6 research outputs found

    Automatic quantitative analysis of morphology of apoptotic HL-60 cells

    Get PDF
    Morphological identification is a widespread procedure to assess the presence of apoptosis by visual inspection of the morphological characteristics or the fluorescence images. The procedure is lengthy and results are observer dependent. A quantitative automatic analysis is objective and would greatly help the routine work. We developed an image processing and segmentation method which combined the Otsu thresholding and morphological operators for apoptosis study. An automatic determination method of apoptotic stages of HL-60 cells with fluorescence images was developed. Comparison was made between normal cells, early apoptotic cells and late apoptotic cells about their geometric parameters which were defined to describe the features of cell morphology. The results demonstrated that the parameters we chose are very representative of the morphological characteristics of apoptotic cells. Significant differences exist between the cells in different stages, and automatic quantification of the differences can be achieved

    Image Analysis of Pellet Size for a Control System in Industrial Feed Production

    Get PDF
    When producing aquaculture fish feed pellets, the size of the output product is of immense importance. As the production method cannot produce pellets of constant and uniform size using constant machine settings, there is a demand for size control. Fish fed with feed pellets of improper size are prone to not grow as expected, which is undesirable to the aquaculture industry. In this paper an image analysis method is proposed for automatic size-monitoring of pellets. This is called granulometry and the method used here is based on the mathematical morphological opening operation. In the proposed method, no image object segmentation is needed. The results show that it is possible to extract a general size distribution from an image of piled disordered pellets representing both length and diameter of the pellets in combination as an area

    Morphological-based adaptive segmentation and quantification of cell assays in high content screening

    No full text
    ISBN : 978-1-4244-2002-5International audienceIn fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format

    Image Analysis and Platform Development for Automated Phenotyping in Cytomics

    Get PDF
    This thesis is dedicated to the empirical study of image analysis in HT/HC screen study. Often a HT/HC screening produces extensive amounts that cannot be manually analyzed. Thus, an automated image analysis solution is prior to an objective understanding of the raw image data. Compared to general application domain, the efficiency of HT/HC image analysis is highly subjected to image quantity and quality. Accordingly, this thesis will address two major procedures, namely image segmentation and object tracking, in the image analysis step of HT/HC screen study. Moreover, this thesis focuses on expending generic computer science and machine learning theorems into the design of dedicated algorithms for HT/HC image analysis. Additionally, this thesis exemplifies a practical implementation of image analysis and data analysis workflow via empirical case studies with different image modalities and experiment settings. However, the data analysis theorem will be generally illustrated without further expansions. Finally, the thesis will briefly address supplementary infrastructures for end-user interaction and data visualization.Netherlands Bioinformatics CentreComputer Systems, Imagery and Medi
    corecore