52 research outputs found

    Measuring Behavior 2018 Conference Proceedings

    Get PDF
    These proceedings contain the papers presented at Measuring Behavior 2018, the 11th International Conference on Methods and Techniques in Behavioral Research. The conference was organised by Manchester Metropolitan University, in collaboration with Noldus Information Technology. The conference was held during June 5th – 8th, 2018 in Manchester, UK. Building on the format that has emerged from previous meetings, we hosted a fascinating program about a wide variety of methodological aspects of the behavioral sciences. We had scientific presentations scheduled into seven general oral sessions and fifteen symposia, which covered a topical spread from rodent to human behavior. We had fourteen demonstrations, in which academics and companies demonstrated their latest prototypes. The scientific program also contained three workshops, one tutorial and a number of scientific discussion sessions. We also had scientific tours of our facilities at Manchester Metropolitan Univeristy, and the nearby British Cycling Velodrome. We hope this proceedings caters for many of your interests and we look forward to seeing and hearing more of your contributions

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    2017 - The Twenty-second Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-second Annual Symposium of Student Scholars, held on April 20, 2017. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1019/thumbnail.jp

    Automatic classification of flying bird species using computer vision techniques

    Get PDF
    Bird species are recognised as important biodiversity indicators: they are responsive to changes in sensitive ecosystems, whilst populations-level changes in behaviour are both visible and quantifiable. They are monitored by ecologists to determine factors causing population fluctuation and to help conserve and manage threatened and endangered species. Every five years, the health of bird population found in the UK are reviewed based on data collected from various surveys. Currently, techniques used in surveying species include manual counting, Bioacoustics and computer vision. The latter is still under development by researchers. Hitherto, no computer vision technique has fully been deployed in the field for counting species as these techniques use high-quality and detailed images of stationary birds, which make them impractical for deployment in the field, as most species in the field are in-flight and sometimes distant from the cameras field of view. Techniques such as manual and bioacoustics are the most frequently used but they can also become impractical, particularly when counting densely populated migratory species. Manual techniques are labour intensive whilst bioacoustics may be unusable when deployed for species that emit little or no sound. There is the need for automated systems for identifying species using computer vision and machine learning techniques, specifically for surveying densely populated migratory species. However, currently, most systems are not fully automated and use only appearance-based features for identification of species. Moreover, in the field, appearance-based features like colour may fade at a distance whilst motion-based features will remain discernible. Thus to achieve full automation, existing systems will have to combine both appearance and motion features. The aim of this thesis is to contribute to this problem by developing computer vision techniques which combine appearance and motion features to robustly classify species, whilst in flight. It is believed that once this is achieved, with additional development, it will be able to support the surveying of species and their behaviour studies. The first focus of this research was to refine appearance features previously used in other related works for use in automatic classification of species in flight. The bird appearances were described using a group of seven proposed appearance features, which have not previously been used for bird species classification. The proposed features improved the classification rate when compared to state-of-the-art systems that were based on appearance features alone (colour features). The second step was to extract motion features from videos of birds in flight, which were used for automatic classification. The motion of birds was described using a group of six features, which have not previously been used for bird species classification. The proposed motion features, when combined with the appearance features improved classification rates compared with only appearance or motion features. The classification rates were further improved using feature selection techniques. There was an increase of between 2-6% of correct classification rates across all classifiers, which may be attributable directly to the use of motion features. The only motion features selected are the wing beat frequency and vicinity features irrespective of the method used. This shows how important these groups of features were to species classification. Further analysis also revealed specific improvements in identifying species with similar visual appearance and that using the optimal motion features improve classification accuracy significantly. We attempt a further improvement in classification accuracy, using majority voting. This was used to aggregate classification results across a set of video sub-sequences, which improved classification rates considerably. The results using the combined features with majority voting outperform those without majority voting by 3% and 6% on the seven species and thirteen classes dataset respectively. Finally, a video dataset against which future work can be benchmarked has been collated. This data set enables the evaluation of work against a set of 13 species, enabling effective evaluation of automated species identification to date and a benchmark for further work in this area of research. The key contribution of this research is that a species classification system was developed, which combines motion and appearance features and evaluated it against existing appearance-only-based methods. This is not only the first work to combine features in this way but also the first to apply a voting technique to improve classification performance across an entire video sequence

    Pertanika Journal of Science & Technology

    Get PDF

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    2022-2023 Graduate School Catalog

    Get PDF
    Graduate students from more than 67 counties are providing outstanding leadership during the pandemic, as they conduct vital research to inform public health, contribute to the greater good, and stimulate the economy. Their scholarship spans 140 programs - from biomedical engineering to business administration, from history to horticulture, and from marine sciences to music performance

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    corecore