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Abstract. The movement of the vehicle is an useful information for
different applications, such as driver assistant systems or autonomous
vehicles. This information can be known by different methods, for in-
stance, by using a GPS or by means of the visual odometry. However,
there are some situations where both methods do not work correctly. For
example, there are areas in urban environments where the signal of the
GPS is not available, as tunnels or streets with high buildings. On the
other hand, the algorithms of computer vision are affected by outdoor
environments, and the main source of difficulties is the variation in the
ligthing conditions. A method to estimate and predict the movement
of the vehicle based on visual odometry and Kalman filter is explained
in this paper. The Kalman filter allows both filtering and prediction of
vehicle motion, using the results from the visual odometry estimation.
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1 Introduction

Various applications of Intelligent Transportation Systems (ITS), such as Ad-
vanced Driver Assistance Systems (ADAS) or autonomous vehicles need to have
information about the movement of the vehicle. This information is usually sup-
plied by a GPS, but there are some areas where the signal is not available in
urban environments. This is because the signal is affected by high buildings or
tunnels. Another option in order to know the movement of the vehicle is us-
ing the visual odometry. On the other hand, the visual odometry is affected by
other kind of problems, mainly the light conditions make errors or do not allow
to obtain the information about the vehicle’s motion. A method to estimate the
movement of the vehicle is presented in this paper, based on the visual odom-
etry and whose results are filtered by using Kalman filter. Furthermore, if the
method of visual odometry does not supply any estimation in a period of time,
the Kalman filter can be used in order to predict the trajectory of the vehicle.



The visual odometry is one of the most active field in computer vision. Dif-
ferent solutions have made use of monocular cameras [18], stereo systems [4]
and omnidirectional cameras [15]. Monocular sensors have the problem of scalar
factor, but its implementation is easier than stereo systems which present a com-
plex calibration step. Stereo systems achieve the most accurate results in long
distances, because 3D information is avalaible, although they present great un-
certainty in depth estimation [3]. Several methods have been presented, working
in the disparity space in order to solve the uncertainty [2]. Finally, omnidirec-
tional cameras allow to track the feature points along more frames than other
sensors[16]. On the other hand, the distorsion makes difficult the feature match-
ing. The presented method is based on a stereo vision system [12]. The visual
odometry estimation is normally performed by means of detecting and tracking
feature points between consecutive frames [14]. This visual odometry estimation
makes use of the dense disparity map [17] to detect the road in front of the
vehicle. Once the road has been detected, it is possible to only use the feature
points that belong to the road, avoiding feature points of obstacles which can be
a source of outliers if the obstacles are moving [20]. Another interesting result
of using only feature points that belong to the road is the unnecessary search of
feature points in the whole image, thus the developed algorithm only needs to
process a lower third of the image.

The information of the road profile [8] is used to obtain the world coordinates
of the road feature points. Besides the road profile, it is only necessary to know
the position of the feature points on the left image in order to obtain the world
coordinates, in constrast to most of the visual odometry algorithms, which need
to perform a matching between the images of the stereo pair in order to obtain
the disparity for each feature point. Moreover, the used feature points are close
to the vehicle, reducing the uncertainty in depth estimation. Kalman filtering [7]
has been applied to many situations in engineering, such as radio communication
signals or applications to navigation. The filtering approach of the algorithm is
applied in this work to raw data in order to smooth undesirable fluctuations in
visual odometry. An acquisition of raw data from a GPS is synchronized with the
capture of images in order to compare the results of the visual odometry with the
GPS. The GPS is based on a Novatel receiver [5] that has been configured to work
with Satellite-Based Augmentation Systems (SBAS) for sub-meter positioning.
The solution has been calculated specifically with the European Geo-Stationary
Navigation System (EGNOS), which is a type of geo-stationary satellite system
that improves the accuracy of the basic GPS signals. Accuracy is enhanced
through the use of wide area corrections for GPS satellite orbits and ionospheric
errors. EGNOS consists of a series of reference stations, master stations, ground
uplink stations and geostationary satellites (GEOs).

2 Obstacles and Road Detection

Two equal and parallel cameras can be used to obtain the depth (Z) for a point
P = (X,Y, Z) in world’s coordinates by using (1), where the projections of point



P over the image planes are (uL, vL) and (uR, vr) for the left camera and the
right one respectively.

Z =
f ·B

uL − uR
=

f ·B
d

(1)

Where d is the disparity, f is the focal length and B is the baseline between both
cameras. The disparity map is obtained by using the rectified images supplied
by the stereo system, being the disparity (d) represented in the disparity map
for every pixel of the image. Once the disparity map has been created, the u-v
disparity [6] can be obtained. The v-disparity [8] expresses the histogram over
the disparity values for every image row (v coordinate), whereas the u-disparity
does the same, but for every column (u coordinate).

The dense disparity map and the u-v disparity are developed in order to de-
tect obstacles in front of the vehicle. The method for detecting obstacles and the
free space in front of the vehicle has been presented in [11]. This method ob-
tains, as a result, two different dense disparity maps. The first one is the obstacle
map (Fig.1(c)) and the second one, the free map (Fig.1(d)). The obstacle map
is a disparity map where only the obstacles appear, whereas the free map is the
opposite to the obstacle map, where only the empty space ahead of the vehicle
appears. The obstacle detection has to detect every obstacle which blocks the
movement of the vehicle, but it must not detect as an obstacle some possible ele-
ments which do not avoid the movement, for example a speed bump. Althought
the free map usually corresponds to the road, theoretically, is the empty whole
space. This information can be used by a system of detection and localization
of obstacles, as shown in [10].

(a) Left image (b) Disparity map (c) Obstacles map (d) Free map

Fig. 1. Example of the obstacles and road detection

2.1 Estimation and Use of the Road Profile

As commented before, the depth (Z) for a point P can be calculated by means
of (1), where the depth (Z) is a function of the disparity d, but the range of the
disparity is low. This range is a function of the extrinsic and intrisic parameters
of the cameras, (for the results presented in this work, the range of disparity is
d = {0, 25}). Thus, the resolution of (1) is sparse. The road profile [8] can be used
in order to increase this resolution of the depth. The road appears as an oblique
line in the v-disparity (road profile), which can be expressed as a straight line



(2) if a flat ground assumption is performed. Where v is the vertical coordinate
of the image and b is the theoretical value of the horizon of the stereo system.
Furthermore, once the road profile has been estimated, it is possible to know the
pitch α between the stereo rig and the road [8] for each frame, by means of the
(3) where Cv is the vertical coordinate of the optical center.

v = m · d+ b (2)

α = arctan
b− Cv

f
(3)

The road profile (2) shows the relationship between the vertical coordinate of
the image v and the disparity d, then it is possible to obtain a new expression (4)
merging the stereo equation (1) and the road profile (2), where now the depth
(Z) is a function of the vertical coordinate of the image v. This new expression
to calculate the depth Z is only for points belonging to the road. Moreover, in
order to calculate the depth to the vehicle instead of the depth to the camera,
it is necessary to use the information about the pitch α (3). Once the depth (Z)
for a point belonging to the road has been calculated, it is possible to obtain
its world coordinate X , which is a function of Z as (5) shows. Where Cu is the
horizontal coordinate of the optical center.

Z =
m · f · B
v − b

· cosα (4)

X =
Z · (u − Cu)

f
=

m ·B · (u − Cu)

v − b
(5)

It is important to note that estimating the road profile v-disparity which has
been generated by using the disparity map, can be a difficult task in urban
environments, so the detection of the oblique line corresponding to the road
profile is difficult. An extended explanation of the solution to this problem is
presented in [11]. For this reason, it is better to use the free map in order to
generate the v-disparity because the obstacles are removed from the v-disparity,
so it is easier to estimate the road profile.

3 Raw Visual Odometry Estimation

The visual odometry estimation is based on tracking feature points between con-
secutive frames of the left camera. In opposition to the usual methods of visual
ego motion estimation or visual odometry [12], this method does not have to
match up the feature points between both images of the stereo system to locate
the points in world coordinates, because the method only uses the points belong-
ing to the road. This points can be located on world coordinates by using (4) and
(5) with the coordinates of points on the left image. An implementation of the
Scale-Invariant Transform Feature (SIFT) detector and descriptor [9] developed
for the MATLAB environment [19] is used in order to detect the feature points
of the images.
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Fig. 2. (a) Schema of the movement of the vehicle. On the left, rotation stage. On the
right, translation stage. (b) Schema of the movement of the cartesian coordinate system
between consecutives frames. (c) Example of feature points detecting and matching
between consecutives frames.

The chosen model for the kinematic motion of the vehicle is the Ackerman’s
sterring model [1] [13]. In order to simplify the visual odometry estimation,
it is necessary to make some assumptions: firstly, the movement of the vehicle
between two consecutive frames can be divided into two stages, whose velocity is
constant in each one (Fig.2(a)): a rotation around the center of the motion of the
rear axle and a forward translation after the rotation. The second assumption is
that there is no slip in any direction.

3.1 Estimation of the Visual Odometry between Consecutive
Frames

The vehicle odometry estimation between two consecutive frames (t and t+1) is
perfomed in two steps. Firstly, the feature points have to be detected on the two
left images of the stereo pair, in the instants t and t+1. Then, a correspondence
between the two sets of feature points (t and t+1) is done in order to know the
displacement of the feature points within the images. As commented before, the
method only makes use of points of the road which are situated at the bottom
of the image. For this reason, it is possible to detect only the feature points at
the bottom of the image, determining what feature points belong to the road by
means of the free map. Besides the reduction of the computing time, using only
the closest points to the vehicle, the flat ground assumption is improved. Once
the image coordinates of the feature points have been obtained, it is possible to
calculate the world coordinates {X,Z} of these feature points in the instants t
and t+ 1 by means of (4) and (5).

Secondly, the estimation of the vehicle movement between two consecutives
frames (t and t + 1) can be calculated by using the different locations in the
instant t and t + 1 of the points detected in the previous step. As Fig.2(b)
shows, the rotation angle θ of the vehicle can be calculated by means of (6),
where ZT and XT represent the translation after the rotation. Besides, it is
possible to express ZT and XT as a function of θ and the locations of a road
point, in the instant t and t + 1 by using (7). On the other hand, the angle θ



is the only unknown variable of the expression in equation (8). It is possible to
obtain firstly θ by solving the second order equation (9) and then ZT and XT

by using (7).

θ = arctan

(
XT

ZT

)
⇒ tan θ =

sin θ

cos θ
=

XT

ZT
(6)

[
Xt

Zt

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Xt+1

Zt+1

]
+

[
XT

ZT

]
(7)

XT

ZT
=

sin θ

cos θ
=

Xt −Xt+1 cos θ − Zt+1 sin θ

Zt − Zt+1 cos θ +Xt+1 sin θ
(8)

(X2
t + Z2

t ) sin
2 θ + (2 ·Xt+1 · Zt) sin θ + (X2

t+1 −X2
t ) = 0 (9)

In this way, a set of solutions {θ, ZT , XT } for the visual odometry estimation
is obtained, where a solution {θ, ZT , XT }k has been calculated for each pair of
points {Xt, Zt}k and {Xt+1, Zt+1}k. Different methods can be used in order to
choose a unique solution {θ, ZT , XT } from the set of solutions, as a result of
the visual odometry between the two consecutive frames. The algorithm uses a
solution from the set by means of the median because it is robust to possible
outliers.

4 Description of the Kalman Filter Implementation

The visual odometry estimation uses Kalman algorithm to solve filtering and
prediction problem. The filtering approach of the algorithm is applied to raw
data in order to smooth out undesirable fluctuations of visual odometry variables
{θ, ZT , XT }. Moreover, the Kalman algorithm is used if it is necessary to predict
the evolution of the former variables in case of raw data loss.

4.1 Model Using in Kalman Filter

The process model is implemented by a linear time-varying (LTV) model in
discrete time. That is, the process is described by a linear system. In this work,
the system is a vehicle driving along a road at constant velocity. This linear
system is a process, which can be described by the following two equations:

xt+1 = At · xt + wt (10)

yt = B · xt + zt (11)

Where, t is the time index, x is the state of the system and y is the measured
output. The variable w is the process noise and z is the measurement noise. The
matrix A is the state transition matrix and B is the measurement matrix, which
are obtained to model a simple vehicle moving with constant velocity.

Then, the state vector x consists of the vehicle location p = [X,Z, θ] and

velocity v: xt =

[
pt
vt

]
, and the linear system equations are:



xt+1 =

[
1 Tt

0 1

]
· xt + wt (12)

yt = [1 0] · xt + zt (13)

The Kalman filter combines the measurements from the system (variables for
the visual odometry estimation {θ, ZT , XT }), with the information provided by
the motion model in order to obtain an optimal estimate of the system state.
In this work, the measurement noise covariance matrix has been selected as the
square of standard deviation of measurement (such as, 12 if we estimate ZT ),
and the process noise covariance matrix uses process noise variance of 0.01.

4.2 Utilities of the Kalman Filter

The Kalman algorithm has been applied for filtering and prediction of visual
odometry variables. Both utilities of the Kalman algorithm are displayed in
Fig. 3, where three graphs represent the same example of a curve trajectory of
the vehicle. The example shows only one of the three variables corresponding
to odometry estimation, that is the angle θ. The example of the angle sequence
starts at 20 second when the curve trajectory appears. The red circles of the
graphs are visual odometry angles and blue circles are obtained solution with
Kalman algorithm.

The first solution is the graph of Fig. 3(a), which presents the angle without
fluctuations of the real data. The result allows to follow a smooth curve trajec-
tory and eliminate outliers. In the graph can be observed that there are close
measurements of 0.1 seconds where the algorithm smoothes correctly the curve
trajectory. However, the most useful result appears when there is a gap of more
than 0.1 seconds and an outlier is obtained by the visual odometry estimation,
this outlier is usually caused by the shutter of the camera. In this special case,
the Kalman filter obtains good results again as can be observed in the graph,
smoothing the curve trajectory of the vehicle.

The second utility is prediction, where the Kalman algorithm is used to predict
a solution when visual odometry cannot be calculated. Then, it is necessary
to predict the evolution of the variables. We continue using the same curve
trajectory as example and it is presented in (b) and (c) graph of Fig. 3. The
experiment consists of requesting to Kalman algorithm an prediction of 100
measurements of odometry angle with a time interval of 100 milliseconds. The
entire interval of 10 seconds is requested in two cases, first case when the vehicle
is in the middle of the curve trajectory (Fig. 3(b)), and second case when the
vehicle is reaching the end of the curve trajectory (Fig. 3(c)). Both prediction
results are according to curve trajectory. In the right graph (Fig. 3(b)), the
predicted angle presents an overshoot and finishes the estimated curve trajectory
at 35 second. The third graph (Fig. 3(c)) shows the vehicle finishing again the
estimated curve trajectory at 40 second and displays after a small overshoot.
Both estimations reach a steady-state angle of 0 degrees.
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Fig. 3. Example of filter (a) and prediction ((b) and (c)) of θ raw data

5 Evaluation

Several tests have been performed in urban environments in order to evaluate
the goodness of the algorithm of the visual odometry estimation. The results of a
sequence, where the vehicle performes a closed loop in a urban environment, are
presented in this section. The sequence has 1 minute and 38 seconds` duration
and it is composed of 982 stereo images. Two different methods are used in order
to evaluate the degree of accuracy of the visual odometry estimation. Firstly, it is
possible to compare the difference between the initial and final location (position
and orientation) of the vehicle. Due to the vehicle performes a closed loop, this
two locations should be the same. Secondly, aerial imagery can be also used to
overlay the resulting trajectory of the visual odometry estimation, and GPS raw
data.

5.1 Results of the Visual Odometry Estimation

The first evaluation result is based on a comparison between the median and the
mean, that has been performed in order to evaluate the robustness of the median



(a) (b) (c)

Fig. 4. Comparison between the different trajectories of the visual odometry estimation
and GPS overlay in an aerial imagery. (a) Trajectory using obstacles in blue, mean in
green and final visual odometry estimation (median) in red. (b) Raw data of the GPS
overlay over an aerial imagery (c) Detail for comparison between the visual odometry
estimation and the GPS raw data.

when it is used to choose the final solution {θ, ZT , XT }. Fig. 4(a) presents the
resulting trajectory of the visual odometry using both methods: the trajectory
calculated by the mean appears in green and the median in red. The trajectory
is deformed due to use the mean, in comparison with the obtained one with
the median. The effect of not to use the feature points from the obstacles has
been also studied. Fig. 4(a) shows the obtained trajectory using the feature
points from the obstacles (blue colour). The fact that using feature points from
the obstacles ahead of the vehicle produce a 50% position error higher than
the visual odometry estimation without obstacles, whereas the rotation error
is similar. Regarding to the trajectory, the deviation is more prominent in the
entire trajectory as Fig. 4(a) shows.

Following, the raw data resulting from the visual odometry estimation are
filtered in order to smooth fluctuations, Fig. 5 shows the results of filtering each
variable {θ, ZT , XT }. It is possible to observe the improvement of the smoothness
in the three variables. The Fig. 5(a) displays the visual odometry estimated
angle in red colour and Kalman filtered angle in blue colour. That is, Kalman
algorithm estimates next angle using former angles of the time series. The results
of the filter is appropriate in linear and curve trajectories, as can be observed
in Fig.5(a), which first displays a linear trajectory followed by a curve to the
left and so on. It is interesting to compare Fig.5(a) and Fig. 4(a) to observe
the overall trajectory of the experiment, for example, when the vehicle is in
the roundabout and how the Kalman filter smoothes continuously the curve
trajectory to the left. The Fig.5(b) displays the X position and the behaviour
of the filter is accurate obtaining again a smooth trajectory. It can be observed
again the equivalence between Fig.5(b) and Fig. 4(a). The third graph is the Z
position where the Kalman algorithm filters fluctuations of approximately 0.8
meters. The algorithm smoothes efficiently the Z variable.
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Fig. 5. Results of the raw data filtering from visual odometry estimation

5.2 Comparision between Visual Odometry Results and GPS

The second evaluation result is based on GPS. The GPS raw data of the followed
trajectory by the vehicle is displayed in Fig 4(b). Raw data is shown in Universal
Transverse Mercator (UTM) geographic coordinate system to compare visual
odometry estimation data and GPS raw data in meters. The trajectory start,
which is followed by the vehicle, is marked with a red dot in Fig. 4(b), and each
blue dot stands for a GPS point. The accuracy of overall trajectory is less than
one meter when GPS + EGNOS is active, and if the receiver uses single point L1
solution the accuracy is 1.5 meters. Moreover, if the receiver is working in single
point L1 solution and the number of GPS satellites is insufficient to calculate an
optimum solution, then the accuracy of the solution can be increased more than
1,5 meters, resulting in a lateral displacement of the blue dots close to the real
trajectory of the vehicle. The trajectory shows some gaps, where the receiver
cannot compute the solution caused by the loss of GPS satellites. The loss of
satellite signals is caused by obstructions from close buildings in the right and
left side of the road. The comparison between visual odometry estimation results
and GPS raw data can be observed in Fig. 4(c). The visual odometry trajectory is



indicated in red colour and GPS raw data in blue colour. This comparison is the
tool that allows to establish the performance of the visual odometry estimation.
Considering the accuracy of the GPS receiver, explained in former paragraph,
the results establish that visual odometry has better performance that GPS raw
data. It is possible to observe wrong data at the bottom-right of the Fig.4(c) due
to the receiver cannot compute the solution caused by the loss of GPS satellites.
The loss of satellite signals is caused by a close building in the right of the road.
The red trajectory matches exactly with the cars in the aerial image, as can
be observed at the beginning of the roundabout where appears a car that is
waiting for entering in the roundabout. A second example is in the middle of the
roundabout, where a bus is performing a curve trajectory.

6 Conclusions

The 2D visual odometry estimation has been explained and applied in urban
environments. The advantages of the smart algorithm have been shown com-
paring GPS raw data with visual odometry results. The robust visual odometry
estimation ensures safe trajectory in case of GPS raw data loss caused by build-
ings, trees, tunnels, among other solid elements around the vehicle. The GPS
drawbacks have been solved with proposed algorithm. The visual estimation has
reached the accuracy for curve and linear trajectories of the vehicle, avoiding
outliers from dynamic obstacles. The results display a position error of 3.2%
and a rotation error of 2.6% in a close loop, which accomplishes the goal of
the estimation algorithm. In addition, the use of the road profile and free map
information allow to search feature points only in the lower third of the left
images, and reduce the uncertainly in depth estimation because these points are
close to the vehicle. Kalman filter has been used as a great asset for smoothing
out undesirable fluctuations of visual odometry variables, and if necessary the
Kalman algorithm can predict the variables of the vehicle’s movement in case of
raw data loss.
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