28,893 research outputs found

    Motion Estimation from Disparity Images

    Get PDF
    A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo rig has parallel cameras and show, in that case, the geometric and topological properties of the disparity images. Then we introduce a rigid transformation (called d-motion) that maps two disparity images of a rigidly moving object. We show how it is related to the Euclidean rigid motion and a motion estimation algorithm is derived. We show with experiments that our approach is simple and more accurate than standard approaches

    Stereovision depth analysis by two-dimensional motion charge memories

    Get PDF
    Several strategies to retrieve depth information from a sequence of images have been described so far. In this paper a method that turns around the existing symbiosis between stereovision and motion is introduced; motion minimizes correspondence ambiguities, and stereovision enhances motion information. The central idea behind our approach is to transpose the spatially defined problem of disparity estimation into the spatial?temporal domain. Motion is analyzed in the original sequences by means of the so-called permanency effect and the disparities are calculated from the resulting two-dimensional motion charge maps. This is an important contribution to the traditional stereovision depth analysis, where disparity is got from the image luminescence. In our approach, disparity is studied from a motion-based persistency charge measure

    A Linear Approach to Absolute Pose Estimation for Light Fields

    Get PDF
    This paper presents the first absolute pose estimation approach tailored to Light Field cameras. It builds on the observation that the ratio between the disparity arising in different sub-aperture images and their corresponding baseline is constant. Hence, we augment the 2D pixel coordinates with the corresponding normalised disparity to obtain the Light Field feature. This new representation reduces the effect of noise by aggregating multiple projections and allows for linear estimation of the absolute pose of a Light Field camera using the well-known Direct Linear Transformation algorithm. We evaluate the resulting absolute pose estimates with extensive simulations and experiments involving real Light Field datasets, demonstrating the competitive performance of our linear approach. Furthermore, we integrate our approach in a state-of-the-art Light Field Structure from Motion pipeline and demonstrate accurate multi-view 3D reconstruction

    Moving object detection and segmentation in urban environments from a moving platform

    Get PDF
    This paper proposes an effective approach to detect and segment moving objects from two time-consecutive stereo frames, which leverages the uncertainties in camera motion estimation and in disparity computation. First, the relative camera motion and its uncertainty are computed by tracking and matching sparse features in four images. Then, the motion likelihood at each pixel is estimated by taking into account the ego-motion uncertainty and disparity in computation procedure. Finally, the motion likelihood, color and depth cues are combined in the graph-cut framework for moving object segmentation. The efficiency of the proposed method is evaluated on the KITTI benchmarking datasets, and our experiments show that the proposed approach is robust against both global (camera motion) and local (optical flow) noise. Moreover, the approach is dense as it applies to all pixels in an image, and even partially occluded moving objects can be detected successfully. Without dedicated tracking strategy, our approach achieves high recall and comparable precision on the KITTI benchmarking sequences.This work was carried out within the framework of the Equipex ROBOTEX (ANR-10- EQPX-44-01). Dingfu Zhou was sponsored by the China Scholarship Council for 3.5 year’s PhD study at HEUDIASYC laboratory in University of Technology of Compiegne

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene ïŹ‚ow methods estimate the three-dimensional motion ïŹeld for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene ïŹ‚ow estimation that provides reliable results using only two cameras by fusing stereo and optical ïŹ‚ow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical ïŹ‚ow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene ïŹ‚ow than previous methods allow. To handle the aperture problems inherent in the estimation of optical ïŹ‚ow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding

    Get PDF
    Real world information, obtained by humans is three dimensional (3-D). In experimental user-trials, subjective assessments have clearly demonstrated the increased impact of 3-D pictures compared to conventional flat-picture techniques. It is reasonable, therefore, that we humans want an imaging system that produces pictures that are as natural and real as things we see and experience every day. Three-dimensional imaging and hence, 3-D television (3DTV) are very promising approaches expected to satisfy these desires. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. In this paper, we propose a novel approach to use Evolutionary Strategy (ES) for joint motion and disparity estimation to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression using a self adapted ES. A half pixel refinement algorithm is then applied by interpolating macro blocks in the previous frame to further improve the video quality. Experimental results demonstrate that the proposed adaptable ES with Half Pixel Joint Motion and Disparity Estimation can up to 1.5 dB objective quality gain without any additional computational cost over our previous algorithm.1Furthermore, the proposed technique get similar objective quality compared to the full search algorithm by reducing the computational cost up to 90%
    • 

    corecore