167,743 research outputs found

    Hidden Markov Model for Visual Guidance of Robot Motion in Dynamic Environment

    Get PDF
    Models and control strategies for dynamic obstacle avoidance in visual guidance of mobile robot are presented. Characteristics that distinguish the visual computation and motion-control requirements in dynamic environments from that in static environments are discussed. Objectives of the vision and motion planning are formulated as: 1) finding a collision-free trajectory that takes account of any possible motions of obstacles in the local environment; 2) such a trajectory should be consistent with a global goal or plan of the motion; and 3) the robot should move at as high a speed as possible, subject to its kinematic constraints. A stochastic motion-control algorithm based on a hidden Markov model (HMM) is developed. Obstacle motion prediction applies a probabilistic evaluation scheme. Motion planning of the robot implements a trajectory-guided parallel-search strategy in accordance with the obstacle motion prediction models. The approach simplifies the control process of robot motion

    Model Predictive Control as a Function for Trajectory Control during High Dynamic Vehicle Maneuvers considering Actuator Constraints

    Get PDF
    Autonomous driving is a rapidly growing field and can bring significant transition in mobility and transportation. In order to cater a safe and reliable autonomous driving operation, all the systems concerning with perception, planning and control has to be highly efficient. MPC is a control technique used to control vehicle motion by controlling actuators based on vehicle model and its constraints. The uniqueness of MPC compared to other controllers is its ability to predict future states of the vehicle using the derived vehicle model. Due to the technological development & increase in computational capacity of processors and optimization algorithms MPC is adopted for real-time application in dynamic environments. This research focuses on using Model predictive Control (MPC) to control the trajectory of an autonomous vehicle controlling the vehicle actuators for high dynamic maneuvers. Vehicle Models considering kinematics and vehicle dynamics is developed. These models are used for MPC as prediction models and the performance of MPC is evaluated. MPC trajectory control is performed with the minimization of cost function and limiting constraints. MATLAB/Simulink is used for designing trajectory control system and interfaced with CarMaker for evaluating controller performance in a realistic simulation environment. Performance of MPC with kinematic and dynamic vehicle models for high dynamic maneuvers is evaluated with different speed profiles

    Bandwidth modeling of silicon retinas for next generation visual sensor networks

    Get PDF
    Silicon retinas, also known as Dynamic Vision Sensors (DVS) or event-based visual sensors, have shown great advantages in terms of low power consumption, low bandwidth, wide dynamic range and very high temporal resolution. Owing to such advantages as compared to conventional vision sensors, DVS devices are gaining more and more attention in various applications such as drone surveillance, robotics, high-speed motion photography, etc. The output of such sensors is a sequence of events rather than a series of frames as for classical cameras. Estimating the data rate of the stream of events associated with such sensors is needed for the appropriate design of transmission systems involving such sensors. In this work, we propose to consider information about the scene content and sensor speed to support such estimation, and we identify suitable metrics to quantify the complexity of the scene for this purpose. According to the results of this study, the event rate shows an exponential relationship with the metric associated with the complexity of the scene and linear relationships with the speed of the sensor. Based on these results, we propose a two-parameter model for the dependency of the event rate on scene complexity and sensor speed. The model achieves a prediction accuracy of approximately 88.4% for the outdoor environment along with the overall prediction performance of approximately 84%

    Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving

    Full text link
    Adverse weather conditions and occlusions in urban environments result in impaired perception. The uncertainties are handled in different modules of an automated vehicle, ranging from sensor level over situation prediction until motion planning. This paper focuses on motion planning given an uncertain environment model with occlusions. We present a method to remain collision free for the worst-case evolution of the given scene. We define criteria that measure the available margins to a collision while considering visibility and interactions, and consequently integrate conditions that apply these criteria into an optimization-based motion planner. We show the generality of our method by validating it in several distinct urban scenarios

    Tracking moving optima using Kalman-based predictions

    Get PDF
    The dynamic optimization problem concerns finding an optimum in a changing environment. In the field of evolutionary algorithms, this implies dealing with a timechanging fitness landscape. In this paper we compare different techniques for integrating motion information into an evolutionary algorithm, in the case it has to follow a time-changing optimum, under the assumption that the changes follow a nonrandom law. Such a law can be estimated in order to improve the optimum tracking capabilities of the algorithm. In particular, we will focus on first order dynamical laws to track moving objects. A vision-based tracking robotic application is used as testbed for experimental comparison

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    • …
    corecore