so that the frequently observed states and the states experienced only a

few times have an equal representation. This list of unique data points formed the input for

the next step. The size of this list depends on how many unique states of its internal state

111

space the e-puck was able to visit during the experience gathering phase and can vary

between 1 and 10,000.

Step 2: State attribute aggregation

The next step was to cluster the state attributes for which the proposed technique uses

hierarchical agglomerative clustering. The clustering algorithm requires a distance metric

to calculate the dissimilarity between the data points and decide which cluster the data

point should be added to. In the experiments, Euclidean distance was used as a distance

measure. The clustering algorithm also requires a linkage criterion, essentially a metric that

calculates the dissimilarity between the cluster pairs. That distance measure is then used to

link up the clusters in a bottom-up manner. In the experiments, ‘complete’ linkage was

used, which represents the largest distance between the two clusters. The clustering

technique can be run i) in a batch mode, i.e. cluster all the data points, ii) in online mode,

i.e. cluster a constant stream of data points, or iii) in a semi-online mode where a small set

of data points are clustered in one round. The clustering was run in the semi-online mode

in the experiments. That was done to demonstrate that the proposed technique is suitable

for continuous learning. The algorithm also requires a cut-off/threshold criterion, which is

used to determine the number of clusters that should be generated. In the experiments, that

number was set to 6.

Table 5.3 shows the output of the agglomerative clustering. The five rows for each of the

arenas are the output of the five rounds of clustering (semi-online mode). Each time the

algorithm generates six clusters, i.e. assigns the state attributes to one of the clusters.

Consider the first row for the maze arena for which the output is “1 2 4 3 3 6 6 5 5 4 6 6 6”.

That output means that:

 the first state attribute (ωL, i.e. the left wheel speed) is added to cluster #1,

 the second state attribute (ωR, i.e. the right wheel speed) is added to cluster #2,

 the fourth and fifth state attributes (Right-Diagonal and Right proximity sensors)

are added to cluster #3,

 the third and the tenth state attributes (Front-Right and Front-Left proximity

sensors) are added to cluster #4,

112

 the eighth and ninth state attributes (Left and Left-Diagonal proximity sensors) are

added to cluster #5, and

 the last three state attributes (ground sensor attributes) are added to cluster #6.

Table 5.3: Output of hierarchical agglomerative clustering for the maze arena, the circular arena and the
arena with obstacles. Row #1 and #3 also contain a graphical view of the clustering technique’s output in

terms of aggregation of the e-puck’s state attributes.

Iteration # Maze Arena Circular Arena Arena with Obstacles

1

1 2 4 3 3 6 6 5 5 4 6 6 6

3 4 5 5 5 2 2 2 6 6 1 1 1

5 3 4 1 1 2 2 6 6 4 2 2 2

2

3 1 2 4 4 6 6 5 5 2 6 6 6

3 6 2 2 5 5 5 4 4 1 5 5 5

5 3 4 4 6 6 6 2 2 1 6 6 6

3

3 4 1 1 5 5 5 5 6 6 2 2 2

4 5 3 3 2 2 2 6 6 6 1 1 1

5 6 1 1 3 3 3 3 2 2 4 4 4

4

3 4 1 2 2 5 5 6 6 6 5 5 5

4 5 6 6 3 3 3 2 2 2 1 1 1

5 6 2 2 4 4 4 4 1 1 3 3 3

5

3 4 5 5 2 1 1 1 6 6 2 2 2

4 5 6 6 3 3 3 2 2 2 1 1 1

5 6 4 4 2 2 2 2 3 3 1 1 1

The first and the third row of the table also show a graphical view of the aggregation of the

state attributes, i.e. proximity sensors, ground sensors and wheel speeds. The digit near the

group is the cluster number. As seen in the graphical representation, some groups consist

of just a single state attribute, whereas others consist of more than two state attributes. The

results show that the output of the clustering algorithm may be the same regardless of the

arena. To understand this consider the maze arena and arena with obstacles. Both arenas

113

have walls; hence the experienced data points may be similar, leading to the same output

by the clustering algorithm.

The proposed technique then takes this output from the clustering algorithm and identifies

unique groups/aggregations. For example, the ground sensors always seem to belong to the

same cluster, forming a unique aggregation. From the output shown in Table 5.3, all the

unique groups of the state attributes are extracted. Table 5.4 shows those unique groups.

The column ‘Aggregated State Attributes’ shows the attribute(s) in the group. The

description column is a manually added description to provide an intuition as to what that

group means and is not required for the working of the technique. The state attribute in the

group is represented with a ‘#’, and all other attributes are represented using a ‘-’. As an

example, consider just the following two outputs 1 2 4 3 3 6 6 5 5 4 6 6 6 and 3 1 2 4 4 6 6 5 5 2

6 6 6. The unique aggregations from that are # - - - - - - - - - - - - -, - # - - - - - - - - - - - - -, - - # - - - -

- - - # - - - and so on.

Table 5.4: Unique groups of state attributes obtained from further processing the results shown in Table
5.2.

Group
Id

Aggregated State Attributes Description

f1 # - - - - - - - - - - - - Group consisting of just the left wheel attribute

f2 - # - - - - - - - - - - - Group consisting of just the right wheel attribute

f3 - - # # # - - - - - - - - Group consisting of front right and the two right sensors

f4 - - # # - - - - - - - - - Group consisting of front right and the right diagonal sensor

f5 - - # - - - - - - # - - - Group consisting of the two front sensors

f6 - - # - - - - - - - - - - Group consisting of the front right sensor

f7 - - - # # - - - - - - - - Group consisting of the two right sensors

f8 - - - - # # # # - - - - - Group consisting of the right, two back and left sensors

f9 - - - - # # # - - - # # # Group consisting of the right, two back and three ground sensors

f10 - - - - # # # - - - - - - Group consisting of right and two back sensors

f11 - - - - # - - - - - # # # Group consisting of right and the three ground sensors

f12 - - - - - # # # - - - - - Group consisting of two back and the left sensor

f13 - - - - - # # - - - # # # Group consisting of two back and three ground sensors

f14 - - - - - - - # # # - - - Group consisting of two left and front left sensors

f15 - - - - - - - # # - - - - Group consisting of two left sensors

f16 - - - - - - - - # # - - - Group consisting of left and left front sensors

f17 - - - - - - - - - # - - - Group consisting of just the front left sensor

f18 - - - - - - - - - - # # # Group consisting of the three ground sensors

114

Figure 5.13: Varying levels of aggregation of the e-puck’s proximity sensors.

During this step, varying the cluster threshold criterion will result in a varying granularity

of aggregation. Figure 5.13 shows a graphical representation of how varying the threshold

criterion results in the varying levels of aggregations of the e-puck’s proximity sensors.

Step 3: Generate tasks

The final step of the proposed technique was to generate tasks. That was done by generating

a state vector with one or more groups shown in Table 5.4 enabled. A group is considered

enabled when it has a value assigned to it. For example, all the attributes in the group are

assigned a maximum value. If the group is not enabled, it is ignored. The other way to

enable a group is to: (i) assign a minimum value to all the attributes in the group and (ii)

assign a set value to all the attributes in the group. Assigning a set value may require domain

knowledge. Only ‘min’ and ‘max’ functions were used in this experiment. Further, as per

the proposed technique, these groups are to be combined using operators to form a valid

state vector. Any number of groups can be chained together as long as they form a valid

state vector. This experiment used ‘AND’ and ‘OR’ operators.

Table 5.5 shows sample tasks. They vary in complexity from simple, more primitive tasks

to complex. The ‘Task’ column details which group was used to create those tasks and how

115

the groups were combined, i.e. min or max functions are applied to the relevant group using

‘#’. Value of ‘0’ was used when the function min was applied, and ‘1’ was used when the

function max was applied. That was because all the state attributes (wheel speeds,

proximity and ground sensors) in this experiment use discrete binary values. The task

description is also provided in the table to indicate what that task means. A manual semi-

structured approach was used to create this task list. In this approach, the aim was not to

generate all possible tasks (as this leads to combinatorial explosion) but to ensure that all

the aggregated state attributes f1 to f18 are used. The tasks were generated using both ‘AND’

and ‘OR’ operators, and each of the aggregated state attributes f1 to f18 was used at least

once. The aim was to ensure that there is a good representation of both primitive and

compound tasks formed by combining multiple aggregated state attributes. Based on that,

seventeen tasks G1 to G17 were generated. For example, G11 (- - - - - - 0 0 1 1 1 0 0 0), which

was created by minimizing f13 (- - - - - # # - - - # # #), i.e. (- - - - - 0 0 - - - 0 0 0) ‘AND’ maximizing

f14 (- - - - - - - # # # - - -), i.e. (- - - - - - - 1 1 1 - - -).

All the tasks in this table were considered maintenance tasks for which the reinforcement

learning agent learned the skills. The columns ‘Metric – M1’ (the same metric proposed in

Chapter 4) and ‘Reward per Episode’ are the metrics to measure agent performance. Metric

M1 measures how often the maintenance attempt was regained, and reward per episode

measures the total positive reward gained by the agent during the 25,000 step learning trial.

The trial for each task was run ten times. Metrics columns show the results averaged for

those ten trials, and the standard deviation was recorded as shown in Table 5.5.

Table 5.5: A list of handcrafted compound tasks (created in a semi-structured way) and results from
learning those tasks. Metrics M1 and reward per episode measured for ten trials with standard deviation

shown.

Task
Id

Task Description of the task Metric – M1 Reward per
Episode

Is Task
Valid?

G1 𝑚𝑖𝑛(𝑓ଵ) Turn left or stay still

1466 ± 44 23258 ± 60 Yes

G2 𝑚𝑎𝑥(𝑓ଷ) High sensor values of Front-Right and
Right sensors

305 ± 135 17423 ± 2783 Yes

G3 𝑚𝑎𝑥(𝑓ହ) High sensor values of front sensors

45 ± 18 24364 ± 587 Yes

G4 𝑚𝑖𝑛(𝑓) Low sensor value of the Right, back, and
Left sensors

65 ± 34 23950 ± 1205 Yes

116

G5 𝑚𝑎𝑥(𝑓ଵ଴) High sensor values of Right and back
sensors

0 ± 1 0 ± 3 Yes

G6 𝑚𝑖𝑛(𝑓ଵସ) Low sensor values of Left and Front-Left
sensors

89 ± 35 20227 ± 1586 Yes

G7 𝑚𝑖𝑛(𝑓ଵ) ∧ 𝑚𝑖𝑛(𝑓ଶ) Stay still

0 ± 0 0 ± 0 No

G8 𝑚𝑖𝑛(𝑓ଷ) ∨ 𝑚𝑖𝑛(𝑓ସ) No obstacle/wall at the front and right

69 ± 45 21533 ± 1483 Yes

G9 𝑚𝑖𝑛(𝑓଻) ∧ 𝑚𝑎𝑥(𝑓) No obstacle/wall at the right, but obstacle
/wall at the back and left

0 ± 0 0 ± 0 Yes

G10 𝑚𝑖𝑛(𝑓ଽ) ∨ 𝑚𝑎𝑥(𝑓ଵ଴) Obstacle/wall at the right and back while
the robot is not on a track

0 ± 0 0 ± 0 Yes

G11 𝑚𝑖𝑛(𝑓ଵଷ) ∧ 𝑚𝑎𝑥(𝑓ଵସ) No obstacle/wall on the back but
obstacle/wall on the left and front left
while the robot is not on a track

338 ± 174 21265 ± 2252 Yes

G12 𝑚𝑎𝑥(𝑓ଵହ) ∨ 𝑚𝑖𝑛(𝑓ଵ଺) Obstacle/wall on the left

378 ± 134 7939 ± 1893 Yes

G13 𝑚𝑎𝑥(𝑓ଵ) ∧ 𝑚𝑎𝑥(𝑓ଷ) Move forward or turn right, obstacle/wall
at the front and right

1441 ± 182 18488 ± 2799 Yes

G14 𝑚𝑎𝑥(𝑓ହ) ∨ 𝑚𝑎𝑥(𝑓଻) Obstacle/wall at the front and right

645 ± 238 15980 ± 3317 Yes

G15 𝑚𝑖𝑛(𝑓ଶ) ∧ 𝑚𝑖𝑛(𝑓ସ)
∧ 𝑚𝑖𝑛(𝑓଺)

Stay still or turn right; no obstacle/wall
on the front and right

1172 ± 235 17243 ± 5801 Yes

G16 𝑚𝑎𝑥(𝑓ଵ) ∨ 𝑚𝑎𝑥(𝑓ଶ)
∧ 𝑚𝑎𝑥(𝑓ଵ଼)

Move forward while on a track

113 ± 81 23121 ± 1469 Yes

G17 𝑚𝑎𝑥(𝑓ଵ) ∧ 𝑚𝑖𝑛(𝑓ହ) ∨
max(𝑓ଵସ) ∧ 𝑚𝑖𝑛(𝑓ଵ଻)

Move forward or turn right, obstacle/wall
on the left and no obstacle/wall at the
front

720 ± 179 4889 ± 1346 Yes

The metrics show that the e-puck learns most but not all tasks. As mentioned above, the

tasks were generated in a semi-structured way. Domain knowledge was not used in

generating those tasks; hence not all generated tasks may be valid. That validity is indicated

by the “Is Task Valid?” column. Also, a task, which is the robot’s state, may not have been

visited during the exploration phase and could be a state that is difficult to reach. Results

show that the e-puck is not able to learn G7, G9 and G10. The task G7 means that irrespective

of the proximity sensor values or the ground sensor values, it is to stay still, i.e. regardless

of its position on the board, whether it is near a wall or an obstacle, whether it is on a black

region on the ground or not, it is to stay still. As per the design of the action space in this

experiment, there is no way the e-puck can stay still. The only valid actions are to turn left,

117

step forward or turn right. Thus, task G7 is not a valid task. Task G9 means that the e-puck

is supposed to maintain a state where there is no obstacle/wall to the right, but there is a

wall close to its back. This task is valid however appears difficult to learn.

Similarly, task G10 means that the e-puck is supposed to maintain a wall/obstacle on its

right side and behind while not on a black region on the ground. This task is valid; however,

it also appears difficult to learn. If the proposed technique is used to implement the task

generation module of the agent architecture detailed in Chapter 3, then the knowledge

management module of the architecture can be responsible for pruning the tasks that are

invalid or very difficult to learn given the design of its action space. The metrics show that

the rest of the tasks are learnable.

The task description column provides an intuition of the meaning of the tasks that are

generated by the proposed technique. Rather than a semi-structured approach to generate

the tasks, a structured approach could be used if one had the domain knowledge, resulting

in the generation of useful tasks. Regardless, varying the cut-off criterion would result in

coarser to finer aggregation units. That and the way these aggregations are combined would

result in tasks of varying complexity. That validates the proposed task generation

technique. Also, as shown in the above experiment, the whole process can be run iteratively

without making the previous aggregations obsolete. Thus, this technique is suitable for

continuous learning.

5.5 Summary

To exhibit open-ended learning, the agent should be able to self-generate tasks. As the

system learns solutions to ‘attain’ those tasks, its overall knowledge increases. However,

not all tasks in the real world are primitive or flat. Hence, the task generation mechanism

should be able to generate tasks of varying complexity—primitive as well as compound.

This chapter proposed such a mechanism. The process is divided into the following phases:

i) explore the environment and store the experience as data points, ii) using aggregation

technique, discover salient groups in the data points, and iii) using domain-independent

knowledge, form general tasks or using domain knowledge, form tasks specifically

118

valuable for that domain. In this chapter, the state attribute aggregation is done using

hierarchical clustering, whose parameters can be varied to create fewer but coarser clusters

or a larger number of fine-grained clusters. When the task generation step is carried out

using these aggregations, it results in tasks of varying complexity—thus filling the gap in

the literature.

This chapter also showed that the whole process could be repeated in a cycle when the

environment changes. The resulting aggregated state attributes can be assimilated with

previous unique aggregations; thus, newer aggregations do not make the previously

generated tasks obsolete. This is important not only to preserve the system's integrity but

also to continuously improve its knowledge of the environment without having to restart

all over again when something changes in the environment. Also, it is essential, especially

for the robotics domain, where it is not always possible to learn all the skills from scratch

due to the sample inefficiency of reinforcement learning. The agent architecture proposed

in Chapter 3 is continuously learning, i.e. constantly increasing the overall knowledge. It

would be worthwhile to leverage the learned knowledge and reuse it to know the solutions

to future tasks. That could be an alternative approach to reinforcement learning’s sample

inefficiency and would result in a continuous learning system more suitable for the real

world. That is the subject of the next chapter. It will investigate how the learned knowledge

can be reused to learn solutions for future tasks.

119

CHAPTER 6 REUSE OF LEARNED KNOWLEDGE BY SKILL

COMPOSITION

Parts of this chapter have been published in: P. Dhakan, K. Kasmarik, P. Vance, I. Rano, and N.
Siddique, “Concurrent Skill Composition using Ensemble of Primitive Skills.” IEEE Transactions

on Cognitive and Developmental Systems, Accepted for publication – 10th May 2022.

6.1 Introduction

A key characteristic of an open-ended learning system is that it can learn to perform

multiple tasks. For that, it should be able to determine what tasks it should learn [19] [20]

and also be able to exploit the learned knowledge to improve the performance of the task

at hand [127]. Chapter 5 proposed a task generation technique so the agent can select ‘what

to learn’, which was the contribution related to the task generation module of the

architecture proposed in Chapter 3. Once the agent has built up a repository of skills, a

logical next step is to enable it with the capability to combine the skills it has already

learned to solve new tasks. In reinforcement learning, which is used in the learning module

of the architecture, an agent learns by interacting with its environment. In many cases, the

amount of interaction needed to learn a task is quite large [29], making it impractical for

many robotics applications. While the reinforcement learning community is conscious of

this drawback and has proposed sample-efficient algorithms [41] and, different approaches

such as imitation learning [33] [76], transfer learning [128] [129] are used. However,

further benefits can be gained by reusing the previously learned knowledge to create a

solution for future tasks. The literature review shows that these approaches have not

previously been considered in open-ended learning architectures, specifically in an

intrinsically motivated reinforcement learning setting. That is the contribution of this

chapter.

This chapter will detail how the previously learned skills can be combined to form skills

for new tasks. The responsibility of deciding what skills to combine and how to combine

those skills lies with the architecture’s knowledge management module. This chapter’s

contribution is thus related to that module. Figure 6.1 shows the knowledge management

module in green, highlighting the focus of this chapter.

120

Figure 6.1: Modular Continuous Learning Architecture revisited. Skill composition, the focus of this
chapter, is a contribution related to the Knowledge Management Module.

Chapter 4 showed that one of the task categorisations is whether they can be considered

atomic. A task is ‘primitive’ if it cannot be further divided into simpler tasks and

‘compound’ if it is formed by a combination of simpler tasks. That combination can be

‘sequential’, i.e. multiple primitive tasks are carried out in a sequence, or ‘concurrent’, i.e.

multiple primitive tasks are carried out at the same time (i.e. interleaved in parallel). The

literature review showed that option is a common method used to combine the tasks in

sequential order in reinforcement learning. A primitive skill can be packaged as an option,

and many such options can be sequenced together to form a skill for a compound task. The

literature review also showed a few ways of combining the skills concurrently, namely

using the Gaussian Mixture Model [130] and a Mixture of Experts [131] [132]. Integration

of the concept of options into the architecture proposed in Chapter 3 gives it the capability

to sequentially combine the skills for the primitive tasks without the need for any additional

task-dependent knowledge. However, integrating the concurrent combination techniques

found in the literature review requires additional task-dependent knowledge or human

intervention. Inspired by Modular Neural Networks [133], this chapter proposes a method

of combining reinforcement learning policies represented using a neural network. It is a

method to combine the primitive tasks concurrently without requiring other task-dependent

121

knowledge. When such skill composition is integrated with the Modular Continuous

Learning Architecture, it enables continuous learning of skills of increasing complexity.

This chapter also proposes a Kullback-Leibler divergence based metric to measure the

difficulty level of a task and the agent’s skill competency. These metrics enable the

Modular Continuous Learning Architecture to select an appropriate task to learn given the

current level of expertise of the system as a whole. That is suggested as a future task in

Chapter 7.

The learned knowledge used as a building block is typically learned in the same non-

scaffolded environment as the other compound skills resulting in inefficiently learned

primitive skills. This thesis hypothesizes that skill composition is more effective when the

primitive skills are learned in specialized/scaffolded environments. The hypothesis is based

on the premise that a scaffolded environment provides the agent with a better learning

opportunity. As seen in Chapter 4, some tasks were not learned due to a lack of opportunity.

Thus, scaffolded environments are created for the robot to learn primitive skills. The

experiments will show how the composition of primitive skills learned in a scaffolded

environment can be used as a skill for a more complex task. The results of primitive skills

learned in a scaffolded are compared with the same skills learned in a non-scaffolded

environment to demonstrate the effectiveness of learning in a scaffolded environment. The

primitive skills learned in the scaffolded environment are then combined to generate a skill

for the compound tasks. The composed skill is compared with the skills learned from

scratch to demonstrate the effectiveness of the proposed skill combination method. Thus,

this chapter’s contributions are (i) two variants of a novel ensemble method to compose

policies for compound tasks that are concurrent combinations of disjoint tasks, (ii) a

comparison of the performance of the skill learned in scaffolded and non-scaffolded

environments and also a comparison of the skill learned from scratch with composed skill

whose constituent primitive skills are learned in a scaffolded environment and (iii) a

Kullback-Leibler divergence based metric to measure the task difficulty level and agent’s

skill competency. The rest of this chapter is organised as follows: Section 6.2 reviews the

literature on skill composition. Section 6.3 proposes how primitive skills can be

concurrently combined. Section 6.4 proposes the metrics to measure the task difficulty

122

level and the agent’s skill competency. Section 6.5 describes the setup of the experiments

and discusses the results. Finally, Section 6.6 provides the concluding remarks.

6.2 Skill Composition

For an open-ended lifelong learning system, a critical characteristic is that it learns skills

for multiple tasks. It should be able to determine what tasks it should learn [19] [20] and

when it should learn them [20]; also, to be efficient and be aware of its capabilities [57], it

should be able to exploit the learned knowledge to improve the performance of the task at

hand [57] [127]. As detailed in previous sections, reinforcement Learning is most suitable

for open-ended learning. However, in many cases, the amount of interaction needed to

learn a task is quite large [29], making it impractical for many robotics applications. While

the reinforcement learning community is conscious of this drawback and is continually

inventing sample efficient algorithms [41] and using different approaches such as imitation

learning [33] [76], further benefits can be gained by re-using the previously learned

knowledge to create a solution for the future tasks.

The reinforcement learning literature review shows several approaches to re-using

previously learned knowledge to create a solution for future tasks. Since the aim is to

integrate this with the continuous learning agent architecture, the scope of the review in

this section is limited to approaches where the reinforcement learning policies for simpler

tasks are combined to form a policy for a more complex task. In saying that, other

approaches that re-use previously learned knowledge to form solutions for future related

or unrelated tasks are listed to provide a broader context. Then the review focuses on

techniques that combine the reinforcement learning policies to form solutions for

compound tasks.

In reinforcement learning, a solution to achieve the task is called a policy. Two or more

policies can then be combined to learn solutions for compound tasks. Existing literature

reveals two common ways of combining reinforcement learning policies: (1) Sequentially

[134] [135] – where the policies for the subtasks are invoked in a sequence to solve a more

complex task. The subtasks may or may not be organised in a hierarchy; however, this

123

technique broadly falls under hierarchical reinforcement learning. For example, consider

that a mobile robot picks up an object from destination A and delivers it to destination B.

Both these tasks have to be carried out one after the other in order. To form a compound

skill, the skill to solve the first task is sequentially combined with the skill to solve the

second task. (2) Concurrently [127] [136] – where the policies of the subtasks are merged

to form a combined policy that is used to solve the complex task. Such a technique is called

compositionality. Consider, for example, that the mobile robot has to follow a moving

target while avoiding obstacles along the way. In that case, both primitive skills are

combined in a concurrent manner to form the compound skill, i.e. they are simultaneously

active. Another approach seen in the literature is called a modular combination of skills in

which the skills are enabled and disabled based on a trigger. For example, consider that a

mobile robot is following a track on the floor and comes across an obstacle. It navigates

around the obstacle and again starts to follow the track. In this case, the robot stops using

the first skill when the second skill is triggered.

First, to provide a broader context, the following subsection reviews approaches that either

reuse previously learned knowledge or aim to learn a solution to compound tasks. That is

followed by a more detailed review of the work that focuses on combining reinforcement

learning policies.

6.2.1 Multi-task learning

In the explanation based neural network [137], Thrun uses domain knowledge to provide

a context of the data for the agent to generalise the knowledge. That enables the agent to

use previously learned knowledge from the n-1 related tasks to learn the nth task more

efficiently. While this approach reduces the amount of training data the reinforcement

learning agent requires, the approach applies only to the related tasks. The approach

focuses on generalising the knowledge and applying it to newer tasks, which may or may

not be more complex than the previous n-1 tasks. Drummond [138] also uses a similar

concept of transfer of knowledge from related tasks. Both the techniques mentioned above

apply only to related tasks. For an open-ended learning agent, that would be considered a

significant limitation.

124

In multi-task / multi-objective / feudal reinforcement learning [139], the agent trains to

learn multiple tasks at the same time. A compound task, seen from a different viewpoint,

is considered a set of multiple tasks. The multi-objective reinforcement learning agent aims

to find a policy that satisfies multiple tasks instead of just one. The reward function, in this

case, is a vector instead of a scalar value, and the agent aims to learn all policies. When

compared to compositionality, the difference is that in the case of multi-objective

reinforcement learning, the tasks are usually contradictory, and the challenge for

reinforcement learning is to find a policy that optimally satisfies all the tasks. While the

aim of multi-task reinforcement learning is to learn the skill to solve multiple tasks, since

the skill to solve those tasks is learned as a single policy, there is no way to reuse the skill.

The policy cannot be sliced and diced to generate policies for constituent tasks. Hence if

one of the tasks in the set of multiple tasks were replaced with a new task, it would mean

that the learning has to begin from scratch.

6.2.2 Sequential combination of policies

In this approach, the policies are combined in sequential order. That is akin to a planning

problem where the previously learned policies are sequenced to accomplish a complex task.

The tasks may or may not be hierarchically structured; however, the same concept of

sequentially combining the policies can be applied to both. Broadly this can be considered

hierarchical reinforcement learning.

Hierarchical reinforcement learning [140] aims to decompose the task into subtasks,

commonly represented using options [42], learn the policies for each of the subtasks, and

then treat that policy as a macro action. The solution to the complex task is a policy that

sequentially invokes these macro actions. This has been an extensively researched area,

ranging from auto-generation of options [141] to integrating this with the core

reinforcement learning algorithm to form algorithms such as option-critic [142]. MAXQ

[143] introduces mechanisms for abstraction and sharing in reinforcement learning for it

to be able to solve tasks that have complex hierarchical structures. The concept exploits the

regularities found when a complex task is decomposed. Such techniques of a sequential

combination of skills can be integrated with the agent architecture proposed in Chapter 3.

125

6.2.3 Modular reinforcement learning

Modular reinforcement learning is similar to the sequential combination of reinforcement

learning policies. It switches from one policy to another; however, the decision to sequence

the policy is made at a run time based on the initiation trigger or termination state.

Modular reinforcement learning [144] [145] [146] [147] decomposes a task, and each

module solves a portion of the task. For the final solution, at runtime, a selector then selects

the policy of the subtask in sequence. Although not based on reinforcement learning, a

technique worth mentioning here is the subsumption architecture [70]. It is a layered

architecture where the lower layers represent more primitive behaviours, whereas higher

layers represent high-level behaviours. Like modular reinforcement learning, a behaviour

is triggered when a specific condition is satisfied, which is akin to switching the policy

based on a trigger. The techniques that fall under the modular reinforcement learning

category too can be integrated with the agent architecture proposed in Chapter 3.

6.2.4 Concurrent combination of policies

The final category is where the reinforcement learning policies are combined concurrently

to form a single policy. This concept is termed as compositionality [136] [148] [149]. The

policies of constituent tasks are combined, and they act in unison to form a solution for the

compound task. The reinforcement learning policy can be represented as a Q-table, neural

network, or basis function. When the policies are represented as a Q-table, the Q function

for the compound task is generated by averaging the constituent Q functions [127] [145]

[150] [151]. When the policies are represented as a neural network, the literature review

shows that the combined policy is generated using voting, a Mixture of Experts [131] [132],

policy distillation [152] [153] and action selection using a Gaussian Mixture Model [130].

Also, compositionality can be further enhanced by combining the concept of

compositionality with modular reinforcement learning, where the final policy is generated

by combining multiple policies concurrently [151].

Haarnoja et al. [150] demonstrated the combination of policies for different sets of

behaviours. Using a robotic manipulator arm, it was shown how the policy to move an

126

object on a vertical strip and the policy to move the object on a horizontal strip are

combined to form a policy for the robot to be able to move the object to the intersection

position of the two strips. Todorov [154] developed a theory of compositionality applicable

to a general class of stochastic optimal control problems. Niekerk et al. [127] apply the

concept of compositionality to the lifelong learning agent. Using a high-dimension video

game use case, it is demonstrated how an agent can combine skills from its library of

already learned skills to solve a new task. Niekerk et al. conclude that learning a policy for

a composite task can be difficult because of the tendency to collapse into learning a single

task without exploring the alternatives. Hence, it is better to learn primitive skills and then

combine them to produce an optimal solution for the compound task.

6.2.5 Gap in the state-of-the-art

The literature review shows that primitive skills can be combined sequentially or

concurrently for skill reuse and that the current research focus is on the former, highlighting

a research opportunity. Unlike the case of the sequential combination of policies where the

technique of options is commonly used, there is no common method for the concurrent

combination of skills. While the concurrent composition of reinforcement learning policies

has attracted attention in recent years, much remains to be done. Compositionality enables

mixing and matching primitive skills to form solutions to various compound tasks. For

example, when a robot learns skills A, B, C and D. Solutions to compound tasks can be

composed by combining the skills such as A+B, A+B+C, A+B+D, A+C+D, A+B+C+D.

That can be especially useful for the reinforcement learning robot since it may not always

be possible for the robot to learn every skill from scratch. For the ones it can, such reuse

of knowledge leads to sample efficiency.

The review has shown that option is a commonly used technique to store policy for

sequentially combined tasks. That can be integrated with the architecture proposed in

Chapter 3. However, the methods found in the literature for the concurrent combination are

not task-independent or abstract enough to be easily integrated with the architecture

proposed in this thesis. That raises a question: How does one design a module to

concurrently compose known skills to form a solution for a compound task with the added

127

requirement that the technique is compatible with the proposed agent architecture? The

following section will aim to answer that question.

6.3 Concurrent Skill Composition

A key characteristic of a continuously learning system is learning skills for multiple tasks

and using the learned skill to solve future tasks. The agent architecture proposed in Chapter

3 uses reinforcement learning to acquire skills. In reinforcement learning, the common

practice is to train the agent for every task from scratch. That is not only time-consuming

but also impractical, especially for many robotics applications. That is because the very

nature of reinforcement learning requires the agent to find itself in a situation to be able to

try different actions, and also, the agent may need to be reset to an initial/random starting

state for retries [155]. That is because reinforcement learning relies on several similar

learning opportunities so that the agent can explore available actions to create a mapping

between states and actions, i.e. generate a policy. This sample inefficiency is a significant

challenge in reinforcement learning [156]. This inadequacy of reinforcement learning

becomes apparent when learning solutions to complex tasks.

With the agent architecture, such as the one proposed in Chapter 3, the system is

continuously enhancing its knowledge base. This knowledge is stored in the knowledge

management module of the architecture. In reinforcement learning, the solution to the task,

i.e. the skill, is stored as a policy. A policy can be represented using a Q-table or using a

neural network. Policies represented using Q-tables can be concurrently combined by

averaging the constituent Q-values [150]. This section will detail a similar technique for

the policies represented using neural networks. The technique provides the best of both

worlds. It provides the simplicity and understandability of the concurrent combination used

in the Q-table based representation and the neural network’s scalability. This concurrent

combination of the neural network skills is similar to the average model weight ensemble

[36] [37].

A compound task’s reinforcement learning policy can be formed by averaging the learnable

parameters of the constituent tasks’ networks. Starting with learning primitive tasks first,

128

it then moves on to learning compound tasks. With a repository of primitive skills in place,

it is only logical to extend the system’s capabilities to reuse the learned primitive skills to

form solutions for compound tasks. The advantage of this simple averaging technique

becomes apparent in a multi-agent reinforcement learning setting where the agents are

learning different primitive skills building a repository of skills. Those skills can then be

combined as required to create a solution for a compound task.

A compound task can be considered as a sequential or concurrent combination of the

constituent primitive tasks. Further, a concurrent combination can be an ‘AND’ or an ‘OR’

combination. In an ‘AND’ combination, for successful execution, all the constituent tasks

are executed simultaneously. Whereas, in the case of an ‘OR’ combination, the execution

is considered successful if one of the constituent tasks is executed successfully. That is, the

combined policy can solve either of the constituent tasks, but not all at the same time. When

learning multiple tasks, the two tasks can be said to be ‘competing’ if the actions required

to accomplish one task are opposite to the actions necessary to accomplish another task.

The tasks are said to be ‘complementary’ if the actions required to accomplish one task are

the same as the actions necessary to accomplish another task and ‘disjoint’ if they are

neither competing nor complementary. Like any other multi-task learning method, this

approach’s limitation is that the tasks should not be contradictory. Since, for such

contradictory tasks, the actions may be competing in nature. The scope of this chapter’s

contribution is limited to the ‘AND’ combination of disjoint tasks.

For example, consider a set of disjoint primitive tasks for a vacuum cleaning robot: (a)

detect the dirt, (b) clean the dirt, (c) avoid obstacles, and (d) detect an edge of the floor to

keep the robot from falling off the stairs. A compound task with an ‘AND’ combination

would be the combination of tasks such as (i) the robot detecting the dirt while avoiding

obstacles and avoiding falling off the stairs, and (ii) the robot cleaning the dirt while

avoiding obstacles and avoiding falling off the stairs. As a non-mobile robot example,

consider the following hypothetical set of disjoint tasks. Consider a primitive task of

juggling and another primitive task of riding a unicycle. The compound task would be to

ride a unicycle while juggling. As one can imagine, this can be further extended where the

compound task can be to juggle while riding a unicycle and balancing on a tight rope at the

same time. Once the primitive tasks are learned, they can be considered layers/modules of

129

the reactive architecture where the learned behaviour is executed when triggered or

multiple behaviours are combined to execute a more complex behaviour.

6.3.1 Compositionality for Q-table and neural network based policy representation

Consider that an agent implemented using the agent architecture proposed in Chapter 3 has

generated several potential tasks. Further, consider that the tasks are both primitive tasks

that can be represented as 𝑝ଵ, 𝑝ଶ, … , 𝑝௡ and compound tasks that are combinations of those

primitive tasks. Also, consider that the policy for the primitive task 𝑝ଵ is represented as 𝜋ଵ

and the policy for the task 𝑝ଶ is represented as 𝜋ଶ and so on. Similarly, the policy for the

compound task 𝐶 is represented as 𝜋஼.

Q-table, which is one of the ways to represent a reinforcement learning policy, stores the

Q-values. Those Q-values are used by the action selection strategy to select the best action

in a particular state. That forms the mapping between state and action, i.e. a policy akin to

a skill. The calculation of Q-values using Q-Learning is detailed in Chapter 2, Equation

(2.5). It denotes how good taking a particular action in each state is, i.e. it denotes the action

that should be taken in each state to maximize the cumulative reward. In simple terms, it

indicates a reward that can be received if a particular action is taken, i.e. it encodes future

reward. Chapter 2, Table 2.1 shows a sample Q-table. Thus, if the Q-table for every

primitive task encodes the potential reward for each action in each state, the policy for the

compound task, i.e. the coordination of multiple behaviours, can be generated by a

summation of the constituent Q-tables [157] [127] [150], i.e. the primitive skills such as

𝜋ଵ, 𝜋ଶ, … , 𝜋௡ learned independently can then be combined to form a policy 𝜋஼ for a

compound task. The policies for individual tasks can also act as modules and then mixed

and matched as required to form a skill for a compound task [145]. A normalized

representation generated by averaging the constituent Q-tables is shown in Equation (6.1),

where 𝑛 is the number of constituent tasks.

𝑄஼(𝑠𝑡, 𝑎𝑡) =
1

𝑛
෍ 𝑄௜(𝑠𝑡, 𝑎𝑡)

௡

௜ୀଵ

 (6.1)

130

The corresponding reward for the compound task 𝐶, if the reinforcement learning agent

were to attempt to solve it from scratch, can be represented as an average of the rewards

[158] for primitive tasks 𝑝ଵ, 𝑝ଶ, … , 𝑝௡, as shown in Equation (6.2):

𝑟஼(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =
1

𝑛
෍ 𝑟௜(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

௡

௜ୀଵ

 (6.2)

where the reward for each of the primitive tasks is within the same range and 𝑟ଵ(𝑠௧, 𝑎௧, 𝑠௧ାଵ)

is the reward for the task 𝑝ଵ, 𝑟ଶ(𝑠௧ , 𝑎௧, 𝑠௧ାଵ) is the reward for the task 𝑝ଶ and so on.

Parameters 𝑠௧, 𝑎௧ and 𝑠௧ାଵ are the agent’s state, the action that the agent takes in that state

and the resulting state of the agent when that action is taken.

The concept of averaging the Q-tables to form solutions for compound tasks is well-

researched [145] [157] [127] [150]; however, Q-table based approaches do not scale well.

The other way to represent a policy is by neural networks; for example, the Deep Q

Network algorithm (DQN) [159] uses neural network-based policy representation. In such

algorithms, in essence, the learnable parameters of the neural network store the Q-values,

which means the concept of averaging Q-tables can be extended to the policies represented

by neural networks.

A concept of averaging the neural network model weights is used for supervised machine

learning problems, albeit to solve the optimization challenge where the training process of

neural networks fails to converge. That average model weight ensemble (Polyak

Averaging) [36] technique averages the network’s learnable parameters (i.e. the weights)

and is shown to generate more robust solutions. In this technique, the desirable solution is

achieved by averaging the weights of multiple trained models where the sets of weights

from the individual model can often be noisy but averaging results in a robust solution.

Also, a similar concept of combining the learnable parameters is used in Modular Neural

Networks [133] and the Mixture of Experts [160] techniques seen in general machine

learning as well as reinforcement learning literature [144] [146] [147] [131] [132], where

an individual network is an expert in its domain and is built and trained independently for

its specific task with the final decision made based on the results of these individual

networks. That allows for building a bigger network for solving compound tasks using

131

smaller independently trained/re-trained modules resulting in quicker training than

monolithic networks. However, it requires additional infrastructure such as a decision or

gating network. The decision network can be implemented using some rule or could be

based on voting or a mathematical operation such as summation or averaging. For example,

consider the Modular Neural Networks shown in Figure 6.2. The individual modules could

be trained on specific tasks such as tracking an object using a camera or detecting an

obstacle using proximity sensors. The decision network can then combine the results from

the individual modules to make the final decision for solving a compound task such as

tracking an object while avoiding obstacles.

Figure 6.2: An example of Modular Neural Networks

Extending the concept of averaging Q-tables and inspired by the techniques such as average

model weight ensemble and Modular Neural Networks, this chapter proposes a technique

to form policy for a compound task by averaging learnable parameters of policies of the

constituent primitive tasks represented using neural networks. The proposed skill

composition in this chapter is limited to the ‘AND’ combination of disjoint tasks. Since the

tasks are disjoint, unlike the techniques seen in the literature [146] [131] [132], there is no

overlap in state space, and hence the proposed technique does not require any additional

decision/gating network infrastructure for the action arbitration in the overlapping region.

132

That results in a much simpler architecture for an open-ended continuous learning agent.

Also, the policies for compound tasks generated using the proposed technique can be stored

and recalled to be combined with additional policies compared to policies generated at run

time, as is the case for modular reinforcement learning techniques. A compound task 𝐶 be

represented as 𝐶 = 𝑝ଵ ∧ 𝑝ଶ ∧ … ∧ 𝑝௡ and the policy 𝜋஼ for such compound task can be

represented as a combination of the policies for the constituent tasks as shown in Equation

(6.3). The combined policy formed this way can be used as an initial policy that can then

be refined as the agent gets an opportunity to learn more regarding a particular region of

its state space.

𝜋஼ =
1

𝑛
෍ 𝜋௜

௡

௜ୀଵ

 (6.3)

6.3.2 Skill composition using average model weight ensemble

The technique proposed in this chapter is based on the actor-critic reinforcement learning

algorithm [41], where the actor and the critic are implemented using neural networks.

Reinforcement learning consists of algorithms that are either value-based methods where

the agent learns the value function that determines how good it is to take a particular action

in a specific state or policy-based methods where the agent directly optimizes the policy

by sampling several rollouts of the episode. The actor-critic family of algorithms is a hybrid

approach where the critic is trained to estimate the value function and provides feedback

to the actor to optimize the policy. At each time step t, the state 𝑠௧ is passed as an input to

both actor and critic networks. The actor, represented as 𝜋(𝑠௧, 𝑎௧, 𝛳), takes an action 𝑎௧ in

the environment receives the reward 𝑟௧ାଵ and transitions to a new state 𝑠௧ାଵ. Based on that,

the critic, represented as 𝑞ො(𝑠௧, 𝑎௧, 𝑤), assesses how good it was to take that action and

accordingly adjusts the weights 𝑤 of the critic network. That is then provided as feedback

to the actor, resulting in the update to the weights 𝛳 of the actor network.

Now, consider that 𝑎𝑐𝑡𝑜𝑟ଵ, 𝑐𝑟𝑖𝑡𝑖𝑐ଵ are the actor and critic networks for the primitive task

𝑝ଵ; 𝑎𝑐𝑡𝑜𝑟ଶ, 𝑐𝑟𝑖𝑡𝑖𝑐ଶ are the actor and critic networks for the task 𝑝ଶ and so on. The actor

and critic networks for the compound task 𝐶 can be created by averaging the learnable

133

parameters of the constituent actor networks and the constituent critic networks, as shown

in Equation (6.4).

𝑎𝑐𝑡𝑜𝑟஼ =
1

𝑛
෍ 𝑎𝑐𝑡𝑜𝑟௜

௡

௜ୀଵ

and

𝑐𝑟𝑖𝑡𝑖𝑐஼ =
1

𝑛
෍ 𝑐𝑟𝑖𝑡𝑖𝑐௜

௡

௜ୀଵ

 (6.4)

where 𝑎𝑐𝑡𝑜𝑟௖ , 𝑐𝑟𝑖𝑡𝑖𝑐௖ are the actor and critic networks for the compound task 𝐶 and can

then be used to construct a reinforcement learning agent for the compound task. Typically,

the networks will be multi-layer. That means the actor or the critic network of the

compound task is constructed by taking an arithmetic average of the learnable parameters

of the individual layers of the networks of the constituent primitive tasks. Consider the

actor-network first. The learnable parameters are averaged for each layer of the actor

networks of corresponding primitive tasks. Those average values are then set as the

learnable parameters of the corresponding layer of actor network of the compound task.

This is repeated for all the layers to construct the actor network for the compound task. The

critic network is constructed by following the same process using the corresponding critic

networks of the primitive tasks.

Chapter 5 showed how tasks could be generated by enabling and combining different

aggregations of the state space. For disjoint tasks, these aggregations do not overlap.

Hence, when the tasks are represented using the same state vector (termed representation

#1 in this chapter), a compound skill can be constructed by effectively stacking the

primitive skills that make up that compound task. A graphical representation of this is

shown in Figure 6.3. It shows four skills, with its state space represented by a coloured and

a grey area. This combination method is termed method #1 from here on in this chapter. In

the diagram, the neural network based reinforcement learning policy for the skill is a

combination of actor and critic neural networks. Both networks take the agent’s state vector

as the input. The actor network’s output is the probability for each of the actions in the

134

agent’s action space, and the output of the critic network is the feedback to the actor

indicating how good it was to take a particular action in that state.

Figure 6.3: Skill composition method #1 – same state vector for the constituent tasks (representation #1).

As an extension to the task generation technique proposed in Chapter 5, the state vector for

the task can constitute just the individual aggregation (termed representation #2 in this

chapter). In such a case, the state vector of each primitive task depends on the task being

learned. As shown in Figure 6.4, the construction of the skill for such a compound task can

be done by aligning the state vectors for the constituent primitive tasks. This mechanism is

particularly beneficial in multi-agent reinforcement learning, where each agent is

responsible for learning a particular skill. Those constituent skills can then be combined to

form a compound skill. This combination method is termed method #2 from here on in this

chapter. To learn primitive skills, the agent starts with a state space comprising only the

required state attributes. Same as in method #1, the neural network based reinforcement

learning policy for the skill shown is a combination of actor and critic neural networks.

135

However, the state-space of each task (shown using different coloured pieces) depends on

the skill being learned. Reduced dimensionality leads to smaller state spaces and quicker

learning. Then as required, different primitive skills are combined (by aligning to the state

vector for the compound task), resulting in a skill for the compound task.

Figure 6.4: Skill composition method #2 – task-specific state vector (representation #2).

While each composition method has its merits and demerits, both lead to reduced training

time for the compound skills. That is not just because the agent is not required to learn the

skill from scratch but also because different agents can learn the constituent policies in

parallel. Algorithm 6.1 shows the pseudo-code for skill composition. The constituent

networks’ learnable parameters are averaged to construct a new combined actor-critic

reinforcement learning agent that has the skill to solve the compound task. Next, this

chapter proposes the task difficulty and skill competency metrics.

Algorithm 6.1: Skill Composition

Assumption

136

6.4 Metrology for Task Difficulty and Skill Competency

The knowledge management module detailed in Chapter 3 stores the learned skills and the

metadata regarding the skills, such as the task’s difficulty and the agent’s skill competency

for a similar task. Such metadata can be used to assess the newly discovered task’s

similarity (in terms of difficulty level) with the other tasks in its knowledge base. That, in

turn, could be used to prioritize which task to learn. Also, it could be used to decide which

primitive skills to combine to find a solution for a compound task.

This section proposes the metrics to compute the task difficulty and agent’s competency

for a skill for an environment with a discrete state and action space. However, the concept

can be extended to an environment with a continuous state or action space. The following

are the assumptions made in this section:

There is an array of learned policies for primitive skills stored in policy[]

Start

 /* Initialize variables */
 combinedActor = create actor network // untrained actor network
 combinedCritic = create critic network // untrained critic network
 combinedActorParams = null
 combinedCriticParams = null

 /* Ensemble of actor and critic networks */
 for i = 1: numberSkills
 actor_i = getActor(policy(i))
 actor_i_params = getLearnableParameters(actor_i)
 combinedActorParams = combinedActorParams + actor_i_params
 critic_i = getCritic(policy(i))
 critic_i_params = getLearnableParameters(critic_i)
 combinedCriticParams = combinedCriticParams + critic_i_params
 end for

 /* Calculate the average of learnable parameters */
 combinedActorParams = combinedActorParams / numberSkills
 combinedCriticParams = combinedCriticParams / numberSkills

 /* Create combined agent */
 setLearnableParameters(combinedActor, combinedActorParams)
 setLearnableParameters(combinedCritic, combinedCriticParams)
 combinedAgent = RLAgent(combinedActor, combinedCritic)

end

137

i. An optimal policy is available. An optimal policy is a policy where the agent

executes the skill flawlessly, i.e. the agent executing the optimal policy can be said

to have mastered the skill. This policy can be obtained when another reinforcement

learning algorithm learns the same skill.

ii. The policy is represented using a neural network (for example, the actor-critic

algorithm detailed in section 6.3).

The actor-network output is a probability distribution of the agent’s actions in a particular

state. This probability distribution can be compared with the probability distribution of

action of an optimal policy to generate a measure of the agent’s competency. Also, when

the action probability distribution of the optimal policy is compared with that of a randomly

acting agent, it provides a measure of task difficulty. A Kullback-Leibler (KL) divergence

can be used to compare the probability distributions. The metric calculated this way does

not require any task-related knowledge and is hence suitable for an autonomous agent.

These metrics can also be used to derive competence-based intrinsic motivation for task

prioritization and selection.

KL divergence [161] compares the difference between any two probability distributions,

say X and Y. The divergence between Y to X is denoted by 𝐷௄௅(𝑋||𝑌) and is computed as

follows:

𝐾𝐿൫𝑋(𝜂) ⟶ 𝑌(𝜂)൯ = 𝐷௄௅(𝑋||𝑌) = ෍ 𝑋(𝜂)𝑙𝑜𝑔ଶ ቆ
𝑋(𝜂)

𝑌(𝜂)
ቇ

௔

 (6.5)

The divergence has the following properties:

 The difference is directed, which means that 𝐷௄௅(𝑋||𝑌) ≠ 𝐷௄௅(𝑌||𝑋).

 The difference is non-negative, i.e. 𝐷௄௅(𝑋||𝑌) ≥ 0.

 The divergence is additive for the independent distributions. Consider X1, Y1, and

X2, Y2 are independent distributions for η and κ, respectively; their joint distribution

is computed as 𝑋(𝜂, 𝜅) = 𝑋ଵ(𝜂)𝑋ଶ(𝜅) and 𝑌(𝜂, 𝜅) = 𝑌ଵ(𝜂)𝑌ଶ(𝜅). The additive

property of KL divergence would mean that 𝐷௄௅(𝑋||𝑌) = 𝐷௄௅(𝑋ଵ||𝑌ଵ) +

 𝐷௄௅(𝑋ଶ||𝑌ଶ).

138

6.4.1 Metric to measure the difficulty level of a task

Task difficulty is hard to quantify; however, it can be said that accomplishing a difficult

task requires more time and effort than a simpler task. A term corresponding to task

difficulty in software engineering is code complexity, primarily measured using connected

code paths using graph-centric approaches [162]. However, similar metrics do not exist for

robotics tasks [163]. The approach in this section compares the optimal reinforcement

learning policy for the task, i.e. the policy that indicates skill mastery, with that of a

randomly acting agent. For a randomly acting agent, it can be assumed that the probability

of taking any action would be the same.

Consider that the state space S of the agent is expressed as {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , s௩}, where 𝑣 is

the number of states in the state space, and the action space A expressed as

{𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠} where 𝑚 is the number of actions in the action space. Also, consider

that the joint probability distributions for the optimal policy and the initial policy (randomly

acting agent) are denoted by X and Y. The probability distribution of actions for a randomly

acting agent in the state 𝑠௜ (and all the other states) will be uniform. However, when the

agent has mastered the solution to accomplish the task, the probability distribution will be

different for one or more states. The KL divergence for state 𝑠௜ can be denoted as

𝐷௄௅൫𝑋(𝑠௜)||𝑌(𝑠௜)൯. Then the KL divergence for each state is computed and added to

calculate the total divergence. This total divergence can be used to denote the task’s

difficulty level.

𝑡𝑎𝑠𝑘_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

= 𝐷௄௅൫𝑋(𝑠ଵ) || 𝑌(𝑠ଵ)൯ + 𝐷௄௅൫𝑋(𝑠ଶ) || 𝑌(𝑠ଶ)൯ + ⋯ + 𝐷௄௅൫𝑋(𝑠௩) || 𝑌(𝑠௩)൯

(6.6)

As per one of the KL divergence’s properties, the divergence will be a non-negative value;

thus, the total divergence will also be non-negative. It can be imagined that the greater the

difficulty level of the task, the more the number of constituent KL divergences will be non-

zero, thus more the total divergence.

139

6.4.2 Metric to measure agent’s competency for a skill

Competence is defined as the quality of being capable of accomplishing a task. This section

proposes a metric to calculate an agent’s competency for a skill. This is done by comparing

the agent’s current reinforcement learning policy with an optimal policy.

Similar to the previous subsection, consider that the state space S of the agent is expressed

as {𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , s௩}, where 𝑣 is the number of states in the state space, and the action space

A expressed as {𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௠} where 𝑚 is the number of actions in the action space.

Also, consider that the probability distributions of actions for the agent’s current policy

and the optimal policy are denoted by Z and X. When learning to accomplish a task, the

agent can be said to be aiming to emulate the optimal policy. The measure of the difference

in the probability distributions across all the states provides an indication of the agent’s

current level of competence for the skill. The KL divergence for state 𝑠௜ can be denoted as

𝐷௄௅൫𝑍(𝑠௜)||𝑋(𝑠௜)൯. Then the KL divergence for each state is computed and added to

calculate the total divergence. Thus, the agent’s competency for the skill can be represented

as:

𝑠𝑘𝑖𝑙𝑙_𝑖𝑛𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦

= 𝐷௄௅൫𝑍(𝑠ଵ) || 𝑋(𝑠ଵ)൯ + 𝐷௄௅൫𝑍(𝑠ଶ) || 𝑋(𝑠ଶ)൯ + ⋯ + 𝐷௄௅൫𝑍(𝑠௩) || 𝑋(𝑠௩)൯

𝑠𝑘𝑖𝑙𝑙_𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑎𝑠𝑘_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 − 𝑠𝑘𝑖𝑙𝑙_𝑖𝑛𝑐𝑜𝑚𝑝𝑡𝑒𝑛𝑐𝑦 (6.7)

A randomly acting agent is considered highly incompetent as it will have a maximum total

divergence value, the same as the task difficulty. As the agent masters the skill, this total

divergence tends towards zero, thus increasing the measure of the agent’s competency for

the skill.

6.5 Mobile Robot Experiments

The previous sections proposed a skill composition technique and task-related metrics.

This section will show the results of the experiments to validate the concurrent composition

140

of skills. The experiments will use the e-puck mobile robot. The robot will learn a few

primitive skills in scaffolded and non-scaffolded environments. Those skills will be

combined to form a skill for a compound task. The agent performance of such combined

skills will then be compared with the skills learned from scratch.

6.5.1 Objectives of the experiments

The objectives of the experiments are as follows:

 Compare the results of primitive skills learned without and with a scaffolded setup.

 Measure the effectiveness of the skill composition.

 Compare the composed skill with the skill for the compound task learned from

scratch.

6.5.2 Methods and materials

The experiments in this chapter used Webots software to simulate an e-puck mobile robot

and to create arenas. The agent is implemented using MATLAB Reinforcement Learning

Toolbox’s Advantage Actor-Critic algorithm. The specialized/scaffolded environments are

created for the e-puck to learn primitive skills. Those environments are designed to provide

a better opportunity for the robot to learn those primitive skills. Further, a few non-

scaffolded environments are created to test and compare the skills for compound tasks

learned from scratch with the skill generated by combining previously learned primitive

skills.

Robot

For the experiments in this chapter, e-puck’s eight proximity sensors, labelled in a

clockwise direction: Front-Right, Right-Diagonal, Right, Rear-Right, Rear-Left, Left, Left-

Diagonal, Front-Left; three ground sensors labelled Left, Centre, Right and camera

represented using ‘c’ were used. The camera was to detect a specific blue robot created in

some of the arenas. The experiment’s state vector was represented as [pFR pRD pR pRR pRL

pL pLD pFL gL gC gR c]. Figure 6.5 is a sketched top view of an e-puck with the labelled

141

proximity sensors, ground sensors and wheels. The action space consisted of (i) Turn Left,

(ii) Step Forward, and (iii) Turn Right.

Figure 6.5: A plan view of e-puck with
labelled state attributes (proximity sensors,

ground sensors, wheels and camera).

State Vector:

 [pFR pRD pR pRR pRL pL pLD pFL gL gC gR c]

Actions:

 {
 1 - Turn Left,
 2 - Step Forward,
 3 - Turn Right
 }

Same as the experiments in previous chapters, the proximity sensors, ground sensors and

camera values were discretised into binary values. The camera was used to identify the

randomly moving blue coloured robot. Webots API was used for the recognition. API

returns the number of blue-coloured objects recognized in the frame. When the blue-

coloured robot was in the view and recognized, the camera output was considered 1 and 0

otherwise.

Training Environment

For the experiments, several arenas were created in Webots. Figure 6.6, Figure 6.7, and

Figure 6.8 show the scaffolded training arenas used to train the e-puck to learn the specific

primitive skill.

142

Figure 6.6: Training arena with obstacles. Specially
constructed arena for scaffolded setup

(Training_Arena_1).

Figure 6.7: Training arena with a randomly

moving blue robot. Specially constructed arena for
scaffolded setup (Training_Arena_2).

Figure 6.8: Training arena with a coloured pattern on the floor. Specially constructed arena for scaffolded
setup (Training_Arena_3).

Figure 6.6 is a 2m x 2m walled arena with obstacles. In this arena, an e-puck can learn the

primitive skill of avoiding obstacles/walls. Figure 6.7 is a 2m x 2m walled arena with a

blue-coloured robot. This blue robot moves in a straight line, and when it detects an

obstacle, it changes its direction and continues moving in a straight line. In this arena, an

e-puck can learn the primitive skill of following the blue robot. Figure 6.8 is a 2m x 2m

arena where the robot can learn a primitive skill of detecting the coloured floor, i.e. learn

skills related to ground sensors. Such a specialized/scaffolded set of environments allows

investigation of the algorithm’s performance under controlled conditions.

Test Environment

Figure 6.9, Figure 6.10, Figure 6.11, and Figure 6.12 show the 2m x 2m test/non-scaffolded

arenas. Figure 6.9 is a walled arena with several black regions on the floor and a few

scattered obstacles. Figure 6.10 is a walled arena with black regions on the floor and has a

randomly moving blue robot. Figure 6.11 is a walled arena with a few scattered obstacles

and a randomly moving blue robot. Figure 6.12 is a walled arena with obstacles, a randomly

moving blue robot and black regions on the floor.

143

Figure 6.9: Test arena with black regions on the
floor and obstacles (Test_Arena_1).

Figure 6.10: Test arena with black regions on the
floor and randomly moving blue robot

(Test_Arena_2).

Figure 6.11: Test arena with obstacles and
randomly moving blue robot (Test_Arena_3).

Figure 6.12: Test arena with obstacles, a randomly
moving blue robot and black regions on the floor

(Test_Arena_4).

Learning Algorithm

For the experiments in this chapter 6, Advantage Actor-Critic (detailed in Chapter 2) was

chosen to demonstrate that the proposed ensemble technique is not merely averaging the

Q-values. The algorithm implementation consists of an actor network that determines what

action to take when in a particular state and the critic network that provides feedback to the

actor network regarding how good it was to take that action. The agent was implemented

using MATLAB’s Advantage Actor-Critic algorithm from its Reinforcement Learning

Toolbox. The reinforcement learning reward function for the ‘maintenance’ task type

proposed in Chapter 4 was used to learn the solution to the tasks. The learning rate

parameter was set to 0.01, and the EntropyLossWeight, the parameter that promotes

exploration, was set to 0.03. The actor and the critic networks were created using the same

architecture.

144

(a)

(b)

Figure 6.13: Neural network architecture used for the experiments in this chapter. The number of nodes
in the input layer depends on attributes that make up the state; for example, representation #1 has 12
attributes. (a) The actor-network. The output is the probability for each of the three actions. (b) The

critic-network. Its output is the ‘advantage’ calculated by the algorithm.

As shown in Figure 6.13, the networks consisted of an input layer (with the number of

nodes depending on the state vector), a fully connected layer of 16 nodes, and a ‘leaky

RELU’ layer followed by a fully connected output layer. A non-linear activation function

(leaky RELU) is used to show that the proposed technique does not just linearly aggregate

the learning parameters. The number of nodes in the actor network’s output layer is 3, i.e.

number of actions in the action space. Each node represents the probability of that action.

The number of nodes in the critic network’s output layer is 1, and it outputs the ‘advantage’.

The' advantage' is calculated by the A2C algorithm, as detailed in Chapter 2 (Equation 2.6).

Primitive and Compound Tasks

For the experiments, primitive tasks listed in Table 6.1 were manually selected. The

compound tasks were then formed by combining those primitive tasks, as shown in Table

6.1. The primitive tasks are the elemental tasks, whereas the compound tasks show the

constituent tasks’ composition. The column ‘Task Id’ shows the notation used to represent

the task. Prefix ‘p’ is used to represent a primitive task, and ‘C’ is used to represent a

compound task. Column ‘Task Composition’ details the compound task composition. The

145

‘Task Description’ column describes the task. ‘Arena where Trained’ column details the

arena in which the training of the task took place.

Table 6.1: A list of handcrafted primitive and compound tasks that will be used for the experiments in this
chapter.

Task
Id

Task Composition Task Description

Arena where Trained

p1 N/A Maintain avoiding obstacles.

Scaffolded environment – Figure 6.6

Non-scaffolded environment – Figure 6.12

p2 N/A Follow the randomly moving blue robot.

Scaffolded environment – Figure 6.7

Non-scaffolded environment – Figure 6.12

p3 N/A Maintain avoiding the black regions on the floor.

Scaffolded environment – Figure 6.8

Non-scaffolded environment – Figure 6.12

C1 p1 AND p3 Maintain avoiding obstacles AND maintain
avoiding the black regions on the floor.

Figure 6.9

C2 p2 AND p3 Follow the blue robot AND maintain avoiding the
black regions on the floor.

Figure 6.10

C3 p1 AND p2 Maintain avoiding obstacles AND track the blue
robot.

Figure 6.11

C4 p1 AND p2 AND p3 Maintain avoiding obstacles AND follow the blue
robot AND maintain avoiding the black regions on
the floor.

Figure 6.12

Skill composition method #1 for skills
represented using representation #1 (same state

vector for all the tasks)

Skill composition method #2 for skills
represented using representation #2 (task-

specific state vector)

146

State Vector for primitive tasks p1, p2, and p3:

[pFR pRD pR pRR pRL pL pLD pFL gL gC gR c]

State Vector for compound tasks C1, C2, C3, and C4:

[pFR pRD pR pRR pRL pL pLD pFL gL gC gR c]

State Vector for the primitive task p1:

[pFR pRD pR pRR pRL pL pLD pFL]

State Vector for the primitive task p2:

[c]

State Vector for the primitive task p3:

[gL gC gR]

State Vector for the compound task C1= (p1+ p3):

[pFR pRD pR pRR pRL pL pLD pFL gL gC gR]

State Vector for the compound task C2= (p2+ p3):

[gL gC gR c]

State Vector for the compound task C3= (p1+ p2):

[pFR pRD pR pRR pRL pL pLD pFL c]

State Vector for the compound task C4= (p1+ p2+ p3):

[pFR pRD pR pRR pRL pL pLD pFL gL gC gR c]

The state vectors for the primitive and compound tasks for the two ways of skill

composition that this chapter proposes are shown above. The compound tasks C1, C2, C3

and C4, can be represented as follows:

𝐶ଵ = 𝑝ଵ ∧ 𝑝ଷ 𝐶ଶ = 𝑝ଶ ∧ 𝑝ଷ

𝐶ଷ = 𝑝ଵ ∧ 𝑝ଶ 𝐶ସ = 𝑝ଵ ∧ 𝑝ଶ ∧ 𝑝ଷ

6.5.3 Results and analysis

Primitive Tasks Performance

Table 6.2 shows the results of the training for primitive tasks. The training consisted of

running 50 episodes of 20,000 steps each. The tasks are considered ‘maintenance’ tasks.

Hence, unlike in the ‘achievement’ task type, the episode does not end once the agent

reaches the desired state. So the term ‘episode’ merely means a collection of 20,000 steps.

The task is learned in a scaffolded and non-scaffolded environment with the same vector

for all the tasks (representation #1) and also scaffolded and non-scaffolded with a task-

specific state vector (representation #2). Reward per episode was used to measure the agent

performance, i.e. the average cumulative reward for the episode of 20,000 steps. A trial (50

147

episodes of 20,000 steps each) was run ten times for each task with different start positions

of the e-puck mobile robot. Reward columns show the results averaged over those ten trials,

and the standard deviation was calculated. The figure number shown in the square bracket

is the training arena where the training for the primitive task took place.

The table also shows results from a statistical comparison of the training in scaffolded

versus non-scaffolded environments for state vector representation #1 and scaffolded

versus non-scaffolded environments for state vector representation #2. Since the results

data is not normally distributed, a non-parametric method was run to compare the data

points. The status quo or the Null hypothesis H0 is that the cumulative reward received by

the agent training in the non-scaffolded environment will be greater than or equal to that

received by the agent training in the scaffolded environment. That is to say, a scaffolded

environment does not lead to better training. Mann-Whitney U-Test was run on the 50 data

points (average of ten trials for each episode) to determine if the status quo hypothesis H0

should be rejected or not. The alpha value for this statistical test was 0.05. The Null H0 and

the alternative H1 hypothesis can be represented as:

𝐻଴: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

⩾ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝐻ଵ: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

< 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

Table 6.2: Results of the learning phase for the primitive tasks. Reward per episode was measured for ten
trials in the scaffolded and non-scaffolded environment and compared using Mann-Whitney U-Test.

Task
Id

Reward per
episode for
training in
scaffolded
environment and
state vector
representation #1.

[Training Arena]

Reward per
episode for
training in a non-
scaffolded
environment and
state vector
representation #1.

[Training Arena]

Mann-Whitney
U-Test of the
results shown in
the previous
two columns.

Hypothesis H0
Vs H1?

Reward per
episode for
training in
scaffolded
environment and
state vector
representation #2.

[Training Arena]

Reward per
episode for
training in a non-
scaffolded
environment,
multi-agent
learning and state
vector
representation #2.

[Training Arena]

Mann-
Whitney U-
Test of the
results shown
in the
previous two
columns.

Hypothesis
H0 Vs H1?

p1 14816 ±3450

[Figure 6.6]

11077 ±1594

[Figure 6.12]

p-value = 0.00

Reject H0

15976 ±471

[Figure 6.6]

15880 ±566

[Figure 6.12]

p-value = 0.21

Reject H0

p2 13117 ±2445

[Figure 6.7]

-1369 ±4366

[Figure 6.12]

p-value = 0.00

Reject H0

11796 ±2346

[Figure 6.7]

8255 ±688

[Figure 6.12]

p-value = 0.00

Reject H0

148

p3 11799 ±5337

[Figure 6.8]

11077 ±1594

[Figure 6.12]

p-value = 0.03

Reject H0

13206 ±4764

[Figure 6.8]

19885 ±51

[Figure 6.12]

p-value = 1.00

Fail to Reject
H0

Table 6.2 shows a statistically significant difference in the agent’s performance for the

scaffolded versus non-scaffolded environment for all the tasks. Results in bold indicate the

best performance for the primitive task. The Mann-Whitney U-Test results show that for

tasks p1, p2, and p3 tasks represented using state vector representation #1, data support the

alternative hypothesis H1 that training in a scaffolded environment leads to better learning.

That is because a scaffolded environment minimizes triggering the non-skill specific

sensors and allows the agent to focus on learning just one skill.

Figure 6.14: Reward hacked for task p3. E-puck seen at the top left corner of the arena has stumbled

upon a situation where it keeps pushing itself against the wall to gain a positive reward.

For tasks represented using state vector representation #2, Mann-Whitney U-Test results

show that the data for p1 and p2 also supports the alternative hypothesis H1, i.e. training in

a scaffolded environment leads to better learning. Task p3, where the agent performance in

the non-scaffolded environment seems better is an anomaly. Upon closer examination, it

was seen that it was a case where the agent had come up with an unexpected way of gaining

the reward. As shown in Figure 6.14, the agent found a way to push itself against a wall

while on the floor’s non-black region. In this case, both wheels keep turning to move

forward (and it is on the non-black region, i.e., task p3); albeit, the wall does not allow

forward motion. Once the agent stumbles upon such a situation, it exploits it by remaining

in that situation. Even though the agent accumulates a high reward, it does not learn the

skill to avoid black regions on the floor. That cannot happen in a scaffolded environment,

149

and for this reason, the skills learned in the non-scaffolded environment are not used for

skill composition in the next set of experiments.

In the scaffolded environment, the agent gets more opportunities to learn the skills.

Although the same is true for the state vector representation #2, the advantage is not as

pronounced. While the environment can trigger non-skill specific sensors on e-puck, those

sensors are not part of the agent’s state vector and hence do not interfere in the agent’s

learning of the skill in any way. For the compound task experiments in the following

subsection, only the state vector representation #1 is used.

Compound Tasks Performance

Firstly, to check the composed skills’ validity, the performance of the combined policies

was first tested in the test arenas. Figure 6.15, Figure 6.16, and Figure 6.17 show the e-

puck robot’s trajectory executing the combined policies for tasks C1, C2, and C3,

respectively. For this visual validation, the primitive skills learned in a scaffolded

environment were combined using method #1.

The combined policy for C1 shows the behaviour of avoiding obstacles as well as the black

region. Figure 6.15 shows the top view of the test arena with black regions on the floor and

obstacles with the trajectory of the e-puck shown in navy colour, starting from the ‘start’

position. It shows that the e-puck is avoiding obstacles as well as black regions on the floor.

The combined policy for C2 shows the behaviour of the e-puck following the blue robot

and avoiding the black region. Figure 6.16 shows the top view of the test arena with a

randomly moving blue robot and black regions on the floor with the trajectory of the e-

puck shown in navy colour starting from the position marked ‘start’. It shows that the e-

puck is following the blue robot, and when it reaches the black region on the floor, it

changes its direction to avoid the region. The combined policy for C3 shows the behaviour

of the e-puck following the blue robot while avoiding obstacles. Figure 6.17 shows the top

view of the test arena with a randomly moving blue robot and obstacles with the trajectory

of the e-puck shown in navy colour, starting from the ‘start’ position. It shows that the e-

puck is avoiding obstacles and following the blue robot at the same time.

150

Figure 6.15: Trajectory (in navy colour) of e-puck
executing the combined policy for C1 (avoiding

obstacles and avoiding black regions on the
ground). The e-puck starts from the location

marked ‘start’.

Figure 6.16: Trajectory (in navy colour) of e-
puck executing the combined policy for C2
(following a blue robot and avoiding black

regions on the ground). The e-puck starts from
the location marked ‘start’.

Figure 6.17: Trajectory (in navy colour) of e-puck executing the combined policy for C3 (following a
blue robot and avoiding obstacles). The e-puck starts from the location marked ‘start’.

Following the skill composition validation, the training was carried out for the compound

tasks C1, C2, C3, and C4. Table 6.3 shows the results of the agent learning the compound

task from scratch. The column ‘Task Composition’ shows the compound task’s

composition and ‘Task Description’ describes the task. The training for the compound tasks

constituted 50 episodes of 20,000 steps each. Ten trials were run for each task with different

start positions of the e-puck mobile robot. Reward columns show the results averaged over

ten trials, and the standard deviation was generated. That shows the agent’s performance

in attaining the respective tasks, i.e. the average cumulative reward for the episode of

20,000 steps. The experiments were run on a Dell G3 machine with Intel 10th Gen I7 6-

core CPU and 16 Gb RAM. Webots was used in the ‘Fast Mode’ with no graphical

rendering resulting in ~16x the real-time speed. The compound tasks’ average learning

151

time was approximately 35 minutes for each 50 episode run of 20,000 steps, i.e., 560

minutes if the experiment was run at the real-time speed.

The compound skills were tested for 50 episodes for this further validation, each

comprising 20,000 steps. A trial for each task was run ten times with a different starting

position of the e-puck. Table 6.3 shows the results for a compound skill learned from

scratch and the composition of skills learned in the scaffolded environment by method #1.

The table shows results for compound tasks C1, C2, C3, and C4. The last column shows the

output indicating if the results for a compound skill learned from scratch and the composed

skill results show a statistically significant difference. Since the results data is not normally

distributed, a non-parametric method was run to determine if the data shows a statistically

significant difference. The status quo or the Null hypothesis H0 is that the reward received

in the test phase by the agent using the policy learned from scratch is greater than the

composed policy. That is to say, the agent using a composed policy will not perform as

well as the agent using the policy learned from scratch. Mann-Whitney U-Test was run on

the 50 data points (average of ten trials for each episode) to determine if that status quo

hypothesis should be rejected or not. The alpha value for this statistical test was 0.05. The

null H0 and the alternative H1 hypothesis can be represented as:

𝐻଴: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ

> 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦

𝐻ଵ: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑝𝑜𝑙𝑖𝑐𝑦 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ

⩽ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦

Table 6.3: Results for compound tasks. Reward per episode measured for ten trials with standard deviation
shown. Mann-Whitney U-Test based comparison of the skill learned from scratch and using the composed

skill.

Task
Id

Task Composition

Reward per
episode during
the learning
phase for the
skills learned
from scratch.

[Training Arena]

Reward per
episode during
the test phase for
the compound
skill learned from
scratch.

[Tested in the
arena shown in
Figure 6.12]

Reward per episode
during the test
phase for skills
learned in a
scaffolded
environment and
combined using
method #1.

[Tested in the
arena shown in
Figure 6.12]

Mann-Whitney U-Test
of the results shown in
the previous two
columns.

Hypothesis H0 Vs H1?

C1 p1 AND p3 9059 ±7675 16338 ±45 15018 ±60 p-value = 1.00

152

 [Figure 6.9] Fail to Reject H0

C2 p2 AND p3

-5023 ±3638

[Figure 6.10]

203 ±1537 1141 ±632 p-value = 0.00

Reject H0

C3 p1 AND p2

3875 ±1016

[Figure 6.11]

7027 ±376 4071 ±182 p-value = 1.00

Fail to Reject H0

C4 p1 AND p2 AND p3

642 ±2990

[Figure 6.12]

1673 ±796 3065 ±702 p-value = 0.00

Reject H0

Mann-Whitney U-Test results show that for C1 and C3, the data support the H0 hypothesis,

i.e., the policy learned from scratch is better than the composed policy. However, for C2

and C4, the test shows that the data suggests the rejection of the H0 hypothesis, i.e.,

statistically, there is no difference between the policy learned from scratch and the

composed policy and that the alternative hypothesis H1 should be accepted. Figure 6.18,

Figure 6.19, Figure 6.20, and Figure 6.21 show the graphical representation of Table 6.3

results. The shaded plot in red is the episode reward for the policy learned from scratch,

and the shaded plot in blue is the episode reward for the agent using the combined policy

(primitive skills learned in the scaffolded environment and combined using method #1).

Tasks vary in complexity, resulting in a difference in skill acquisition. Generally, the

hyperparameters such as the learning rate and EntropyLossWeight are tuned to ensure

optimal results or policy convergence. However, in our experiments, the hyperparameters

were the same for all the tasks. That may be the reason why, in some cases, the skills of

the task learned from scratch are better, and for other tasks, the composed skills are better.

Regardless, the average episode reward value for the composed skills is significant for all

compound tasks, which indicates that the agent is demonstrating the right behaviour. Thus,

in a good case scenario, the composed skill is as good as the skill learned from scratch and

in a worst-case scenario, the composed skill can be used as an initial policy that can then

be refined further. In either case, the composition of skills results in time saved in learning

the compound task’s skill, thus demonstrating the advantage of using the proposed skill

composition. When integrated with the continuous learning architecture proposed in

Chapter 3, such skill composition enables the agent to learn the skills faster.

153

Figure 6.18: Episode reward plot for C1 (maintain
avoiding obstacles AND maintain avoiding the

black regions on the floor).

Figure 6.19: Episode reward plot for C2 (follow the

blue robot AND maintain avoiding the black
regions on the floor).

Figure 6.20: Episode reward plot for C3 (maintain
avoiding obstacles AND track the blue robot).

Figure 6.21: Episode reward plot for C4 (maintain

avoiding obstacles AND follow the blue robot
AND maintain avoiding the black regions on the

floor).

6.6 Summary

Learning every skill from scratch is time-consuming, and even with the ever-improving

sample efficiency of reinforcement learning, it remains a problem, especially for robotics

applications. As the continuously learning system gains new knowledge, the logical next

step is to use the learned knowledge to enable faster learning of future tasks. That learned

knowledge used as a building block is typically learned in the same non-scaffolded

154

environment as the other complex skills resulting in inefficiently learned primitive skills.

First of all, this chapter hypothesizes that the skill composition is more effective when the

constituent skills are learned in a specialized/scaffolded environment. It compares the

results of primitive skills learned in scaffolded versus non-scaffolded environments to

demonstrate the effectiveness of learning in a scaffolded environment. Further, this chapter

proposes two variants of a skill composition method for reinforcement learning policies

represented by neural networks. It shows how the reinforcement learning policies for

compound tasks can be generated by a concurrent combination of the policies for primitive

disjoint tasks. Those primitive skills that are the constituent skills of the composed skill are

learned in a scaffolded environment. Using mobile robot based experiments, it was shown

how the combination of primitive skills could be used as a solution for a compound task

with little or no additional training. A statistical comparison is used to demonstrate the

effectiveness of the proposed skill combination method. In the best-case scenario, the

composed policy is as good as the policy learned from scratch, and in a worst-case scenario,

it can be used as an initial policy for further training. In either case, such reuse of the

previously learned knowledge reduces the overall training time of multiple skills [164].

That also results in a versatile system that can mix and match the skills, an essential

requirement for a continuously learning agent, especially in the robotics domain, where it

may not always be feasible to learn solutions to all the tasks from scratch autonomously.

When such skill composition is integrated within the agent architecture proposed in

Chapter 3, it results in an open-ended autonomous learning agent capable of continuously

learning new skills. The contribution of this chapter provides a much-needed functionality

to the knowledge management module of the architecture. That completes the contributions

toward each of the modules of the proposed architecture. With that, the next chapter now

provides the concluding remarks.

155

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Introduction

This chapter recalls the aims of this research and how this thesis fulfils the questions asked

at the beginning. Chapter 1 listed the essential aspects required in the self-learning agent

and raised the first question, which was “What are the modules of an open-ended and

continuous reinforcement learning architecture?”. Chapter 3 proposed the agent

architecture to fulfil that question. The architecture comprises a task generation module

required for open-ended learning, a knowledge management module required to store the

learned skills and list of tasks and a learning module implemented using reinforcement

learning. The architecture allowed flexibility in terms of the addition of modules and

techniques used to implement each of the modules. The second question asked was, “How

does one design a module to generate task-independent reward functions for different types

of tasks, including when the primitive tasks are combined to form a compound task?”.

Those reward functions were proposed in Chapter 4. It meant that once the task is

assumed/determined to be of a specific type, a reward function for that task type can be

used regardless of the task, requiring no external intervention during the learning phase.

The third question asked was, “How does one design a module to self-generate tasks of

varying complexity?”. Chapter 5 proposed a task generation technique using agglomerative

hierarchical clustering to generate tasks ranging in complexity from simple to complex

tasks. Finally, the fourth research question was, “How does one design a module to

compose a skill for a compound task by combining primitive skills?”. Chapter 6 proposed

an average model weight ensemble technique of combining primitive skills to solve a

compound task. Thus, with all the four questions fulfilled, this chapter now summarises

the contributions of this thesis.

The rest of this chapter is organised as follows. Section 7.2 summarises the contributions

of this thesis, maps them back to the research questions and details how they fulfil the

questions. Section 7.3 lists the future directions for this research, and finally, Section 7.4

provides concluding remarks.

156

Figure 7.1: A graphical view of how the proposed architecture relates to the other contributions of this

thesis.

7.2 Summary of Contributions

This section will summarise the contributions made by this thesis and show how they fulfil

the research questions listed in Chapter 1. Firstly, see Figure 7.1, which shows a graphical

view of the contributions of this thesis.

157

7.2.1 A modular agent architecture for open-ended continuous reinforcement

learning

Chapter 1 identified that the key aspects for a self-learning agent are that it should: (i) be

able to learn in an open-ended manner, which provides the direction to its learning; (ii) be

able to assimilate the new knowledge to continuously improve its skills and be able to reuse

that learned knowledge to solve future tasks; and (iii) be able to learn with minimal external

intervention. With that in mind, the first research question was: what are the modules of an

open-ended and continuous reinforcement learning architecture?

A review of the literature showed that architectures such as the ones proposed by Santucci

et al. [12] and Merrick et al. [11] focus on open-ended learning aspects such as what the

agent should learn next. Then, architectures such as [50] [165] focus on lifelong learning

aspects such as knowledge assimilation and its reuse to solve future tasks. However, neither

of those architectures fulfils all the key aspects listed above. The architectures that focus

on open-ended learning emphasize the importance of task generation to direct the learning;

however, it lacks the module that assimilates the new knowledge and its usage to solve

future tasks. The architectures that focus on lifelong learning emphasize the importance of

the reuse of learned knowledge; however, they lack the module that generates a constant

stream of tasks to direct the learning.

This thesis proposed a modular learning architecture detailed in Chapter 3. It comprises (i)

a task generation module fulfilling the criteria of making the architecture capable of open-

ended learning, (ii) a knowledge repository that stores learned skills, fulfilling the criteria

of making the architecture capable of continuous learning, and (iii) a learning module

implemented using reinforcement learning fulfilling the requirement of learning by

interacting with its environment with minimal external intervention. This flexible

architecture interoperates with task generation techniques such as SART-based clustering

[38] or novelty-based methods [69], as seen in the literature. The skill storage can be

implemented in different ways, for example, using the option, Q-table or neural network-

based policy representation seen in the reinforcement learning literature. Using an e-puck

mobile robot based experiments, Chapter 3 showed how the robot self-generates its tasks,

learns the skills, and continues that throughout its lifetime, thus gradually improving its

158

capabilities in an open-ended and continuous manner. Therefore, the main modules of the

proposed architecture are the modules required for an open-ended and continuous

reinforcement learning architecture, thus fulfilling the first research question.

Also, as seen from the review of the motivated reinforcement learning literature, the focus

of those architectures is on learning autonomy, and the focus of goal-oriented agent

architectures is on generating tasks to direct the agent’s learning. Thus, neither of them

forms open-ended continuous learning agent architecture. The architecture proposed in

Chapter 3 has a task generation module, and its learning module can be implemented using

motivated reinforcement learning, thus creating a motivated reinforcement learning agent

architecture with the capability to learn in an open-ended and continuous manner.

Therefore this contribution extends the literature on motivated reinforcement learning

agent architecture.

7.2.2 Task-independent reward functions based on the type of task

The learning in the case of a self-learning agent should be autonomous, i.e., with no

external intervention. Considering that, at the outset, the learning framework chosen for

the agent architecture was reinforcement learning, where the agent learns by directly

interacting with its environment. In reinforcement learning, the learning is driven by

reward, which in most cases are human-designed. For open-ended learning, the tasks that

the agent will require to learn are not known upfront; hence it is not possible to design the

reward functions in advance. Thus, for open-ended learning, reward design is an important

consideration. That led to the second question: how does one design a module to generate

task-independent reward functions for different types of tasks, including when the

primitive tasks are combined to form a compound task?

A review of the literature showed that intrinsic motivation is commonly used to generate a

task-independent reward function [83] [45] [44]. Intrinsic motivation is either knowledge-

based, i.e., based on some form of prediction error or competence-based, i.e., based on the

current competency to solve the task [85]. In either case, while the reward function based

on intrinsic motivation is task-independent, additional domain-specific information is

required to integrate intrinsic motivation into open-ended learning agent architecture. For

159

instance, for a knowledge-based intrinsic motivation using novelty, one needs to specify

what constitutes novelty.

As an alternative, Chapter 4 proposed a reinforcement learning reward design based on

categorising how the tasks are considered to be attained. The common categories of such

categorisation are achievement, maintenance, avoidance and approach [32]. Since the

reward design based on such categorisation exploits the inherent property of how the tasks

are attained, it makes them task-independent. Chapter 4 proposed the reward design for the

maintenance, achievement, approach and avoidance types. This is the first time a broad

spectrum of task types has been considered in a motivated reinforcement learning setting.

Metrics were also designed to measure how well agents complete these tasks. The

experiments in Chapter 4 showed how the robot using the proposed reward functions learns

to attain tasks of different types. It also showed that such reward design could be extended

to be used for compound tasks—thus fulfilling the second research question.

A reward is considered task-independent when the same reward function can be used for

different tasks. For example, since the proposed reward design is based on the inherent

property of the task’s type, the same reward can be used for all the tasks considered as

achievement tasks making the reward design task-independent. On similar lines, there is

another concept called the domain-independent reward function. For example, consider a

task of ‘achievement’ type from the games domain where the aim of the character is to

navigate through a maze to reach the target and robotics domain where the aim of the robot

is to pick and place an object. Since the proposed reward design is based on the task type,

the same reward function can be used. That means the proposed reward design is domain-

independent as well. This reward design based on task type adds to the repository of the

various ways in which autonomous reward functions can be designed, extending the

literature on reinforcement learning reward design.

7.2.3 A technique to self-generate tasks of varying levels of complexity

Open-ended learning, one of the key aspects of a self-learning agent, directs the learning

of the agent. That direction depends on the tasks that the agent has to learn, and in many

cases, those tasks cannot be predetermined. Thus, the agent should be able to design its

160

own task set, starting with learning relatively simpler tasks first and then progressing on to

learning more complex tasks. That led to the third question: how does one design a module

to self-generate tasks of varying complexity?

A review of the literature showed that the task generation techniques either generate single

level tasks [12] [38] [63] [69] or generate sub-tasks given an over-arching task [112] [115].

While any of these task generation techniques can be used with the agent architecture

proposed in this thesis, the review highlights a gap in the literature. There are no techniques

that can generate tasks of varying complexity.

Chapter 5 proposed a task generation technique based on agglomerative hierarchical

clustering with that research opportunity in mind. The clustering generates regions within

the agent’s state space. The size of regions or aggregations can be varied by adjusting the

number of generated clusters, resulting in fewer clusters, i.e. coarser aggregations, to more

clusters, i.e. granular aggregations. These aggregations can then be enabled and combined

to generate tasks of varying complexity, ranging from simple to complex. Using simulated

e-puck mobile robot experiments, Chapter 5 showed how the robot self-generates the tasks

of varying complexity—thus fulfilling the third research question.

Also, the proposed technique is designed so that as newer aggregations become available,

they can be integrated within the existing unique list of aggregations, which can be used to

generate new tasks. That means that newer tasks of varying complexity can be generated

without making the previously generated tasks obsolete, thus enabling directed and

continuous learning. As mentioned above, the literature review on task generation showed

that existing techniques fall under one of the two categories: (i) generating single level

tasks and (ii) generating sub-tasks given an overarching task. Since the proposed technique

does not fall under either of those, it extends the literature on the auto-generation of tasks.

7.2.4 A technique to concurrently compose primitive skills to form solutions for

compound tasks

Most real-world tasks are compound tasks. A compound task can be composed of primitive

tasks that are sequenced together or are concurrently combined. It is a logical next step for

a continuously learning agent to reuse the learned primitive skills to solve compound tasks.

161

Such skill reuse saves time and is also a solution to the problem that learning every skill

from scratch may not always be possible. While there are solutions found in the literature

for sequentially combined tasks [43], the concurrent combination of tasks lacks a similar

level of research. That led to the fourth question: How does one design a module to

compose a skill for a compound task by combining primitive skills?

A review of the literature showed that a reinforcement learning policy for the compound

task that is a concurrent combination of constituent tasks could be created by averaging the

Q-values of the constituent policies [127] [145] [150] [151]. The Q-table based approaches,

however, are not scalable. Recently, several techniques have been proposed for the policies

represented by a neural network. In those techniques, the combined policy is generated

using techniques such as voting, a mixture of experts and action selection using a mixture

model [136] [131] [130].

First of all, Chapter 6 proved the hypothesis that learning in a specialized/scaffolded

environment is more efficient compared to a non-scaffolded environment. The results for

primitive skills learned in the scaffolded were compared with the skills learned in the non-

scaffolded environment to prove the hypothesis. Then, the chapter proposed two variants

of a skill composition method for reinforcement learning policies represented by neural

networks. It was shown how the reinforcement learning policies for compound tasks could

be generated by a concurrent combination of the policies for primitive disjoint tasks. Using

a mobile robot-based experiment, it was shown how the combination of primitive skills

could be used as a solution for a compound task requiring little or no additional training.

This results in a composed policy that is as good as the policy learned from scratch in the

best-case scenario and a policy that can be considered a good initial policy in the worst-

case scenario. In either case, such reuse of the previously learned knowledge reduces the

overall training time of multiple skills. That also results in a versatile system that can mix

and match the skills, an essential requirement for a lifelong learning agent, especially in

the robotics domain, where it may not always be feasible to learn solutions to all the tasks

from scratch autonomously—thus, fulfilling the fourth research question.

Also, the proposed technique provides an alternative to the concurrent skill composition

techniques found in the literature. It offers the simplicity of combining Q-table based

162

policies while maintaining the scalability provided by the neural network based policies.

Thus, contributing to the literature on skill composition.

7.2.5 Metrology for agent performance, task difficulty and agent competency

In the case of reinforcement learning, the commonly used metric to measure an agent’s

performance is the reward gained by the agent in each episode. That metric, however, is

only applicable to achievement type tasks, i.e. when the desired state is reached, the episode

is considered to be completed, which can be used to calculate the cumulative reward

received during that episode. For the tasks of other types, such as maintenance, avoidance

and approach, that metric cannot be used. For instance, maintenance tasks are non-ending;

thus, the concept of the episode is not relevant. Chapter 4 proposed metrics such as the

regain attempts, a critical measure for non-episodic tasks.

Also, Chapter 6 proposes a metric to measure the difficulty level of a task and the agent’s

competency for a skill. These are useful for a continuous learning agent that always has a

list of tasks waiting to be learned and needs to prioritize the skills that it can aim to learn.

Not all tasks are learnable. Also, there will be tasks that are not learnable, given the agent’s

current knowledge level. With sufficient training on similar tasks, those previously

unlearnable tasks may become learnable. Thus, the need for a metric to measure the task

difficulty and agent competency. Using Kullback-Leibler divergence as a measure, Chapter

6 proposed metrics to measure these. Thus, contributing to the literature on metrics.

7.3 Future Work

While this thesis has proposed an agent architecture and made contributions towards open-

ended and continuous learning, that results in only a small step towards creating a truly

autonomous agent. This section lists the future directions directly related to this thesis’s

topic and for which it provides stepping stones.

163

7.3.1 Long term autonomy for a robot in real-world – overcoming the limitations of

the proposed architecture

The experiments in this thesis are based on the e-puck mobile robot. By design, all the

concepts of the agent architecture proposed in Chapter 3 are general enough to be

compatible with other robot types. However, this has not been examined in this thesis.

Also, in the experiments in this thesis, discrete state and action space was used, and the

mobile robot’s sensor values were discretised to binary values. The architecture or its

modules or the reinforcement learning algorithm used did not dictate that but was done to

keep the experiments focused on validating the core claim of the contributions. As a first

step, the agent architecture detailed in this thesis should be used on another mobile robot

model, using finer discretisation or continuous state/action space. That should be followed

by its application to other robots, such as humanoid or animal-shaped robots or robotic

arms, which may require robot specific implementation of the individual modules of the

architecture. Following this, to validate the open-ended and continuous learning aspects

that the architecture provides, it should be tried on service robots (wheeled/non-wheeled)

that are expected to carry out real-world tasks, keeping in mind that the architecture only

provides the capability to learn perception-action skills and not language-based

communication skills.

An ultimate aim of autonomous agent research is to create agents that can function

autonomously forever, i.e. the focus is on executing the tasks and not on the learning aspect.

The architecture proposed in Chapter 3 focuses on developmental learning, such as

determining what to learn, when to learn, and storage and recall of skills. That aspect would

help when the sensors, actuators, and features are upgraded over the robot’s lifetime. While

the factory settings would provide such a robot with some skills, others would have to be

learned ‘on the job’ when required, taking into consideration the enhanced capabilities of

the upgraded software and hardware. However, even for such learning-focused

architecture, there are other aspects to consider for real-world robotic applications capable

of long-term autonomy. For example, (i) for the robot’s tasks, that learning has to be carried

out safely, i.e., without any damage to itself or its environment [166], and (ii) there has to

be a smooth transition from one task to the next [135], as it is not always possible to reset

164

the robot back to a known starting state before the next task is executed. Such seemingly

minor ‘engineering’ issues have to be factored in the robot’s design for it to learn in a real-

world setting.

7.3.2 Sequential combination of tasks

Tasks in the real world are generally compound tasks, and even a task that is defined as a

single task can be broken down into subtasks. For example, consider a mobile robot task

of “follow the wall to the left” that was considered in Chapter 4. As shown in that chapter,

the task can be broken down into a series of situations, such as the robot learning to

negotiate a concave corner, a convex corner, and a straight stretch, to name a few. The

complexity of that task and the skills that the robot would require depends on the wall’s

contour, i.e. its environment. It may not be possible to envisage in advance all the possible

contour designs and hence not possible for the task designer to design upfront the wall

following skills that the robot will require. In that chapter, hand-crafted if-then-else rules

were used to solve a compound task that is a sequential combination of primitive tasks.

Results showed how the agent learns the compound task quite quickly compared to learning

such a task from scratch. So is it possible for an autonomous agent to self-generate such

rules?

Figure 7.2: Trajectory (shown in blue colour) of the e-
puck learning to follow the wall. The red arrows show the

direction of the path. This figure is the same as Figure
4.11(c). It is repeated here for convenience.

To answer the question, recall the hand-crafted if-then-else rule for the wall following task

in the maze arena and the resulting trajectory from that experiment, shown in Figure 7.2

for a quick reference. If the agent was to learn that wall following task from scratch,

typically, reinforcement learning will take a long time. However, once the primitive tasks

165

are learned, they can be combined using the if-then-else rules, resulting in much quicker

learning. As elaborated in Chapter 6, such reuse of learned knowledge is essential for a

continuous learning agent. One potential solution could be to treat this as a planning

problem. Once the tasks are planned, they are executed in sequential order. However, such

a solution requires a planning module in the agent architecture. Another solution is to adapt

the layered control system (subsumption architecture) proposed by Rodney Brooks [70].

In both these cases, the reinforcement learning policy can be packaged as an option with a

trigger condition and an end state.

7.3.3 Self-generation of high-level achievement tasks

Chapter 2 mentioned that one of the task categorisations is based on the functional aspect

of how the task is accomplished, resulting in tasks of achievement, maintenance, avoidance

and approach type. Also, another categorisation of tasks is based on whether the tasks are

low-level, relating to actuators of a robot’s joints or high-level, relating to the robot’s

behaviour that can be identified. In the experiments in Chapter 4, the achievement tasks

were generated by the definition of an event represented by Equation 7.1. The event, as

detailed in Chapter 2, models the transition between the states.

𝐸௧ = 𝑠௧ − 𝑠௧ିଵ (7.1)

An action taken by a reinforcement learning agent can cause a transition, and an event is

used to represent that transition. However, this definition of the transition considers the

transition of a one-time step, and Merrick et al. [38] use that to generate achievement tasks.

Such achievement tasks can be seen as low-level tasks. So, that raises a question. Can this

concept of event be extended to generate high-level achievement tasks?

A potential solution can be to extend the event transition to encompass n time steps instead

of just one. In such a case, the event/achievement task is the whole trajectory as opposed

to the ‘task’ or the ‘goal’ being a single state that has to be achieved. That results in a high-

level achievement task. An event in such a case can be represented, as shown in Equation

7.2.

𝐸௧ = 𝑠௧ − 𝑠௧ି௡ (7.2)

166

Take, for example, an achievement task of a robot gripping a bottle or opening the lid of a

bottle or a Nao humanoid robot learning to walk or wave. In order to attain such tasks, the

robot has to learn to execute the steps in a particular order. Only then does it result in the

task being achieved. The experiments in this thesis used the e-puck mobile robot. It would

be interesting to use a different type of robot, for example, the Nao robot, to self-generate

such high-level achievement tasks as follow-on research.

7.3.4 Task prioritization using agent’s general competency

Using the architecture proposed in Chapter 3, the agent constantly increases its overall

knowledge of the environment, improving its general competency from being a novice to

an expert. The open-ended learning architecture can provide a list of tasks; however, if that

list is not an ordered list, the learning would be unstructured, thus making this journey to

becoming an expert longer than it should be. That raises the following questions: (i) For a

continuous learning agent, how does one determine the agent’s current level of general

competency? (ii) Is it possible to order the list of tasks to be learned based on the agent’s

current level of general competency?

The solution to the second question can be to use the agent’s intrinsic motivation to order

the list of tasks. As seen in Chapter 3, the agent architecture proposed by Santucci et al.

[12] used the motivation signal based on the learning progress to select a task from the list

of tasks. Competence is one of the main motivating factors for humans to carry out a task

[167], and the perceived challenge can be used to derive intrinsic motivation [95]. These

concepts can be extended to the continuous learning agent and implemented in the

knowledge management module of the architecture proposed in Chapter 3. As the agent

progresses from a beginner to an intermediate level to an expert level, the tasks it perceives

as challenging change. Based on the challenge-point hypothesis [168], tasks that lead to an

optimal challenge result in the highest motivation signal. Those tasks can be prioritized for

learning at that point in time.

Regarding the first question, it is difficult to quantify the agent’s general competency. Such

a metric will also enable one to determine if the agent is a beginner or an expert. It would

be interesting to pursue such quantification as follow-on research.

167

7.4 Concluding Remarks

At the very start, based on the review of the literature, this thesis stated that the key aspects

of the architecture to create an autonomous agent are open-ended learning, with its

emphasis on a meta-cognitive aspect such as ‘what to learn’, continuous learning with its

emphasis on the cognitive aspect of assimilation of the new knowledge and reinforcement

learning providing an interactive solution for ‘how to learn’. This research proposed a

‘Modular Continuous Learning Architecture’ that has the components that satisfy those

aspects, namely a task generation module that provides the direction for learning, a

knowledge management module that is a skills repository and a learning module

implemented using reinforcement learning. All these components were put into action and

demonstrated using an e-puck mobile robot to show how the agent starts with having no

knowledge of its environment, continuously learns in an open-ended manner, and

autonomously increases its overall knowledge. Though the proposed modular architecture

can interoperate with existing techniques, the review of the literature showed: (i) a lack of

task-independent reward design for the agent to operate autonomously, (ii) a lack of a

mechanism to generate tasks of varying complexity for it to continuously increase its

overall knowledge by learning simpler tasks and then progressing on to learning more

complex tasks and (iii) lack of technique for an agent to reuse its learned knowledge to

solve compound tasks that are a concurrent combination of its constituent tasks. This thesis

made contributions in each of those areas by proposing a reinforcement learning reward

design based on the type of the task, a task generation technique for generating tasks of

varying complexity and a skill composition technique that reuses learned knowledge to

solve tasks that are a concurrent combination of simpler tasks. Although much remains to

be done, the contributions of this research fill some gaps found in the literature, enabling

one to take a step further to create a truly autonomous and self-learning agent.

168

APPENDIX A: SURVEY OF MOTIVATED REINFORCEMENT LEARNING

ARCHITECTURES

Chapter 3, Section 3.2 reviewed the different motivated reinforcement learning and goal-

oriented agent architectures. This appendix section continues that review. It does a side by

side comparison of those architectures and lists the metrics used to measure the agent

performance.

A.1 Comparison of Motivated Reinforcement Learning Agent Architectures

Table A.1 compares the motivated reinforcement learning architectures seen in the

literature. The comparison is based on the agent’s overall learning rate implemented using

the architecture, the agent’s learning efficiency, and how scalable the architecture is in

terms of recall of learned skills. It also lists the publications that use that architecture.

Table A.1: Comparison of motivated reinforcement learning agent architectures.

 Agent Learning Rate Agent Learning
Efficiency

Scalability of Skill
Recall

Publications
that Use the
Architecture

Motivated Flat
Reinforcement
Learning

The learning rate of
MFRL is significantly
faster increases compared
to other models. The
policy adapts to represent
the task to be learned.

The learning policy
cannot be recalled; hence
the policy will have to be
re-learned if the task
becomes motivating on
more than one occasion.

The learning policy
cannot be recalled

[45] [44] [169]
[170] [171]
[172] [173]
[174] [175]
[176] [177]
[178] [49]
[179] [180]
[181] [163]
[182] [91]
[183]

Motivated
Multi-Option
Reinforcement
Learning

Because MMORL learns
multiple skills, the
learning rate appears
slow; however, it is still
faster than having to learn
a single goal N number of
times, as is the case with
MFRL.

The learning policy can
be recalled.

MMORL is more
scalable than
MHRL in terms of
recalling the
options.

[44] [184]
[185] [186]
[187]

Motivated
Hierarchical

Because of the ability to
reuse the recalled
behaviour, the learning

The learning policy can
be recalled and reused.

The skills are
arranged in a
hierarchical fashion;

[188] [49] [44]
[189] [190]
[187] [191]

169

Reinforcement
Learning

rate can be sped up if the
appropriate options are
chosen.

hence it is not as
scalable as
MMORL.

[192] [115]
[98] [193]
[194] [96]
[195]

Motivated
Introspective
Reinforcement
Learning

The MIRL is able to learn
quicker than the
motivated RL agent
without introspection.

In comparison to the
architectures that lack
introspection, the agent
with introspection is
better able to focus on
complex goals.

The MIRL agents
can store and recall
partially learned
solutions. Thus
those skills do not
need to be relearned
from scratch. That
makes the recall
more scalable.

[11]

From this table, several observations arise. First, all the architectures except the motivated

introspective learning architecture seem to be derived from motivated flat reinforcement

learning. The main difference is the type of reinforcement learning algorithm used in

architecture. The key attribute that differentiates the architectures is options, which is

primarily a reinforcement learning construct. So far, there have been no attempts to design

architectures that distinguish the way the key intrinsically motivated reinforcement

learning attribute, namely motivation, is incorporated into the architecture. Different

architectures could be formed using the way the motivation signal is either combined with

reward or used exclusively. Also, it can be seen from the review of the architectures that

most of the literature seems to use simpler architectures like motivated flat reinforcement

learning and motivated hierarchical reinforcement learning. Even though architectures like

motivated multi-option reinforcement learning and motivated introspective reinforcement

learning appear to be more comprehensive and capable of representing and learning

complex sets of skills, they seem to be seldom used. In addition, no architectures are

currently proposed to combine motivation with other types of reinforcement learning

algorithms, such as multi-agent reinforcement learning and multi-objective reinforcement

learning, although motivation has recently been examined in a deep reinforcement learning

setting [96][97]. These observations show that although intrinsically motivated

reinforcement learning is a promising framework, much remains to be done as far as the

architectures are concerned.

170

A.2 Performance Measures for Agents

One of the main reasons for combining intrinsic motivation with reinforcement learning is

to be able to create an agent that can learn a different skill with little or no external

intervention. That raises a question regarding the evaluation of such an agent’s

performance compared to a simple reinforcement learning agent. This section reviews the

performance metrics used in the intrinsically motivated reinforcement learning literature

to compare different aspects of agent performance.

Macindoe et al. [163] proposed learning efficiency, behavioural variety, and complexity as

metrics to measure the performance of intrinsic motivation. The learning efficiency was

calculated by using the number of steps taken by the agent to converge to a stable policy.

Behavioural variety was calculated using the number of tasks for which a stable policy was

learned, and behavioural complexity was calculated using the total number of actions

required to accomplish a task. Merrick and Maher [173] generated behaviour patterns in

non-player game characters to measure the effectiveness of intrinsic motivation. This was

then used to show that these non-player game characters adapt better to the game’s

changing environment. Merrick et al. [196] extended this further to a behaviour structure

concept that is then used to evaluate the emergent behaviour of a motivated reinforcement

learning agent.

As an alternative, as shown by Barto et al. [188] [184], one of the ways to compare the

performance of an intrinsically motivated reinforcement learning agent to a reinforcement

learning agent is to use an intrinsically motivated reinforcement learning implementation

where the motivation signal is used in addition to the reinforcement learning reward. One

can then quickly measure the two agents’ performance by adding or removing the

motivation signal. Stout and Barto [90] introduced competence progress as a measure to

determine which skill the agent can learn at a particular point in time. Low competence

progress signal is generated for the skills that are either learned or are too difficult to learn.

In general, it appears that the performance metrics seem to fall into one of the following

categories:

171

 Metrics that compare the performance of an intrinsically motivated reinforcement

learning agent with a reinforcement learning agent: This determines how intrinsic

motivation improves the performance of reinforcement learning.

 Metrics that characterise the performance of a chosen motivation function: This

determines how good or bad the motivation function is.

 Metrics that characterise an emergent behaviour: This shows how intrinsic

motivation influences the behaviour of an agent.

Table A.2: Classification of the performance measures seen in the literature on motivated reinforcement
learning agent architectures.

Performance Measure Publications That Use These Metrics

Metrics comparing the performance of an
intrinsically motivated reinforcement learning
agent with a simple reinforcement learning agent

[45] [188] [184] [171] [197] [193] [96] [195] [97]

Metrics for characterising the performance of a
chosen motivation function

[190] [98] [184] [192] [189] [87] [183] [191] [194]

Metrics for characterising an emergent behaviour [90] [169] [171] [172] [173] [174] [176] [177] [180] [181] [182]
[198]

Other metrics [199] [170] [93] [175] [185] [178] [186] [187] [200] [201]

Table A.2 classifies the literature according to the category of performance measure used.

This classification shows that several techniques have been proposed for evaluating

intrinsically motivated reinforcement learning. However, as with many other aspects of

intrinsically motivated reinforcement learning, there is not yet an agreement on which of

these techniques should be used as a benchmark for comparing the different architectures.

172

APPENDIX B: COMPARISON OF REINFORCEMENT LEARNING

ALGORITHMS FOR Q-TABLE BASED APPROACHES

This appendix section does a side by side comparison of the Q-Learning [39] and Dyna-Q

[40] reinforcement learning algorithms. Both the algorithms are detailed in Chapter 2. Q-

Learning is the most commonly used algorithm. It is widely used because it has the least

number of parameters to tune and its simplicity. Dyna-Q combines Q-Learning with model

learning, i.e. has an internal representation of the transition model. The Q-values are

improved using the actual experiences by interacting with its environment and imaginary

experiences generated by the transition model. That reduces the actual interactions with the

environment making it more performant, especially for robotics applications where the

actual interaction can be expensive. These experiments do not make an exhaustive

comparison (that already exists in the literature [40]), but the aim is to compare the

performance of these algorithms for different task types and help put the results in

perspective. The algorithms were tested on the standard benchmark cart-pole problem, a

maintenance task, and a maze navigation problem, an achievement task. These task types

are defined in detail in Chapter 4.

Problem Definition

Shown in Figure B.1 is a cart-pole problem. A cart carrying a hinged pole is placed on a

finite track, and the reinforcement learning agent aims to keep the pole balanced for as long

as possible. It is primarily a control problem and can be represented in both continuous and

discrete state and action space. For the experiment in this section, discrete state and action

space are used. The state space comprises the position of the cart, velocity of the cart, angle

of the pole with respect to the cart and angular velocity of the pole. The action space

comprises pushing the cart to the left and pushing the cart to the right.

Shown in Figure B.2 is the maze problem. In this contrived problem, the maze consists of

a start state and an end state with random walls throughout the maze. The reinforcement

learning agent aims to find its way from the start state to the end state. The state space

173

comprises the x and y position numbers of the square blocks of the maze. The action space

comprises moving left, right, up and down.

Figure B.1: Cart-pole problem. A cart that
carries a hinged pole is placed on a finite
track. The aim of the agent is to learn to

keep the pole balanced for as long as
possible.

Figure B.2: Maze problem. The square marked ‘S’ is the
start state, and the one marked ‘G’ is the end state. Grey
squares are the walls, and the black square is the agent.
The aim of the agent is to find its way through the maze
from the square marked as ‘S’ (bottom left) to the square

marked ‘G’ (bottom right).

Results of the experiment with the cart-pole problem

For both algorithms, the reward for the problem was a small positive value of 1 for every

step the pole is kept balanced and a relatively large negative value of -10 when the pole

falls. The episode ended when the pole fell or 1000 steps. The experiment was run 10 times

for a trial of 300 episodes each. The epsilon-greedy action selection strategy was used with

the epsilon parameter set to 0.1 with no decay.

174

Figure B.3: Q-Learning results for the cart-pole
problem. It shows the number of steps for which
the pole was balanced. A higher number of steps

indicates good performance.

Figure B.4: Dyna-Q results for the cart-pole
problem. It shows the number of steps for which
the pole was balanced. A higher number of steps

indicates good performance.

The plots in Figure B.3 and Figure B.4 show the results for the two algorithms during the

training phase. They show the number of steps for which the pole was balanced. The results

are for 10 trials, with the black line showing the average number of steps for which the

pole was balanced and the shaded region showing the standard deviation.

Results of the experiment with the maze problem

For both algorithms, the reward for the problem was a small negative value of -1 for every

step the agent takes and a relatively large positive value of 10 when the agent reaches the

goal state. The episode ended when the agent reached the goal state or after 5000 steps.

The experiment was run 10 times for a trial of 300 episodes each. The epsilon-greedy action

selection strategy was used with the epsilon parameter set to 0.1 with no decay.

Figure B.5: Q-Learning results for the maze
problem. It shows the number of steps the agent
takes to reach the goal. A lower number of steps

indicates good performance.

Figure B.6: Dyna-Q results for the maze problem.
It shows the number of steps the agent takes to

reach the goal. A lower number of steps indicates
good performance.

The plots in Figure B.5 and Figure B.6 show the results for the two algorithms during the

training phase. They show the number of steps taken by the agent to reach the goal state.

The results are for 10 trials, with the black line showing the average number of steps taken

by the agent to reach the goal state and the shaded region showing the standard deviation.

175

Discussion and comparison of the algorithms

Results for the cart-pole problem show that, on average, the agent using Dyna-Q can

balance the pole for more steps than the agent using Q-Learning, and the results for the

maze problem show that, on average, the agent using Dyna-Q can reach the goal state in

fewer steps than the agent using Q-Learning. Also, in both cases, the agent’s performance

using Dyna-Q is more stable than the agent using Q-Learning, i.e. Dyna-Q converges, and

the agent reaches the optimal solution in fewer episodes. This comparison with

maintenance and achievement task types helps put the performance of the algorithms in

perspective. The table below lists the pros and cons of each of the algorithms.

Table B.1: Comparison of Q-Learning and Dyna-Q algorithms.

Algorithm Pros Cons

Q-Learning 1. Simple implementation, no state transition
model required.

1. Slower convergence compared to Dyna-Q

2. Less stable learning compared to Dyna-Q

Dyna-Q 1. Faster convergence compared to Q-Learning.

2. Stable learning compared to Q-Learning.

3. Since there is an internal state transition model,
it requires fewer interactions with the real world
and is suitable for robotics applications where
interaction with the real world can be expensive.

1. Slightly complex implementation compared
to Q-Learning. Implementation requires a loop
for interaction with the real world and a loop for
iteration within the internal state transition
model.

Considering the benefits of the Dyna-Q algorithm, it was selected as an algorithm for the

experiments in Chapters 3, 4 and 5.

176

REFERENCES

[1] J. Weng et al., “Autonomous mental development by robots and animals,” Science (80-.)., vol. 291,

no. 5504, pp. 599–600, 2001.

[2] M. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and Practice,” Knowledge

Engineering Review, vol. 10, no. 2. pp. 115–52, 1995.

[3] I. Kotseruba and J. K. Tsotsos, “A Review of 40 Years of Cognitive Architectures research: Core

Cognitive Abilities and Practical Applications,” Artificial Intelligence Review. 2018.

[4] G. Baldassarre, “What are intrinsic motivations? A biological perspective,” 2011 IEEE International

Conference on Development and Learning, ICDL 2011. Ieee, pp. 1–8, Aug. 2011.

[5] P. Morignot and B. Hayes-Roth, “Why does an Agent Act : Adaptable Motivations for Goal Selection

and Generation,” AAAI Spring Symposium on Representing Mental States and Mechanisms, no. 1.

pp. 97–101, 1995.

[6] S. Franklin and A. Graesser, “Is It an Agent, or Just a Program?: A Taxonomy of Autonomous

Agents,” International Workshop on Agent Theories, Architectures, and Languages. pp. 21–35,

1996.

[7] L. P. Kaelbling and S. J. Rosenschein, “Action and planning in embedded agents,” Robotics and

Autonomous Systems, vol. 6, no. 1–2. pp. 35–48, 1990.

[8] J. A. Starzyk, J. T. Graham, and L. Puzio, “Needs, Pains, and Motivations in Autonomous Agents,”

IEEE Transactions on Neural Networks and Learning Systems. 2016.

[9] W. Duch, R. J. Oentaryo, and M. Pasquier, “Cognitive Architectures: Where do we go from here?,”

Proceedings of the 2008 conference on Artificial General Intelligence 2008: Proceedings of the First

AGI Conference, vol. 171, no. OCTOBER. pp. 122–136, 2008.

[10] K. On Chin, K. S. Gan, R. Alfred, P. Anthony, and D. Lukose, “Agent Architecture: An Overview,”

Transactions on Science and Technology, vol. 1, no. 1. pp. 18–35, 2014.

[11] K. E. Merrick, “Intrinsic motivation and introspection in reinforcement learning,” IEEE Transactions

on Autonomous Mental Development, vol. 4. pp. 315–329, 2012.

[12] V. G. Santucci, G. Baldassarre, and M. Mirolli, “GRAIL: A goal-discovering robotic architecture for

intrinsically-motivated learning,” IEEE Transactions on Cognitive and Developmental Systems, vol.

8, no. 3. pp. 214–231, 2016.

[13] G. Baldassarre, V. G. Santucci, E. Cartoni, and D. Caligiore, “The architecture challenge: Future

artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain

177

might guide their construction,” The Behavioral and brain sciences, vol. 40. p. e254, 2017.

[14] S. B. Thrun and T. M. Mitchell, “Lifelong Robot Learning,” Robotics and Autonomous Systems, vol.

15, no. March 1993. pp. 25–46, 1995.

[15] Z. Chen and B. Liu, Lifelong Machine Learning, vol. 10, no. 3. 2016.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: a tutorial,” Journal of

Artificial Intelligence Research. 1996.

[17] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,” International

Conference on Machine Learning. 2009.

[18] P. Morignot and B. Hayes-Roth, “Motivated agents,” Knowledge Systems Laboratory Report KSL-

96, vol. 22, no. July. 1996.

[19] F. Dignum and R. Conte, “Intentional Agents and Goal Formation,” Agent Theories, Architectures,

and Languages. pp. 231–243, 1997.

[20] A. Hsissi, H. Allali, and A. Hajami, “Metacognitive Scaffolding Agent Based on BDI Model for

Interactive Learning Environments,” International Journal of Computer and Communication

Engineering, vol. 3, no. 2. pp. 97–100, 2014.

[21] C. Colas, P. Fournier, O. Sigaud, M. Chetouani, and P.-Y. Oudeyer, “CURIOUS: Intrinsically

motivated modular multi-goal reinforcement learning,” 36th Int. Conf. Mach. Learn. ICML 2019,

vol. 2019-June, pp. 2372–2387, 2019.

[22] F. Kaplan and P.-Y. Oudeyer, “Intrinsically Motivated Machines,” in 50 Years of Artificial

Intelligence, vol. 71, no. 4–6, Springer, Berlin, Heidelberg, 2007, pp. 303–314.

[23] S. B. Thrun and L. Pratt, Learning to Learn. 1998.

[24] J. McCarthy and P. J. Hayes, “Some philosophical problems from the standpoint of artificial

intelligence,” Machine Intelligence, vol. 4, no. 463–502. pp. 463–502, 1969.

[25] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with

neural networks: A review,” Neural Networks, vol. 113. pp. 54–71, 2019.

[26] J. Schmidhuber, “On Learning how to Learn Learning Strategies,” Technical Report FKI-198-94,

vol. 94. pp. 1–20, 1995.

[27] J. T. Graham and J. A. Starzyk, “Transitioning from motivated to cognitive agent model,”

Proceedings of the 2013 IEEE Symposium on Computational Intelligence for Human-Like

Intelligence, CIHLI 2013. pp. 9–16, 2013.

[28] C. Castelfranchi and R. Falcone, “Agent Autonomy,” no. January 2003. pp. VI, 288, 2003.

[29] F. Tanaka and M. Yamamura, “An approach to lifelong reinforcement learning through multiple

178

environments,” Proc. of the 6th European Workshop on Learning Robot (EWLR-6). pp. 93–99, 1997.

[30] R. S. Sutton, J. Modayil, M. D. T. Degris, P. M. Pilarski, A. White, and D. Precup, “Horde: A scalable

real-time architecture for learning knowledge from unsupervised sensorimotor interaction,” 10th

International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011, vol.

2, no. 1972. pp. 713–720, 2011.

[31] D. Isele, “Lifelong Reinforcement Learning On Mobile Robots,” University of Pennsylvania, 2018.

[32] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal representation for BDI agent systems,”

Second International Workshop on Programming Multiagent Systems: Languages and Tools. pp. 9–

20, 2005.

[33] B. Price and C. Boutilier, “Accelerating reinforcement learning through imitation,” Journal of

Artificial Intelligence Research, vol. 19. pp. 569–629, 2003.

[34] S. B. Thrun, “A Lifelong Learning Perspective for Mobile Robot Control,” Intelligent Robots and

Systems. pp. 201–214, 1995.

[35] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task reinforcement learning: a hierarchical

Bayesian approach,” Proceedings of the 24th international conference on Machine learning. pp.

1015-1022), 2007.

[36] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,” SIAM

Journal on Control and Optimization, vol. 30, no. 4. pp. 838–855, 1992.

[37] D. M. J. Tax, M. Van Breukelen, R. P. W. Duin, and Josef Kittler, “Combining multiple classifiers

by averaging or by multiplying?,” Pattern Recognition, vol. 33, no. 9. pp. 1475–1485, 2000.

[38] K. E. Merrick, N. Siddique, and I. Rano, “Experience-Based Generation of Maintenance and

Achievement Goals on a Mobile Robot,” Paladyn, Journal of Behavioral Robotics. pp. 67–84, 2016.

[39] C. J. C. H. Watkins and P. Dayan, “Technical Note: Q-Learning,” Machine Learning, vol. 8, no. 3.

pp. 279–292, 1992.

[40] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press Cambridge, 1998.

[41] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in 33rd International

Conference on Machine Learning, ICML 2016, 2016, vol. 4, pp. 2850–2869.

[42] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A framework for temporal

abstraction in reinforcement learning,” Artificial Intelligence, vol. 112, no. 1. pp. 181–211, 1999.

[43] D. Precup, R. S. Sutton, and S. Singh, “Theoretical results on reinforcement learning with temporally

abstract options,” Machine Learning: European Conference on Machine Learning-98. Springer

Berlin Heidelberg, no. April. pp. 382–393, 1998.

179

[44] K. E. Merrick and M. Lou Maher, Motivated reinforcement learning: Curious characters for

multiuser games. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[45] S. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated reinforcement learning,” 18th

Annual Conference on Neural Information Processing Systems (NIPS), vol. 17. pp. 1281–1288, 2005.

[46] G. A. Carpenter and S. Grossberg, “Adaptive Resonance Theory,” no. 617, pp. 1–12, 2002.

[47] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided tour,” Proceedings Fifth

IEEE International Symposium on Requirements Engineering. Toronto, pp. 249–262, 2001.

[48] M. B. van Riemsdijk, M. Dastani, and M. Winikoff, “Goals in agent systems: A unifying framework,”

Proc. of 7th International Conference on Autonomous Agents & Multiagent Systems. pp. 713–720,

2008.

[49] K. E. Merrick, “Modelling Motivation For Experience-Based Attention Focus In Reinforcement

Learning,” School of Information Technologies, University of Sydney, 2007.

[50] D. L. Silver, Q. Yang, and L. Li, “Lifelong Machine Learning Systems : Beyond Learning

Algorithms,” AAAI Spring Symposium Series, no. Solomonoff 1989. pp. 49–55, 2013.

[51] V. G. Santucci, G. Baldassarre, and M. Mirolli, “Biological cumulative learning through intrinsic

motivations: a simulated robotic study on the development of visually-guided reaching,” Proceedings

of the Tenth International Conference on Epigenetic Robotics: Modeling Cognitive Development in

Robotic Systems, vol. 0. pp. 121–128, 2010.

[52] A. Bonarini, A. Lazaric, and M. Restelli, “Incremental Skill Acquisition for Self-motivated Learning

Animats,” Proceedings of the Ninth International Conference on Simulation of Adaptive Behavior

(SAB-06), vol. 4095. pp. 357–368, 2006.

[53] A. Baranes and P.-Y. Oudeyer, “Intrinsically motivated goal exploration for active motor learning in

robots: A case study,” IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems,

IROS 2010 - Conference Proceedings. pp. 1766–1773, 2010.

[54] A. Baranes and P.-Y. Oudeyer, “Maturationally-constrained competence-based intrinsically

motivated learning,” 2010 IEEE 9th International Conference on Development and Learning. Ieee,

pp. 197–203, Aug. 2010.

[55] P. Maes, “Modeling Adaptive Autonomous Agents,” Artificial Life, vol. 1, no. 1_2. pp. 135–162,

1993.

[56] K. E. Merrick, “Value Systems for Developmental Cognitive Robotics : A Survey,” Cognitive

Systems Research, vol. 41, no. August. Elsevier B.V., pp. 38–55, 2016.

[57] S. Doncieux et al., “Open-ended learning: A conceptual framework based on representational

redescription,” Frontiers in Neurorobotics, vol. 12, no. SEP. pp. 1–6, 2018.

180

[58] E. Cartoni, D. Montella, J. Triesch, and G. Baldassarre, “An open-ended learning architecture to face

the REAL 2020 simulated robot competition.” pp. 1–21, 2020.

[59] A. W. Moore, L. C. Baird, and L. P. Kaelbling, “Multi-value-functions: Efficient automatic action

hierarchies for multiple goal MDPs,” IJCAI International Joint Conference on Artificial Intelligence,

vol. 2. pp. 1318–1321, 1999.

[60] V. G. Santucci, E. Cartoni, B. C. da Silva, and G. Baldassarre, “Autonomous Open-Ended Learning

of Interdependent Tasks,” arXiv:1905.02690. pp. 0–5, 2019.

[61] V. G. Santucci, D. Montella, B. C. da Silva, and G. Baldassarre, “Autonomous learning of multiple,

context-dependent tasks,” arXiv:2011.13847, pp. 1–15, 2020.

[62] U. Jaidee, H. Muñoz-Avila, and D. W. Aha, “Integrated learning for goal-driven autonomy,” IJCAI

International Joint Conference on Artificial Intelligence. pp. 2450–2455, 2011.

[63] M. Hanheide et al., “A Framework for Goal Generation and Management,” Proceedings of the AAAI

Workshop on Goal-Directed Autonomy. 2010.

[64] J. E. Laird, “Toward cognitive robotics,” Unmanned Systems Technology XI, vol. 7332, no. May

2009. p. 73320Z, 2009.

[65] S. Doncieux et al., “DREAM Architecture: a Developmental Approach to Open-Ended Learning in

Robotics,” arXiv:2005.062231, pp. 1–29, 2020.

[66] A. McGovern and A. G. Barto, “Automatic Discovery of Subgoals in Reinforcement Learning using

Diverse Density,” Proceedings of the 18th International Conference on Machine Learning. pp. 361–

368, 2001.

[67] E. Brunskill and L. Li, “PAC-inspired Option Discovery in Lifelong Reinforcement Learning,”

Proceedings of the 31st International Conference on Machine Learning, vol. 32. pp. 316–324, 2014.

[68] M. Gösgens, A. Tikhonov, and L. Prokhorenkova, “Systematic Analysis of Cluster Similarity

Indices: How to Validate Validation Measures,” International Conference on Machine Learning. pp.

3799–3808, 2021.

[69] S. Marsland, U. Nehmzow, and J. Shapiro, “On-line novelty detection for autonomous mobile

robots,” Robotics and Autonomous Systems, vol. 51, no. 2–3. pp. 191–206, 2005.

[70] R. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE journal on robotics and

automation, vol. 2, no. 1. pp. 14–23, 1986.

[71] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to practice.,” Proceedings of the First

International Conference on Multiagent Systems, vol. 95. pp. 312–319, 1995.

[72] G. Regev and A. Wegmann, “Where do Goals Come from : The Underlying Principles of Goal-

Oriented Requirements Engineering,” 13th IEEE International Conference on Requirements

181

Engineering. pp. 353–362, 2005.

[73] D. Dewey, “Reinforcement Learning and the Reward Engineering Principle,” AAAI Spring

Symposium Series. pp. 1–8, 2014.

[74] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete Problems in

AI Safety,” arXiv:1606.06565. pp. 1–29, 2016.

[75] M. Andrychowicz et al., “Hindsight Experience Replay,” in Advances in Neural Information

Processing Systems, 2017, vol. December, pp. 5049–5059.

[76] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE Robotics and Automation

Magazine, vol. 17, no. 2. pp. 55–62, 2010.

[77] P. Ranchod, B. Rosman, and G. D. Konidaris, “Nonparametric Bayesian reward segmentation for

skill discovery using inverse reinforcement learning,” 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). pp. 471–477, 2015.

[78] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova, “Learning from Demonstration for Shaping

through Inverse Reinforcement Learning,” International Conference on Autonomous Agents &

MultiAgent Systems. pp. 429–437, 2016.

[79] J. Schmidhuber, “What’s Interesting,” In Abstract Collection of SNOWBIRD: Machines That Learn.

pp. 1–23, 1997.

[80] J. Schmidhuber, “Artificial curiosity based on discovering novel algorithmic predictability through

coevolution,” Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3.

pp. 1612–1618, 1999.

[81] R. M. Ryan and E. L. Deci, “Intrinsic and Extrinsic Motivations: Classic Definitions and New

Directions,” Contemporary educational psychology, vol. 25, no. 1. pp. 54–67, 2000.

[82] A. Aubret, L. Matignon, and S. Hassas, “A survey on intrinsic motivation in reinforcement learning.”

arXiv preprint arXiv:1908.06976, 2019.

[83] G. Baldassarre and M. Mirolli, Intrinsically Motivated Learning in Natural and Artificial Systems.

Berlin, Heidelberg: Springer Heidelberg, 2013.

[84] V. G. Santucci, P. Y. Oudeyer, A. Barto, and G. Baldassarre, “Editorial: Intrinsically motivated open-

ended learning in autonomous robots,” Frontiers in Neurorobotics, vol. 13, no. January. 2020.

[85] P.-Y. Oudeyer and F. Kaplan, “What is Intrinsic Motivation? A Typology of Computational

Approaches,” Frontiers in neurorobotics, vol. 1, no. November. p. 6, Jan. 2007.

[86] G. Baldassarre, “Intrinsic Motivations and Open-ended Learning,” arXiv preprint arXiv:1912.13263.

2019.

182

[87] J. Achiam and S. Sastry, “Surprise-based intrinsic motivation for deep reinforcement learning,” arXiv

Prepr. arXiv1703.01732, pp. 1–14, 2017.

[88] D. E. Berlyne, “Novelty, complexity, and hedonic value,” Perception & Psychophysics, vol. 8, no.

5. pp. 279–286, 1970.

[89] M. Mirolli and G. Baldassarre, “Functions and Mechanisms of Intrinsic Motivations. The Knowledge

Versus Competence Distinction,” in Intrinsically Motivated Learning in Natural and Artificial

Systems, 2013, pp. 49–72.

[90] A. Stout and A. G. Barto, “Competence progress intrinsic motivation,” 2010 IEEE 9th International

Conference on Development and Learning, ICDL-2010 - Conference Program. Ieee, pp. 257–262,

Aug. 2010.

[91] A. Bonarini, A. Lazaric, and M. Restelli, “Learning Reusable Skills through Self-Motivation,”

Proceedings of the ICML Workshop on Structural Knowledge Transfer for Machine Learning. 2006.

[92] P. Sequeira, F. S. Melo, and A. Paiva, “Emotion-Based Intrinsic Motivation for Reinforcement

Learning Agents,” Affective Computing and Intelligent Interaction, vol. 6974. pp. 326–336, 2011.

[93] E. Temel, B. J. Grzyb, and S. Sariel, “Learning graspability of unknown objects via intrinsic

motivation,” CEUR Workshop Proceedings, vol. 1315. pp. 98–109, 2014.

[94] B. J. Grzyb, J. Boedecker, M. Asada, A. P. del Pobil, and L. B. Smith, “Between Frustration and

Elation: Sense of Control Regulates the lntrinsic Motivation for Motor Learning,” Lifelong Learning,

Advancement of Artificial Intelligence Workshop. pp. 10–15, 2011.

[95] Q. Ma, G. Pei, and L. Meng, “Inverted U-shaped curvilinear relationship between challenge and

one’s intrinsic motivation: Evidence from event-related potentials,” Frontiers in Neuroscience, no.

11. p. 131, 2017.

[96] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum, “Hierarchical Deep

Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation,” Computing

Research Repository. pp. 1–13, 2016.

[97] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos, “Unifying count-

based exploration and intrinsic motivation,” in Advances in Neural Information Processing Systems,

2016, pp. 1479–1487.

[98] V. G. Santucci, G. Baldassarre, and M. Mirolli, “Which is the best intrinsic motivation signal for

learning multiple skills?,” Frontiers in neurorobotics, vol. 7. 2013.

[99] A. Laud and G. DeJong, “Reinforcement Learning and Shaping: Encouraging Intended Behaviors.,”

Proceedings of International Conference on Machine Learning. 2002.

[100] A. C. Tenorio-Gonzalez, E. F. Morales, and L. Villaseñor-Pineda, “Dynamic reward shaping:

183

Training a robot by voice,” Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6433 LNAI, no. 214262. pp. 483–

492, 2010.

[101] B. Marthi, “Automatic shaping and decomposition of reward functions,” Proceedings of the 24th

international conference on Machine learning - ICML ’07. pp. 601–608, 2007.

[102] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations : Theory and

application to reward shaping,” Sixteenth International Conference on Machine Learning, vol. 3. pp.

278–287, 1999.

[103] G. D. Konidaris and A. G. Barto, “Autonomous Shaping : Knowledge Transfer in Reinforcement

Learning,” Proceedings of the 23rd International Conference on Machine Learning. pp. 489–496,

2006.

[104] M. J. Matarić, “Reinforcement Learning in the Multi-Robot Domain,” Autonomous Robots, vol. 4,

no. 1. pp. 73–83, 1997.

[105] A. Y. Ng, “Shaping and policy search in reinforcement learning,” University of California, Berkeley,

2003.

[106] P. Fournier, “Intrinsically Motivated and Interactive Reinforcement Learning : a Developmental

Approach,” Sorbonne University, 2019.

[107] K. V. Hindriks and M. B. Van Riemsdijk, “Satisfying Maintenance Goals,” In International

Workshop on Declarative Agent Languages and Technologies, vol. 4897 LNAI. pp. 86–103, 2007.

[108] A. J. Elliot, Handbook of Approach and Avoidance Motivation. 2008.

[109] S. Duff, J. Harland, and J. Thangarajah, “On Proactivity and Maintenance Goals,” Proceedings of

the fifth international joint conference on Autonomous agents and multiagent systems - AAMAS ’06.

p. 1033, 2006.

[110] A. Baraldi, “Simplified ART: A new class of ART algorithms,” International Computer Science

Institute, no. Technical Report, TR 98-0041998. 1998.

[111] M. Dastani and M. Winikoff, “Rich Goal Types in Agent Programming,” in In The 10th International

Conference on Autonomous Agents and Multiagent Systems, 2011, pp. 405–412.

[112] Ö. Simsek and A. G. Barto, “Skill characterization based on betweenness,” Advances in Neural

Information Processing Systems 21. pp. 1497–1504, 2009.

[113] Ö. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in reinforcement learning by

local graph partitioning,” In Proceedings of the Twenty Second International Conference on Machine

Learning (ICML 2005). pp. 816–823, 2005.

[114] Ö. Şimşek and A. G. Barto, “Using relative novelty to identify useful temporal abstractions in

184

reinforcement learning,” Twenty-first international conference on Machine learning (ICML ’04). pp.

751–758, 2004.

[115] G. D. Konidaris and A. G. Barto, “Skill discovery in continuous reinforcement learning domains

using skill chaining,” Advances in Neural Information Processing Systems. pp. 1–9, 2009.

[116] S. Forestier, Y. Mollard, and P.-Y. Oudeyer, “Intrinsically Motivated Goal Exploration Processes

with Automatic Curriculum Learning,” arXiv preprint arXiv:1708.02190. pp. 1–21, 2017.

[117] V. Sperati and G. Baldassarre, “Bio-Inspired Model Learning Visual Goals and Attention Skills

Through Contingencies and Intrinsic Motivations,” IEEE Transactions on Cognitive and

Developmental Systems, vol. 10, no. 2. pp. 326–344, 2018.

[118] N. Siddique, P. Dhakan, I. Rano, and K. E. Merrick, “A review of the relationship between novelty,

intrinsic motivation and reinforcement learning,” Paladyn, Journal of Behavioral Robotics, vol. 8,

no. 1. pp. 58–69, 2017.

[119] P.-Y. Oudeyer, “Intelligent Adaptive Curiosity: a source of Self-Development,” Science, vol. 117.

pp. 127–130, 2004.

[120] M. Rolf, J. J. Steil, and M. Gienger, “Bootstrapping inverse Kinematics with Goal Babbling,” 2010

IEEE 9th International Conference on Development and Learning, ICDL-2010 - Conference

Program, no. May 2014. pp. 147–154, 2010.

[121] V. G. Santucci, G. Baldassarre, and M. Mirolli, “Intrinsic motivation mechanisms for competence

acquisition,” IEEE International Conference on Development and Learning. pp. 1–6, 2012.

[122] B. Bakker and J. Schmidhuber, “Hierarchical reinforcement learning based on subgoal discovery and

subpolicy specialization,” Proc. of the 8th Conference on Intelligent Autonomous Systems. 2004.

[123] D. Held, X. Geng, C. Florensa, and P. Abbccl, “Automatic Goal Generation for Reinforcement

Learning Agents,” 35th International Conference on Machine Learning, ICML 2018, vol. 4. pp.

2458–2471, 2018.

[124] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, 2nd ed. Springer

series in statistics, 2001.

[125] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired Open-Ended Trailblazer (POET):

Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their

Solutions. arXiv:1901.01753v3.” pp. 1–28, 2019.

[126] O.-E. L. Team et al., “Open-Ended Learning Leads to Generally Capable Agents.” 2021, [Online].

Available: http://arxiv.org/abs/2107.12808.

[127] B. van Niekerk, S. James, A. Earle, and B. Rosman, “Composing Value Functions in Reinforcement

Learning,” International Conference on Machine Learning. 2019.

185

[128] A. Lazaric, “Transfer in Reinforcement Learning : a Framework and a Survey,” in Reinforcement

Learning - State of the art, vol. 12, Springer, 2012, pp. 143–173.

[129] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Domains : A Survey,”

Journal of Machine Learning Research, vol. 10. pp. 1633–1685, 2009.

[130] X. Bin Peng, M. B. Chang, G. Zhang, P. Abbeel, and S. Levine, “MCP: Learning Composable

Hierarchical Control with Multiplicative Compositional Policies,” Advances in Neural Information

Processing Systems. pp. 3686–3697, 2019.

[131] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, “A Deep Hierarchical Approach

to Lifelong Learning in Minecraft,” 31st AAAI Conference on Artificial Intelligence, AAAI 2017. pp.

1553–1561, 2017.

[132] B. Wu, J. K. Gupta, and M. J. Kochenderfer, “Model Primitive Hierarchical Lifelong Reinforcement

Learning,” 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2019). Montreal, Canada, 2019.

[133] G. Auda and M. Kamel, “Modular neural networks: a survey,” International journal of neural

systems, vol. 9, no. 2. pp. 129–151, 1999.

[134] S. Singh, “Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,” Machine

Learning. pp. 323–339, 1992.

[135] Y. Lee, S. Sun, S. Somasundaram, E. Hu, and J. J. Lim, “Composing Complex Skills by Learning

Transition Policies,” International Conference in Learning Representations. pp. 1–19, 2019.

[136] A. H. Qureshi, J. J. Johnson, Y. Qin, B. Boots, and M. C. Yip, “Composing Ensembles of Policies

with Deep Reinforcement Learning,” International Conference in Learning Representations. pp. 1–

16, 2020.

[137] S. B. Thrun, Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer

Academic Publishers, 1996.

[138] C. Drummond, “Accelerating Reinforcement Learning by Composing Solutions of Automatically

Identified Subtasks,” Journal of Artificial Intelligence Research, vol. 16. pp. 59–104, 2002.

[139] M. A. Wiering, W. Maikel, and D. Madalina, “Model-Based Multi-Objective Reinforcement

Learning,” in IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning

(ADPRL), 2014, vol. 30, no. 6.

[140] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier, “Hierarchical Solution of

Markov Decision Process using Macro-actions,” in Fourteenth conference on Uncertainty in

artificial intelligence, 1998, pp. 220–229.

[141] M. Stolle, “Automated discovery of options in reinforcement learning,” McGill University, 2004.

186

[142] P. L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” 31st AAAI Conference on

Artificial Intelligence, AAAI 2017. pp. 1726–1734, 2017.

[143] T. Dietterich, “An Overview of MaxQ Hierarchical Reinforcement Learning,” International

Symposium on Abstraction, Reformulation, and Approximation. pp. 26–44, 2000.

[144] Z. Kalmár, C. Szepesvári, and A. Lorincz, “Module-Based Reinforcement Learning: Experiments

with a Real Robot,” Autonomous Robots, vol. 5, no. 3–4. pp. 273–295, 1998.

[145] E. Uchibe, M. Asada, and K. Hosoda, “Behavior coordination for a mobile robot using modular

reinforcement learning,” IEEE International Conference on Intelligent Robots and Systems, vol. 3.

pp. 1329–1336, 1996.

[146] H. Sahni, S. Kumar, F. Tejani, and C. L. Isbell, “Learning to compose skills,” 2017.

[147] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning Modular Neural Network

Policies for Multi-Task and Multi-Robot Transfer,” IEEE International Conference on Robotics and

Automation (ICRA). 2017.

[148] C. Drummond, “Composing functions to speed up reinforcement learning in a changing world,”

European Conference on Machine Learning. pp. 370–381, 1998.

[149] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning and Composing Primitive Skills for Dual-

Arm Manipulation,” 20th Annual Conference of Towards Autonomous Robotic Systems, vol. 11649

LNAI. pp. 65–77, 2019.

[150] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Composable Deep

Reinforcement Learning for Robotic Manipulation,” 2018 IEEE International Conference on

Robotics and Automation (ICRA), no. 1. pp. 6244–6251, 2018.

[151] C. Simpkins and C. L. Isbell, “Composable Modular Reinforcement Learning,” Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 33. pp. 4975–4982, 2019.

[152] G. Berseth, C. Xie, P. Cernek, and M. Van de Panne, “Progressive Reinforcement Learning with

Distillation for Multi-Skilled Motion Control,” International Conference on Learning

Representations. pp. 1–15, 2018.

[153] W. M. Czarnecki et al., “Mix & match - Agent curricula for reinforcement learning,” 35th

International Conference on Machine Learning, ICML 2018, vol. 3. pp. 1761–1773, 2018.

[154] E. Todorov, “Compositionality of Optimal Control Laws,” Advances in Neural Information

Processing Systems, 2009, vol. 3. pp. 1856–1864, 2009.

[155] P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, “Intrinsic rewards for maintenance, approach,

avoidance, and achievement goal types,” Frontiers in Neurorobotics, vol. 12, no. October. 2018.

[156] M. P. Deisenroth, “Efficient Reinforcement Learning using Gaussian Processes,” Karlsruhe Institute

187

of Technology, 2010.

[157] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, and K. Hosoda, “Coordination of multiple

behaviors acquired by a vision-based reinforcement learning,” IEEE/RSJ/GI International

Conference on Intelligent Robots and Systems, vol. 2. pp. 917–924, 1994.

[158] S. Russell and A. L. Zimdars, “Q-Decomposition for Reinforcement Learning Agents,” 20th

International Conference on Machine Learning. pp. 656–663, 2003.

[159] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature. pp. 529–533,

2015.

[160] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 23, no. 8. pp. 1177–1193, 2012.

[161] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of Mathematical

Statistics. 1951.

[162] B. De Alwis, G. C. Murphy, and S. Minto, “Creating a cognitive metric of programming task

difficulty,” Proceedings - International Conference on Software Engineering, no. November. pp. 29–

32, 2008.

[163] O. Macindoe, M. Lou Maher, and K. E. Merrick, “Agent Based Intrinsically Motivated Intelligent

Environments,” Handbook on Mobile and Ubiquitous Computing: Innovations and Perspectives.

2007.

[164] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” in Advances in Neural

Information Processing Systems, 2008, vol. 84, no. 1–2, pp. 171–203.

[165] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning algorithm,” Proceedings of the 30th

International Conference on Machine Learning, vol. 28, no. 1. pp. 507–515, 2013.

[166] J. García and F. Fernández, “A comprehensive survey on safe reinforcement learning,” Journal of

Machine Learning Research, vol. 16. pp. 1437–1480, 2015.

[167] R. M. Ryan and E. L. Deci, “Self-Determination Theory and the Facilitation of Intrinsic Motivation,

Social Development, and Well-Being,” vol. 55, no. 1, pp. 68–78, 2000.

[168] A. Mark and D. Timothy, “Challenge Point: A Framework for Conceptualizing the Effects of Various

Practice Conditions in Motor Learning,” Journal of Motor Behavior, vol. 36, no. 2. pp. 212–224,

2004.

[169] H. Ismail, K. E. Merrick, and M. Barlow, “Self-motivated learning of achievement and maintenance

tasks for non-player characters in computer games,” 2014 IEEE Symposium on Computational

Intelligence for Human-Like Intelligence, Proceedings. pp. 0–7, 2015.

[170] L. Meeden, J. B. Marshall, and D. Blank, “Self-motivated, task-independent reinforcement learning

188

for robots,” AAAI Fall Symposium on RealWorld Reinforcement Learning. 2004.

[171] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically Motivated Reinforcement Learning:

An Evolutionary Perspective,” IEEE Transactions on Autonomous Mental Development, vol. 2, no.

2. pp. 70–82, Jun. 2010.

[172] K. E. Merrick and M. Lou Maher, “Motivated reinforcement learning for adaptive characters in open-

ended simulation games,” Proceedings of the international conference on Advances in computer

entertainment technology - ACE ’07. ACM Press, New York, New York, USA, p. 127, 2007.

[173] K. E. Merrick and M. Lou Maher, “Motivated reinforcement learning for non-player characters in

persistent computer game worlds,” Proceedings of the 2006 ACM SIGCHI international conference

on Advances in computer entertainment technology - ACE ’06. ACM Press, New York, New York,

USA, p. 3, 2006.

[174] H. Ngo, M. Luciw, A. Forster, and J. Schmidhuber, “Learning skills from play: Artificial curiosity

on a Katana robot arm,” Proceedings of the International Joint Conference on Neural Networks.

Brisbane, Australia, pp. 1–8, 2012.

[175] L. Pape et al., “Learning tactile skills through curious exploration,” Frontiers in Neurorobotics, vol.

6, no. July. pp. 1–16, 2012.

[176] M. Frank, J. Leitner, M. Stollenga, A. Förster, and J. Schmidhuber, “Curiosity driven reinforcement

learning for motion planning on humanoids.,” Frontiers in neurorobotics, vol. 7, no. January. p. 25,

2014.

[177] D. Di Nocera, A. Finzi, S. Rossi, and M. Staffa, “The role of intrinsic motivations in attention

allocation and shifting,” Frontiers in Psychology, vol. 5, no. April. pp. 1–15, 2014.

[178] M. Luciw, V. R. Kompella, S. Kazerounian, and J. Schmidhuber, “An intrinsic value system for

developing multiple invariant representations with incremental slowness learning,” Frontiers in

Neurorobotics, vol. 7, no. May. pp. 1–19, 2013.

[179] C. Zhang, Y. Zhao, J. Triesch, and B. E. Shi, “Intrinsically Motivated Learning of Visual Motion

Perception and Smooth Pursuit,” Proc. of IEEE International Conference on Robotics and

Automation. pp. 1902–1908, 2014.

[180] F. Benureau et al., “Intrinsic Motivations for Forming Actions and Producing Goal Directed

Behaviour,” in Deliverable for the IM-CLeVeR Spring School at the Capo Caccia Cognitive

Neuromorphic Engineering Workshop, 2011, pp. 1–9.

[181] K. E. Merrick and T. Scully, “Modelling affordances for the control and evaluation of intrinsically

motivated robots,” Proceedings of the 2009 Australasian Conference on Robotics and Automation,

ACRA 2009. 2009.

189

[182] A. G. Barto, S. Singh, and R. L. Lewis, “Intrinsically Motivated Machines,” Neurocomputing, vol.

71, no. 4–6. p. 398, 2008.

[183] E. Uchibe and K. Doya, “Constrained reinforcement learning from intrinsic and extrinsic rewards,”

2007 IEEE 6th International Conference on Development and Learning, ICDL. pp. 163–168, 2007.

[184] A. G. Barto and Ö. Simsek, “Intrinsic motivation for reinforcement learning systems,” Proceedings

of the Thirteenth Yale Workshop on Adaptive and Learning Systems. pp. 113–118, 2005.

[185] V. R. Kompella, M. Stollenga, M. Luciw, and J. Schmidhuber, “Continual curiosity-driven skill

acquisition from high-dimensional video inputs for humanoid robots,” Artificial Intelligence. pp. 1–

42, 2015.

[186] A. Stout, G. D. Konidaris, and A. G. Barto, “Intrinsically Motivated Reinforcement Learning : A

Promising Framework For Developmental Robot Learning,” In Proceedings of the AAAI Spring

Symposium on Developmental Robotics, Stanford University, Stanford, CA. pp. 1–6, 2005.

[187] C. M. Vigorito and A. G. Barto, “Intrinsically Motivated Hierarchical Skill Learning in Structured

Environments,” IEEE Transactions on Autonomous Mental Development, vol. 2, no. 2. pp. 132–143,

2010.

[188] A. G. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated learning of hierarchical collections

of skills,” Proceedings of the Third International Conference on Development and Learning. pp.

112–119, 2004.

[189] M. Schembri, M. Mirolli, and G. Baldassarre, “Evolving internal reinforcers for an intrinsically

motivated reinforcement-learning robot,” 2007 IEEE 6th International Conference on Development

and Learning, ICDL. Ieee, pp. 282–287, Jul. 2007.

[190] P. Raif and J. A. Starzyk, “Motivated learning in autonomous systems,” Proceedings of the

international conference on Neural Networks, no. Ml. pp. 603–610, 2011.

[191] M. Schembri, M. Mirolli, and G. Baldassarre, “Evolution and learning in an intrinsically motivated

reinforcement learning robot,” Advances in Artificial Life. pp. 294–303, 2007.

[192] P.-Y. Oudeyer, F. Kaplan, and V. V Hafner, “Intrinsic Motivation Systems for Autonomous Mental

Development,” IEEE Transactions On Evolutionary Computation, vol. 2, no. 2. pp. 265–286, 2007.

[193] G. Masuyama, A. Yamashita, and H. Asama, “Selective exploration exploiting skills in hierarchical

reinforcement learning framework,” 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems. pp. 692–697, 2013.

[194] J. H. Metzen and F. Kirchner, “Incremental learning of skill collections based on intrinsic

motivation,” Frontiers in Neurorobotics, vol. 7, no. July. pp. 1–12, 2013.

[195] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep Successor Reinforcement

190

Learning,” arXiv:1606.02396. p. 10, 2016.

[196] K. E. Merrick, “A Comparative Study of Value Systems for Self-Motivated Exploration and Learning

by Robots,” IEEE Transactions on Autonomous Mental Development, vol. 2. pp. 1–15, 2010.

[197] V. Soni and S. Singh, “Reinforcement Learning of Hierarchical Skills on the Sony Aibo robot,” 5th

International Conference on Development and Learning. 2006.

[198] J. Mugan and B. Kuipers, “Towards the Application of Reinforcement Learning to Undirected

Developmental Learning,” Proceedings of the Eighth International Conference on Epigenetic

Robotics (EpiRob-08). pp. 85–92, 2008.

[199] J. B. Marshall, D. Blank, and L. Meeden, “An emergent framework for self-motivation in

developmental robotics,” Proceedings of the Third International Conference on Development and

Learning ICDL 2004. pp. 104–111, 2004.

[200] S. Hart, S. Sen, and R. Grupen, “Intrinsically motivated hierarchical manipulation,” Proceedings -

IEEE International Conference on Robotics and Automation. pp. 3814–3819, 2008.

[201] R. L. Lewis, S. Singh, and A. G. Barto, “Where Do Rewards Come From?,” Proceedings of the

International Symposium on AI-Inspired Biology. pp. 2601–2606, 2010.

