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Abstract

A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method
is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo rig has parallel
cameras and show, in that case, the geometric and topological properties of the disparity images. Then we introduce a rigid
transformation (called d-motion) that maps two disparity images of a rigidly moving object. We show how it is related to the
Euclidean rigid motion and a motion estimation algorithm is derived. We show with experiments that our approach is simple
and more accurate than standard approaches.
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1 Introduction

The problems of estimation, detection and understanding
motion from visual data are among the most challenging
problems in computer vision. At a low-level, 3-D motion
must be analyzed based on the 2-D features that are observ-
able in images. At a high-level, the previously derived 2-D
motion fields must be interpreted in terms of rigid or de-
formable objects and the associated motion parameters are
estimated.

Many researchers have addressed the problem of
motion/ego-motion estimation and motion segmentation for
both monocular [3, 9] and stereo [7, 6, 13, 15] sensors.
The approaches using a stereo rig for ego-motion estimation
are appealing because they are based on 3-D information
(e.g. Euclidean reconstructions) and less noise-sensitive
than monocular approaches.

Many approaches for ego-motion and motion estimation
with a stereo rig have a common structure. First, image
points are matched in the image pair. A disparity image
is obtained, and a scene reconstruction is performed in the
Euclidean space. Then the rigid motion is estimated based
on 3-D point correspondences.

Unfortunately using the 3-D Euclidean space to estimate
rigid motions fails to give optimal solutions because re-
constructions performed in 3-D Euclidean space have non
homogeneous and non isotropic noise (as wrongly approx-
imated in many standard SVD- or quaternion-based ap-
proaches). One should instead use methods that deal with
non homogeneous and non isotropic noise [12, 13] or meth-
ods that look for an optimum solution for both structure and
motion, likebundle-adjustment[10].

The disparity images have a well-behaved noise (theoret-
ically isotropic for parallel stereo images) and can be used
instead of the 3-D Euclidean space for motion estimation in
this paper. We recall that the disparity images are related to
the 3-D Euclidean reconstruction by a projective transfor-
mation. We show that two disparity images of a rigid scene
are related by a transformation (calledd-motionin the pa-
per). We present a motion estimation algorithm based on
the d-motion estimation. The approach is simple and more
accurate than standard motion estimation algorithms.

2 Notations

In this paper we consider a stereo rig whose images are rec-
tified, i.e. epipolar lines are parallel to thex-axis. It is not
a loss of generality since it is possible to rectify the images
of a stereo rig once the epipolar geometry is known [1].
We also assume that both cameras of the rectified stereo rig
have similar internal parameters so that the rig can be fully
described by a focal lengthf , a principal point(u0; v0) and
a baselineB.

Stereo reconstruction has been studied for decades and
is now standard in computer vision. Consider a rectified
image pair and let(x; y) and(x0; y0) be two corresponding
points in that image pair. Since the corresponding points
must lie on epipolar lines, the relation between the two
points is: �

x0 = x� d

y0 = y

whered is defined as thedisparityof the point(x; y).
Let us define(�x; �y) = (x�u0; y�v0) the centered image

point coordinates of(x; y). Let (X;Y; Z) be the Euclidean
coordinates of the 3-D pointM corresponding to the image
point correspondence in a frame attached to the stereo rig.
Then the relation between(X;Y; Z) and(�x; �y; d) is:

8<
:

�x = x� u0 = f X
Z

�y = y � v0 = f Y
Z

d = fB
Z

(1)

Eq.(1) is widely used in the vision literature for estimating
(X;Y; Z) from (�x; �y; d). However(�x; �y; d) happens to al-
ready be a reconstruction. We call the space of(�x; �y; d)
disparity space. This space has been used to perform such
tasks as image segmentation, foreground/backgrounddetec-
tion. However, little work has been done to understand the
geometric properties of the disparity space.

Organization

In this paper, we demonstrate some properties of thedispar-
ity space. In Section 3 we recall that thedisparity spaceis a
projective space and we discuss the form of the noise in this
space in the case of parallel camera stereo rigs. Section 4
introduces the rigid transformations (d-motions) associated
to that space. We show how d-motions are related to the Eu-
clidean rigid transformations. An algorithm to calculate the
Euclidean motion from d-motion is given. Section 5 shows
experiments carried out with both synthetical and real data.
Finally, our experiments are discussed Section 6.

3 Properties of the disparity image

In this section we argue the use of disparity images for spa-
tial representation of stereo data. We claim that this repre-
sentation has nice geometric and topological properties that
makes it ideal for optimal motion estimation.

We show that (i) using homogeneous coordinates, the
disparity image is a particular projective reconstruction of
the 3-D observed scene; therefore, the disparity space is a
projective space, and (ii) for parallel camera stereo rigs, the
noise in the disparity space is isotropic.
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Figure 1: Euclidean reconstruction and motion of a cubevs.
reconstruction and motion in the disparity space.

3.1 Geometric feature : the disparity space is
a projective space

Throughout the paper, homogeneous coordinates are used
to represent image and space point coordinates and ”'” de-
notes the equality up to a scale factor.

Let us consider a rectified stereo rig. Letf be the focal
length, (u0; v0) the principal point coordinates associated
with the stereo rig andB be the baseline of the stereo rig.

Let M = (X Y Z) be the 3-D coordinates of a point
observed by a stereo rig. Letd be the disparity of the asso-
ciated image pointm = (x y) and(�x �y) = (x�u0 y� v0)
the centered image point coordinates.

Using homogeneous coordinates and multiplying each
term of the equations (1) byZ, we have:

Z

0
BB@
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�y
d

1

1
CCA =

0
BB@

fX

fY

fB

Z

1
CCA =

0
BB@
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1
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0
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0
BB@

X

Y

Z

1

1
CCA

(2)

Let ! a vector such that! =

0
@ �x

�y
d

1
A. Then we have:
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1

�
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0
BB@

X
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1

1
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�
M

1

�
(3)

where� is a4� 4 matrix such that:

� =

0
BB@

f 0 0 0
0 f 0 0
0 0 0 fB

0 0 1 0

1
CCA

The Eq.(3) demonstrates that there is a projective
transformation� between the homogeneous coordinates
(X Y Z 1) in the 3-D Euclidean space and the homoge-
neous coordinates(�x �y d 1). Therefore, as also shown in
[2], (�x �y d 1) is a projective reconstruction of the scene.
The disparity space is then a projective space.

3.2 Topological feature

An important feature of the disparity space is that the noise
associated with(�x �y d) is known:

� The noise associated with�x and�y is due to theimage
discretization. Without anya priori information, the
variances��x and��y of this noise is the same forall
image points. We can write��x = ��y = � where� is
the pixel detection accuracy (typically� = 1 pix.).

� The noise associated withd corresponds to thestereo
matching uncertaintyand is related to the intensity
variations in the image. The variance�d of this noise
can be estimated from the stereo matching process.

From the discussion above, it is clear that the noises as-
sociated with�x, �y andd are independent. Therefore the
covariance matrix�i associated with any reconstruction
(�xi �yi di) in the disparity space can be written as3� 3 di-
agonal matrix�i such that:

�i =

0
@ �2 0 0

0 �2 0
0 0 �2di

1
A

If the disparity reconstruction is restricted to the im-
age points which have been stereo-matched with enough
accuracy [8],i.e. when the estimated disparity is about
�di = � = 1 pix., then the covariance�i of the noise can
be fairly approximated by�i = �2I. The noise is then con-
sidered isotropic and homogeneous.
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4 Rigid transformations in the dis-
parity space

In this section, we introduce the transformation that maps
two reconstructions of a rigid scene in the disparity space.
We call this transformationd-motionand show how it is
related to the rigid motion in the Euclidean space.

Let us consider a fixed stereo rig observing a moving
point. LetM = (X Y Z) andM 0 = (X 0 Y 0 Z 0) be the
respective 3-D Euclidean coordinates of this point before
and after the rigid motion. LetR andt denote the rotation
and translation of the rigid motion. Using homogeneous
coordinates we have:�

M
0

1

�
=

�
R t

0 1

��
M

1

�

Replacing

�
M

1

�
and

�
M

0

1

�
using Eq.(2) we have:
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LetHd = �

�
R t

0 1

�
��1. Then we have:

�
!0

1

�
'Hd

�
!

1

�
(4)

Let �R be a2� 2 matrix,r, s and�t, 2-vectors and� and
� scalars such that:

R =

�
�R r

sT �

�
t =

�
�t
�

�

ThenHd can be expressed as follow:

Hd =

0
@

�R 1
B
�t fr

0 1 0
1
f
sT �

fB
�

1
A (5)

Using standard coordinates, Eq.(4) becomes:

!0 = �(!) = 1
(! 1)T
 (A! + b) (6)

where

A =

�
�R 1
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0 1
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We can also notice that from Eq.(6):

(! 1)T
 =
d

d0
(7)

The transformation!0 = �(!) is calledd-motion. In
homogeneous coordinates, it can be defined by the matrix
Hd. In standard coordinates, it can be defined byA, b and

.

4.1 Motion estimation with d-motion

Let !i ! !0i be a list of point correspondences. As we
have to deal with dense disparity images, such technics as
optical flow are required to estimate dense point correspon-
dences. This paper only focuses on the 3-D motion estima-
tion and the challenging problem of dense point correspon-
dences will be tackled in a forthcoming paper.

The problem of estimating the rigid motion between the
points!i and!0i amounts to minimizing over� the follow-
ing error:

E2 =
X
i

"2i (8)

where"2i = (!0i ��(!i))
T��1

i (!0i ��(!i))
As demonstrated previously, if the focal lengthf and the

baselineB of the stereo rig are known,� can be parameter-
ized byR andt. The errorE2 can therefore be minimized
overR andt.

4.2 Generalization to the uncalibrated case

The d-motion can be generalized in the uncalibrated case
(f andB unknown). In that case,A, b and
 can be repre-
sented by12 general parameters such that:

A =

0
@ ? ? ?

? ? ?

0 0 1

1
A b =

0
@ ?
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0

1
A 
 =

0
BB@

?

?

?

?

1
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In this case, the d-motion can be considered as a particu-
lar case of projective transformation [11] and has the same
structure as an affine transformation [5].R and t cannot
be recovered, but the d-motion� can still be estimated and
used for tasks requiring no Euclidean estimation, such as
motion segmentation or motion detection.

4.3 Minimization of E2

In this paper, we are interested in the estimation of small
motion; Therefore, the rotationR can be parameterized by:

R = I+

0
@ 0 �wc wb

wc 0 �wa

�wb wa 0

1
A (9)

The error"2i can be expressed in a quasi-linear way:

"2i = jj
1

(!i 1)T

Piu+ vi � !0ijj

2

whereu = (�t
T
wc)

T , vi is a 3-vector function ofwa, wb,
�, !i and!0i andPi is a matrix that depends on!i.

This form enables to perform the minimization ofE2 al-
ternatively overu (wa, wb, � fixed) using a linear method
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Figure 2: Estimation of the relative angle and translation
errors for small motions
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Figure 3: Estimation of the relative angle and translation
errors for standard motions

such as SVD, and then overwa, wb and� (u fixed) us-
ing an iterative non-linear algorithm, such as Levenberg-
Marquardt. In the case of larger motions, a global non-
linear minimization must be performed over the 6 motion
parameters.

5 Experiments

5.1 Simulated data

Experiments with simulated data are carried out in order to
compare the quality of the results. A synthetic 3-D scene of
100 points is generated. A random rigid motion is generated
as well. The 3-D points of each position (before and after
the rigid motion) are projected onto the cameras of a virtual

stereo rig, and Gaussian noise with varying standard devi-
ation (0.0 to 1.2pix) is added to the image point locations.
Two different methods are applied : (i) the method based
on d-motion and (ii) the quaternion-based algorithm [4].
In order to compare the results, some errors are estimated
between the expected motion and the estimated ones. The
criterion errors are : the relation translation error, the rela-
tive rotation angle error and the angle between the expected
and estimated rotation axis.

This process is iterated 500 times. The mean of each
criterion error is shown Figures 2 and 3. Figure 2 shows
the estimation of the relative angle and translation errors for
small motions (rotation angle smaller than0:1 rad.). Fig-
ure 3 shows the estimation of the relative angle and trans-
lation errors for ”standard” motions (rotation angle greater
than0:1rad.. Both figures show that the method gives accu-
rate results even for high image noise (greater than1:0 pix.).

5.2 Real data

Experiments with real data were conducted in order to jus-
tify the accuracy and applicability of the approach. An im-
age sequence of 100 image pairs was gathered by a parallel
camera stereo rig. In that sequence, a person is moving her
head in many directions

The images were stereo-processed, and the disparity im-
ages were estimated.

The optical flow field [14] is estimated between two con-
secutive left images of the stereo pair in order to find point
correspondences. The algorithm of d-motion estimation
is applied using consecutive matched disparity reconstruc-
tions and the corresponding rigid motion is derived.

Figures 4, 5, 6 and 7 show the evolution of the estimated
rotation angle and translation in thexz�plane. This shows
that the estimated motion is consistent with the observed
sequence.

6 Discussion

In this paper, we have described a method to estimate the
rigid motion of an object observed by a parallel camera
stereo rig. We studied the reconstructions in the dispar-
ity space and demonstrated its geometric and topological
features. We introduced the rigid transformations associ-
ated with this space and show how they are related to the
Euclidean rigid transformation. A motion estimation algo-
rithm has been derived and its efficiency has been proved
by comparing it with a standard algorithm using both syn-
thetical and real data.

There are many theoretical advantages of estimating the
motion from the disparity space and d-motion. Minimizing
E2 gives an accurate estimation ofR andt because, for par-
allel camera stereo rigs, the noise of points in the disparity
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Figure 4: Estimation of the rotation anglevs. frame
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Figure 5: Trajectory of the face center in thexz�plane
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Figure 6: Estimation of the rotation anglevs. frame
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Figure 7: Trajectory of the face center in thexz�plane

space is isotropic (and nearly homogeneous when the re-
construction is restricted to well textured points). Therefore
minimizingE2 gives a (statistically) quasi-optimal estima-
tion.

For non-parallel camera stereo rigs, the images have to
be rectified and the noise is not exactly isotropic anymore
(the effect depending on the vergence angle of the cameras).
However, the noise in the disparity space is still far more
isotropic than in the position space.

Our approach is straightforward and does not have the
drawbacks of the traditional ”Euclidean” scheme which
consists in first reconstruction 3-D data from disparity im-
ages and then estimating the motion from Euclidean data.
Indeed the ”Euclidean” scheme implies that (i) image noise
has to be propagated to 3-D reconstruction (actually approx-
imated at the first order) and (ii) methods [12, 13] have to
be designed to deal with the heteroscedastic nature of the
noise (non-homogeneous, non-identical).

Finally, our approach could easily be extended in the un-
calibrated case when the internal parameters of the stereo
rig are unknown (see section 4.2). The minimization ofE2

should then be performed over 12 parameters instead of 6.
A topic of ongoing and future work is the use of multi-

modal noise distribution to model disparity uncertainties.
Introducing that model in a stereo matching algorithm
would give multiple-hypothesis disparity images, where
each image pixel could have one or multiple disparities. A
robust algorithm should be able to estimate the d-motion
from two multiple-hypothesis disparity images correspond-
ing to a rigid moving object.
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