5,810 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects

    Background Subtraction in Video Surveillance

    Get PDF
    The aim of thesis is the real-time detection of moving and unconstrained surveillance environments monitored with static cameras. This is achieved based on the results provided by background subtraction. For this task, Gaussian Mixture Models (GMMs) and Kernel density estimation (KDE) are used. A thorough review of state-of-the-art formulations for the use of GMMs and KDE in the task of background subtraction reveals some further development opportunities, which are tackled in a novel GMM-based approach incorporating a variance controlling scheme. The proposed approach method is for parametric and non-parametric and gives us the better method for background subtraction, with more accuracy and easier parametrization of the models, for different environments. It also converges to more accurate models of the scenes. The detection of moving objects is achieved by using the results of background subtraction. For the detection of new static objects, two background models, learning at different rates, are used. This allows for a multi-class pixel classification, which follows the temporality of the changes detected by means of background subtraction. In a first approach, the subtraction of background models is done for parametric model and their results are shown. The second approach is for non-parametric models, where background subtraction is done using KDE non-parametric model. Furthermore, we have done some video engineering, where the background subtraction algorithm was employed so that, the background from one video and the foreground from another video are merged to form a new video. By doing this way, we can also do more complex video engineering with multiple videos. Finally, the results provided by region analysis can be used to improve the quality of the background models, therefore, considerably improving the detection results

    Video foreground detection based on symmetric alpha-stable mixture models.

    Get PDF
    Background subtraction (BS) is an efficient technique for detecting moving objects in video sequences. A simple BS process involves building a model of the background and extracting regions of the foreground (moving objects) with the assumptions that the camera remains stationary and there exist no movements in the background. These assumptions restrict the applicability of BS methods to real-time object detection in video. In this paper, we propose an extended cluster BS technique with a mixture of symmetric alpha stable (SS) distributions. An on-line self-adaptive mechanism is presented that allows automated estimation of the model parameters using the log moment method. Results over real video sequences from indoor and outdoor environments, with data from static and moving video cameras are presented. The SS mixture model is shown to improve the detection performance compared with a cluster BS method using a Gaussian mixture model and the method of Li et al. [11]

    Bayesian Modeling of Dynamic Scenes for Object Detection

    Get PDF
    Abstract—Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes. Index Terms—Object detection, kernel density estimation, joint domain range, MAP-MRF estimation. æ
    corecore