2,826 research outputs found

    Patient-specific simulation environment for surgical planning and preoperative rehearsal

    Get PDF
    Surgical simulation is common practice in the fields of surgical education and training. Numerous surgical simulators are available from commercial and academic organisations for the generic modelling of surgical tasks. However, a simulation platform is still yet to be found that fulfils the key requirements expected for patient-specific surgical simulation of soft tissue, with an effective translation into clinical practice. Patient-specific modelling is possible, but to date has been time-consuming, and consequently costly, because data preparation can be technically demanding. This motivated the research developed herein, which addresses the main challenges of biomechanical modelling for patient-specific surgical simulation. A novel implementation of soft tissue deformation and estimation of the patient-specific intraoperative environment is achieved using a position-based dynamics approach. This modelling approach overcomes the limitations derived from traditional physically-based approaches, by providing a simulation for patient-specific models with visual and physical accuracy, stability and real-time interaction. As a geometrically- based method, a calibration of the simulation parameters is performed and the simulation framework is successfully validated through experimental studies. The capabilities of the simulation platform are demonstrated by the integration of different surgical planning applications that are found relevant in the context of kidney cancer surgery. The simulation of pneumoperitoneum facilitates trocar placement planning and intraoperative surgical navigation. The implementation of deformable ultrasound simulation can assist surgeons in improving their scanning technique and definition of an optimal procedural strategy. Furthermore, the simulation framework has the potential to support the development and assessment of hypotheses that cannot be tested in vivo. Specifically, the evaluation of feedback modalities, as a response to user-model interaction, demonstrates improved performance and justifies the need to integrate a feedback framework in the robot-assisted surgical setting.Open Acces

    Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours

    Full text link
    Background The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Methods Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a ‘remote centre of motion’ (RCM) wrist and a non-RCM wrist, which is preferred in real applications. Results The needle placement accuracies were < 3 mm for both wrists in the mechanical phantom experiment. The target accuracy for the robot with the RCM wrist was improved to 1.6 ± 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 ± 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. Conclusion The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78054/1/313_ftp.pd

    Advances in navigation and intraoperative imaging for intraoperative electron radiotherapy

    Get PDF
    Mención Internacional en el título de doctorEsta tesis se enmarca dentro del campo de la radioterapia y trata específicamente sobre la radioterapia intraoperatoria (RIO) con electrones. Esta técnica combina la resección quirúrgica de un tumor y la radiación terapéutica directamente aplicada sobre el lecho tumoral post-resección o sobre el tumor no resecado. El haz de electrones de alta energía es colimado y conducido por un aplicador específico acoplado a un acelerador lineal. La planificación de la RIO con electrones es compleja debido a las modificaciones geométricas y anatómicas producidas por la retracción de estructuras y la eliminación de tejidos cancerosos durante la cirugía. Actualmente, no se dispone del escenario real en este tipo de tratamientos (por ejemplo, la posición/orientación del aplicador respecto a la anatomía del paciente o las irregularidades en la superficie irradiada), sólo de una estimación grosso modo del tratamiento real administrado al paciente. Las imágenes intraoperatorias del escenario real durante el tratamiento (concretamente imágenes de tomografía axial computarizada [TAC]) serían útiles no sólo para la planificación intraoperatoria, sino también para registrar y evaluar el tratamiento administrado al paciente. Esta información es esencial en estudios prospectivos. En esta tesis se evaluó en primer lugar la viabilidad de un sistema de seguimiento óptico de varias cámaras para obtener la posición/orientación del aplicador en los escenarios de RIO con electrones. Los resultados mostraron un error de posición del aplicador inferior a 2 mm (error medio del centro del bisel) y un error de orientación menor de 2º (error medio del eje del bisel y del eje longitudinal del aplicador). Estos valores están dentro del rango propuesto por el Grupo de Trabajo 147 (encargo del Comité de Terapia y del Subcomité para la Mejora de la Garantía de Calidad y Resultados de la Asociación Americana de Físicos en Medicina [AAPM] para estudiar en radioterapia externa la exactitud de la localización con métodos no radiográficos, como los sistemas infrarrojos). Una limitación importante de la solución propuesta es que el aplicador se superpone a la imagen preoperatoria del paciente. Una imagen intraoperatoria proporcionaría información anatómica actualizada y permitiría estimar la distribución tridimensional de la dosis. El segundo estudio específico de esta tesis evaluó la viabilidad de adquirir con un TAC simulador imágenes TAC intraoperatorias de escenarios reales de RIO con electrones. No hubo complicaciones en la fase de transporte del paciente utilizando la camilla y su acople para el transporte, o con la adquisición de imágenes TAC intraoperatorias en la sala del TAC simulador. Los estudios intraoperatorios adquiridos se utilizaron para evaluar la mejora obtenida en la estimación de la distribución de dosis en comparación con la obtenida a partir de imágenes TAC preoperatorias, identificando el factor dominante en esas estimaciones (la región de aire y las irregularidades en la superficie, no las heterogeneidades de los tejidos). Por último, el tercer estudio específico se centró en la evaluación de varias tecnologías TAC de kilovoltaje, aparte del TAC simulador, para adquirir imágenes intraoperatorias con las que estimar la distribución de la dosis en RIO con electrones. Estos dispositivos serían necesarios en el caso de disponer de aceleradores lineales portátiles en el quirófano ya que no se aprobaría mover al paciente a la sala del TAC simulador. Los resultados con un maniquí abdominal mostraron que un TAC portátil (BodyTom) e incluso un acelerador lineal con un TAC de haz de cónico (TrueBeam) serían adecuados para este propósito.This thesis is framed within the field of radiotherapy, specifically intraoperative electron radiotherapy (IOERT). This technique combines surgical resection of a tumour and therapeutic radiation directly applied to a post-resection tumour bed or to an unresected tumour. The high-energy electron beam is collimated and conducted by a specific applicator docked to a linear accelerator (LINAC). Dosimetry planning for IOERT is challenging owing to the geometrical and anatomical modifications produced by the retraction of structures and removal of cancerous tissues during the surgery. No data of the actual IOERT 3D scenario is available (for example, the applicator pose in relation to the patient’s anatomy or the irregularities in the irradiated surface) and consequently only a rough approximation of the actual IOERT treatment administered to the patient can be estimated. Intraoperative computed tomography (CT) images of the actual scenario during the treatment would be useful not only for intraoperative planning but also for registering and evaluating the treatment administered to the patient. This information is essential for prospective trials. In this thesis, the feasibility of using a multi-camera optical tracking system to obtain the applicator pose in IOERT scenarios was firstly assessed. Results showed that the accuracy of the applicator pose was below 2 mm in position (mean error of the bevel centre) and 2º in orientation (mean error of the bevel axis and the longitudinal axis), which are within the acceptable range proposed in the recommendation of Task Group 147 (commissioned by the Therapy Committee and the Quality Assurance and Outcomes Improvement Subcommittee of the American Association of Physicists in Medicine [AAPM] to study the localization accuracy with non-radiographic methods such as infrared systems in external beam radiation therapy). An important limitation of this solution is that the actual pose of applicator is superimposed on a patient’s preoperative image. An intraoperative image would provide updated anatomical information and would allow estimating the 3D dose distribution. The second specific study of this thesis evaluated the feasibility of acquiring intraoperative CT images with a CT simulator in real IOERT scenarios. There were no complications in the whole procedure related to the transport step using the subtable and its stretcher or the acquisition of intraoperative CT images in the CT simulator room. The acquired intraoperative studies were used to evaluate the improvement achieved in the dose distribution estimation when compared to that obtained from preoperative CT images, identifying the dominant factor in those estimations (air gap and the surface irregularities, not tissue heterogeneities). Finally, the last specific study focused on assessing several kilovoltage (kV) CT technologies other than CT simulators to acquire intraoperative images for estimating IOERT dose distribution. That would be necessary when a mobile electron LINAC was available in the operating room as transferring the patient to the CT simulator room could not be approved. Our results with an abdominal phantom revealed that a portable CT (BodyTom) and even a LINAC with on-board kV cone-beam CT (TrueBeam) would be suitable for this purpose.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Joaquín López Herráiz.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Óscar Acosta Tamay

    Intraoperative Navigation Systems for Image-Guided Surgery

    Get PDF
    Recent technological advancements in medical imaging equipment have resulted in a dramatic improvement of image accuracy, now capable of providing useful information previously not available to clinicians. In the surgical context, intraoperative imaging provides a crucial value for the success of the operation. Many nontrivial scientific and technical problems need to be addressed in order to efficiently exploit the different information sources nowadays available in advanced operating rooms. In particular, it is necessary to provide: (i) accurate tracking of surgical instruments, (ii) real-time matching of images from different modalities, and (iii) reliable guidance toward the surgical target. Satisfying all of these requisites is needed to realize effective intraoperative navigation systems for image-guided surgery. Various solutions have been proposed and successfully tested in the field of image navigation systems in the last ten years; nevertheless several problems still arise in most of the applications regarding precision, usability and capabilities of the existing systems. Identifying and solving these issues represents an urgent scientific challenge. This thesis investigates the current state of the art in the field of intraoperative navigation systems, focusing in particular on the challenges related to efficient and effective usage of ultrasound imaging during surgery. The main contribution of this thesis to the state of the art are related to: Techniques for automatic motion compensation and therapy monitoring applied to a novel ultrasound-guided surgical robotic platform in the context of abdominal tumor thermoablation. Novel image-fusion based navigation systems for ultrasound-guided neurosurgery in the context of brain tumor resection, highlighting their applicability as off-line surgical training instruments. The proposed systems, which were designed and developed in the framework of two international research projects, have been tested in real or simulated surgical scenarios, showing promising results toward their application in clinical practice

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System

    Retroperitoneal versus Transperitoneal Robotic-Assisted Partial Nephrectomy: A Single-Institution Matched Pair Analysis

    Get PDF
    Robot-assisted partial nephrectomy is a minimally invasive treatment option for localized kidney tumors. It can be performed either via the more routinely used transperitoneal approach or the retroperitoneal approach. We used a matched-pair analysis to evaluate and compare the retroperitoneal (RRPN) perioperative variables and the transperitoneal (TRPN) robot-assisted partial nephrectomy. We carried out a retrospective review of 224 patients who underwent robot-assisted partial nephrectomy between 2014 and 2019; 63 patients and 161 patients underwent retroperitoneal and transperitoneal approaches, respectively. A matched-pair analysis was performed on 51 pairs of patients. The matching criteria used were age, Charlson comorbidity index, BMI (Body Mass Index), the grade of renal insufficiency, tumor diameter, and PADUA score.  In the group with retroperitoneal access, the time to reach the renal hilum (p 0.05)

    Anesthetic considerations for robot-assisted gynecologic and urology surgery

    Get PDF
    Robotic surgery was first conceived by the United States military in the 1980s. It rapidly developed in both complexity and utility and, in the early 21st century, modern robotic surgery for gynecologic and urologic surgery gained approval in the United States. Today, an ever-increasing number and variety of surgical procedures enlist robotic-assistance. Numerous anesthetic considerations for robotic surgery exist. A few of the most important aspects of conducting a safe anesthetic include: investigating the patient’s co-morbid conditions, realizing the risks associated with the robotic equipment, and positioning the patient with care. This manuscript reviews the current literature on robotic-assisted surgery for gynecologic and urologic procedures with emphasis on history, marketplace, type, variety, and expansion of surgery in these fields. The review focuses on practical considerations for the anesthesiologist caring for patients undergoing robotic surgery. Preoperative, intraoperative and postoperative issues are explored in detail. The rapid expansion of robotic surgery worldwide requires thoughtful consideration of the technique’s weaknesses and associated risks. This review provides a roadmap to adequately prepare anesthesiologists for care of gynecologic and urologic patients undergoing robot-assisted surgery

    Anesthesia for off-pump coronary artery bypass surgery

    Get PDF
    The evolution of techniques and knowledge of beating heart surgery has led anesthesia toward the development of new procedures and innovations to promote patient safety and ensure high standards of care. Off-pump coronary artery bypass (OPCAB) surgery has shown to have some advantages compared to on-pump cardiac surgery, particularly the reduction of postoperative complications including systemic inflammation, myocardial injury, and cerebral injury. Minimally invasive surgery for single vessel OPCAB through a limited thoracotomy incision can offer the advantage of further reduction of complications. The anesthesiologist has to deal with different issues, including hemodynamic instability and myocardial ischemia during aorto-coronary bypass grafting. The anesthesiologist and surgeon should collaborate and plan the best perioperative strategy to provide optimal care and ensure a rapid and complete recovery. The use of high thoracic epidural analgesia and fast-track anesthesia offers particular benefits in beating heart surgery. The excellent analgesia, the ability to reduce myocardial oxygen consumption, and the good hemodynamic stability make high thoracic epidural analgesia an interesting technique. New scenarios are entering in cardiac anesthesia: ultra-fast-track anesthesia with extubation in the operating room and awake surgery tend to be less invasive, but can only be performed on selected patients

    ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer

    Get PDF
    Radiation therapy (RT) is a valuable component of multimodal treatment for localized pancreatic cancer. Intraoperative radiation therapy (IORT) is a very precise RT modality to intensify the irradiation effect for cancer involving upper abdominal structures and organs, generally delivered with electrons (IOERT). Unresectable, borderline and resectable disease categories benefit from dose-escalated chemoradiation strategies in the context of active systemic therapy and potential radical surgery. Prolonged preoperative treatment may act as a filter for selecting patients with occult resistant metastatic disease. Encouraging survival rates have been documented in patients treated with preoperative chemoradiation followed by radical surgery and IOERT (>20 months median survival, >35% survival at 3 years). Intensive preoperative treatment, including induction chemotherapy followed by chemoradiation and an IOERT boost, appears to prolong long-term survival within the subset of patients who remain relapse-free for>2 years (>30 months median survival; >40% survival at 3 years). Improvement of local control through higher RT doses has an impact on the survival of patients with a lower tendency towards disease spread. IOERT is a well-accepted approach in the clinical scenario (maturity and reproducibility of results), and extremely accurate in terms of dose-deposition characteristics and normal tissue sparing. The technique can be adapted to systemic therapy and surgical progress. International guidelines (National Comprehensive Cancer Network or NCCN guidelines) currently recommend use of IOERT in cases of close surgical margins and residual disease. We hereby report the ESTRO/ACROP recommendations for performing IOERT in borderline-resectable pancreatic cancer

    ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer

    Get PDF
    Radiation therapy (RT) is a valuable component of multimodal treatment for localized pancreatic cancer. Intraoperative radiation therapy (IORT) is a very precise RT modality to intensify the irradiation effect for cancer involving upper abdominal structures and organs, generally delivered with electrons (IOERT). Unresectable, borderline and resectable disease categories benefit from dose-escalated chemoradiation strategies in the context of active systemic therapy and potential radical surgery. Prolonged preoperative treatment may act as a filter for selecting patients with occult resistant metastatic disease. Encouraging survival rates have been documented in patients treated with preoperative chemoradiation followed by radical surgery and IOERT (>20 months median survival, >35% survival at 3 years). Intensive preoperative treatment, including induction chemotherapy followed by chemoradiation and an IOERT boost, appears to prolong long-term survival within the subset of patients who remain relapse-free for>2 years (>30 months median survival; >40% survival at 3 years). Improvement of local control through higher RT doses has an impact on the survival of patients with a lower tendency towards disease spread. IOERT is a well-accepted approach in the clinical scenario (maturity and reproducibility of results), and extremely accurate in terms of dose-deposition characteristics and normal tissue sparing. The technique can be adapted to systemic therapy and surgical progress. International guidelines (National Comprehensive Cancer Network or NCCN guidelines) currently recommend use of IOERT in cases of close surgical margins and residual disease. We hereby report the ESTRO/ACROP recommendations for performing IOERT in borderline-resectable pancreatic cancer
    • …
    corecore