2,316 research outputs found

    A survey on 2d object tracking in digital video

    Get PDF
    This paper presents object tracking methods in video.Different algorithms based on rigid, non rigid and articulated object tracking are studied. The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends.It is often the case that tracking objects in consecutive frames is supported by a prediction scheme. Based on information extracted from previous frames and any high level information that can be obtained, the state (location) of the object is predicted.An excellent framework for prediction is kalman filter, which additionally estimates prediction error.In complex scenes, instead of single hypothesis, multiple hypotheses using Particle filter can be used.Different techniques are given for different types of constraints in video

    Computer analysis of objects’ movement in image sequences: methods and applications

    Get PDF
    Computer analysis of objects’ movement in image sequences is a very complex problem, considering that it usually involves tasks for automatic detection, matching, tracking, motion analysis and deformation estimation. In spite of its complexity, this computational analysis has a wide range of important applications; for instance, in surveillance systems, clinical analysis of human gait, objects recognition, pose estimation and deformation analysis. Due to the extent of the purposes, several difficulties arise, such as the simultaneous tracking of manifold objects, their possible temporary occlusion or definitive disappearance from the image scene, changes of the viewpoints considered in images acquisition or of the illumination conditions, or even nonrigid deformations that objects may suffer in image sequences. In this paper, we present an overview of several methods that may be considered to analyze objects’ movement; namely, for their segmentation, tracking and matching in images, and for estimation of the deformation involved between images.This paper was partially done in the scope of project “Segmentation, Tracking and Motion Analysis of Deformable (2D/3D) Objects using Physical Principles”, with reference POSC/EEA-SRI/55386/2004, financially supported by FCT -Fundação para a Ciência e a Tecnologia from Portugal. The fourth, fifth and seventh authors would like to thank also the support of their PhD grants from FCT with references SFRH/BD/29012/2006, SFRH/BD/28817/2006 and SFRH/BD/12834/2003, respectively

    Image processing and analysis : applications and trends

    Get PDF
    The computational analysis of images is challenging as it usually involves tasks such as segmentation, extraction of representative features, matching, alignment, tracking, motion analysis, deformation estimation, and 3D reconstruction. To carry out each of these tasks in a fully automatic, efficient and robust manner is generally demanding.The quality of the input images plays a crucial role in the success of any image analysis task. The higher their quality, the easier and simpler the tasks are. Hence, suitable methods of image processing such as noise removal, geometric correction, edges and contrast enhancement or illumination correction are required.Despite the challenges, computational methods of image processing and analysis are suitable for a wide range of applications.In this paper, the methods that we have developed for processing and analyzing objects in images are introduced. Furthermore, their use in applications from medicine and biomechanics to engineering and materials sciences are presented

    Automatic Image Based Time Varying 3D Feature Extraction and Tracking

    Get PDF
    3D time-varying data sets are complex. The intrinsics of those data cannot be readily comprehended by users solely based on visual investigation. Computational tools such as feature extraction and tracking are often necessary. Until now, most existing algorithms in this domain work effectively in the object space, relying on prior knowledge of the data. How to find a more flexible and efficient method which can perform automatically to implement extraction and tracking remains an attractive topic. This thesis presents a new image-based method that extracts and tracks the 3D time- varying volume data sets. The innovation of the proposed approach is two-fold. First, all analyses are performed in the image space on volume rendered images without accessing the actual volume data itself. The image-based processing will help to both save storage space in the memory and reduce computation burden. Secondly, the new approach does not require any prior knowledge of the user-defined “feature” or a built model. All the parameters used by the algorithms are automatically determined by the system itself, thus flexibility and efficiency can be achieved at the same time. The proposed image-based feature extraction and tracking system consists of four components: feature segmentation (or extraction), feature description (or shape analysis), classification, and feature tracking. Feature segmentation is to identify and label individual features from the image so that we can describe and track them separately. We combine both region-based and edge-based segmentation approaches to implement the extraction process. Feature description is to analyze each feature and derive a vector to describe the feature such that the subsequent tracking step does not have to rely on the entire feature extracted, but instead a much smaller and informative feature descriptor. Classification is to identify the corresponding features from two consecutive image frames along both the time and the spatial domain. Feature tracking is to study and model the evolution of features based on the correspondence computation result from classification stage. Experimental results show that the image-based feature extraction and tracking system provides high fidelity with great efficiency

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Cooperative multitarget tracking with efficient split and merge handling

    Get PDF
    Copyright © 2006 IEEEFor applications such as behavior recognition it is important to maintain the identity of multiple targets, while tracking them in the presence of splits and merges, or occlusion of the targets by background obstacles. Here we propose an algorithm to handle multiple splits and merges of objects based on dynamic programming and a new geometric shape matching measure. We then cooperatively combine Kalman filter-based motion and shape tracking with the efficient and novel geometric shape matching algorithm. The system is fully automatic and requires no manual input of any kind for initialization of tracking. The target track initialization problem is formulated as computation of shortest paths in a directed and attributed graph using Dijkstra's shortest path algorithm. This scheme correctly initializes multiple target tracks for tracking even in the presence of clutter and segmentation errors which may occur in detecting a target. We present results on a large number of real world image sequences, where upto 17 objects have been tracked simultaneously in real-time, despite clutter, splits, and merges in measurements of objects. The complete tracking system including segmentation of moving objects works at 25 Hz on 352times288 pixel color image sequences on a 2.8-GHz Pentium-4 workstationPankaj Kumar, Surendra Ranganath, Kuntal Sengupta, and Huang Weimi

    Filtering of image sequences: on line edge detection and motion reconstruction

    Get PDF
    L'argomento della Tesi riguarda líelaborazione di sequenze di immagini, relative ad una scena in cui uno o pi˘ oggetti (possibilmente deformabili) si muovono e acquisite da un opportuno strumento di misura. A causa del processo di misura, le immagini sono corrotte da un livello di degradazione. Si riporta la formalizzazione matematica dellíinsieme delle immagini considerate, dellíinsieme dei moti ammissibili e della degradazione introdotta dallo strumento di misura. Ogni immagine della sequenza acquisita ha una relazione con tutte le altre, stabilita dalla legge del moto della scena. Líidea proposta in questa Tesi Ë quella di sfruttare questa relazione tra le diverse immagini della sequenza per ricostruire grandezze di interesse che caratterizzano la scena. Nel caso in cui si conosce il moto, líinteresse Ë quello di ricostruire i contorni dellíimmagine iniziale (che poi possono essere propagati attraverso la stessa legge del moto, in modo da ricostruire i contorni della generica immagine appartenente alla sequenza in esame), stimando líampiezza e del salto del livello di grigio e la relativa localizzazione. Nel caso duale si suppone invece di conoscere la disposizione dei contorni nellíimmagine iniziale e di avere un modello stocastico che descriva il moto; líobiettivo Ë quindi stimare i parametri che caratterizzano tale modello. Infine, si presentano i risultati dellíapplicazione delle due metodologie succitate a dati reali ottenuti in ambito biomedicale da uno strumento denominato pupillometro. Tali risultati sono di elevato interesse nellíottica di utilizzare il suddetto strumento a fini diagnostici

    Globally-Coordinated Locally-Linear Modeling of Multi-Dimensional Data

    Get PDF
    This thesis considers the problem of modeling and analysis of continuous, locally-linear, multi-dimensional spatio-temporal data. Our work extends the previously reported theoretical work on the global coordination model to temporal analysis of continuous, multi-dimensional data. We have developed algorithms for time-varying data analysis and used them in full-scale, real-world applications. The applications demonstrated in this thesis include tracking, synthesis, recognitions and retrieval of dynamic objects based on their shape, appearance and motion. The proposed approach in this thesis has advantages over existing approaches to analyzing complex spatio-temporal data. Experiments show that the new modeling features of our approach improve the performance of existing approaches in many applications. In object tracking, our approach is the first one to track nonlinear appearance variations by using low-dimensional representation of the appearance change in globally-coordinated linear subspaces. In dynamic texture synthesis, we are able to model non-stationary dynamic textures, which cannot be handled by any of the existing approaches. In human motion synthesis, we show that realistic synthesis can be performed without using specific transition points, or key frames
    corecore