1,960 research outputs found

    3-D Respiratory Motion Compensation during EP Procedures by Image-Based 3-D Lasso Catheter Model Generation and Tracking

    Full text link
    Abstract. Radio-frequency catheter ablation of the pulmonary veins attached to the left atrium is usually carried out under fluoroscopy guidance. Two-dimensional X-ray navigation may involve overlay im-ages derived from a static pre-operative 3-D volumetric data set to add anatomical details. However, respiratory motion may impair the utility of static overlay images for catheter navigation. We developed a system for image-based 3-D motion estimation and compensation as a solution to this problem for which no previous solution is yet known. It is based on 3-D catheter tracking involving 2-D/3-D registration. A biplane X-ray C-arm system is used to image a special circumferential (lasso) catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. 3-D respiratory motion at the site of ablation is then estimated by tracking the reconstructed model in 3-D from bi-plane fluoroscopy. In our experiments, the circumferential catheter was tracked in 231 biplane fluoro frames (462 monoplane fluoro frames) with an average 2-D tracking error of 1.0 mm ± 0.5 mm.

    Constrained 2-D/3-D Registration for Motion Compensation in AFib Ablation Procedures

    Full text link
    Abstract. Fluoroscopic overlay images rendered from pre-operative vol-umetric data can provide additional guidance for physicians during catheter ablation procedures for treatment of atrial fibrillation (AFib). As these overlay images are compromised by cardiac and respiratory motion, mo-tion compensation methods have been proposed. The approaches so far either require simultaneous biplane imaging for 3-D motion compensa-tion or, in case of mono-plane X-ray imaging, provide only a limited 2-D functionality. To overcome the downsides of the previously suggested methods, we propose a new approach that facilitates full 3-D motion compensation even if only mono-plane X-ray views are available. To this end, we use constrained model-based 2-D/3-D registration to track a circumferential mapping catheter which is commonly used during AFib catheter ablation procedures. Our approach yields an average 2-D track-ing error of 0.6 mm and an average 3-D tracking error of 2.1 mm.

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    A novel real-time computational framework for detecting catheters and rigid guidewires in cardiac catheterization procedures

    Get PDF
    Purpose: Catheters and guidewires are used extensively in cardiac catheterization procedures such as heart arrhythmia treatment (ablation), angioplasty and congenital heart disease treatment. Detecting their positions in fluoroscopic X-ray images is important for several clinical applications, for example, motion compensation, co-registration between 2D and 3D imaging modalities and 3D object reconstruction. Methods: For the generalized framework, a multiscale vessel enhancement filter is first used to enhance the visibility of wire-like structures in the X-ray images. After applying adaptive binarization method, the centerlines of wire-like objects were extracted. Finally, the catheters and guidewires were detected as a smooth path which is reconstructed from centerlines of target wire-like objects. In order to classify electrode catheters which are mainly used in electrophysiology procedures, additional steps were proposed. First, a blob detection method, which is embedded in vessel enhancement filter with no additional computational cost, localizes electrode positions on catheters. Then the type of electrode catheters can be recognized by detecting the number of electrodes and also the shape created by a series of electrodes. Furthermore, for detecting guiding catheters or guidewires, a localized machine learning algorithm is added into the framework to distinguish between target wire objects and other wire-like artifacts. The proposed framework were tested on total 10,624 images which are from 102 image sequences acquired from 63 clinical cases. Results: Detection errors for the coronary sinus (CS) catheter, lasso catheter ring and lasso catheter body are 0.56 ± 0.28 mm, 0.64 ± 0.36 mm and 0.66 ± 0.32 mm, respectively, as well as success rates of 91.4%, 86.3% and 84.8% were achieved. Detection errors for guidewires and guiding catheters are 0.62 ± 0.48 mm and success rates are 83.5%. Conclusion: The proposed computational framework do not require any user interaction or prior models and it can detect multiple catheters or guidewires simultaneously and in real-time. The accuracy of the proposed framework is sub-mm and the methods are robust toward low-dose X-ray fluoroscopic images, which are mainly used during procedures to maintain low radiation dose

    A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Get PDF
    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation. © 2014 American Association of Physicists in Medicine

    In-Vitro MPI-Guided IVOCT Catheter Tracking in Real Time for Motion Artifact Compensation

    Full text link
    Purpose: Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-vitro experiments. Material and Methods: During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI. A 4D trajectory of the catheter tip is determined from the MPI data using center of mass sub-voxel strategies. A custom built IVOCT imaging adapter is used to perform different catheter motion profiles: no motion artifacts, motion artifacts due to catheter bending, and heart beat motion artifacts. Two IVOCT volume reconstruction methods are compared qualitatively and quantitatively using the DICE metric and the known stenosis length. Results: The MPI-tracked trajectory of the IVOCT catheter is validated in multiple repeated measurements calculating the absolute mean error and standard deviation. Both volume reconstruction methods are compared and analyzed whether they are capable of compensating the motion artifacts. The novel approach of MPI-guided catheter tracking corrects motion artifacts leading to a DICE coefficient with a minimum of 86% in comparison to 58% for a standard reconstruction approach. Conclusions: IVOCT catheter tracking with MPI in real time is an auspicious method for radiation free MPI-guided IVOCT interventions. The combination of MPI and IVOCT can help to reduce motion artifacts due to catheter bending and heart beat for optimized IVOCT volume reconstructions.Comment: 19 pages, 11 figure

    Image-Guided Robot-Assisted Techniques with Applications in Minimally Invasive Therapy and Cell Biology

    Get PDF
    There are several situations where tasks can be performed better robotically rather than manually. Among these are situations (a) where high accuracy and robustness are required, (b) where difficult or hazardous working conditions exist, and (c) where very large or very small motions or forces are involved. Recent advances in technology have resulted in smaller size robots with higher accuracy and reliability. As a result, robotics is fi nding more and more applications in Biomedical Engineering. Medical Robotics and Cell Micro-Manipulation are two of these applications involving interaction with delicate living organs at very di fferent scales.Availability of a wide range of imaging modalities from ultrasound and X-ray fluoroscopy to high magni cation optical microscopes, makes it possible to use imaging as a powerful means to guide and control robot manipulators. This thesis includes three parts focusing on three applications of Image-Guided Robotics in biomedical engineering, including: Vascular Catheterization: a robotic system was developed to insert a catheter through the vasculature and guide it to a desired point via visual servoing. The system provides shared control with the operator to perform a task semi-automatically or through master-slave control. The system provides control of a catheter tip with high accuracy while reducing X-ray exposure to the clinicians and providing a more ergonomic situation for the cardiologists. Cardiac Catheterization: a master-slave robotic system was developed to perform accurate control of a steerable catheter to touch and ablate faulty regions on the inner walls of a beating heart in order to treat arrhythmia. The system facilitates touching and making contact with a target point in a beating heart chamber through master-slave control with coordinated visual feedback. Live Neuron Micro-Manipulation: a microscope image-guided robotic system was developed to provide shared control over multiple micro-manipulators to touch cell membranes in order to perform patch clamp electrophysiology. Image-guided robot-assisted techniques with master-slave control were implemented for each case to provide shared control between a human operator and a robot. The results show increased accuracy and reduced operation time in all three cases

    A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures

    Get PDF
    We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small number of high resolution slices, rather than a single low resolution volume. Additionally, we use prior knowledge of the nature of cardiac respiratory motion by constraining the model to use only the dominant modes of motion. During the procedure the motion of the diaphragm is tracked in X-ray fluoroscopy images, allowing the roadmap to be updated using the motion model. X-ray image acquisition is cardiac gated. Validation is performed on four volunteer datasets and three patient datasets. The accuracy of the model in 3D was within 5 mm in 97.6% of volunteer validations. For the patients, 2D accuracy was improved from 5 to 13 mm before applying the model to 2–4 mm afterwards. For the dynamic MRI sequence comparison, the highest errors were found when using the low resolution volume sequence with an unconstrained model
    • …
    corecore