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Abstract 

Autonomous driving is a rapidly growing field and can bring significant transition in mobility 

and transportation. In order to cater a safe and reliable autonomous driving operation, all the 

systems concerning with perception, planning and control has to be highly efficient. MPC is a 

control technique used to control vehicle motion by controlling actuators based on vehicle 

model and its constraints. The uniqueness of MPC compared to other controllers is its ability 

to predict future states of the vehicle using the derived vehicle model. Due to the 

technological development & increase in computational capacity of processors and 

optimization algorithms MPC is adopted for real-time application in dynamic environments. 

This research focuses on using Model predictive Control (MPC) to control the trajectory of an 

autonomous vehicle controlling the vehicle actuators for high dynamic maneuvers. Vehicle 

Models considering kinematics and vehicle dynamics is developed. These models are used for 

MPC as prediction models and the performance of MPC is evaluated. MPC trajectory control 

is performed with the minimization of cost function and limiting constraints. 

MATLAB/Simulink is used for designing trajectory control system and interfaced with 

CarMaker for evaluating controller performance in a realistic simulation environment. 

Performance of MPC with kinematic and dynamic vehicle models for high dynamic 

maneuvers is evaluated with different speed profiles.   

 

Keywords: Model Predictive control, Trajectory Control, Vehicle Model, Constraints, 

High Dynamic Maneuver 
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1 About ZF 

ZF is a global leading automotive supplier for chassis, driveline, active safety and passive 

safety technology. In an eventful history, ZF has seized its entrepreneurial opportunities and 

developed from its roots as a supplier specialized in the aviation industry to a global mobility 

technology company. ZF is controlled by a non-profit organization from the city of 

Friedrichshafen that dates back to the beginning of 20
th

 century. ZF was founded in 1915 to 

develop precision cog-wheels for Zeppelin airships. The company was almost destroyed 

during World War II for its involvement in the production of transmissions and steering 

systems for war machines. The success story of ZF took its initiation after the dissolution by 

Allies to end the war. In 1959 at São Paulo, Brazil the first international production plant was 

established. ZF gained leadership in technology and several business areas by expanding their 

production network globally. Cooperation and merging with other reputed companies enabled 

a stable and continuous growth. ‘Sachs’ was purchased in 2001 and in 2011 it is incorporated 

with ZF Friedrichshafen AG. In 2013 acquisition of ‘TRW Automotive’, an American auto 

parts manufacturer made ZF to be ranked as the second largest automotive supplier in 2017. 

Currently, ZF is established across 40 countries with 136,820 employees at 230 plants. ZF is 

listed among the top 10 applicants for patents within Germany for filing 1200 patent 

applications in 2016. 

 

ZF empowers vehicles to see, think and act. The company invests more than six percent of its 

annual sales in research and development. The main focus of research is in the field of 

autonomous driving and electrification of vehicles. The advancement in mobility and services 

related to passenger cars, commercial vehicles and industrial technology applications are also 

prime focus areas for ZF. 

  

The division DAC (Vehicle Dynamics Control) is focused on advanced engineering of 

innovative products, identification and development of new technologies, concepts and 

functional principles in the areas of chassis, steering and full vehicle control. 
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2 Introduction 

2.1 Motivation 

The emergence of autonomous vehicles is evident since the last few years. Autonomous 

vehicles have significant impact on society as well as automotive companies. The demand for 

efficient, reliable and safe mobility has aroused interest in research and development of 

autonomous vehicles. In order to achieve fully autonomous driving capability of a vehicle, 

technological developments in terms of perception, planning and control approaches is 

required. However recent developments in the fields of sensor technology and artificial 

intelligence have systems capable of sensing the environment and use the perception 

information for motion planning. The research is mainly on analysing and understanding the 

perception of sensors, planning algorithms and control hardware. The perception information 

from improved sensor hardware along with mapping and localization approaches are used 

make accurate decisions for selection, planning and control of vehicle motion to have 

appropriate trajectories for certain maneuvers [1]. The control systems responsible for 

handling vehicle motion along with the stabilization level of autonomous vehicle architecture 

is capable of making the vehicle to have motion towards the desired path considering the state 

of vehicle [2]. The control systems handling vehicle motion must be able to generate motion 

as close as possible to the planned motion. There are several control approaches for 

controlling vehicle motion out of which MPC (Model Predictive Control) appears to be a 

unique and reliable control approach because of its ability to predict future states based on the 

current state of the vehicle. The inbuilt capability of handling constraints enables MPC to be 

used for vehicle motion control. Especially for trajectory control the state of the vehicle and 

constraints have an influence on vehicle motion. A motion controller should consider the 

dynamics of vehicle and its limitations for controlling motion. MPC control technique has the 

capability to consider the vehicle dynamics for generating control actuations. Generally 

vehicle dynamics are non-linear, hence the non-linear vehicle behavior is considered while 

predicting the future states by MPC making model predictive controller a robust approach 

than traditional control approaches. Especially for trajectory control of an autonomous car a 

detailed representation of the vehicle environment along with the internal states and 

capabilities of the vehicle is considered [2]. The autonomous car trajectory control is one of 

the most arduous automation challenges due to the non-linearity of vehicle dynamics and 



13 
 

motion constraints.  Several control techniques are developed for motion control in 

autonomous vehicles. For autonomous driving the lateral and longitudinal dynamics of the 

autonomous vehicle have to be controlled to have a safe, comfort and reliable motion. The 

change in state of the vehicle will have significant influence on the vehicle. To handle this 

decoupled control technique is adopted. The main advantage of decoupled control is to isolate 

the changes in states that influence both inputs and outputs of a system responsible for 

trajectory control [3]. Decoupled control technique enables to use separate controllers for 

handling lateral and longitudinal dynamics of the vehicle. Most widely used control systems 

for motion control of an autonomous vehicle are PID (Proportional-Integral-Derivative), LQR 

(Linear Quadratic Regulator) and MPC (Model Predictive Control). PID and LQR controllers 

perform better for only linear systems. Since the vehicle dynamics are non-linear, In recent 

times MPC is robust than other control techniques for autonomous vehicle motion control due 

to its ability of predicting the future states of the vehicle, handing nonlinearities and 

constraints.  

The motivation of master thesis is to design and implementation of MPC control 

algorithm for motion control of autonomous car to achieve best possible trajectories for high 

dynamic maneuvers considering actuator constraints 

2.2 Thesis Objectives 

The thesis work focuses on implementing MPC for controlling the motion of autonomous car 

to have desired trajectory for high dynamic maneuvers. The control of vehicle is dependent on 

Actuator Constraints, Vehicle State and Target Trajectory. In order to achieve the global 

objective of the thesis some sub-goals have been proposed: 

 Modelling of vehicle model for simulation 

 Modelling and implementation of kinematic vehicle model 

 Modelling and implementation of dynamic vehicle model 

 Definition of a test framework for high dynamic vehicle maneuvers  

 Implementation of the overall system for trajectory control in MATLAB/Simulink 

 Develop a trajectory planner to provide necessary target variables to control algorithm 

 Implementation of MPC control algorithm in MATLAB/Simulink 

 Testing the MPC control algorithm for kinematic and dynamic vehicle models 

 Creating an interface with a realistic driving simulator implemented in CarMaker 
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3 State of Art 

3.1 Autonomous Driving Background 

It is evident that we are on the edge of revolution for mobility. Autonomous cars play a vital 

role in enabling cost effective, safe and secured transportation in the near future. The 

emerging research areas show that the shift from conventional to autonomous driving is no 

longer a dream. It is evident that autonomous cars will bring unanticipated change in the 

realm of transportation. Considering the diversity in perspectives regarding mobility the main 

concern is acceptability of the individuals and society for autonomous cars. For users to 

accept mobility using autonomous cars, it raises new challenges concerned to comfort, safety 

and reliability. A safe and comfortable driving behavior is a basic necessity for the universal 

acceptance of autonomous driving. In order to cater a comfortable and reliable driving 

behavior of an autonomous car that mimics the human driving behavior, several systems and 

functions have to be developed using the latest technologies available. Technological 

advancements in autonomous systems, increase in the computation power and decrease in cost 

of the sensing, control, computing technologies along with the drastic developments of 

software systems of autonomous driving clearly shows that autonomous driving is the future 

of mobility [4]. Autonomous driving is divided into three modules as shown in Figure 1:  

 
Figure 1: Autonomous driving major modules 

 

 Sensing: The sensing module uses various perception and sensing devices such as 

sensors to retrieve the information of the environment and surroundings that can be 

used for planning. 

 Planning: The planning module is responsible for generation of behavior and decision 

making. It generates feasible, safe and comfortable paths, driving scenarios using the 

information from sensing module and configures the controllers accordingly. 

Sensing Planning Control 
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 Control: The control module is responsible for controlling the autonomous vehicle to 

follow the desired route, path or trajectory that is planned by the planning module. It 

guides the vehicle to have motion satisfying the dynamics of vehicle and constraints. 

 

3.2 Autonomous Vehicle Architecture 

 

 

 

Figure 2: Architecture for Autnomous Vehicles 

Autonomous driving vehicles have several architectures. Figure 2 depicts a general 

architecture for autonomous vehicles [5] that demonstrate the system architecture of an 

autonomous vehicle. The vehicle receives the information of the environment from sensors 

such as radars, GPS sensor, cameras, LIDAR etc. or by the fusion of multiple sensors [6]. 

Sensor fusion is the most significant technique of sensing technologies. Combination of 

various sensors results in determining more accurate information of environment since 

vehicles are subjected to dynamic environments. 
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Perception refers to the ability to acquire and extract the information of environment 

of an autonomous system. Perception stage deals with using data from sensors to detect road 

signs, objects, vehicle state, pedestrians, road detection and localization. Environmental 

recognition attributes to the contextual understanding of environment. Ego-vehicle 

localization is responsible for determining the position and orientation of the vehicle. The 

accuracy in determining the position of vehicle is important due to the fact that inaccuracy 

jeopardize decision making affecting safe and comfortable motion [6]. The data about the 

infrastructure and other vehicles is obtained from the communication module via 

communication mechanisms and protocols.  

The data from the perception stage is used for decision making to plan vehicle 

behavior and motion. The planning stage is responsible for making precise decisions in order 

to bring the vehicle from one location to another. It consists of global planning, local planning 

and behavioral planning. The global planning module determines the most efficient route to 

the destination considering the current position of vehicle depending on several factors like 

distance, speed, time and traffic. Behavioral planning module performs the planning of 

appropriate driving behavior along the prescribed route ensuring stipulated traffic rules and 

interaction with other agents such as lane change, overtaking, parking and off-road driving 

[6]. The local planning module also called as motion planning performs the planning of 

vehicle trajectory along the specified route by the global planning module.  

The generated trajectory is used by the control stage to develop actuator commands to 

follow the reference trajectory planned by the local planning module. The motion control 

module executes commands such as steering, brake and throttle to control the vehicle motion.  

The vehicle dynamics are considered for trajectory tracking and control to have efficient 

trajectory control and to maintain vehicle stability. Since the vehicle dynamics have 

significant effect on the motion of vehicle it is important to consider the lateral and 

longitudinal dynamics of the vehicle during the planning and control stages. In the control 

module the vehicle dynamics is controlled separately using lateral and longitudinal control 

systems. The lateral control provides actuation commands to change the lateral position and 

yaw of the vehicle. The longitudinal controller is responsible in controlling the vehicle’s 

longitudinal speed.  
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3.3 Control Problem for Autonomous Vehicle 

The primitive control problem of autonomous vehicle is to determine the control signals for 

actuators based on mapping from the sensed data to ensure safe, reliable and comfortable 

drive in an autonomous vehicle. Therefore there must be an efficient approach to be followed 

in determining the decision making and control techniques. There are two main approaches 

addressing the autonomous vehicle control problem [7]. They are: 

1. Learning Based Control 

2. Planning Based Control 

 

3.3.1 Learning Based Control 

 

 
Figure 3: Illustration of Learning Based Control 

Learning based control approach uses neural network for decision making based on input data 

from the sensors and perception module to generate outputs to control the driving behavior. 

The neural networks are trained with machine learning techniques to mimic the human 

driving behavior and hence it is also called as imitation learning [7]. Learning based control is 

divided into two categories based on the level of pre-processing of sensed data. 

 End to end learning 

 Perception based learning 

 

3.3.1.1 End to end learning 

This approach uses  direct mapping of sensor data to generate the actuations. For example the 

data from the front camera and range sensor is used for the neural network to generate 

commands for steering wheel angle to control the orientation of the vehicle. The drawback of 

this technique is it’s difficulty to analyse the factors influencing actuations [7]. 

3.3.1.2 Perception based learning 

In this approach the sensor data is processed by a perception module for mapping and 

identifying the key indicators and relation between the environment and vehicle. The 

Sensors 
Neural 

Network 
Actuators 

Perception 
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processed data from the perception module is used by a simple CNN network to map the 

indications into actuations. The processing steps are increased by the perception module but 

reduce the effort of CNN. The accuracy of perception is important for better performance 

 

3.3.2 Planning Based Control 

 
Figure 4: Illustration of Planning Based Control 

 

In Planning based control the decision making to achieve a desired goal relies on more 

reasonable and feasible control approach. Similar to the learning based approach the sensor 

module is used to extract the data of environment. The perception module performs   

transformation of sensed data into cognitive world model that is used for planning decision. It 

performs environment detection such as objects, lanes, vehicles, obstacles, pedestrians as well 

as localization. The decision making in order to achieve a desired goal is performed by 

planner module. Depending upon the level of decision making the planner performs route 

planning, motion planning and behavioral planning. The executer is responsible for generating 

the desired control signals considering the dynamics of the vehicle. These control signals are 

used to produce actuations.  

 Planning based control performs planning based on vehicle motion, perception along 

with pre-stored map data and pre-programmed planning algorithms [7]. The performance of 

planning based control is mainly dependant on the accuracy of perception and planning 

algorithms. The uncertainties of the environment and the vehicle dynamics will also impact 

the performance of planning based control.   

 

 

 

 

 

 

 

Sensors Perception Planner Executor Actuators 
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3.4 Planning for Autonomous Vehicles 

As mentioned in the previous section there are two control approaches for autonomous 

vehicles. In this thesis the planning based control approach is considered. Planning is an 

increment approach that finds feasible sequence of state transitions for the vehicle to follow. 

This section focuses on the planning techniques for autonomous driving.  

 

3.4.1 Architecture for Planning in Autonomous Vehicles 

 
 

Figure 5: Architecture for Planning in Autonomous Vehicles 

This section presents the architecture for planning in autonomous vehicles (Figure 5). 

The set of attributes specifying the condition of autonomous vehicle at a particular place and 

particular time instance is called ‘state’ of the vehicle [6]. This state of the vehicle is 

estimated by the estimator module. The state of a vehicle is represented as a vector. The state 

of the vehicle depicts position, orientation and velocities. A state space represents all possible 

states of the vehicle. Along with state of the vehicle, data from perception module is used for 

decision making. Route planning module makes planning depending on global objectives. 

The route planning module determines the most efficient route to the destination considering 

the current position of vehicle depending on several factors like distance, speed, time and 

traffic. Behavioral planning module performs the planning of appropriate driving behavior 

along the prescribed route ensuring stipulated traffic rules and interaction with other agents 

such as lane change, overtaking, parking and off-road driving. The motion planning module 

also called as local planning performs the planning of vehicle path, maneuver and trajectory 

along the specified route by the route planning module. The flowchart of planning modules is 

shown in Figure 6. 

Route 

Planning 

Behavioral 

Planning 

Motion 

Planning 
Vehicle 

Estimation 

Perception 
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3.4.2 Flowchart for Planning Modules for Autonomous Vehicles 

 
Figure 6: Flowchart of Planning Modules 

 

Given the best route provided by the route planner the behavioral planner determines the type 

of behavior the vehicle must possess in order to reach the destination. Path is a geometric 

trace the vehicle should follow without any obstacles. Therefore path planning is finding 

feasible and safe geometrical paths along the route that adheres to motion constraints such as 

boundary conditions, traffic, lanes and road. The high level characterization of vehicle motion 

with respect to speed and position of the vehicle is called maneuver. Considering the path 

vehicle has to follow, maneuver planning performs high-level decision making to have correct 

and safe vehicle behavior. Trajectory is a sequence of states possessed by the vehicle with 

respect to time, position and velocity. Trajectory planning performs the real-time planning of 

vehicle transition from one state to another based on vehicle dynamics and constraints [8]. 

The steps associated with the planning modules are: 

1. Finding the best possible route from one location to another  

2. Finding the behavior of the vehicle to navigate the selected route according to traffic 

rules and driving conventions. 

3. Finding  geometric path the vehicle must follow considering the vehicle motion model  

4. Finding feasible maneuver following  desired path based on vehicle speed & position 

5. Finding best trajectory to follow the geometric traces according to vehicle constraints 
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Path Planning Maneuver Planning 
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3.4.2.1 Route Planning 

At the higher hierarchy of decision making systems of autonomous vehicles route planning 

module must select most efficient route through the road network to the requested destination 

based on the current position of the vehicle. The route planning module generally solves the 

problem of graph search by constructing a graph from the road map data to find the fastest 

and safest route from the current location to the destination location. Several algorithms are 

available out of which A* and Djikstra algorithms are the most widely used algorithms for 

autonomous driving applications [9]. These algorithms are mainly used with AI (Artificial 

intelligence) due to its accuracy and fast re-routing of the planned route when there are 

abnormalities in the route such as obstacles, road construction, tree branch on the road etc.  

 

 
Figure 7: Route Planning 

 

3.4.2.2 Behavioral Planning 

After the route planning the autonomous vehicle must be able to navigate along the prescribed 

route by making interactions with other vehicles and the environment following the driving 

conventions and road regulations. The behavioral module is responsible for creating a feasible 

driving behavior at any time instance considering road conditions, traffic, signals etc. 

Autonomous driving with humanlike driving behavior is performed with interactions and 

interdependencies with the surroundings. This enables the vehicle to handle the uncertain 

environmental conditions.  The driving behaviors are modeled as finite state machine with 

transitions subjected to perceived driving context and the planned route [3] as shown in 

Figure 8. However in real world urban driving environments the uncertainty with respect to 

the intentions of traffic participants and environment has to be considered for a safe and 

reliable behavioral planning. 
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Figure 8: Behavioral Planning State diagram 

 

3.4.2.3 Motion Planning 

After the decision making of the driving behavior by the behavior module, motion planning 

module has to translate the planned behavior into a path, maneuver or trajectory than can be 

tracked by the controller to generate actuation commands. The resulting motion of the vehicle 

must avoid collisions, obstacles and provide safety and comfort to the occupants. The task of 

planning such a path or trajectory is performed by the motion planning system. The motion 

planning techniques are  

 

 Path Planning: Path is a geometric trace the vehicle should follow without any 

obstacles. Path planning is responsible for determining safe and comfortable 

geometrical paths along the route dealing with motion constraints such as traffic, 

lanes, pedestrians, road etc. 

 

 
Figure 9: Path Planning 
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 Maneuver Planning: The high level characterization of vehicle motion with respect to 

speed, position and orientation of the vehicle is called maneuver. Considering the 

planned path the vehicle has to follow, maneuver planning performs high-level 

decision making to have correct and safe vehicle behavior. 

 

 
Figure 10: Maneuver Planning 

 

 Trajectory Planning: Trajectory is a sequence of states possessed by the vehicle with 

respect to time, position, orientation and velocity. Trajectory planning performs the 

real-time planning of vehicle transition from one state to another based on vehicle 

dynamics and constraints. 

 

 
Figure 11 :Trajectory planning 
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3.5 Motion Control in Autonomous Driving 

The execution capability of autonomous systems is generally referred as motion control. 

Controlling is the process of converting decisions into actions. The main purpose of 

controlling is to execute the planned decisions into desired vehicle motion by providing the 

required inputs to hardware systems. Controlling maps the real world interactions in terms of 

torques, forces and brakes, whereas the planning algorithms are mostly concerned with 

position, orientation and velocities of the autonomous vehicle with respect to environment. 

System behavior can be determined by the measurements and computations of the control 

system, which enables the control system to reject disturbances by altering the dynamics of 

the system. 

3.6  Control Methodologies 

3.6.1 Feedback Control 

 
Figure 12: Feedback Control 

 

Feedback control is the most commonly used control methodology for many applications. 

Feedback control measures the disturbances between the output and reference signals to 

compensate the deviations from desired system behavior. Feedback control reduces the effect 

of unwanted disturbances, parameter changes and modelling errors [7]. It is capable of 

modifying the system behavior and the effects of noise. The drawback of feedback controller 

is the delayed response to errors. Feedback control responds to errors only when they occur. 

The most common feedback controllers used in trajectory control applications is PID 

(Proportional-Integral-Derivative) controller. Also other variants like PI (Proportional-

Integral) and PIP (Proportional-Integral-Plus) controllers are used for trajectory control for 

autonomous vehicles. PIP Controller has higher performance than PID because of more 

feedbacks. The major drawback of feedback control is its inability to handle the non-linear 

systems. Tuning of PID controllers is complex for MIMO systems. 
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3.6.2 Optimal Control 

 

 

Figure 13: Optimal Control 

 

The main objective of Optimal Control is to determine the optimal control input that drives 

the system from initial state to reference state. Optimal Control systems are MIMO control 

systems. The control problem includes the state and the control variables. The optimal control 

systems provides control inputs considering the model of the plant and calculates performance 

index based on the states of the plant. A plant is described as linear or non-linear 

mathematical equations. The current state of the plant is estimated using a state estimator and 

optimal control inputs are generated to make the plant operation to reach the desired state. 

The optimal control techniques used for trajectory control are LQR (Linear Quadratic 

Regulator) and LQG (Linear Quadratic Gaussian). For trajectory control applications, optimal 

control is not successful because of the following drawbacks. 

 Inability to handle plant nonlinearities 

 Lack of robustness 

 Inability to handle non-linear cost function  

 Constraint handling 

 

Trajectory control of autonomous vehicle depends on the dynamics of the vehicle. Since the 

dynamics of the vehicle is non-linear, optimal control systems are not robust for autonomous 

vehicle trajectory control.  
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3.6.3 Predictive Control 

 
Figure 14: Basic Structure of Predictive Control 

 

Predictive control is a control approach which uses the model of the plant for control 

execution. It predicts the change in model dependant variables. Based on the current state of 

the plant, it predicts the future states of the plant relying on the model behavior of the plant. 

Depending on predicted and curret state it generates control commands to have robust plant 

operation. The prediciton of states is performed by the optimizer depending on the constraint 

of the system and cost function. Predictive control simulates inputs at each time instant and 

selects the best resulting control commands in order to have robust system operation with 

respect to the reference [7]. It constantly reevaluaties the future states and predicts inputs over 

future horizon. Predicitve control is the most feasible control technique for trajectory control 

over other control techniques because of the following advantages  

 Better performance for nonlinear MIMO systems 

 Can handle constraints 

 Robust 

 Can handle non-linear cost functions 
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3.7 Control Framework for Predictive Control in Autonomous Vehicles 

 

Figure 15: Control Framework 

Maneuvers are assigned considering the environment and vehicle state. The trajectory 

planning system is responsible for processing the information from the maneuver planning 

module and environment recognition to plan appropriate trajectory to execute the defined 

maneuvers. The references, constraints and parameters needed for the controller formulation 

are taken into account for planning trajectories. The planned trajectory is used as a reference 

for the controller. The predictive controller produces actuations depending on the current state 

of the car and the predicted motion. The predictive controller is responsible for controlling the 

lateral and longitudinal motion of the vehicle. Based on the predicted motion of the 

autonomous vehicle by the motion prediction module the controller generates actuation 

commands at each time step. The prediction is dependent on the motion model of the vehicle. 

The motion models are mathematical differential equations representing the dynamics of the 

vehicle. More detailed modelling of the vehicle is necessary for accurate motion predictions. 

Predictive controllers are capable of handling both linear and non-linear models. The current 

position and orientation of the vehicle is used to depict the state of the vehicle to provide the 

state variables for the controller. At each prediction interval the predicted motion is selected 

according to reference trajectory.  
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4 Model Predictive Control 

Model predictive control was developed in the late 1960s and was mainly used in chemical 

and oil refinery industries [10]. Initially MPC was used for control applications for SISO 

(Single Input Single Output) systems that require low computations. The development of 

hardware that can handle complex computations enabled MPC to spread across other sectors 

[10]. One of the major aspects of adopting MPC was its design formulation for MIMO 

systems capable of handling multiple variables by controlling the performance parameters of 

the system. MIMO systems require fast optimizations to make the systems perform optimally. 

MPC performs optimization using specific optimization algorithms at each control interval to 

produce optimal control. With the rapid developments of computers and embedded devices 

with high computational power enabled the usage of MPC for systems with multiples states 

and variables [11]. MPC has the ability to handle constraints to limit the physical behavior of 

the systems. This is the main advantage of using MPC for dynamic systems. MPC tries to 

predict the future states of the plant using the current state and model of the plant. The 

optimizations are based on performance index or objective function. The MPC algorithm tries 

to generate control moves to minimize the objective function. The main advantages of MPC 

are 

 Explicit Constraint handling capability 

 Easy tuning of MIMO systems 

 Future predictions of system behavior 

 Ability to handle linear and non-linear dynamic models 

 Robustness 

 Online and offline optimization capability 
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4.1 MPC Structure 

 
Figure 16: MPC Structure 

The structure of MPC is given in Figure 16. Model predictive controller consists of three 

functional blocks. The optimizer uses optimization algorithms to find optimal control input 

u(t) trying to minimize the cost J without exceeding the constraints. The cost function J or 

control objective is a scalar criterion calculating the difference between the reference r(t) for 

controller and predicted future outputs of the plant [10]. Cost function is a measure of the 

plant behavior for next time steps which is called as prediction horizon (Refer Figure 17). The 

cost function is minimized for future control outputs estimating the future states of the plant. 

The prediction of future states x'(t) of the plant is done by state estimator using the current 

state x(t) of the plant.  The plant model is a set of mathematical equations describing the input 

and output behavior of the plant. The plant models can be linear or non-linear. For non-linear 

plant models the model has to be linearized and has to be represented in state space form to 

use it for MPC. Constraints are the limits for the controller to limit the controller outputs 

without exceeding the boundary conditions of the plant. MPC is a control technique that uses 

model of the plant to predict the future behavior until prediction horizon by generating control 

inputs satisfying the plant constraints and minimizing objective function. The computations 

that is necessary for predictions is performed by the optimizer. The optimization is carried out 

for each sample time. Each computation by the optimizer results with optimal control outputs 

until the prediction horizon. The prediction horizon shifts for every time step and hence it is 

also termed as receding horizon [11]. The main objective of the optimizer is to compute new 

control outputs u(t) at every time step, that will be used by the system to perform the 

necessary control operation.  
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Figure 17: MPC Illustration [11] 

 

The steps followed by MPC control algorithm are: 

1. At time k, use the plant model to predict N future states of the plant y(k+p), p=1…N 

2. Predict the future inputs u(k+j), j=0…N in order to reach the predicted states. 

3. Define a cost function based on output y and input u 

4. Optimize it with respect to constraints and future inputs u(k+j), j=0…N  

5. Apply the first step of previously predicted future inputs 

6. Repeat steps 1-5 for next sampling instance 

 

4.1.1 Plant Model 

The plant model is used to capture the dynamics of the plant in order to predict the future. 

More accurate representation of the dynamics of physical systems gives good future 

predictions. For MPC the plant model has to be a linear representation in state space form: 

 

ẋ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢, 

 

Where x is state variable, u is control signal, y is plant output and A, B, C, D are state space 

matrices. Discretization of the state space model gives 

 

𝑥(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘|𝑘)  



31 
 

where |k indicates the estimation at kth time instance 

4.1.1.1 Prediction Using State Space Model 

Considering the current state values of state space model the predictions of future 

states are performed for time step H (Prediction horizon). From linearization of state space 

model we know that 

𝑥(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘|𝑘) 

For state prediction of one time step ahead with time step H can be written as 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑥(𝑘 + 2) = 𝐴𝑥(𝑘 + 1) + 𝐵𝑢(𝑘 + 1) 

. 

. 

𝑥(𝑘 + 𝐻) = 𝐴𝑥(𝑘 + 𝐻 − 1) + 𝐵𝑢(𝑘 + 𝐻 − 1) 

For state prediction of n time steps ahead with time step H, the expression becomes 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑥(𝑘 + 2) = 𝐴2𝑥(𝑘) + 𝐴𝐵𝑢(𝑘) + 𝐵𝑢(𝑘 + 1) 

. 

. 

𝑥(𝑘 + 𝐻) = 𝐴𝐻𝑥(𝑘) + 𝐴𝐻−1𝐵𝑢(𝑘) + ⋯+ 𝐴𝐵𝑢(𝑘 + 𝐻 − 2) + 𝐵𝑢(𝑘 + 𝐻 − 1) 

Expressed in matrix form the equation becomes, 

[

𝑥(𝑘 + 1)

𝑥(𝑘 + 2)
⋮

𝑥(𝑘 + 𝐻)

] = [

𝐴
𝐴2

⋮
𝐴𝐻

] 𝑥(𝑘) + [

𝐵 0 … 0
𝐴𝐵 𝐵 … 0
⋮ ⋮ ⋱ ⋮

𝐴𝐻−1𝐵 𝐴𝐻−2𝐵 … 𝐵

] [

𝑢(𝑘)

𝑢(𝑘 + 1)
⋮

𝑢(𝑘 + 𝐻 − 1)

] 

4.1.2 Cost Function 

The cost function J or control objective is a mathematical optimization method. During the 

optimization of a control problem the optimizer tries to minimize the cost function to find the 

best solution for the control problem. It is dependent on several variables and can be subjected 

to the constraints of the plant. The objective of a controller is to minimize or eliminate the 

errors between output y and reference by performing appropriate selection of inputs u. For 

MPC the most generally used cost function is in quadratic equation form where P and Q are 

the weights for penalizing the cost function. 
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𝐽 =  ∑{𝑃(𝑥𝑖 − 𝑥𝑟𝑒𝑓)
2 + 𝑄(𝑢𝑖 − 𝑢𝑟𝑒𝑓)

2}

𝐻

𝑖=1

   

4.1.3 Constraints 

Constraints are the limits for controller output and state variables to have feasible 

controller behavior avoiding abnormality. Constraints are physical limitations of the plant to 

operate in a desirable manner. Constraints are classified as 

1. Soft Constraints: These are the constraints where exceeding the limits have no 

significant impact on the controller performance and plant behavior. 

2. Hard Constraints: There are the constraints where exceeding the limits have strong 

impact on the controller creating unfeasible plant behavior. 

The types of constraints are 

 Input amplitude constraints: 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 

 Input rate constraints: 𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢𝑘 ≤ 𝛥𝑢𝑚𝑎𝑥 

 Output constraints: 𝑦𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑦𝑚𝑎𝑥 

 

4.1.4 Optimizer 

Using the cost function formulation, constraints and the state space model of the 

plant the optimizer performs computations to predict the future control signal that are 

responsible for the future states. At each time step the computations are performed and 

it is important to ensure that the predictions are made as accurate as possible. 

Optimization is of two standard forms: 

 Quadratic Programming (QP): QP optimization is used when plant model 

dynamics are linear with linear constraints and quadratic cost function.  

 Linear Programming (LP): LP optimization is used for linear and non-linear 

plant models with linear cost function and linear constraints. 

 

4.1.5 State Estimator 

The MPC controls the plant model by optimizing the plant input to avoid the 

deviation from the current state of the plant and the predicted state. A robust control of 

the plant can be achieved if the predicted future states are accurate. Modelling errors 

and unknown disturbances can create inaccuracy in predictions. It is necessary to 

update the plant model at each time step for good predictions of the future plant 
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behavior. The updating of the plant model is executed by state estimator. Kalman 

filters are typically used for state estimations for MPC [12]. 

 

4.2 MPC for Autonomous Vehicles 

Autonomous vehicles depend on control systems for reliable motion control. MPC is 

used in both motion planning and motion control applications for autonomous driving. MPC 

is used for motion planning to compute collision and obstacle avoiding trajectories [13]. For 

motion control applications MPC is used to follow the reference trajectories by predicting 

future trajectories. This section presents the applications of MPC for trajectory Planning and 

trajectory control.  

 

4.2.1 MPC Control framework for Trajectory planning and control 

 

 

Hierarchical framework design approach is used for the control framework for 

autonomous driving to separate the planning and control sections. MPC uses a simplified 

vehicle models to generate the feasible trajectories that can be used as a reference for 

controller. Another MPC is used for trajectory control at the control level. This approach is 

MPC based trajectory planning 
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used where MPC predictions are desired to use for both planning and control of the vehicle. 

For systems with separate planning algorithms, MPC can only be used for controlling the 

vehicle trajectory [14]. The current vehicle state is used for both planning and control. The 

MPC based motion planning considers the reference signal, for example constant speed 

profile for trajectory generation. The MPC based motion planner uses the predictive approach 

for future trajectory predictions based on the objective function to generate the reference 

trajectory for the controller. This reference trajectory is used by the controller to compute 

optimal control inputs such as acceleration and braking to control the motion of vehicle. The 

acceleration inputs are used to create braking torques that has to be exerted on the vehicle 

wheels. The steering angle input is used by the vehicle directly. The advantage of this 

approach is it enables to formulate unique constraints and objective functions separately for 

planning and control. Less complex vehicle models can be used for trajectory planning 

reducing the computational effort irrespective of the vehicle model for the controlling part.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

5 Vehicle Models 

The most important aspect of MPC is the model of the vehicle that is used to predict the 

future states of the vehicle. The first step is to represent the model in mathematical form and 

then use it for simulation to simulate the behavior of vehicle and evaluate the performance of 

the controller for the developed vehicle model. The designing of the controller is mainly 

dependent on the quality of vehicle models. Vehicle models must describe the real behavior of 

the vehicle as close as possible. Higher the complexity in modelling of vehicle models, higher 

the accuracy in predictions. A good vehicle model represents the dynamics of the vehicle 

closer to reality and reduces the complexity in using it for simulation. It is important to 

consider the lateral and longitudinal dynamics of the vehicle for modelling to represent the 

vehicle closer to reality. During high dynamic maneuvers the lateral and longitudinal 

dynamics have significant effect related to vehicle motion. It becomes more apparent to 

consider the dynamics of maneuvers with high speed profiles [15]. For trajectory control it is 

very crucial to include the lateral and longitudinal dynamics satisfying the constraints and 

other limitations of the vehicle. There are several vehicle models depicting different driving 

behavior of vehicle. The vehicle model complexity varies depending on the purpose of the 

vehicle model and availability of information related to vehicle state. There are several 

modelling approaches considering motor dynamics, brake dynamics and motion dynamics. 

Since trajectory control is mainly concerned with the motion of vehicle, in this thesis the 

modelling is done with only the vehicle motion dynamics. The most popular model to 

describe the vehicle dynamics of the vehicle is a single track model, also termed as bicycle 

model [16]. A bicycle model is a simplified model of a vehicle four wheel model, where the 

front and rear tires are assumed to have equal behavior. The front and rear tires are merged to 

represent a single front and single rear tire as shown in Figure 18. The vehicle is assumed to 

be a rigid body with vehicle mass acting on the Centre of Gravity (CoG).  

 

Figure 18: Four wheel model to Bicycle model 
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5.1 Co-ordinate Systems 

 
Figure 19: Illustration of Coordinate System 

Figure 19 shows the illustration of coordinate systems. X and Y are the position of the car in 

global frame. X' and Y' represents the position with respect the vehicle frame. Ψ is the 

orientation of the vehicle and v is the velocity of the vehicle in a fixed vehicle coordinate 

systems.  

State of the vehicle in global coordinate can be represented as  

ξ=[X,Y,ψ,v] 

State of the vehicle in vehicle coordinate can be represented as  

ξ=[x',y',ψ,v] 

 

5.2 Linear Models 

Linear models are used for linear systems where the relationship between the inputs and 

outputs of the system are linear. Let us assume a system with input x1(t) produces output y1(t), 

similarly x2(t) gives output y2(t). The summed response of inputs x1(t) + x2(t) produces the 

output y1(t) + y2(t). Applying the input x1(t) for a system with time t gives the output of y1(t), 

similarly the input applied for k time steps x(t-k) produces identical output with time delay of 

k seconds y(t-k). The general form of representing linear systems is 

𝑥′ = 𝐴𝑥 + 𝐵𝑢 

Where x represents the states of the model and u is the control input. Liner models are not 

preferred for vehicle modelling because motion control systems are nonlinear and linear 

models do not describe the behavior accurately.  
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5.2.1 Point Mass Model 

Point mass model is a linear model used to represent the vehicle behavior. The vehicle is a 

single point mass ignoring all the dynamics of the vehicle. For point mass models the vehicle 

is always considered to be moving straight. The global coordinates is used for modeling 

vehicle motion.  

 
Figure 20: Point Mass Model 

The motion equations for point mass model is represented as  

𝑥′ = 𝑣𝑥 

𝑦′ = 𝑣𝑦 

𝑣𝑥′ = 𝑎𝑥 

𝑣𝑦′ = 𝑎𝑦 

Where, 

x : longitudinal position of the vehicle in x direction 

y : lateral position of the vehicle in y direction 

vx & vy : lateral and longitudinal velocity  

ax & ay : lateral and longitudinal acceleration  

5.3 Nonlinear Models 

Nonlinear models are used for dynamic systems where the system states are nonlinear. The 

state variables of nonlinear models are not linear independent components. Nonlinear models 

are usually represented by differential or partial differential equations. The vehicle motion 

dynamics are nonlinear and hence nonlinear models represent the vehicle motion behavior 

more realistically. In general nonlinear systems are described by the differential equation, 

𝑥′ = 𝑓(𝑥, 𝑢, 𝑡) 

The dynamics of nonlinear systems are represented in state space form for 

linearization. State space representation is the depiction of model dynamics as a set of 

vx 

X 

Y 

vy 
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variables. These set of variables are a set of differential equations called as state variables that 

completely describe the response of the model for any set of inputs.      

 

5.3.1 State equations 

For nonlinear systems with multiples states and multiple inputs the nonlinear differentials 

equations are represented as state equations. Consider a nonlinear system with state variables 

x1(t), x2(t),....., xn(t) and  inputs of u1(t), u2(t),....., un(t). The state equations are defined as: 

𝑥′
1 = 𝑓1(𝑥, 𝑢, 𝑡) 

𝑥′
2 = 𝑓2(𝑥, 𝑢, 𝑡) 

⋮ 

𝑥′
𝑛 = 𝑓𝑛(𝑥, 𝑢, 𝑡) 

Where fi(x,u,t) and 𝑥′
i=dxi/dt, i=1,2....n is a nonlinear function representing states, inputs and 

time. ẋi The state equation in vector form is 

𝑥′ = 𝑓1(𝑥, 𝑢, 𝑡) 

𝑦 = ℎ(𝑥, 𝑢, 𝑡) 

The linearized state space representation is of the form 

𝑥′ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

Where, states x={x1(t), x2(t),....., xn(t)}, inputs u={u1(t), u2(t),....., uq(t)}, output vector y= 

{y1(t), y2(t),....., ym(t)} and A,B and C are filter matrices of size m* n. 

 

 
Figure 21: State Space Model 
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5.3.2 Kinematic Bicycle Model 

The kinematic model is based on kinematic relationships of the vehicle. The kinematic model 

do not consider vehicle dynamics like mass, inertia, forces, roll, pitch and yaw of a vehicle. It 

assumes that the vehicle comply perfectly to the road. It performs well for low speed profiles. 

Kinematic models represent better realistic behavior than point mass models because of the 

consideration of side slip angle during modelling. Using bicycle model for modeling 

kinematic vehicle behavior has the advantage of reducing the states of the vehicle than a four 

wheel vehicle model. Kinematic models are modelled based on the geometry of the vehicle. 

Kinematic bicycle models are generally used for trajectory planning and control of the vehicle 

[1].  

 

 

Figure 22: Kinematic Bicycle Model 

 

The nonlinear equations describing the kinematics of the vehicle in global frame is given by 

𝑥′ = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽) 

𝑦′ = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽) 

𝜓′ =
𝑣

𝑙𝑟
sin (𝛽) 

𝑣′ = 𝑎 

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan (𝛿)) 
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For constant speed profiles the side slip angle of the vehicle is neglected and the simplified 

model equations are given by  

𝑥′ = 𝑣𝑐𝑜𝑠(𝜓) 

𝑦′ = 𝑣𝑠𝑖𝑛(𝜓) 

𝜓′ =
𝑣

𝑙𝑟 + 𝑙𝑓
tan(𝛿) 

𝑣′ = 𝑎 

The state of the model are ξ= [x y θ v] and control inputs u =[ 𝛿 𝑎] 

Where,  

x and y: coordinates of center of mass in global frame (m) 

𝜓 : Vehicle heading angle (rad) 

v : Vehicle Speed (m/s) 

a : Acceleration (m/s
2
) 

β : Vehicle Side Slip angle 

δ : Steering angle (rad) 

lf & lf : Distance between center of mass to front and rear axle (m)  

 

5.3.3 Dynamic Bicycle Model 

The dynamic vehicle model is based on vehicle dynamics including yaw, pitch, roll, mass, 

forces etc. It also includes tire model to take account of the tire forces. The dynamic models 

are modelled based on Newton’s second low of motion including vehicle forces. Dynamic 

models replicate the vehicle behavior close to reality than kinematic and point mass models 

[17]. Dynamic models are highly nonlinear due to the fact of including the tire forces. Tire 

models like nonlinear Pacejka model is used for the modelling of dynamic model. However 

linear dynamic models are used to reduce the modelling complexity using the linear tire 

models where the tire behavior is in the linear region. It constraints the tire slip angles to keep 

the tire behavior in linear region making the vehicle modelling valid and reducing the 

complexity for linearization [16]. The tire dynamics increases the vehicle states and has less 

effect on the model accuracy. For trajectory control the vehicle dynamics with longitudinal, 

lateral motions at vehicle center of mass with lateral and longitudinal tire forces are 

considered for modelling to reduce the linearization complexity for MPC controllers.  
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Figure 23: Dynamic Bicycle Model 

The nonlinear equations describing the dynamics of the vehicle is derived by using Newton‘s 

second law of motion along Y-axis. 

 

𝛴(𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑎𝑙𝑜𝑛𝑔 𝑦 − 𝑎𝑥𝑖𝑠) = 𝑚𝑎𝑦 

 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟 = 𝑚𝑎𝑦 (1) 

 

Where, m is the mass of the vehicle, 𝑎𝑦 is the vehicle acceleration along Y-axis. The lateral 

acceleration is due to centripetal acceleration and acceleration due to vehicle motion. Hence, 

 

 𝑎𝑦 = 𝑦′′ + 𝑣𝑥𝜓′ (2) 

Substitute (2) in (1)  

 

The sideslip angle of the vehicle is given by 𝛽 =
𝑦′

𝑣𝑥
 and therefore (3) becomes 

 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟 = 𝑚𝑣𝑥(𝛽′ + 𝜓′) (4) 
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Considering the moment M and inertia I acting on the vehicle, the total moment at the center 

of mass is given by 

 

 𝛴𝑀 = 𝐼𝜓′′ − 2𝐹𝑦𝑓𝑙𝑓 + 2𝐹𝑦𝑟𝑙𝑟 = 0  

 𝐼𝜓′′ = 2𝐹𝑦𝑓𝑙𝑓 − 2𝐹𝑦𝑟𝑙𝑟  

 

Similarly applying Newton’s law of motion on X-axis we get 

 

 𝑚𝑥′′ = 𝑚𝑦′𝜓′ + 2𝐹𝑥𝑓 + 2𝐹𝑥𝑟  

 𝑚𝑦′′ = −𝑚𝑥′𝜓′ + 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟  

Where, 

 x & y : Position of vehicle in vehicle coordinates (m) 

 ψ: Vehicle yaw angle in global frame (rad) 

 m: total mass of vehicle (kg) 

 I: Vehicle inertia (kg m
2
) 

 Fxf  & Fxr : longitudinal tire forces of front and rear tires along x-axis (N) 

 Fyf  & Fyr : lateral tire forces of front and rear tire along y-axis (N) 

lf & lf : Distance between center of mass to front and rear axle (m) 

  

From kinematic modelling (5.3.2) we know that the equations for vehicle motion in global 

frame is given by 

𝑋′ = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽) 

𝑌′ = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽) 

Expanding the equations we get 

 

𝑋′ = 𝑣𝑐𝑜𝑠(𝛽) ∗ 𝑐𝑜𝑠(𝜓) − 𝑣𝑠𝑖𝑛(𝛽) ∗ sin (𝜓) 

𝑌′ = 𝑣𝑐𝑜𝑠(𝛽) ∗ 𝑠𝑖𝑛(𝜓) + 𝑣𝑠𝑖𝑛(𝛽) ∗ cos (𝜓) 

 

Writing vehicle’s velocity in terms of longitudinal & lateral velocity i.e  𝑥′ = 𝑣𝑐𝑜𝑠(𝛽) and 

 𝑦′ = 𝑣𝑠𝑖𝑛(𝛽) the equations for motion becomes 

 

𝑋′ = 𝑥′ cos(𝜓) − 𝑦′sin (𝜓) 

𝑌′ = 𝑥′ cos(𝜓) − 𝑦′sin (𝜓) 

 

The forces acting on the center of mass is given by 
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𝐹𝑥 = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 

𝐹𝑦 = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 

 

The x and y components of tires forces are given by 

 

𝐹𝑥𝑓 = 𝐹𝑙𝑓 cos(𝛿) − 𝐹𝑐𝑓𝑠𝑖𝑛(𝛿) 

𝐹𝑦𝑓 = 𝐹𝑙𝑓 sin(𝛿) − 𝐹𝑐𝑓𝑐𝑜𝑠(𝛿) 

 

According to nonlinear pacejka tire model [18] 

 

𝐹𝑙 = 𝑓(𝛼, 𝜇, 𝑠, 𝐹𝑧) 

𝐹𝑐 = 𝑓(𝛼, 𝜇, 𝑠, 𝐹𝑧) 

 

Where, α is tire slip angle, it is the angle between the vehicle wheel and direction of velocity 

as shown in Figure 24, μ is road friction coefficient, s is the slip ratio and Fz is the vertical 

load on the wheels. Assuming the slip ratio, friction coefficient and load to be zero then 

longitudinal tire forces can be calculated as 

 

𝐹𝑙𝑓 =
𝑇𝑏𝑓

𝑟
 

 

𝐹𝑙𝑟 =
𝑇𝑏𝑟

𝑟
 

 

 
Figure 24: Tire Model 

Where, Tbf and Tbr are brake torques and r is wheel radius. According to linear pacejka model 

for small slip angles the lateral tires forces is proportional to and cornering stiffness of the 

wheel [18]. Hence the lateral tire forces are 

α 

v 
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𝐹𝑐𝑓 = 𝛼𝑓𝐶𝑓 

𝐹𝑐𝑟 = 𝛼𝑟𝐶𝑟 

 

Where, αf and αr are front and rear tire slip angle, Cf and Cr are front and rear tire cornering 

stiffness 

 

The state of the vehicle for dynamic vehicle model is 

 

𝜉 = [𝑋, 𝑌, 𝜓, 𝑣] 

 

Where, X and Y is the position of vehicle in global coordinates, ψ is the yaw angle and v is 

velocity of the vehicle 

 

The control inputs for the dynamic model are 

 

𝑢 = [𝛿, 𝑇𝑏𝑓 , 𝑇𝑏𝑟] 

 

Where, δ is steering angle of vehicle and Tbf and Tbr are front and rear brake torques. 
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6 MPC for Trajectory Control during High 

Dynamic Maneuvers 

6.1 High Dynamic Maneuvers 

Maneuver is the characterization of the vehicle motion with respect to speed, position and 

orientation. Dynamic maneuvers are the maneuvers where the motion of vehicle has impact 

on the vehicle dynamics creating discomfort and also affecting the occupant safety.  

Autonomous cars are subjected to dynamic environments where the car has to navigate during 

dynamic scenarios without disrupting safety and traffic regulations. High dynamic maneuvers 

are such maneuvers where the lateral and longitudinal vehicle dynamics such as speed, yaw, 

pitch and roll have significant effect on vehicle motion [19]. The maneuvers with high vehicle 

speed and extreme cornering scenarios producing rapidly varying steering control of the car 

are high dynamic maneuvers. During these maneuvers the resulting forces acting on the car 

produces jerk affecting passenger comfort and leads to motion sickness [20]. The 

acceleration, steering and braking for such maneuvers generates lateral and longitudinal 

forces. Advanced suspension and chassis functions are used to mitigate these forces. In this 

thesis the focus is mainly on creating high dynamic maneuvers for simulation and test the 

performance of MPC for high dynamic maneuvers. The high dynamic maneuvers considered 

are Slalom maneuver, Lane change maneuver and Steady circle maneuver. 

 Slalom Maneuver: The slalom maneuver consists of traffic cones line up, 

seperated by equal distance. The vehicle is driven between the cones with a 

constant speed. 

 Lane Change Maneuver: The lane change maneuver consists of an entry lane, 

side lane and exit lane, the vehicle is driven through the cones of entry lane, 

then changing the lane into the side lane of specific distance and then going 

into the exit lane. 

 Steady Circle Maneuver: The vehicle is driven with a constant speed in a 

steady circle of specific circular diameter. 
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6.2 System Architecture 

 
Figure 25: System Architecture 

The system architecture for MPC based trajectory control for high dynamic maneuvers is as 

shown in Figure 25. It consists of Perception, planning and control modules. The perception 

module gives the information regarding the current state of the car. The state variables include 

position of the car in global coordinates, speed of the vehicle and orientation. The ego vehicle 

position is used by the planning module for generation of target waypoints for the controller. 

The planning module uses the predefined map data of maneuver profiles. Using the map data 

and locating the current position of the vehicle available from the perception module, the 

waypoints are generated. Before starting the simulation the maneuver for which the trajectory 

control has to be selected. Different maneuver specific maps are preloaded when the system 

model is initialized.   The map data consists of the data related to position in x and y direction 

in global frame, heading angle and velocity to have perfect maneuvers. This map data is used 

to generate waypoints of equal gap. Knowing the ego position of the vehicle in global frame, 

the corresponding nearest waypoint in the map is detected. The eucledian distance between 

the current state of the car and all the waypoints is calculated. The minimum of all the 

distances provides the nearest waypoint in the map. From this detected waypoint in the map 
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the next available waypoints are used as reference waypoints for the controller. MPC 

controller uses the mathematical vehicle model replicating the realistic behavior of the 

vehicle. The actual vehicle initial condition and the mathematical model initial conditions 

must be same before the simulation. The MPC controller also uses the current ego position of 

the vehicle and reference waypoints from the planning module to predict the future states of 

the car. The mathematical model is linearized to state space model for MPC to make future 

predictions. Also the constraints for the input and state variables must be specified before the 

simulation. The errors related to the position, orientation and velocities between the ego 

vehicle state and the target waypoints are used to formulate the cost function. Using the 

discretized vehicle model, constraints and cost function the optimizer performs computations 

to find the optimal control output to reach the target waypoints. Based on the prediction 

horizon of the controller, i.e the number of time steps in future the MPC predictions must be 

done for possible control values responsible for future vehicle states. Out of these predictions 

the control output with minimum cost is used for actuations. These actuations make the 

vehicle move toward the target waypoint. MPC makes predictions at each time step to 

produce optimal control signals to have best trajectory motion of the vehicle for the defined 

maneuver. The controller performance is tested for kinematic and dynamic vehicle models. 

The controller outputs differ with respect to the vehicle model used.  

 

6.2.1 Perception 

In reality sensors, cameras and other sensing devices are used for perception. In this 

thesis the simulation is performed in a simulation environment and hence state of the vehicle 

is extracted from the simulation environment creating an interface between the system model 

and the simulation model.  

 

6.2.2 Map Based Trajectory Planning 

6.2.2.1 Map data 

The main focus of the thesis is to develop MPC for trajectory control and hence no 

route and maneuver planning algorithms are used for planning. The high dynamic maneuvers 

with accurate maneuver behaviors are simulated in CarMaker simulation environment without 

the controller. This maneuver data is extracted to use for trajectory planning. The path and 

maneuver is not generated, instead the predefined maneuvers available in CarMaker 

simulation environment is used. The high dynamic maneuvers are simulated in CarMaker 
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using the inbuilt vehicle model in CarMaker capable of making accurate maneuvers for the 

given road profiles. The vehicle position, heading angle and velocities are recorded and stored 

in a form of matrix in a matfile to use it for waypoint generation. The map data consists of the 

vehicle coordinates namely global vehicle position (X, Y), heading angle (ψ) and velocity (v) 

that is recorded at each sampling time of the simulation in CarMaker. 

 

6.2.2.2 Waypoint Generation 

 

Figure 26: Maneuver to Waypoints 

 

The maneuver data from the map is used to generate waypoints of equal gap to be used for 

trajectory planning. The vehicle coordinates from the map is used to generate waypoints, each 

waypoint is a state vector [X, Y, ψ, v]. The waypoint generation is done in two steps, first the 

coordinates of the vehicle for the maneuver to follow is detected depending on the selected 

maneuver for the simulation. Secondly the waypoint calculation is performed and equally 

spaced according to the predefined maneuver data that is available from the map data. The 

distance vector of X and Y co-ordinates of the map data is calculated and interpolation is 

performed for equal gap size. The generated waypoints are stored in the form of a matrix and 

later used for the calculation of target trajectory waypoints. The flowchart for waypoint 

generation is shown in Figure 27. 
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Figure 27: Waypoint Generation Flowchart 
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6.2.2.3 Trajectory Waypoints  

The ego position of the vehicle along with the generated waypoints from the map data is used 

for target trajectory waypoints. Based on the current state of the car from perception is used to 

calculate the euclidean distance between the current ego position and the generated waypoints 

and stored in a matrix. The minimum of calculated distances is selected and the responsible 

corresponding waypoint in the generated waypoints matrix is used. From the selected 

waypoint a specific number of target waypoints in the generated waypoint matrix is used as 

target waypoints required for the controller. In this thesis we use 5 target waypoints that will 

be used as reference by the controller. The focus of thesis is trajectory control using MPC and 

hence basic approach is followed for calculating target trajectory waypoints. The flowchart 

for Trajectory waypoint calculation is in fig 

 

 
Figure 28: Target Trajectory Waypoints 
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Figure 29: Flowchart of Target Waypoints Generation 

 

 

Start  

Load generated 

waypoints matrix 

Update the Ego 

Vehicle Position 

Calculate 

Euclidean 

distance 

Choose waypoint 

corresponding to 

min distance 

Specify number of 

target waypoints 

If num<2 

Number of 

waypoints 

must be more 

than 2 

Generate target 

waypoints 

Stop  

Yes 

No 



52 
 

6.2.3 Model Predictive Controller for Trajectory Control 

6.2.3.1 Errors used to formulate Cost function 

 Cross Track Error (Cte): The difference between the ego vehicle position and the 

reference track is called cross track error. 

𝐶𝑡𝑒 = [(𝑥𝑣, 𝑦𝑣) − (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓)] 

Where,  

xv & yv : Ego vehicle position in x and y directions 

xref & yref : Reference position in x and y directions 

  

 
Figure 30: Cross Track Error 

 

 Heading Angle Error (eψ): The error between the vehicle heading angle and reference 

heading angle is called heading angle error. 

𝑒𝜓 = 𝜓𝑣 − 𝜓𝑟𝑒𝑓 

Where,  

 ψv : Vehicle heading angle 

 ψref : Reference heading angle 

 

 
Figure 31: Heading Angle Error 

 

 Velocity Error (ev): Difference between vehicle velocity and reference velocity 

𝑒𝑣 = 𝑣 − 𝑣𝑟𝑒𝑓 

Cross Track Error 

Reference  

Heading Angle Error 

Reference  
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6.2.3.2 MPC for Kinematic Vehicle Model 

Recall the kinematic vehicle model equations from section 5.3.2 

𝑥′ = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽) 

𝑦′ = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽) 

𝜓′ =
𝑣

𝑙𝑟
sin (𝛽) 

𝑣′ = 𝑎 

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan (𝛿)) 

 

Written as ξ
'
=f(ξ,u,) where ξ = [x, y, ψ, v] is the state vector. x and y are position coordinates 

of the vehicle in x and y direction in global frame. Ψ is the heading angle of the car and v is 

velocity. The control inputs u = [a, δ], a is vehicle acceleration and δ is steering angle. 

Including the errors in the state vector, ξ= [ x, y, ψ, v, Cte, eψ, ev] where Cte is cross track 

error, eψ is heading angle error and ev is the velocity error. 

 

The cost function is formulated as 

 

𝐽 = ∑𝑤𝐶𝑡𝑒(𝐶𝑡𝑒)2 + 𝑤𝑒𝜓(𝑒𝜓)2 + 𝑤𝑒𝑣(𝑒𝑣)2

𝐻

𝑖=1

 

 

Where, w is the weights used for penalizing the cost function and H is the prediction horizon 

 

Constrains for MPC with kinematic model are the inputs for the vehicle model, i.e steering 

angle (δ) and acceleration (a) and rate of change of these inputs.  

 

𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥 

𝛥𝛿𝑚𝑖𝑛 ≤ 𝛥𝛿 ≤ 𝛥𝛿𝑚𝑎𝑥 

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥 

𝛥𝑎𝑚𝑖𝑛 ≤ 𝛥𝑎 ≤ 𝛥𝑎𝑚𝑎𝑥 

 

Representing vehicle state in state space form  

𝜉𝑖
𝑘+1 = 𝐴𝜉𝑖

𝑘 + 𝐵𝑢𝑖
𝑘 
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Where k is the total number of time steps, A and B are state space matrices 

MPC controller is formulated as 

 

min 𝐽𝑖(𝜉𝑖, 𝑢𝑖) ∀𝑖 ∈ [0, . . . . , 𝐻] 

𝜉𝑖 = [𝑥𝑖 , 𝑦𝑖, 𝜓𝑖,𝑣𝑖 , 𝐶𝑡𝑒𝑖, 𝑒𝜓𝑖, 𝑒𝑣𝑖] 

𝑢𝑖 = [𝑎𝑖, 𝛿𝑖] 

 

Where, ξ is state vector, u is input vector and H is prediction horizon 

 
Figure 32:Structure MPC with Kinematic Model 
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6.2.3.3 MPC for Dynamic Model 

Recalling the equations of dynamic vehicle model from section 5.3.3 

 

𝑋′ = 𝑥′ cos(𝜓) − 𝑦′sin (𝜓) 

𝑌′ = 𝑥′ cos(𝜓) − 𝑦′sin (𝜓) 

𝑚𝑥′′ = 𝑚𝑦′𝜓′ + 2𝐹𝑥𝑓 + 2𝐹𝑥𝑟 

𝑚𝑦′′ = −𝑚𝑥′𝜓′ + 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟 

𝐼𝜓′′ = 2𝐹𝑦𝑓𝑙𝑓 − 2𝐹𝑦𝑟𝑙𝑟 

 

Where, X and Y are position coordinates of the vehicle in X and Y direction in global frame. 

Ψ is the heading angle of the car, x' is longitudinal velocity and y' is lateral velocity of the 

vehicle. Written as ξ
'
=f(ξ,u,) The control inputs u = [Tbf, Tbr, δ], Tbf  is brake torque of front 

wheel, Tbr is brake torque of rear wheel and δ is steering angle. Including the errors in the 

state vector, ξ= [ X, Y, ψ, v, Cte, eψ, ev] where Cte is cross track error, eψ is heading angle 

error and ev is the velocity error.  

The cost function is formulation is same as the cost function used for kinematic model since 

we are using errors for optimization, which is 

 

𝐽 = ∑𝑤𝐶𝑡𝑒(𝐶𝑡𝑒)2 + 𝑤𝑒𝜓(𝑒𝜓)2 + 𝑤𝑒𝑣(𝑒𝑣)2

𝐻

𝑖=1

 

 

Where, w is the weights used for penalizing the cost function and H is the prediction horizon. 

 

Constrains for MPC with dynamic model are the inputs for vehicle model, i.e. steering angle 

(δ) and Brake torque of front wheel (Tbf ), brake torque of rear wheel (Tbr ) and rate of change 

of these inputs.  

 

𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥 

𝛥𝛿𝑚𝑖𝑛 ≤ 𝛥𝛿 ≤ 𝛥𝛿𝑚𝑎𝑥 

𝑇𝑏𝑓𝑚𝑖𝑛
≤ 𝑇𝑏𝑓 ≤ 𝑇𝑏𝑓𝑚𝑎𝑥

 

𝛥𝑇𝑏𝑓𝑚𝑖𝑛
≤ 𝛥𝑇𝑏𝑓 ≤ 𝛥𝑇𝑏𝑓𝑚𝑎𝑥

 

𝑇𝑏𝑟𝑚𝑖𝑛
≤ 𝑇𝑏𝑟 ≤ 𝑇𝑏𝑟𝑚𝑎𝑥

 

𝛥𝑇𝑏𝑟𝑚𝑖𝑛
≤ 𝛥𝑇𝑏𝑟 ≤ 𝛥𝑇𝑏𝑟𝑚𝑎𝑥
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Representing vehicle state in state space form  

 

𝜉𝑖
𝑘+1 = 𝐴𝜉𝑖

𝑘 + 𝐵𝑢𝑖
𝑘 

 

Where k is the total number of time steps, A and B are state space matrices 

 

MPC controller is formulated as 

 

min 𝐽𝑖(𝜉𝑖, 𝑢𝑖) ∀𝑖 ∈ [0, . . . . , 𝐻] 

𝜉𝑖 = [𝑥𝑖 , 𝑦𝑖, 𝜓𝑖,𝑣𝑖 , 𝐶𝑡𝑒𝑖, 𝑒𝜓𝑖, 𝑒𝑣𝑖] 

𝑢𝑖 = [𝑇𝑏𝑟𝑖
, 𝑇𝑏𝑟𝑖

, 𝛿𝑖] 

 

Where, ξ is state vector, u is input vector and H is prediction horizon. 

 

 

Figure 33: Structure of MPC with Dynamic Model 
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6.2.3.4 QP Solver 

The optimizer used for MPC is QP solver which is the default optimizer for MPC in 

MATLAB Simulink. The optimization is carried out at each sampling time and it is 

computationally expensive. To reduce the complexity the vehicle model and constraints are 

linearized.  

min
𝑢

∑ 𝜉𝑖
𝑇𝑄𝜉𝑖 + 𝑢𝑖

𝑇

𝐻−1

𝑖=1

𝑅𝑢𝑖 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜉𝑖+1 = 𝐴𝜉𝑖 + 𝐵𝑢𝑖 

 

Where, Q and R are state weight and control weight matrices. The vehicle models used are 

non-linear and hence it must be linearized. The linearization is done by the MPC controller 

itself. The linearized model is given by 

 

𝜉𝑖+1 = 𝐴𝑖𝜉𝑖 + 𝐵𝑖𝑢𝑖 

 

𝐴𝑖 =
𝜕𝑓(𝜉, 𝑢)

𝜕𝜉
|𝜉=𝜉𝑟𝑖,𝑢=𝑢𝑟𝑖

 

𝐵𝑖 =
𝜕𝑓(𝜉, 𝑢)

𝜕𝑢
|𝜉=𝜉𝑟𝑖,𝑢=𝑢𝑟𝑖

 

 

Where, ξri and uri are the reference for state and control signals. Until now the minimization of 

ξ and u was carried out.  The minimization of the errors between actual state, control signals 

and their references is formulated as 

 

min
𝑢

∑ 𝜉𝑖
𝑇𝑄𝜉𝑖 + �̃�𝑖

𝑇

𝐻−1

𝑖=1

𝑅�̃�𝑖 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜉𝑖+1 = 𝐴𝜉𝑖 + 𝐵�̃�𝑖   

𝜉𝑖 = 𝜉𝑖 − 𝜉𝑟𝑒𝑓𝑖 

�̃�𝑖 = 𝑢𝑖 − 𝑢𝑟𝑒𝑓 

 

The optimization of the above formulation is solved as a QP (Quadratic problem) since the 

cost function for our MPC is a quadratic equation. And hence the default solver available with 

MPC in Simulink was considered. The general QP problem is of the form [21], 

 

min
𝑢

1

2
𝑢𝑇 𝐻𝑢 + 𝑓𝑇𝑢 
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Since we want to minimize the errors between the actual state and the reference, the QP 

formulation becomes 

min
𝑢

1

2
�̃�𝑇 𝐻�̃� + 𝑓𝑇�̃� 

 

In order to consider the cost function formulation in the above form let us consider two 

vectors as below, 

 

𝜉̅(𝑖 + 1) =

[
 
 
 
 
𝜉𝑖+1|𝑖

𝜉𝑖+2|𝑖

⋮
𝜉𝑖+𝐻|𝑖]

 
 
 
 

 

  

�̅�(𝑖) =

[
 
 
 

�̃�𝑖|𝑖

�̃�𝑖+1|𝑖

⋮
�̃�𝑖+𝐻−1|𝑖]

 
 
 

 

 

Where, i+H|i indicates the estimated value at sampling instance i+1 that is predicted at 

instance i. Using the vectors cost function can be formulated as, 

 

𝐽 = 𝜉̅𝑇�̅�𝜉̅ + �̅�𝑇�̅��̅� 

 

Where, �̅� = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑄) and �̅� = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑅). The evaluation of state and control signals 

over the prediction horizon is described using the state space matrices 

 

�̅�(𝑖) =

[
 
 
 

𝐴𝑖|𝑖

𝐴𝑖|𝑖𝐴𝑖+1|𝑖

⋮
𝑎(𝑖, 1,0) ]

 
 
 
 

�̅�(𝑖) =

[
 
 
 

𝐵𝑖|𝑖 0 … 0

𝐵𝑖|𝑖𝐴𝑖+1|𝑖 𝐵𝑖+1|𝑖 … 0

⋮ ⋮ ⋱ ⋮
𝑎(𝑖, 1,1)𝐵𝑖|𝑖 𝑎(𝑖, 1,2)𝐵𝑖+1|𝑖 … 𝐵𝑖+𝐻−1|𝑖]

 
 
 

 

 

Where, 

𝑎(𝑖, 𝑗, 𝑙) = ∏ 𝐴𝑖+𝑘|𝑖

𝑙

𝑘=𝐻−𝑗
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Using the vectors 𝜉̅(𝑖 + 1) , �̅�(𝑖) along with the matrices �̅�(𝑖) and �̅�(𝑖) in the state space 

equation form the prediction formulation is 

 

𝜉�̅�+1 = �̅�𝜉�̅� + �̅��̅�𝑖 

 

The minimization of the cost function formulation as per the general QP problem becomes 

𝐽 =
1

2
�̅�𝑇𝐻𝑖�̅� + 𝜉𝑖

𝑇�̅� 

Where,  

𝐻𝑖 = 2(�̅�𝑖
𝑇�̅��̅�𝑖 + �̅�) 

𝜉𝑖 = 2�̅�𝑖
𝑇�̅��̅�𝑖 
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7 Simulation Environment 

This chapter presents the simulation environment used to evaluate the performance of MPC 

for both kinematic and dynamic models for high dynamic maneuvers. The implementation of 

derived MPC controller is developed in MATLAB/Simulink and tested in a virtual test 

driving simulator tool by IPG CarMaker. The MPC controller from the MPC tool box in 

MATLAB/Simulink is used. The optimizer used for MPC optimizations is QP solver which is 

the default solver implicitly available for the controller with the MPC toolbox. The system 

and the controller design is described in the previous chapter. The vehicle dynamics are 

simulated using the vehicle models described in Chapter 5. The Constraints and cost functions 

are implemented using MPC designer that is available with the Simulink MPC toolbox. The 

vehicle model parameters and MPC parameters is in the Appendix. 

 

7.1 CarMaker  

CarMaker is a virtual test driving simulation tool used to develop and test systems and 

functions of a vehicle in realistic scenarios. The real world scenarios are accurately modelled 

describing the surrounding environment of a vehicle in the virtual world. CarMaker is test 

platform that can be integrated throughout the development process from SiL, HiL and MiL.  

 

 
Figure 34: Integration of CarMaker with MATLAB and Simulink [22] 
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CarMaker for Simulink is a complete integration of IPG’s test and simulation platform in to 

modeling and simulation environment of MATLAB and Simulink. CarMaker is a software 

tool used for development, testing and model design in the field of vehicle dynamics. 

Automotive control systems such as ACC, ABS, ARS, engine control systems and many other 

control systems can be developed and tested using CarMaker for Simulink. Using MATLAB 

S-functions and Simulink API functions the features of CarMaker are integrated to Simulink 

environment providing high performance and stability. The CM4SL blocks are similar to the 

built-in Simulink blocks with the same type of connecting blocks enabling the addition of 

existing Simulink blocks to the CarMaker vehicle model. The CarMaker GUI is used for 

simulation control, vehicle parameters adjustments, create road configurations and to define 

maneuvers. It is also used for data analysis and creation of realistic animation and graphics 

that brings the vehicle model to life by rendering the vehicle model into three dimensional 

space. CarMaker in Simulink environment is similar to Simulink S-function blocks. It can be 

connected in the similar way the blocks in Simulink are interconnected. CarMaker caters 

realistic animation in three dimensional space for visualization of the vehicle simulation. 

Access to CarMaker simulation results is granted using the cmread utility that can be called 

within MATLAB. This utility loads data from any CarMaker simulation result file into the 

MATLAB workspace. Furthermore, the data can be manipulated and viewed, for post 

processing purposes, using any of the available MATLAB tools. 

 

 

 

Figure 35: CarMaker GUI 
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7.2 Simulation Model 

7.2.1 Overall Simulation Model 

 

 

Figure 36: Simulation Environment 

 

7.2.2 Trajectory Control System 

 
Figure 37: Trajectory Control System 
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7.2.3 Perception 

For perception the vehicle state is extracted from CarMaker model using Read function. 

 

7.2.4 Planning Model 

 
Figure 38: Planning Model 

 

7.2.5 MPC Control Model 

 
Figure 39: Control Model 
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8 Results 

This chapter presents the results from simulations for different scenarios. The performance of 

model predictive controller with both kinematic and dynamic model is evaluated for different 

maneuvers with different speed profiles. The prediction horizon of MPC is 10 steps and the 

controller sampling time is 0.01s. The vehicle and controller parameters is in the appendix. 

8.1 Scenario 1: Slalom Maneuver 36m 

The distance between the cones is 36m as shown in Figure 40 and the waypoint gap between 

the trajectory waypoints is 5m. The simulation is tested with different speed profiles of 15, 50, 

80 and 100kmph.  

 
Figure 40: Slalom-36m 

8.1.1 MPC performance for Slalom-36m maneuver with dynamic vehicle model 

 
Figure 41: Trajectory response of MPC with dynamic vehicle model for Slalom-36 maneuver 

 36m 
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The vehicle model used for evaluation of MPC is dynamic vehicle model (Error! 

Reference source not found.). The trajectory response of MPC with dynamic model is as 

shown in Figure 41. The steering angle limits used for the simulation is –60 degrees to 60 

degrees. The rate limits for steering angle is set to -15 deg to 15 deg. The constraints for brake 

torques is -600Nm to 600Nm. The brake torques and steering angle are the controller ouputs 

used to control the vehicle motion. At any point of time the brake torques are either 600Nm or 

-600Nm. The brake torques are applied to the vehicle wheels inorder to reduce the speed of 

vehicle to maintain the trajectory as close as possible to the reference trajectory. First 

simulation was performed at slower speed of 15km/h. The overall simulation time is set to 80 

seconds so that the vehicle will  cover the entire road length of the slalom maneuver. It is 

observed that at low speed profile the performance of MPC for the given set of constraints is 

accurate. For speed profile of 50km/h there is a slight deviation from the reference and the 

deviation at the cornering tend to increase as speed increases. 

 

 

 

Figure 42: Cross Track Error Response of MPC with dynamic vehicle model for Slalom-36m maneuver 



66 
 

 

From Figure 42, The maximum deviation of the vehicle from the reference is observed 

to be 0.24m for vehicle speed of 100kmph. This is due to the influence of vehicle speed and 

waypoint gap of reference trajectory. For controller operating at 0.01s of sampling time, if the 

vehicle speed is faster, then the target waypoints are appearing very fast due to which the 

controller has to make more computations for reaching the reference. The controller has to 

make faster predictions and generate steering angle signals. As we can see the deviations are 

only observed when the vehicle is supposed to make cornering. This is because the controller 

makes better computations where the constraints of the vehicle have less influence on motion. 

During cornering since the vehicle is limited with a steering angle rate of -15deg to 15deg, the 

controller makes the best possible computations for these rate limits. Increase in constraints 

and its limits gives better performance but there is more possiblities for the vehicle to go out 

of the lane when travelling at high speed. Eventhough the reference speed is set to 50kmph 

the torques generated by the controller reduces the speed of vehicle. The velocity error 

response from Figure 43  depicts the difference in velocities of the reference speed and the 

vehicle speed. During cornering the speed of the vehicle is reduced and increased inorder to 

reach the reference trajectory position for higher speed profiles. This is mainly because the 

cost function weights are given more for the position of the vehicle rather than velocity of the 

vehicle. The controller produces steering angle signals within the constraint limits, more the 

vehicle speed more possibility of reaching maximum steering angle limits (Figure 44). 

 
Figure 43: Velocity Error Response of MPC with dynamic vehicle model for Slalom-36m maneuver 
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Figure 44: Steering Angle Response of MPC with dynamic vehicle model for Slalom-36m maneuver 

 

8.1.2 MPC with Kinematic model for Slalom-36m maneuver 

 

 
Figure 45:Trajectory response of MPC with kinematic vehicle model for Slalom-36 maneuver 
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The vehicle model used for evaluation of MPC is kinematic vehicle model (Error! 

Reference source not found.). The trajectory response of MPC with kinematic model is as 

shown in Figure 45. The steering angle limits used for the simulation is same as its used for 

MPC with dynamic vehicle model which is –60 degrees to 60 degrees. The rate limits for 

steering angle is set to -15 deg to 15 deg. For kinematic model the controller outputs for 

controlling vehicle motion  are steering angle and acceleration. The speed of the vehicle is 

mainly controlled by acceleration and deceleration. The acceleration limits are -5m/s
2
 to -

5m/s
2
. From (Figure 45) it is observed that the performance of MPC for lower vehicle speed 

is better with some deviations. As speed increases the deviations are more and for speed 

profile of 100kmph the vehicle is observed going out of the lane. This behaviour is mainly 

because kinematic vehicle models are based on the geometry of vehicle. The vehicle 

dynamics are not considered in modelling. The vehicle speed is mainly controlled by 

acceleration and deceleration. For higher speed profiles with a waypoint gap of 5m the 

controller is incapable of making faster predictions and produce control signals. Kinematic 

models are less detailed models than dynamic models, hence it is evident that kinematic 

models perform lesser than dynamic models. From (Figure 46) We can understand that for 

higher speed profiles the lateral acceleration of the vehicle  also increases. For MPC controller 

with kinematic model the motion of the vehicle can be controlled in a better way 

implementing a braking controller. By which the acceleration signals are converted to braking 

signals.  
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Figure 46: Lateral acceleration response of MPC with kinematic vehicle model for Slalom-36m maneuver 

The fluctuations observed in the accleration response is because kinematic model used for 

MPC is a simplified vehicle model and there exists inaccuracy with the vehicle model used in 

simulation environment (CarMaker). The maximum deviation of vehicle position with respect 

to reference is found to be maximum of 0.29m for 15kmph, 3.9m for 50kmph and 8.1m for 

80kmph. It is clear that for higher speed the vehicle tends to deviate more from the reference 

trajectory and hence the cross track error increases with respect to speed(Figure 47). The 

vehicle tend to reach maximum steering angle limits when travelling with high speed. While 

making turns between the cones the vehicle is limited with a steering angle rate of -15deg to 

15deg and steering angle limits of 60 degrees. The controller computations based on these rate 

limits and hence for higher speed profiles the vehicle tend to have maximum steering angle. 

For vehicle speed of 100kmph the control tends to execute more actuations than the constraint 

limits, but because of the rate limits of steering angle with high speed the vehicle travels out 

of the lane (Figure 48). From the performance of MPC with both kinematic and dynamic 

models it is evident that the performance of MPC with dynamic model is better than 

kinematic model. The reason is because dynamic models are more detailed models and the 

vehicle is controlled by torques and forces where as with kinematic model there is no braking 

logic applied. Also there is no seperate longitudinal controller for controlling vehicle 

longitudinal motion. 
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Figure 47: Cross Track Error Response of MPC with kinematic model for Slalom-36m maneuver 

 

 

 

Figure 48: Steering angle response of MPC with kinematic vehicle model for Slalom-36m maneuver 
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8.2 Scenario 2: Lane Change ISO Maneuver 

The lane change maneuver consists of an entry lane, side lane and exit lane, the vehicle is 

driven through the cones of entry lane, then changing the lane into the side lane of specific 

distance and then going into the exit lane. The width and length of the lanes are based on ISO 

3888-2 standard used to evaluate vehicle handling performance [23]. 

  

Figure 49: Lane Change ISO Maneuver 

 

  

8.2.1 MPC for Lane Change ISO maneuver with dynamic vehicle model 

The trajectory response of MPC with dynamic model for lane change maneuver is as 

shown in Figure 41. The steering angle limits used for the simulation is –45 degrees to 45 

degrees. The rate limits for steering angle is set to -15 deg to 15 deg. The constraints for brake 

torques is -600Nm to 600Nm. The brake torques and steering angle are the controller ouputs 

used to controlling the vehicle trajectory. The brake torques are applied to the vehicle wheels 

control the vehicle speed order to maintain the trajectory as close as possible to the reference 

trajectory. First simulation was performed at slower speed of 15km/h. The overall simulation 

time is set to 85 seconds so that the vehicle will cover the entire road length of the lane 

change maneuver. 

 

12m 

11m 

12m 

13.5m 12.5m 
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Figure 50: Trajectory Response of MPC with dynamic vehicle model for Lane change ISO Maneuver 

For speed profile of 50km/h there is minimal deviation from the reference. For 

simulation with higher speed profiles the vehicle reaches the maximum velocity within 5 

seconds from the starting of the simulation. As vehicle approaches the maneuver where it has 

to take a turn to make the lane change maneuver the controller provides brake torques to 

reduce the speed of the vehicle. Gradually the speed of the vehicle is reduced and again 

increased as soon as the lane change maneuver is completed. As we can see in Figure 51 the 

velocity error is gradually becoming zero, which depicts that the controller is not allowing the 

vehicle to attain the high reference speed which may make the vehicle to go out of lane. 

Maximum speed is attained when the vehicle is completed with lane changing maneuver.  
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Figure 51: Velocity Error Response of MPC with dynamic vehicle model for Lane change ISO maneuver 

Although the vehicle reference speed is high, controller tries to reduce the speed generating 

brake torques. This is due to the effect of the cost function weights that are used for the MPC 

design formulation. For this scenario more weights are apllied for cross track error than 

velocity error. Hence the controller makes predictions for feasilible control outputs to make 

the vehicle to have a trajectory resembling the reference trajectory. The maximum devaition 

in the position of the vehicle with respect to reference trajectory is observed to be 0.1m for 

speed profiles of 80kmph and 100kmph (Figure 52). The cross track error of 0.25m from 0-4s 

is because the simulation is not performed from the initial position of the maneuver map. The 

vehicle initial position is kept random to evlaute the performce of MPC if there is mismatch 

between the initial vehicle state and reference state. MPC make optimization depending on 

dynamic vehicle model and provides control signals of steering and brakes tries to reach 

target trajectory. After 5s the vehicle reaches closer to the target making the cross track error 

closer to zero. In Figure 53 we can observe that for vehicle speed of 80 and 100kmph the 

steering angle values are maximum during the lane changing behavior, which means the 

controller is trying to reach the maximum of constraints for controlling the vehicle trajectory 

during high speed maneuvers. 
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Figure 52: Cross Track Error response of MPC with dynamic vehicle model for Lane change ISO 

maneuver 

 

 
Figure 53: Steering Angle Response of MPC with dynamic vehicle model for Lane change ISO Maneuver 
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8.2.2 MPC with kinematic model for Lane Change ISO maneuver 

 
Figure 54: Trajectory Response of MPC with kinematic vehicle model for Lane Change ISO maneuver 

The trajectory response of MPC with dynamic model is as shown in Figure 45. The 

steering angle limits used for the simulation is same as its used for MPC with dynamic vehicle 

model. The rate limits for steering angle is set to -15 deg to 15 deg. For kinematic model the 

controller outputs for controlling vehicle motion are steering angle and acceleration. The 

speed of the vehicle is mainly controlled by acceleration and deceleration. The acceleration 

limits are -5m/s
2
 to -5m/s

2
. From (Figure 54) it is observed that the performance of MPC for 

lower vehicle speed is better with some deviations in position compared to reference. As 

speed increases the deviations are more and for speed profile of 100kmph the vehicle is 

observed having maximum deviation. The acceleration signals by the MPC is used for speed 

control. For higher speed profiles with a waypoint gap of 5m the controller is incapable of 

making faster predictions and produces control signals.. From (Figure 54) We can understand 

that for higher speed profiles the longitudinal acceleration of the vehicle is changing in order 

to make the vehicle reach the target. The deviations are because at high speeds a little change 

in actuations of steering angle makes the vehicle deviate from the reference trajectory. Hence 

for high speed maneuvers the controller must perform more faster computations than for low 
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speed maneuver. Also kinematic models do no include forces and torques for speed control 

and is only relying on acceleration signals from controller.   

 
Figure 55: Cross Track Error Response for MPC with kinematic model for Lane Change ISO maneuver 

 

The vehicle tends to have maximum cross track error of 0.4m for vehicle speed of 80kmph 

and 100kmph. For high speeds slight change in steering angle actuations makes the vehicle 

deviate from the reference trajectoy and hence the cross track error is more during cornering 

for high speed maneuvers. In Figure 56 we can observe that  at 11s and 14s the steering angle 

reaches maximum during the lane changing behaviour of the vehicle. At this interval the 

controller tries to generate steering angle actuations reaching to the maximum limit of the 

constraints. Since the distance between the two lanes is small for low speed maneuver the 

waypoint gap of 5m is feasible. For high speed vehicle maneuvers the way point gap must be 

adjusted depending upon the vehicle speed. From Figure 57 we can observe that the lateral 

acceleration increases as speed of the vehicle increases. The fluctuations in the first few 

seconds of simulation is because of modelling inaccuracy between  kinematic model and the 

vehicle model used in simulation environment. Kinematic model cannot represent the entire 

dynamics of the vehicle and hence there will be differences due to which the roll movements 

are generated which inturn is responsible for the lateral acceleration in the initial phase. 
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Figure 56: Steering Angle Response of MPC with kinematic vehicle model for Lane Change ISO maneuver 

 

 
Figure 57: Lateral Acceleration Response of MPC with kinematic model for Lane Change ISO maneuver 

8.3 Scenario 3: Circular Maneuver 

The vehicle is driven with a constant speed in a steady circle of radius 50m. 
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8.3.1 MPC performance for Circular maneuver with dynamic vehicle model 

 
Figure 58: Trajectory response of MPC with dynamic vehicle model for Circe-50m maneuver 

The trajectory response of MPC with dynamic model for circular maneuver is as 

shown in Figure 41. The steering angle limits used for the simulation is –60 degrees to 60 

degrees. The rate limits for steering angle is set to -15 deg to 15 deg. The constraints for brake 

torques is -600Nm to 600Nm. The brake torques are applied to the vehicle wheels inorder to 

reduce the speed of vehicle to maintain the trajectory as close as possible to the reference 

trajectory.The simulations was performed at speeds of 15kmph , 30kmph, 50kmph and 

80kmph. The overall simulation time is set to 80 seconds so that the vehicle will cover the 

entire circle. It is observed that at low speed profile the performance of MPC for the given set 

of constraints is accurate. For speed profile of 50kmph there is some deviation and for 

80kmph the vehicle is observed to be going out of the track. This is because for this maneuver 

the maximum speed a vehicle could reach is 50kmph. Also for MPC with dynamic model the 

speed of vehicle is controller by brake torques. During circular behaviour at high speeds the 

torques applied makes the vehicle to change its orientation. The main reason for the vehicle 

going out of track is the way point gap of reference trajectory. For simulation we have 

considered the waypoint gap of 5m for all speed profiles. Reference waypoints with changing 

waypoint gap based on vehicle speed might give better results. In Figure 59 we can 
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understand that the cross track error is more at the starting of simulation and is gradually 

decreased by the end of the simulation. This is because the initial conditions of vehicle and 

maneuver map and not kept same. The vehicle initial position is set with random values and 

hence the controller tries to optimize the contol signals to reach the reference trajectory. MPC 

controller makes better predictions once the vehicle is closer to reference.  

 
Figure 59: Cross track error response of MPC with dynamic model for Circle-50m maneuver 

 

From the velocity repsonse (Figure 60) it is observed that for vehicle speed of 15kmph the 

velocity error, i.e the difference between the reference velocity and vehicle velocity is mostly 

around 1m/s to -2m/s. It means that the velocity of the vehicle is slightly increased and 

decreased than the reference velocity during simulation so that the trajectory response is 

accurate. Similarly for vehicle speed of 50kmph the vehicle tends to reach reference velocity 

in 6s and gradually decreases until 14s inorder to reduce the vehicle deviation.  The steeirng 

angle values are observed to be within the constraint limits for  speed profile of 50kmph. For 

80kmph the brakes torques applied on wheels make the vehicle to have change in orientation. 

Also the due to the steering rate limits of 15degrees the controller could not exceed the 

constrainsts making the vehicle move out of the track.  From Figure 60  it is observed that for 

speed profile of 15kmph the vehicle tries to reach reference velocity at 5s and tend to decrease 
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the velocity as it approaches the lane changing maneuver. It increases the velocity at 10s 

when the vehicle is going away from the reference trajectory  and it reduces the speed at 20s 

to make the vehicle follow the reference trajectory. For speed profile of 80kmph the velocity 

error is gradually becoming zero depicting that the veclocity of the vehicle is not reduced to 

follow the reference.  

 
Figure 60: Velocity Error Response of MPC with dynamic vehicle model for Circle-50m maneuver 

 

 
Figure 61: Steering Angle Response of MPC with Kinematic model for Circle-50m maneuver 
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8.3.2 MPC performance for Circular maneuver with kinematic vehicle model 

 
Figure 62: Trajectory Response of MPC with kinematic vehicle model for Circle-50m maneuver 

 

In Figure 62 the results for the performance of MPC with kinematic vehicle model for circular 

maneuver is presented. It is observed that the vehicle tends to go out of track for vehicle speed 

of 80kmph.. As we increase the vehicle speed more deviations are observed. The steering 

angle limits used for simulation is -60 degrees to 60 degrees. The rate limits for steering angle 

is set to -15 deg to 15 deg. The acceleration limits are -5m/s
2
 to -5m/s

2
. The maximum cross 

track error for speed of 15kmph is 0.55m and as vehicle speed is increased i.e for 30kmph 

maximum value of Cte is 0.8m and 1.25m for 50kmph (Figure 63).  The deviation until 15s is 

due to vehicle initial position at the start of simulation. Due to steering angle constraints and 

target waypoints gap the controller fails to optimize control signal faster for speed of 80kmph 

and hence the vehicle goes out of track. Comparing Figure 62 and Figure 58 it is observed 

that MPC with dynamic vehicle model have better performance than kinematic model. But for 
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both models the steering angle constraints has to be increased to keep vehicle on track for 

high speed maneuvers.  

 

 

Figure 63: Cross Track Error Response of MPC with kinematic model for Circle-50m maneuver 

 
 Figure 64: Steering Angle Response of MPC with kinematic model for Circle-50m maneuver 
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8.4 Comparison of MPC with PIP Controller 

The performance of MPC is evaluated comparing with PIP (Proportional Integral Plus). The 

simulations are tested for Slalom-36m and Lane Change maneuvers 

 

 
Figure 65: MPC vs PIP for Slalom-36m maneuver 

 
Figure 66: MPC vs PIP for Lane Change ISO maneuver 
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From Figure 65 and Figure 66 we can notice that for maneuver with 15kmph speed 

both the controllers are performing better. For high speed maneuvers performance of MPC is 

better than PIP controller. This is because MPC performs optimization based on constraints 

and vehicle models. Where as PIP controller is a traditional control approach where the 

controller  tries to reach the refrence trajectory by computing the error between the current 

and previous vehicle states. For the simulation performed MPC is replaced with PIP controller 

for evluation. The longitudinal motion is controlled by brake torques in MPC. This is due to 

the advantage of using vehicle model implicitly with MPC. The vehicle models include the 

lateral and longitudinal dynamics of the vehicle by which the optimizations are performed 

making computations at each sampling instance. Also the implicit handing ability of 

contraints for MPC gives an advantage of making predicitons and then choose optimal control 

signals. With PIP controller the contraints must be handled explicitly which makes the 

controller performance inefficient. Seperate PIP controllers must be used for controlling 

lateral and longitudinal motion of the vehicle. Tuning the controller parameters is difficult if 

seperate controllers are used for controlling vehicle motion. PIP controller consider the state 

variables and tries to reach reference state using an explicit model to calculate the errors. A 

seperate model is developed for PIP controller for calculating cross track error, heading error 

and velocity error. The predicting ability of MPC for future vehicle states and control outputs 

optimizing the costfuntion including the actuator constraints makes MPC perform better than 

PIP controller. The dotted line in Figure 65 and Figure 66 represents the vehicle trajectories 

generated from the PIP controller. The deviation from the reference is huge when compared to 

MPC. The optimization of control signals is carried out at each control interval predicting 

optimal control values by MPC. The error deviation from PIP is comparitively bigger for high 

speed maneuvers than low speed profiles. This is because the longitudinal controller handling 

longitudinal motion of vehicle is not capable of altering the speed of vehicle to reach the 

target trajectory. The accuracy in prediction of errors in MPC is better than PIP controller. For 

better performance of PIP controller it is required to include contraints during the planning 

phase since there is no inbuit capability to handle constraints unlike MPC. From the result 

plots it is evident that MPC controller outperforms PIP controller for the selected maneuvers 

for simulation.  
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9 Conclusion 

This thesis highlights Model Predictive Control for autonomous vehicle applications. We 

have studied the autonomous vehicle architecture for perception, planning and control. The 

control approaches for vehicle motion control and motion planning techniques are briefly 

discussed in the report. We described about the planning architecture and approaches for 

motion planning. In this thesis, MPC for autonomous vehicle trajectory control is designed 

and developed that predicts the future trajectories of the vehicle depending on target trajectory 

and actuator constraints.  

 First, we presented the modelling of vehicle models describing lateral and longitudinal 

dynamics of the vehicle that has to be used for control design. The vehicle model used for 

simuation is a bicycle model, where four wheels of a vehicle are lumped into two wheel 

model. The modelling is done using MATLAB/Simulink and tested in CarMaker simulation 

environment. The performance of the controller is analysed and evaluated for Slalom, lane 

change and circle maneuvers. The road profiles are created using CarMaker for Simulink 

simulation tool. The controller developed is a linear MPC since the costfuntion and 

constraints are linear. The nonlinear vehicle models are linearized into state space form using 

MPC designer tool available in Simulink. The implemented controller has constraints for 

steering angle, acceleration and torque control signals that is used for controlling the vehicle 

motion depending on the vehicle model used for MPC. For cost function formulation the 

errors considered are cross track error, heading angle error and velocity error. After 

linearizing the model equations, constraints and cost function the optimization is done by 

quadratic programming method. The optimizer used for controller is QP solver which is the 

default solver available with the MPC toolbox for Simulink. Map based trajectory planning is 

adopted for generating waypoints as a reference for controller. The errors related to cost 

function have significant role in controlling vehicle trajectory. More weights are used for 

cross track error and velocity error since we are interested in controlling the trajectory motion 

of vehicle.  

 The trajectory control system is developed in Simulink and the performance of MPC 

was evaluated for both kinematic and dynamic models. From the results its is observed that 

MPC with dynamic models perform better reducing the error deviation because dynamic 

model is more detailed model including both lateral anf longitudinal dynamics. Whereas 

kinematic models consider only the geometry of vehicle for motion control. The simulation is 
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tested for different speed profiles for high dynamic maneuvers such as Slalom, Lane Change 

and Circle maneuvers. It is observed that for high speed maneuvers the trajectory response by 

MPC has slight deviations. The reason for this is the waypoint gap of the reference 

trajectories for the controller. For low speed maneuvers less waypoint gap is sufficient, as 

speed is increased the way point gap has to be adopted depending on vehicle speed. 

Additionally constraint limits has significant influence on controller performance. Higher the 

constraint limits better the performance but there is also a possibility of vehicle going out of 

the track for higher speed profiles. Hence determining the constraint and its rate limits is 

important for designing the controller. The performance of MPC was evalauted with PIP 

controller. It is observed that MPC outperforms PIP controller for trajectory control due to its 

ability of predicting future states and implicit handling of constraints.   

9.1 Future Scope 

The results can be improved by developing a waypoint generating algorithm capable of 

adopting to different speed profiles. The MPC designed is a linear MPC using Simulink 

toolbox. The state space modeling is done by the designer whereas linearizing the model 

equations manually could improve the performance of controller. Using third party solvers 

instead of QP solver can have better computational performance. The extention of the thesis 

could be to test the controller performance in a real vehicle. The vehicle models developed are 

bicycle model ignoring the tire dynamics. Developing a more detailed four wheel vehicle 

model including non linear tire dynamics gives more accuracy.  It would be interesting to 

include more state variables and other error factors to cost function for evaluation. A better 

way to develop a trajectory control system using MPC could be to use the predictive 

capability of MPC for planning trajectories so that the vehicle model is considered during the 

planning phase. In order to implement such a system it requires two MPC controllers for 

planning and control of trajectory, which increases the computations and its is necesarry to 

use better solver to handle the increase in computations. One disadvantage of using MPC 

toolbox in simulink is the constraints has to be initialized before starting the simulation. The 

constraints cannot be modified during simulation. Implementing a constraint handling 

interface will give an option to evaluate controller performance for varying constraints. The 

performance of different MPC control architectures with other optimizers can be used for 

trajectory control of an autonomous vehicle. The tuning parameters and weights for 

costfunction was done by trail and error method. Implementing a systematic approach for 

tuning would improve the controller performance. 
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Appendix 

1. Vehicle Model Parameters  

 

Parameter Value 

Mass (m) 1484 kg 

Inertia (I) 2223 kgm² 

Track front (lf) 1.548 m 

Track Rear (lr) 1.566 m 

Tire Radius (r) 0.31 m 

Cornering Stiffness front 190000 

Cornering Stiffness Rear 150000 

 

 

2. Controller Parameters for Slalom Maneuver 

 

Parameter Value 

Prediction Horizon 10steps 

Control Horizon 2 Steps 

Sampling Time 0.01s 

Steering Angle Limit -60deg to 60deg 

Steering Angle Rate Limits -15deg -15deg 

Acceleration Limit -3m/s² to 3m/s² 

Torque Limits -600 to 600 

Cross Track Error Weights 10000 

Course angle Error Weights 100 

Velocity Error  3600 
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3. Controller parameters for Lane Change ISO Maneuver 

 

Parameter Value 

Prediction Horizon 10steps 

Control Horizon 2 Steps 

Sampling Time 0.01s 

Steering Angle Limit -45deg to 45deg 

Steering Angle Rate Limits -15deg to 15deg 

Acceleration Limit -3m/s² to 3m/s² 

Torque Limits -600 to 600 

Cross Track Error Weights 1000 

Course angle Error Weights 100 

Velocity Error Weights 700 

 

4. Controller Parameters for Circle-50m Maneuver 

Parameter Value 

Prediction Horizon 10steps 

Control Horizon 2 Steps 

Sampling Time 0.01s 

Steering Angle Limit -60deg to 60deg 

Steering Angle Rate Limits -15deg -15deg 

Acceleration Limit -3m/s² to 3m/s² 

Torque Limits -600 to 600 

Cross Track Error Weights 1000 

Course angle Error Weights 100 

Velocity Error Weights 400 



93 
 

Selbstständigkeitserklärung 

 

 

 

 

 


