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Chapter 1  

Introduction to High-throughput Cytomics 
 

1. Introduction 
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1.1. Bioinformatics and Cell Biology 
Bioinformatics is the research field that attempts to extract comprehensive information from 

large quantities of biological data via an integration of methods from computer science, 

mathematics, and biology [1]. It is an interdisciplinary study of automation for the retrieval, 

storage and analysis of biological data. The term bioinformatics, so it is posed, was first in 1970 

by two Dutch complex system researchers, Ben Hesper and Paulien Hogeweg [2]. Since then, 

bioinformatics has been the key to functional genetics and system biology experiment in order 

to understand mechanisms behind cell behavior and cell system. In current cell biology 

research, bioinformatics plays a crucial role in the correlation modeling between cell genotype 

and phenotype.  

 

In cell biology, the term genotype refers to the unique genetic hereditary and expression 

pattern while the term phenotype refers to observable cell properties including morphology 

and migration behavior. The correlation modeling of genotype-to-phenotype is a study of the 

correlation/causality between characteristic patterns of gene expression and recognizable cell 

properties. The genotype-to-phenotype correlation is the foundation of a systematic 

understanding of molecular architecture and control mechanisms behind different cell 

behavior. This correlation is of particular importance to cell behavior related diseases. 

However, due to the amount of information to be analyzed, the study of genotype-to-

phenotype correlation must be done in an automated fashion. 

 

To that end, modern developments in quantitative microscopy and laboratory robotics have 

provided the necessary hardware to the automated study of genotype-to-phenotype 

correlation. These studies are often referred as the –omics studies[3]. Depending on the study 

subject and biology of interest, omics studies employed by molecular genetics and cell biology 

branched out to a number of fields including genomics, transcriptomics, proteomics, 

metabolomics and cytomics.  

 

Transcriptomics is the study dedicated to the quantitative analysis of RNA expression. In a 

living cell, RNA is produced by transcripting DNA strains. The expression pattern of RNA is 

considered an indication of protein production related to cell behavior. The study of the 

correlation between RNA expression and cell behavior is an essential part of genotype-to-

phenotype study. Much of it is accomplished via the application of an high-throughput screen 

technology known as the microarray. The microarray technology is a method originally derived 

from Southern blotting  [4] developed by Sir Edwin Mellor Southern in 1992. Essentially, 

microarray technology relies on base-pairing and hybridization of RNA strains to quantify the 

expression level of targeted RNA strains. 

 

Transcriptomics focuses on the quantification of the genotype, whereas cytomics is dedicated 

to the quantitative analysis of the cell phenotype using high-throughput screen technology; 

this is known as the high-throughput/high-content cell screen or simply HT/HC screen. The 

HT/HC screen is achieved via the introduction of automated microscopy. Modern HT/HC 

screen analysis produces data on terabyte scale. Such a data volume poses great difficulty in 

manual analysis in early cytomics studies. To that end, computer science and information 

theory including image analysis, pattern recognition and machine learning have been included 
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to provide automated solution for image data processing. Due to the unique characteristics of 

biological image data, image analysis solutions need to be tailored. Therefore, we 

systematically investigate the limitations of generic image analysis solutions in HT/HC screen 

experiments; and based on the limitation studies, this thesis will focus on the design of 

dedicated image analysis solutions for HT/HC screen studies. 

1.2. Image Analysis in High-throughput/High-Content Screen 
At the current stage, cytomic experiments frequently employs either flow cytometry or high-

content screen techniques to capture cell phenotypes.  

Flow cytometry (cf. Figure 1-1) is a laser based technology employed in cell counting, sorting 

[5][6], and biomarker detection by suspending cells in a fluid stream and passing them through 

an electronic detection apparatus.  

The high-throughput/high-content screen (HT/HC screen) [7] is a microcopy based method 

aiming for the visualization and capture of cell phenotypes over a large range of experimental 

settings (cf. Figure 1-2 & Figure 1-4). With different microscopy techniques, the HT/HC screen 

can serve different biological studies. 

 
Figure 1-1 the workflow of a multi-color flow cytometry 
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Figure 1-2 the general workflow of HT/HC screen study 

In cytomics studies, the flow cytometry technology is frequently used to sort and quantify 

different types of cells [5][6][8] due to its fast analysis and high sorting accuracy. However, the 

flow cytometry does not provide the possible to study live cell behavior. Compared to flow 

cytometry, HT/HC screen using automated microscopy can capture both cell morphology and 

cell migration, i.e., size, polarization and migration speed. The employment of an HT/HC screen 

allows the extraction of phenotypical quantification; combined with microarray technology it 
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allows further correlation modeling of genotype-to-phenotype can be 

accomplished[9][10][11][12][13][14].  

An HT/HC screen study consists of a sequence of five steps[9][14]: (1) experiment design, (2) 

experiment preparation, (3) image acquisition, (4) image analysis, and (5) data analysis. In 

each step, the raw data are further transformed into comprehensive data representation to 

support validation of the initial hypothesis. 

 

1. Experiment Design 

The experiment design is the first step in a HT/HC screen. It is the step to draw the blueprint 

for the HT/HC screen study to serve the research question. During the experiment design, the 

researchers must answer two essential questions: (1) what information must be captured and 

(2) how to capture the information. It is very difficult to be precise on how these two questions 

should be answered. Instead, we will give two examples of experiment design to explain the 

procedure.  

 

Example 1: Growth factor regulated cancer metastasis [10][15] (cf. Figure 1-6a & Ch. 4) 

In the experiment design of this HT/HC study, the researchers must first select a siRNA library 

which is potentially related to cell migration. Second, they must choose a cancer cell line 

demonstrating strong phenotypical plasticity, thus allowing to capture more observable 

differences in cell phenotype. Third, they must design a layout (cf. Figure 1-3) to fit the treated 

cells into a culture plate (cf. Figure 1-5). At the same time it is decided which microscopy 

technique is most suitable to capture the cell phenotype.  

 

Example 2: Study of matrix adhesion dynamics [16] (cf. Figure 1-6b & Ch. 5) 

In the experiment design of this HT/HC study, the researchers must first decide what 

combination of microscopy techniques can be used to capture matrix adhesion (subcellular 

structure) and cell migration (cf. Figure 1-4). Finally, they must decide how to quantify the 

relationship between the dynamics of matrix adhesions and cell migration. 

 

From these two examples it is clear that for different biological questions, the experiment 

design step may consist of different tasks. As a result, there are very few limitations to the step 

of experiment design which makes it vulnerable to user generated error. In Chapter 6, we will 

demonstrate a flexible computer-aided experiment design interface for HT/HC screen studies. 

 

 
Figure 1-3 plate layout of a 8x12 culture plate used in RCM3 growth factor regulation (cf. chapter 4) in Excel 

spreadsheet 
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Figure 1-4 sample frames from a temporal-spatial 2D imaging setting consists of a TIRF channel and a 

epifluorescence channel 

2. Experiment Preparation 

During the experiment preparation, the researcher 

will conduct the experiment following the initial 

experiment design. Specimens, usually in vitro cell 

lines, are prepared and put into a culture plate (cf. 

Figure 1-5). However, the cell behavior is often 

subjected to environmental fluctuations such as 

CO2-level, temperature [17][18], or cell-to-cell 

variability [19]. As a result, it is likely that an 

individual specimen may not homogeneously 

express an expected phenotypical signature. These 

typical wet-lab related problems are, however, beyond the scope of this thesis. 

 

3. Image Acquisition 

In the image acquisition step, according to the plate layout, images will be produced (cf. Figure 

1-6e) using microscopy imaging. Imaging techniques [10] commonly used by HT/HC screen are 

the following: (1) fluorescence microscopy [20][21][17][14] (cf. Figure 1-6a-c), (2) confocal 

laser scanning microscopy (CLSM) [22][23] (cf. Figure 1-6d), and (3) total internal reflection 

fluorescence (TIRF) microscopy [24][25]. When being applied for live cell imaging, the design is 

often referred as a time-lapse imaging (cf. Figure 1-4) for a temporal effect is studied. Similar 

to capturing video, time-lapse imaging captures images at a fixed sampling interval (temporal-

resolution) from a predefined location in each well.  

 
Figure 1-5 layout of a 96 well culture plate 
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The temporal-resolution selected for time-lapse imaging, given in terms of the interval 

between two consecutive frames, is ranging from 30 minutes per frame for a stationary human 

reporting cell line [12] to 30 seconds per frame for matrix adhesion dynamics. The choice of 

the temporal-resolution is often considered empirical and subject-depended. The aim is to find 

a sample interval that captures the major changes of phenomenon. The temporal-resolution at 

which a phenomenon occurs usually does not require video rate. In that case, using higher 

temporal-resolution to capture additional intermediate stage does not necessarily provide 

more information. Moreover, sometimes to enforce a higher temporal-resolution may also 

produce undesirable quality issues such as cell death due to phototoxicity [26]. Therefore, the 

temporal-resolution of the imaging is tuned to take into account the preservation of cell 

vitality. 

 

 
(a) 

 
(b) 

 
(e)  

(c) 
 

(d) 

Figure 1-6 different image modalities and experiment designs in image acquisition (a) epifluorescence microscopy 

for cell migration analysis, (b) TIRF + epifluorescence microscopy for matrix adhesion analysis, (c) epifluorescence 

microscopy for protein localization during wound-&-recover, (d) confocal laser microscopy for protein 

translocation during cell endocytosis, (e) a simple setup of hardware for image acquisition 

 
4. Image Analysis 

The image analysis step (cf. Chapter 2 and Chapter 3) is the crucial step in converting HT/HC 

images into numerical phenotypical descriptions. It is the bridge connecting the biological 

experiment and the data analysis. A robust image analysis solution is absolutely necessary to 

produce an objective understanding of the raw image data. In HT/HC screens, one has to deal 

with large quantities of images of which the quality may vary due to the fact that observations 

are done over a period of time as well as due to the variation in response of the cells. 

Consequentially, errors in image analysis will propagate into the subsequent steps. Therefore, 

it is important to use dedicated and problem-driven image analysis solutions. In general, our 

image analysis solutions for HT/HC screen studies consists of four major steps (cf. Figure 1-7): 

(1) image enhancement [27][28], (2) image segmentation [29][30], (3) object tracking [9][31], 

and (4) phenotypical measurements [10][32][33][14].  

 

NIKON fluorescence microscope with 
motion stage 

Specimen 
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Image Enhancement Image Segmentation Object Tracking Phenotypic Measurement

Figure 1-7 image analysis in HT/HC screen study 

 

In the image analysis of HT/HC screen studies, the image enhancement serves to improve the 

separation between the foreground and the background. The image enhancement usually 

consists of two parts: (1) noise suppression and (2) signal enhancement. The noise suppression 

is a procedure to increase the signal homogeneity within foreground and background [34][35]. 

The signal enhancement is a procedure to increase the signal heterogeneity between 

foreground and background [34][35]. Image enhancement is not required if foreground and 

background can be well separated (see § 2.3). Otherwise, image enhancement is always 

recommended before image segmentation.  

 

After image enhancement, the image will be segmented. Image segmentation is the 

procedure to convert the raw image into foreground and background. The foreground is 

defined as the pixels containing information for the analysis. In cytomics, image segmentation 

(cf. Ch. 2) is the essential step to convert the raw image into quantifiable elements. A good 

segmentation solution should correctly extract most of the foreground without introduction of 

background. Moreover, for HT/HC screen studies image segmentation algorithms are required 

to be self-adaptive and robust to image quality since it is impractical for users to tune the 

parameters for individual images. This is what generic segmentation algorithms often fail to 

comply. The image segmentation in HT/HC screen study will be further discussed in Chapter 2.  

 

For a time-lapse imaging setting (cf. Figure 1-4), the objects from the segmented images will be 

tracked. The object tracking (cf. Ch. 3) is another crucial procedure in the image analysis to 

produce dynamic information of objects in a temporal study. In general, a tracking algorithm 

builds linkages between objects from consecutive frames using either motion models or object 

similarity measurements. In HT/HC screens, the efficiency of object tracking is often affected 

by the accuracy of image segmentation and the sampling interval of time-lapse imaging [9] 

[18][36]. The object tracking in HT/HC screen study will be further discussed in Chapter 3.  

 

The phenotypic measurement is the final step of image analysis in an HT/HC screen study. It is 

accomplished by extracting numerical descriptors [9] using the object labeling from the image 

segmentation and object linkages from the object tracking. These numeric descriptors or 

measurements are information carried within the image data that can be used to characterize 

a biological phenomenon. With these measurements, data analysis can be performed to verify 

the initial research question. 
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5. Data Analysis 

The data analysis step (cf. Chapter 4 and Chapter 5) further augments the phenotypical 

measurements into comprehensive data representation and visualization (cf. Figure 1-7) by 

employing machine learning and statistical analysis [10][37][5][9][38][39]. The selection of 

data analysis solutions is depending on the experiment design. Commonly employed measures 

include first-order statistics, temporal low-order statistics, significance testing, data clustering 

and data classification. The data analysis theory is relative mature in other –omics studies, i.e. 

transcriptomics. In cytomics the analysis workflow is under development [29]. The 

decomposition and comparison of temporal data is not yet fully understood. The data analysis 

step is another important step, similar to image analysis, in converting image data into 

comprehensive conclusions. 

1.3. Thesis Scope and Structure 
This thesis is dedicated to the study of image analysis in HT/HC screens. A HT/HC screen 

produces an extensive amount of images for which manual analysis is impractical. Therefore, 

an automated image analysis solution should precede an objective understanding of the raw 

image data. The efficiency of HT/HC image analysis is often depending on image quality. 

Therefore, this thesis will address two major procedures in the image analysis step of HT/HC 

screens, namely image segmentation and object tracking. Moreover, in this thesis we will focus 

on extending computer science and machine learning approaches into the design of more 

dedicated algorithms for HT/HC image analysis. Additionally, this thesis demonstrates a 

practical implementation of an image and data analysis workflow case studies in which 

different imaging modalities and experimental designs are used. Finally, the thesis will briefly 

address an infrastructure for end-user interaction and data visualization. 

 

This thesis is divided into three main parts: 

 

Methodology 

The first part includes “Chapter 2 Robust Image Segmentation for Cytomics” and “Chapter 3 

Robust Object Tracking for Cytomics”. It starts from a literature study of existing image 

segmentation and object tracking algorithms that have been frequently applied in HT/HC 

studies. Subsequently, it further elaborates the design and implementation of a dedicated 

image segmentation algorithm, namely watershed masked clustering, and two robust real-

time object tracking algorithms for HT/HC studies, namely kernel density estimation with mean 

shift tracking and energy driven linear model tracking. In this part, the performance and 

efficiency of these algorithms are assessed using ground truth image sets from empirical live 

cell HT/HC screens. Moreover, the performance assessments of these algorithms are used to 

the case study part as a theoretical foundation of designing image analysis workflows for 

experiments. 

 

Case Studies 

The second part including “Chapter 4 A Study to Cell Migration Analysis” and “Chapter 5 A 

Study to Dynamics of Matrix Adhesion”, demonstrates two case studies of different 

experiment designs and image modalities. The first case study is an analysis aiming to extract 

single-cell level phenotypical characterization from an aggressive cancer cell line with live cell 
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imaging. The second case study is matrix adhesion dynamics study. This project aims to model 

the correlation between the matrix adhesions, a type of subcellular macromolecular complex, 

and cell migration. This case study consists of a complex experiment setting and multi-modal 

live cell imaging.  

 

These two case studies are demonstrating the practical implementation of image analysis and 

data analysis workflows following the design studies described in Chapter 2 and Chapter 3. 

 

Supplementary System  

The third part includes “Chapter 6 HT/HC Data Management System”, illustrates a data 

management system to support HT/HC image analysis. Through the analysis pipeline, 

researchers often focus more on the image analysis and data analysis whilst an equal attention 

should also be given to the design of an efficient method to organize and visualize data. 

Moreover, HT/HC is but just one step in the cytomics pipeline. It is more important to integrate 

different -omics analysis to provide comprehensive understandings of biological phenomena. 

Thus, the design and implementation of a data management system offers a mutual platform 

for the data exchange between different –omics studies.   
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Chapter 2  

Robust Image Segmentation for Cytomics 

2.  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the following publications 

 
Yan, K., & Verbeek, J. F. (2012). Segmentation for High-throughput Image Analysis: Watershed Masked Clustering. 

Proc. of ISoLA 2012. LNCS 7610. Springer Berlin-Heidelberg 2012, pp. 25-41 
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Chapter Summary 
Image segmentation is a crucial image analysis procedure in HT/HC screen study. It is often 

considered the first substantial step to convert image data into quantifiable elements. 

However, the selection of a proper segmentation algorithm is a nontrivial task. Often it 

requires an evaluation of both image quality and algorithm trait. To answer this question, this 

chapter illustrates the design of an innovative segmentation algorithm and its performance 

together with the assessment of several popular segmentation algorithms that have been used 

for HT/HC screen studies. The comparison provides an overview of the segmentation accuracy 

of each algorithm and a systematic assessment of the limitations of these algorithms. As a 

result, the comparison confirms that the watershed masked clustering (WMC), hysteresis 

threshold, and the level-set are good algorithms for image segmentation in HT/HC screen 

studies. The WMC algorithm shows the best performance with the selected HT/HC benchmark 

image sets. 
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2.1 Introduction 
Image segmentation is defined as the procedure partitioning an image into multiple regions. It 

is often considered the most crucial step when converting image data into quantifiable 

elements [6][7][40][41]. Image segmentation algorithms are essentially built on two basic 

properties of image intensity: discontinuity and similarity. Algorithms relying on different 

discontinuity or similarity criteria can be further divided into the following types [42]: the edge 

based [43][44] and partial differential equation (PDE) [45] based algorithm are two major 

branches of the discontinuity-based algorithms, threshold- [46] and region-growing based 

algorithms are two major branches of the similarity-based algorithms.   

 

These two branches of segmentation algorithms have proven their applicability in HT/HC 

screen studies. Threshold and region growing based algorithms are often employed in the 

image analysis of fluorescent and phase contrast microscopy due to its low computational cost 

and high convergence speed. However, region growing based algorithms [47] are vulnerable to 

local intensity variations when the size of object (foreground) is in the same range as the 

image noise (background).  

The edge based and PDE based algorithms are used in magnetic resonance imaging (MRI) 

[48][49], fluorescent microscopy imaging [50][51], and phase contrast imaging. Algorithms in 

these two branches are considered local adaptive optimization procedures to evolve an initial 

curve towards the lowest potential of a cost function [52][53]. As a result, the design of a cost 

function often requires thorough understanding of image characteristics and cannot be easily 

adapted to exceptions. 

Recent developments in imaging technology allow multi-channel visualization of cell structures 

using different microscope modalities, therefore it is important to estimate the image 

characteristics before selecting a proper segmentation algorithm. Our empirical study suggests 

that generic segmentation algorithms often proof less efficient when processing HT/HC screen 

images. Compared to standard imaging, quality of bio-imaging in HT/HC studies often suffers 

from technological complexities and experiment instabilities. In high-throughput imaging 

settings, these issues are the challenges to be resolved [54][55][56][57][58]. Some of the 

complexities may be corrected during the imaging by changing the mechanics of acquisition. 

Some may only be determinable after the imaging. Thus, it often relies on further digital image 

processing to compensate the image quality before performing segmentation. However, the 

processing does not necessarily guarantee an improvement in image quality. 

As a result, a good selection of segmentation algorithm must be justified by heuristics; 

meaning to identify foreground without introducing background. Other than inventing a new 

principle of segmentation, here we propose a hybrid segmentation algorithm by merging 

existing segmentation algorithms to produce accurate masks. The watershed masked 

clustering (WMC) algorithm [9][10][29] improves segmentation efficiency by denying that all 

pixels may share similarity in intensity. Instead, it presumes that an image consists of a number 

of coarse regions in which all pixels may share the same intensity similarity. Unlike local-

adaptive algorithms such as Bernsen’s algorithm[59], the WMC iteratively trains only one 

threshold per coarse region using regional intensity values. Finally, the construction of each 

binary mask is tested based on morphological criteria, if necessary, a correction is imposed. By 
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considering both discontinuity and similarity of an image, WMC yields a significantly better 

performance in terms of both sensitivity and specificity. In addition, the WMC algorithm can 

preserve more morphological details such as cell protrusions. 

 

In the following sections, existing HT/HC segmentation solutions together with the WMC 

algorithm will be introduced. Moreover, the robustness and applicability of all algorithms is 

estimated using ground truth image sets consisting of artificial objects and genuine HT/HC 

screen specimens. 

2.2 Existing Segmentation Algorithms 
In this section, the following algorithms are illustrated: Otsu’s method [60], Bernsen’s 

threshold [59], level-set method [45], hysteresis threshold [61], and watershed masked 

clustering [62]. Each algorithm is widely employed in biological image analysis. All algorithms 

are publicly available implementations as part of the the Fiji image analysis software [63][64]. 

The WMC algorithm is implemented using the ImageJ software [65]. 

2.2.1 Otsu’s Method 
In image processing, Otsu's method [60] is a threshold based segmentation algorithm that 

automatically performs image threshold optimization based on the histogram shape [66]. The 

algorithm assumes that the image contains two classes of pixels or a bi-modal histogram (e.g. 

foreground and background). It calculates the optimum threshold separating those two classes 

so that the combined spread (intra-class variance) is minimal [60]. Sometimes Otsu’s method 

overlooks the intensity variation between individual objects (cf. Figure 2-1a). It is clear that 

Otsu’s method can well detect objects of high intensity but cannot preserve detailed structure 

such as cell protrusions (cf. Figure 2-1b).  

2.2.2 Bernsen’s Threshold 
Bernsen’s Threshold or Local Method of Bernsen [59] is a local adaptive threshold-based 

segmentation algorithm. Instead of training a threshold for the whole image, the threshold is 

trained for each pixel using a certain similarity of the pixel neighborhood ω [34][60]. For 

example, a midrange based implementation calculates the threshold using the mean of the 

minimum     (   ) and maximum      (   ) gray value in a local window of a predefined 

kernel size ω in the image I[60]. In each neighborhood ω, the central pixel is labeled as either 

foreground or background when compared to the neighborhood threshold. However, if the 

contrast  (   )       (   )      (   ) is below a certain value, then that neighborhood is 

assumed to consist of only one class.  

Compared to global thresholding solutions, Bernsen’s threshold tries to adapt the threshold 

for each pixel. However, The Bernsen’s threshold does not consider prior probabilities of two 

classes in the computation of the thresholds. It also does not adapt the window size when the 

sizes of objects vary. Therefore, Bernsen’s threshold has limitations similar to Otsu’s method. 

(cf. Figure 2-1c). 

2.2.3 Level-set Segmentation 
Level-set segmentation [45][67] is a segmentation algorithm based on partial differential 

equation (PDE). This segmentation algorithm is derived from the level-set method, which is 
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originally designed for tracking objects while later adapted to the application domain of image 

segmentation. The central idea of such adaption is to propagate a seed or a region contour 

inside an image with a propagation velocity that depends on similarity measurement, such as 

image gradient, until a boundary (discontinuity) is reached [68]. 

 
(a) Raw image (inverted for display) 

 
(b) Otsu 

 
(c) Bernsen 

 
(d) Level set 

 
(e) hysteresis 

 
(f) WMC 

Figure 2-1 (a) Epifluorescence microscopy images from live tumor cells. These are used for research in 
migratory behaviors of cancer cells. (b) – (f) Segmentation of sample images using different segmentation 
algorithms [A]: correctly segmented, [B]: under-segmented, [C]: over-segmented 

Compared to threshold-based algorithms, the level-set considers both similarity and 

discontinuity of an image. As a result, it results in better recognition of object details and more 

robust to intensity variation (cf. Figure 2-1d). Still, the robustness of the level-set method is 

depending on the direction estimation and stop criterion.  
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2.2.4 Hysteresis Thresholding 
The hysteresis thresholding [44][61] is a bi-thresholding procedure typical employed in two 

class segmentation problem [69]. In hysteresis thresholding, image is first segmented by an 

upper threshold known as “high-edge” in order to obtain only the confidence object pixels. 

These pixels are guaranteed to be the true foreground pixel with a higher false negative ratio. 

Then a second threshold is introduced as a lower threshold known as “low-edge”, which 

obtains probable object pixels but with a higher false positive ratio. From the “low-edge” and 

“high-edge” pixels, the segmentation is achieved by connecting “high-edge” pixels with “low-

edge” pixels using predefined kernel; i.e. linear or quadric. 

 

The robustness of the hysteresis method is depending on the choice of both the low-edge 

threshold and the high-edge threshold. Existing studies also demonstrate the possible to 

perform an adaptive selection of both thresholds [43]. Compared to Otsu, Bernsen, and level 

set, the hysteresis thresholding method yields a significantly higher masking accuracy (cf. 

Figure 2-1e). However, the choice of both thresholds requires constant tuning due to variation 

between images which is not allowed in HT/HC image study. Moreover, due to the fixed 

thresholds, hysteresis method tends to undertrain the masking (cf. Figure 2-1e) and object 

containing only weak edges is still undetectable using hysteresis thresholding (cf. Figure 2-1e). 

2.2.5 Watershed Masked Clustering Algorithm 
The watershed masked clustering (WMC) algorithm is designed to be a robust and dedicated 

solution to the application domain of HT/HC studies [10][29][9][15][70] using fluorescence 

microscopy. The WMC algorithm consists of three sequential steps (cf. Figure 2-2b). At each 

step, the segmentation result is recursively refined based on image heuristics. (1) In the first 

step, the WMC algorithm starts by employing a region selection mechanism to find several 

coarse regions considered as a rough mask that requires further optimization. (2) In the second 

step, a more precise masking is obtained from each coarse region using machine learning: e.g. 

fuzzy C-means clustering. (3) In the final step, the refined masks are reassessed based on 

multiple phenotypical criteria and corrected by merging, if necessary. Following this workflow 

(cf. Figure 2-2), the WMC algorithm converts a multimodal optimization problem into a 

collection of local optimization problems.  

 

Compared to other segmentation approaches, the WMC algorithm is very robust (cf. Figure 

2-1f) to regional variation of intensity in images (cf. Figure 2-1a). Moreover, unlike the 

hysteresis algorithm, WMC does not introduce a higher rate of false foreground when 

increasing its sensitivity. This trait is particular important for images with a low signal-to-

background ratio. The WMC algorithm will be discussed in detail in the next section. 

2.2.5.1 Region Selection 
The WMC algorithm starts by defining coarse regions (cf. schema 1) using a region selection 

mechanism. In the current implementation, this is accomplished using the maxima-seeded 

watershed algorithm [30], in which the growing of the watershed region is initialized from a 

pixel with the highest intensity compared to its neighboring pixels:  this particular pixel is 

referred to as the local maximum. In order to define a valid local maximum, the intensity of 

such a pixel must exceed the lowest pixel intensities by a threshold value h, where h is an 

estimated level of noise tolerance in terms of pixel intensity, h is commonly referred to as the 



19 
 

h-maximum (cf. Figure 2-3c). Higher values of h provide a less sensitive watershed separation 

and vice versa (cf. Figure 2-3a & b). In practice, a higher value of h often leads to incomplete 

separation of the objects in the image. Moreover, objects that occur in clusters are often not 

sufficiently separated (cf. Figure 2-3b).  We can derive the range for the value of h, since the h-

maximum is considered a reference relative to the intensity value of the pixels. Let IM be the 

maximum intensity in the dynamic range of the sensor, and Imax the maximum intensity in the 

region under study, the h-maximum is typically in [1, (IM-Imax)]. In Figure 2-3, the results of the 

maxima-seeded watershed for different values of h are depicted. From empirical observations 

in the images typical to HT/HC experiments (IM=255), a value h=10 provides satisfactory 

watershed regions. 

 

For each pixel
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Figure 2-2 is the illustration of the three main steps of the Watershed Masked Clustering Algorithm. In the 
schema, the subsections are indicated in which that particular step is discussed in detail. As part of the 
automation process, at completion of the loop there is always a quality check Q to prevent wrongly processed 
images to be part of the analysis. 
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Given coarse regions, it is guaranteed that: 

1. In each watershed region, the intensity landscape is always unimodal [30][71]. 

2. Seeded watershed implements a restriction on the possible starting point of path 

searching. An empty region usually does not contain valid seed, thus no watershed 

region will be formed in an empty region. 

 

Schema 1 Watershed Masked Clustering Algorithm 

    Perform maxima-seeded watershed segmentation 

    Reverse watershed line into coarse region 

for each coarse region r do 

     False-check on coarse region 

     if region is valid then 

         Perform weighted fuzzy C-means clustering in intensity space I of r 

         Obtain labeling 

         Create regional mask 

        end if 

    end for 

    Combine regional mask into final object label 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2-3: The (a) shows the definition of h-maximum. The (b) illustrates the watershed cutting lines at h=20. 

The (c) illustrates the watershed cutting lines at h=50. 

 

Regarding variation in the extreme case, the result of the region selection may still contain 

invalid regions. Therefore, similar to Bernsen’s threshold, the WMC algorithm implements a 

false-check mechanism for invalid regions that survive the region selection process. The false-

check mechanism is constructed using intensity information including both standard deviation 

and mean of regional intensity values (cf. Equation 2-1).  A valid candidate (coarse) region 
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should fulfill the first criterion, meaning the region should have large intensity diversity that 

suggests the presence of both sufficient foreground and background pixels. In the case that a 

region fails the first criterion, the second criterion will further distinguish the situation and 

make a final decision: i.e. 

 {
 (  )        

 (  )         
 Equation 2-1 

, where    is the intensity values of one coarse region. Within these coarse regions, a threshold 

is trained based on local intensities. The threshold training procedure will be illustrated in the 

next section. 

2.2.5.2 Threshold Training 
With the coarse region, binary masking can be further refined from each coarse region. In 

order to perform such refinement, an approach is required that is capable of establishing a 

local adaptive threshold while being computational finite. Such can be accomplished by a 

weighted fuzzy C-means clustering algorithm (WFCM) [72][73]. This clustering is applied 

sequentially and an optimal threshold is calculated within each of the regions. Consequently, 

each region has its own threshold value taking into account local conditions, i.e. the local 

variation in image intensity.  

In addition, the WFCM method has a set of weighting factors ω that allows the introduction of 

prior probability of the membership of the pixels in the clusters. The definition of such a 

weighting factor is similar to the reverse version of the prior probability in the Bayesian 

theorem. A smaller weighting factor is assigned to the cluster having, potentially, a larger 

standard deviation and vice versa. The sum of all weighting factors is always one. The 

weighting factor ω can be directly derived from the data [71][74], however, with a known type 

of image data, e.g. HT/HC images, commonly a preset value is used. The implementation of the 

WFCM method is described in the pseudo-code as: 

Schema 2 Weighted Fuzzy C-means Clustering algorithm 

Given weighting factor   

Initial membership matrix u at step k=0 

for each k step do 

    Calculate the center vector    for each cluster j given Equation 2-2 

    Update the membership matrix u to (k+1)  given Equation 2-3 

    Creating regional mask 

end for 

Combing regional mask into final mask 

 

The WFCM method is formalized as: 

    (∑ (
   ‖     ‖

   ‖     ‖
)

 
   

   

 

)

  

  
Equation 2-2 
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where uij denotes the membership matrix,    is the jth cluster,    is the data vector i and    is 

the weighting factor for cluster j. Empirically, it was established that for cell imaging a value of 

 = 0.2 for the foreground and a value of  = 0.8 for the background is sufficient. This should 

be interpreted as: (1) there is an 80% chance a certain pixel is belongs to the foreground and (2) 

there is a 20% chance that a certain pixel is belongs to the background. By increasing the 

weighting factor for the foreground, less intense structures such as protrusions of a cell or 

objects with a low overall intensity will be preserved. In this manner, the weighting factor 

works similarly to the parameter for the degree of sensitivity in the fuzzy c-means clustering 

(FCM) algorithm [74]. Along with Equation 2-2, the clusters are formalized as following: 

   
∑ (   

    )
   
 

∑ (   
 )   

 

  Equation 2-3 

where uij denotes is the membership matrix at step k and m is the, so called, fuzzy coefficient 

that expresses the complexity of the model,  by default m=2. In our algorithm, we strive at a 

quick convergence of the WFCM and therefore the initial seeds for c are defined as follows: 

                 ̅  (     )  
       ̅

 ( )
 Equation 2-4 

                 ̅  (     )   
 ̅      

 ( )
 Equation 2-5 

where Imin, Imax denote the minimum/maximum intensity in the image I,  d̅enotes the mean of 

the intensities in image I,  ( ) denotes the standard deviation in the intensities of the image I 

and nb denotes the dynamic range of the intensity expressed in number of bits. In the 

standard case of unsigned 8-bit images nb=8.  

 

The flexibility of weighted fuzzy C-means clustering is a more robust solution when addressing 

the complexity in the HT/HC images. The application of this step results in a binary object in 

each of the regions of step 1 (cf. §2.2.5.1), if correct, shape features can be derived. However, 

the watershed method might have introduced some irregularities in the establishment of the 

coarse regions, which requires an additional evaluation; this evaluation is elaborated in the 

next section.  

2.2.5.3 Object Optimization 
At onset of our algorithm, the watershed segmentation is applied resulting in regions that are 

individually processed. Depending on the variation in the data, the watershed algorithm is 

known to result in an overcut of the segmentation; overcut is commonly referred to as the 

situation in which the watershed segmentation produces more regions than actually present in 

the image [75]. This overcut might affect the individual objects, as a result of which the objects 

need be split or merged (cf. Figure 2-4). Therefore, the last step in our algorithm is to 

compensate for the possible overcut caused by the watershed segmentation. We refer to this 

process as an object optimization as we evaluate the results obtained in the object 

segmentation. In this procedure, only the objects that share a border with a watershed line are 

evaluated, as these objects are the candidates for overcut. The procedure is summarized as 

follows: 
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Schema 3 Object Optimization  

Given watershed line in step 2 

for each pixel li in watershed line l do 

    for each pixel ln in the 4-connected neighbor of li do 

        if pixel ln is overlapping with the binary mask of an object then 

            Object is sharing the watershed line pixel 

        end if 

    end for 

    if pixel li is shared by more than two objects then 

        Calculate all criteria 

        if all criteria are true then 

            Discard the pixel li  

        end if 

    end if 

end for 

Combing regional mask into final mask 

 

The solution for the object optimization is a merging mechanism that uses multiple criteria; 

currently, two criteria are implemented but depending on the type of data; more can be added. 

The two criteria are: 

1. Evaluation of the strength of watershed line; the objects are merged based on a local 

difference in maximum and average intensity in the object. 

2. Evaluation of the orientation of the objects; the object are merges based on 

assessment of the difference in orientation of their principal axes. 

For criterion 1, we implemented an intensity-based merging algorithm so as to estimate the 

necessity of merging the objects through the evaluation of the strength of the watershed lines. 

In this function all watershed lines are evaluated. This criterion can be generalized with the 

evaluation function K: 

  (  )     (
  

  
 
  

  
)     Equation 2-6 

where the li denotes the ith watershed line, 1 denotes the difference between the average 

intensity under the watershed line and maximum intensity of object on one side of the 

watershed and similarly, 2 represents the object on the other side of the watershed line; 

where 1 and 2 denote the difference between the maximum and minimum intensity value 

within one object on either side of the watershed line li.  A valid watershed line should fulfill 

the condition given in Equation 2-6. If K(li) exceeds a threshold Tk then the objects on either 

side of the line are merged to one and the watershed is neglected.  In Figure 2-4a, the 

intensity-based merging criterion is illustrated. 

For criterion 2, we implemented an orientation-based merging algorithm [76][77][78], which 

provides a unique possibility to split/merge large structure complexes or elongated objects 

(e.g. protrusions). At watershed line li we consider the principal axis of the objects on either 
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side of the line. A two component Boolean function is designed so that when true, i.e. both 

components are true, the objects will be merged and the watershed line will be neglected. This 

function P is written as: 

 (  )  {
|     |     

        |     |  |     |     
 Equation 2-7 

where    denotes the angle between the horizontal image axis (x-axis) and the principle axis of 

object 1, similarly    is defined for the object on the other side of watershed line li. The m is 

the angle between the horizontal image axis and the line crossing the centers of mass of the 

two objects (cf. Figure 2-4b). The components in P(li) are separately evaluated; so, if the 

principle axis of each individual object spans a minimum angle Tp while the line crossing the 

centers of mass of the two objects lies within the angular wedge Tp  of the two principle axes, 

only then these two objects will be merged. In Figure 2-4b, the orientation-based merging is 

illustrated by two cases. 

 

In studies where the objects are cells orientation merging is used less frequent whereas in the 

studies on analysis of protein expression in endocytosis or cell signaling it is often applied.  

 

  
(a) Two typical cases of intensity based merging; (left) 

a merge is realized and (right) a merge is not realized 

using K(li) (cf. Equation 2-6). 

(b) Two typical examples of orientation based 

merging; (left) a merge is realized and (right) a merge 

is not realized using P(li) (cf. Equation 2-7). 

   
(c) Sample object (d) Overcut from step 1 (e) Merged from step 3 

Figure 2-4: Illustration of the merging of objects based on a combination of criteria; in (c,d,e) a specific case for 

one object (cell) is illustrated. 

 

Once the object optimization is applied, one can be certain that all objects are correctly 

extracted and these can be subject to a characterization of the shape. For the specific case of 

the time-lapse images in HT/HC, both the shape of the binary object and the intensity profile 

can be measured. The intensity profile of an object is derived by applying the (final) binary 

mask to the original image. In addition to standard features, higher order features can be used 

[78]. In the case of HT/HC, the features are used to discriminate between the experimental 

conditions that are applied [10][4]. Examples of the application of this step of the WMC 
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algorithm are worked out in the next section (cf. §2.3) where performance of WMC is 

compared to other segmentation algorithms. 

2.3 Performance Evaluation 
This section will address the performance assessment of the WMC segmentation algorithm 

together with several popular HT/HC-proven algorithms. In order to get a good impression of 

their robustness and accuracy, four image sets (cf. Figure 2-5) including image sets with 

artificially generated objects and images from genuine HT/HC experiments are produced. The 

ground truth image sets employed are the following:  

1. Artificial image set with artificial objects (cf. Figure 2-5a) 

2. HT29 phalloidin image set (cf. Figure 2-5b) 

3. MTLn3 GFP image set (cf. Figure 2-5c) 

4. MA image set (cf. Figure 2-5d) 

The artificial image contains a number of randomly generated ellipsoid objects. The HT/HC 

image set is based on imaging of living migrating tumor cells or subcellular structures that 

ectopically express fluorescent protein [18][80]. The performance estimation for each 

algorithm is derived from the comparison between the binary mask obtained by the algorithm 

and the corresponding ground-truth binary mask for each image (cf. Figure 2-5e-h).  

In the generation of the test images, the ground-truth masks for the artificial test images are 

explicitly constructed. The usage of such artificial image provides an image test set with an 

unbiased ground-truth and controllable noise, emulating a common case in fluorescence 

microscopy. The employment of genuine HT/HC image sets illustrates the empirical 

performance of the segmentation algorithm under different experiment designs or image 

modalities. The construction of a ground truth in these image sets are accomplished via 

manual delineation. 

 

The image quality of each test set, in terms of segmentation complexity, is measured by image 

coefficient of variance (image-CV). The image-CV [81] is an alternative definition of the signal-

to-background ratio in biomedical image processing.  It is measured as the ratio between 

average foreground intensity and standard deviation of background intensity (cf. Equation 2-8). 

   
  

  
 Equation 2-8 

A higher image-CV suggests that the distribution of foreground intensity value is far from the 

distribution of background intensity value. Therefore, it measures the significance of the 

difference between foreground intensity and background intensity. 

 

The image set with artificial objects (cf. Figure 2-5a) is an image set which consists of images 

containing artificially generated objects resembling the basic phenotype of the cells. With 

artificially generated objects, here we eliminate the observation bias frequently occurring in 

manual ground truth construction. Moreover, we use image set containing artificially 

generated objects to introduce hypothetical noise to test algorithm robustness. The image-CV 

(cf. Figure 2-6a) shows that the image quality of this image set is similar to HT/HC screen 

studies. 
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The HT29 phalloidin image set (cf. Figure 2-5b) [82] is a public available ground truth image 

sets from a HT/HC screen study. Here we choose the image channel containing phalloidin 

(cytoplasm staining) channel as the test images due to its complexity in term of segmentation. 

However, the image quality of HT29 is still higher than both artificial image set and MTLn3 GFP 

image set (cf. Figure 2-6a), representing the difference between foreground and background is 

higher in HT29 images.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2-5 (a) artificial image set and ground truth mask (e);  (b) HT29 phalloidin channel and ground truth 

mask (f);  (c) MTLn3 GFP channel and ground truth mask (g); (d) MA image and ground truth mask (h) 

 

The MTLn3 image set (cf. Figure 2-5c) is a ground truth image set from a HT/HC screen study 

using an aggressive cancer cell line. In terms of migration speed, the rat breast carcinoma 

MTLn3 cell-line is considered one of the most aggressive in vitro assays. The MTLn3 cells 

migrate as individual cells with an average velocity of 40 µm/hr [9][83] whereas the HT29 cell-

line only migrates with an average velocity of 4 µm/hr. GFP signal distribution of MTLn3 cells is 

however more complex since the GFP protein expression is variable from cell to cell. The 

image-CV (cf. Figure 2-6a) shows that image quality of the MTLn3 GFP image set will not be 

easy to segment. 

 

The MA image set (cf. Figure 2-5d) is a ground truth set consists of subcellular structure known 

as the matrix adhesion (MA). Due to the imaging settings, the image contains some bleed-

through signal from other channels. Thus, it presents a more complex segmentation problem 

(cf. Figure 2-6a). 

 

 

The four image sets are believed to be a reasonable representation of the quality of HT/HC 

images. The Figure 2-6a shows that HT29 phalloidin has the best image quality for 

segmentation (image-CV=27.85). It confirms the quality of the HT29 image set over the MTLn3 

GFP image. The artificial image set has a CV similar to MTLn3, suggesting the artificial image 

set does emulate the real-world scenario of HT/HC screening.  Among all ground truth image 
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set, the MTLn3 GFP image set has the worst image quality for segmentation. The MA image set 

shows a slightly higher (image-CV=8.16) than MTLn3 GFP. 

 
(a) 

 
(b) 

Figure 2-6 (a) image-CV estimation for each image set, (b) estimation of observation bias over MTLn3 GFP 

image set 

 

Additionally, manual delineations are repeated with a random shuffling and rotation of the 

images to cover observation bias. From the estimation of the observation bias with MTLn3, it 

shows that on average the observers have a F1-score of 89.87% (cf. Figure 2-6b). From the 

observation bias, it is clear that ground truth mask is not 100% reproducible, which sustains 

the necessity of the artificial image set. The observation bias of HT29 is not available. With the 

ground truth image set, we will further introduce the assessment metrics and methodology in 

the next section.  

2.3.1 Assessment Metrics and Methodology 
In this section, the pixel-level mismatch is calculated for all segmentation algorithms. The 

rationale behind this test is to simulate the typical data processing workflow for HT/HC, 

therefore the parameters used for each of the algorithms are optimized only once and 

henceforth applied to the whole image set in the experiment. For none of the algorithms in 

the experiment an individual tuning is applied. The parameters for all algorithms (cf. § 2.2) 

were obtained from the high-content screening literature [14][84][17][12] and existing 

software [63][64][82]. 

Before introducing the error estimation methodology, a clarification of the assessment metrics 

is presented. Segmentation algorithms are often considered simplified versions of two-class 

classifiers that are trained in intensity space [60][59][46]. Therefore, similar to the error 

estimation for the classifier, the error test normally covers both type-I error (False Positive) 

and type-II error (False Negative). The performance of a segmentation algorithm can be 

assessed using the number of correct and incorrect segmented pixels [74]. This definition only 

covers the type-I error (FP) which may lead to an overtraining of the algorithm [85]. For a 

balanced conclusion, we take into account both type-I error (FP) and type-II error (FN). 

Furthermore, instead of just using the two errors types, we introduce the F1-score [86] which 

is derived from the types-I/II errors, as the major criterion of segmentation performance. 
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The two types of errors for different algorithms are defined in terms of the True Positive and 

True Negative. True positive (TP) is defined as the ratio of pixel overlap between the ground-

truth mask and the segmented mask by each algorithm. This ratio is expressed as:  

   
    

 
  Equation 2-9 

where M’ is the set of pixels belonging to the foreground of binary mask provided by the 

algorithm and M is the set of pixels belonging to the foreground of the ground-truth mask. In 

similar fashion, the true negative (TN) is calculated as: 

   
 ̅   ̅ 

 ̅
  Equation 2-10 

In this way, TP represents the percentage of correctly segmented foreground pixels whereas 

TN represents the percentage of correctly segmented background pixels. Form the values of TP 

and TN, the false positives (FP) are derived, i.e. FP = 1-TP (percentage of incorrectly segmented 

foreground pixels), and likewise the false negatives (FN) are derived, i.e. FN = 1-TN (incorrectly 

segmented background pixels). From these values, the sensitivity and the specificity [87] are 

calculated by: 

            (
  

     
) Equation 2-11 

             (
  

     
) Equation 2-12 

Given the results, the specificity and the sensitivity for all of algorithms of a particular set of 

test images can be computed. In addition, from the specificity and sensitivity, the F1-score is 

derived by:   

     
                       

                       
  Equation 2-13 

A good segmentation algorithm should yield the highest F1-score but this only occurs when 

both specificity and sensitivity are approaching 100%. Our choice for the F1-score aims to 

enforce a balanced performance in terms of preventing either oversegmentation or 

undersegmentation. 

 

In the next few sections, the performance assessment of the following algorithms will be 

exemplified. These algorithms include Bernsen local threshold algorithm, Otsu threshold 

algorithm, Level-set algorithm, hysteresis threshold algorithm, together with the WMC 

algorithm. All of the algorithms have claimed the intrinsic capacity of performing well under 

noisy conditions typical to HT/HC imaging [78][14][84][17][12]. For these algorithms, open-

source plug-ins are available in Fiji [63][65][64] and CellProfiler [82] and these 

implementations were used without modifications and the tuning of the parameters for each 

algorithm is accomplished by cell biology specialists. These algorithms will be tested for all four 

ground truth image sets. 
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2.3.2 Artificial Objects and Test Images 
In order to understand and verify the behavior and performance of segmentation algorithms 

without introducing observation bias, ground-truth images with objects resembling the shapes, 

which are normally found in high-content imaging, are constructed (cf. Figure 2-7). Each image 

consists of a number of ellipsoid objects and each object has a unique intensity profile. The 

intensity landscape is generated through an exponential decay function that is initiated at the 

centre of each object. The minimum and maximum value of an intensity profile of an object 

are generated using a uniform distributed random generator and scaled in the range of (20, 

255). In this way, it resembles a random intensity variation in HT/HC screen. In addition, the 

orientation of each of the objects is varied by applying a rotation to each of the object. The 

rotation is in the range of [-30º,30º] using the center of mass as the pivot; the rotation angle is 

selected from a uniform random generator that is scaled to the rotation range. The random 

rotation of objects aims to test whether the segmentation algorithm is sensitive to direction. 

The original binary image with all the objects is kept as the absolute ground-truth mask for the 

segmentation so that error estimation can be applied over a range of test images. In this test, a 

total amount of 30 images is generated. To simulate image noise typical to HT/HC and 

fluorescence microscopy, Poisson noise is generated by giving each pixel a random intensity 

(Poisson) [35][88] oscillation. In the noise-added images, the intensity oscillation is ranged 

from 0 to 255 while the size is approximately 3 to 5 pixels. In the original image, the object 

intensity will be above zero and therefore a true global threshold can always be found. 

 

 
Figure 2-7: Artificial image set being used for assessing the efficiency of the segmentation. (a) Original Image in 

256x256 (b) Noise-added Test Image (c) Ground-truth Mask 

2.3.3 HT29 Phalloidin Images 
The HT29 phalloidin image set is known as the “Human HT29 Colon Cancer” dataset [84] (cf. 

Figure 2-8); a publically available image dataset including ground-truth image set provided by 

the Broad Institute of MIT. This set contains 12 images of human HT29 colon cancer cells (cf. 

Figure 2-9a & c). Each image consists of three channels including phalloidin (channel 1), pH3 

(channel 2), and nucleus (channel 3 Hoechst). Hoechst labels DNA present in the nucleus. 

Phalloidin labels actin present in the cytoplasm. The pH3 stain indicates cells that are in 

division and will not be used in this test. For the benchmark study, we focus on image 

segmentation performance with the phalloidin channel (cf. Figure 2-8c) because it contains 

several complexities including intensity variation, uneven illumination and phenotypical 

variation in object size (cf. Figure 2-8a & c). 
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(a) Original for (b) (b) Ground-truth mask  (c) Original for (d) (d) Ground-truth mask 

Figure 2-8: images (512x512) from the HT29 phalloidin channel, which (a) represents phenotype of control cells, 

which (c) represents phenotype of treated cells. There is an observable size variation between (a) and (c). 

2.3.4 MTLn3 GFP Images 
The MTLn3 GFP image set is a time-lapse image sequence, i.e. a dynamic process, of the breast 

carcinoma MLTn3 line used to understand tumor cell migration in the context of breast cancer 

metastasis (cf. Figure 2-9). The set is provided by the Leiden Academic Center for Drug 

Research (LACDR).  It consists of 96 time-lapse image sequences, each of 75 frames in 5 minute 

sampling intervals. Each sequence portrays an in vitro cell migration pattern typical in HT/HC 

experiments. The GFP (Green Fluorescent Protein), was ectopically expressed to label the cell 

body (cytoplasm + nucleus), enabling fast fluorescent imaging [80]. For the performance tests, 

we will only use the first 14 images of the sequence to reduce the size of the image set to 

reasonable for proportions for this test. In addition, for this image set also a ground-truth 

image is required. The MTLn3 ground-truth images were obtained by manual segmentation 

performed by biologists through tracing on a digitizer tablet (WACOM, Cintiq LCD-tablet) (cf. 

Figure 2-9c). In contrast to the artificial image set, manual segmentation may contain bias 

between and within observers. To that end, the manual segmentation is replicated a few times. 

Moreover, to improve visibility of objects in each image, the observer will draw the cells using 

images to which an intensity equalization is applied [89] (cf. Figure 2-9b). 

 

The MTLn3 set is a good representation of a high throughput screen with in vitro live cell 

migration (cf. Figure 2-14) for it contains intensity variation, uneven illumination, phenotypical 

variation and object overlapping. 

 

   
(a) MTLn3 gray image (b) Image (a) with equalization (c) MTLn3 ground-truth mask 

Figure 2-9: Typical image (512x512) from the MTLn3 GFP set 

2.3.5 MA Images 
The MA image set is a time-lapse image sequence of matrix adhesion (MA) dynamics captured 

using total internal reflection fluorescence (TIRF) microscopy [25]. This set is provided by the 

Leiden Academic Center of Drug Research as a study of correlation between matrix adhesion 

regulation and cell migration. The MA image set consists of subcellular macromolecular 

complexes visualized using TIRF microscopy (cf. Figure 2-10). The magnification of MA TIRF is 
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higher than other sets but the object size is relatively small (approx. 5~65 pixels). Due to the 

smaller size, each object contains less intensity information for the segmentation algorithm. In 

terms of ground truth construction, observers reported difficulty in distinguishing between 

background and foreground. The procedure for the ground truth set is the same as the MTLn3 

image set. 

The MA image set is included as a case study for algorithms’ extensibility to both relatively 

small objects (MA) and relatively large objects (cell body) (cf. Figure 2-11 a & b). Here we 

define relatively small objects as objects occupying less than 0.01% of whole image and the 

relatively large objects as objects occupying more than 1% of image. For a 512x512 image, it 

means a small object will be approximately 10~50 pixels while a large object will be 

approximately 5000~10000 pixels. 

   
(a) MA gray image (b) Image (a) with equalization (c) MA ground-truth mask 

Figure 2-10: Typical image (512x512) from the MA TIRF set 

 

   
(a) MA channel (GFP + TIRF) (b) cell body channel (GFP + EPI) (c) nucleus channel (Hoechst + EPI) 

Figure 2-11 complete design of the  imaging acquisition for MA image set 

2.3.6 Result of Benchmark Study 
Artificial Objects and Test Images 

All algorithms are applied over the same 30 test images (cf. Figure 2-12). In the Table 2-1, the 

results for the true-positives are listed. In the Table 2-2, the results for the true-negatives are 

listed. The F1-scores are listed in the Table 2-3. The object merging accuracy in WMC is also 

tested using the same image set. An overcut object is defined as a group of objects obtained 

by segmentation algorithm share the same object in ground truth mask. A total amount of 238 

overcut objects are detected in this image set. Using object optimization, the WMC recovers 

202 out of 238 overcut objects, i.e. approximately 85%. 

 

From Table 2-3 we can conclude that the WMC yields the highest performance while Otsu, 

Bernsen and Hysteresis produce acceptable results. The level-set shows the lowest 

performance. From the image (cf. Figure 2-12), it is noticeable that none of the segmentation 

algorithms has successfully captured objects smaller than noise. The WMC can well preserve 

shape of object regardless of noise and intensity variation, but it has a tendency of 
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undertraining the threshold in some cases. Both Bernsen and Otsu can also preserve objects 

with higher intensity homogeneity but cannot adapt to intensity variation. The Hysteresis 

algorithm can well preserve objects with higher intensity homogeneity but cannot preserve 

objects with an extreme morphology, i.e. an elongated object or a small spherical object. The 

level-set algorithm fails to adapt its propagation due to the intensity variation. 

 

  

In total 

36 objects 

Radius 5~30 pixels 

Poisson Noise Added 

 
(a) noisy image (b) ground-truth mask  (c) WMC 

    
(d) Bernsen (e) Otsu (f) Level-set (g) Hysteresis 

Figure 2-12: (a) noise-added test image, (b) ground-truth masks for the object, (c) to (g) are binary images 

obtained by corresponding segmentation algorithms.  

Table 2-1 True positive rate 

True Positive WMC Bernsen Otsu Level-set Hysteresis 

Avg 96.67% 91.83% 98.48% 60.57% 86.39% 

Std 3.81% 6.23% 1.68% 28.14% 2.74% 

 
Table 2-2: True negative rate 

True Negative WMC Bernsen Otsu Level-set Hysteresis 

Avg 95.34% 74.73% 84.00% 99.01% 78.10% 

Std 5.45% 28.36% 18.46% 1.36% 12.64% 

 
Table 2-3: Specificity and sensitivity of segmentation efficiency using artificial images 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 96.62% 90.14% 98.22% 71.52% 85.16% 

Specificity 95.40% 78.42% 86.02% 98.38% 79.78% 

F1 Score 95.99% 84.60% 91.83% 74.98% 82.95% 

 

HT29 Phalloidin Images 

From Table 2-4, we can conclude that nearly all algorithms can perform well with HT29 image 

set (cf. Figure 2-13d). It is unclear which algorithm is better since WMC, Otsu, and Hysteresis 

are all producing good results. In general, WMC (cf. Figure 2-13d), Hysteresis (cf. Figure 2-13h) 

and level-set method (cf. Figure 2-13g) are all performing well with the raw images. The Otsu 

segmentation result (cf. Figure 2-13f) shows that a global threshold algorithm is less robust to 

intensity variation but its performance can be improved by intensity equalization. The halo 
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structures in Bernsen (cf. Figure 2-13e) is believed to be associated with a localization of 

staining at the cell border region, which is smaller than the kernel size chosen in Bernsen.  

 

    
(a) Gray-value image (b) equalized image (c) Ground-truth mask (d) WMC 

    
(e) Bernsen (f) Otsu (g) Level-set (h) Hysteresis 

Figure 2-13: (a) Original HT29 image acquired with a 10x lens; image size is 512x512 pixels, 8 bit. b) the image (a) 

with intensity equalization c) Ground-truth masks and (d-h) masks obtained by the segmentation algorithms.  

Table 2-4: Specificity and sensitivity of the segmentation algorithms in the HT29 set 

No Intensity Equalization 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 92.49% 95.49% 99.13% 98.24% 97.51% 

Specificity 91.71% 63.71% 79.48% 84.57% 83.29% 

F1 Score 92.10% 76.43% 88.23% 90.89% 89.84% 

Intensity Equalization 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 85.63% 86.16% 97.06% 80.27% 84.70% 

Specificity 88.21% 66.43% 93.81% 79.04% 82.59% 

F1 Score 86.90% 75.02% 95.41% 79.65% 83.63% 

 

MTLn3 GFP Images 
From Table 2-5, we conclude that MTLn3 is a difficult image set for image segmentation. It is 

immediately clear that the overall performance is much lower compared to the experiment 

with the HT29 set (cf. Table 2-4). Most methods are able to extract the brighter region around 

the nucleus (cf. Figure 2-9) while the fuzzier cytoplasm region is not detected. With MTLn3 set, 

the WMC algorithm still shows the highest performance. The Hysteresis thresholding algorithm 

is able to portray a good and stable performance. Compared to the previous experiment (cf. 

Table 2-4), the performance of each algorithm is decreased. The WMC algorithm, however, 

performs quite stable under these different circumstances.  

 

Although WMC and Hysteresis are able to preserve the fine details with comparable F1-score, 

the Hysteresis demonstrated an unbalanced performance by yielding a low sensitivity but high 

specificity, meaning it misses many foreground pixels. The WMC, on the other hand, shows a 
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more balanced performance in both sensitivity and specificity. All algorithms show 

improvements after intensity equalization. 

    
(a) Gray-value image (b) equalized image (c) Ground-truth mask (d) WMC 

    
(e) Bernsen (f) Otsu (g) Level-set (h) Hysteresis 

Figure 2-14: (a) Original MTLn3 image acquired with a 20x lens (NA 1.4), image size 512x512 pixels, 8-bit. (b) the 

image (a) with intensity equalization. (c) ground-truth masks and (d-h) masks obtained by the segmentation 

algorithms. 

Table 2-5: Specificity and sensitivity of segmentation algorithms in MTLn3 image set 

No Intensity Equalization 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 73.02% 21.50% 17.25% 27.86% 66.86% 

Specificity 90.75% 99.62% 99.67% 99.13% 94.21% 

F1 Score 80.92% 35.36% 29.42% 43.50% 78.21% 

Intensity Equalization 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 85.70% 36.03% 39.17% 30.37% 79.94% 

Specificity 82.54% 98.35% 98.80% 99.20% 87.25% 

F1 Score 84.09% 52.75% 56.09% 46.50% 83.43% 

 

MA Images 
The performance assessment (cf. Table 2-6) shows that WMC demonstrates a stable and 

robust performance similar to the previous image sets (cf. Table 2-4 and Table 2-5). This holds 

also for the hysteresis thresholding and level-set algorithm. Both Bernsen and Otsu algorithm 

show a lower performance. The smaller object size poses difficulty for all algorithms since 

there is less intensity information available for the threshold training or contour propagation. 

This has been foreseen in the test with artificial objects (cf. Table 2-3).   
Table 2-6 Specificity and sensitivity of segmentation algorithms in MA TIRF image set 

No Intensity Equalization 

Performance WMC Bernsen Otsu Level-set Hysteresis 

Sensitivity 84.00% 67.16% 62.20% 74.85% 80.70% 

Specificity 97.21% 99.09% 99.74% 99.84% 98.91% 

F1 Score 90.12% 80.06% 76.62% 85.56% 88.88% 
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(a) Gray-value image (b) equalized image (c) Ground-truth mask (d) WCM 

    
(e) Bernsen (f) Otsu (g) Level-set (h) Hysteresis 

Figure 2-15 (a) Original MTLn3 image acquired with a 20x lens (NA 1.4), image size 512x512 pixels, 8-bit. b) the 

image (a) with intensity equalization. (c) ground-truth masks and (d-h) masks obtained by the segmentation 

algorithms. 

 

2.4 Computation Complexity 
To further verify the high-throughput nature of the WMC algorithm, its computational 

complexity is studied and compared to the same selection of segmentation algorithms in 

previous sections (§2.3). The computational complexity of the WMC algorithm is derived from 

its two major components, namely watershed segmentation and fuzzy C-means clustering. 

Both algorithms are known to be NP-complete problems. In an NP-complete problem, the 

computational cost grows in polynomial order, but the total amount of computational cost is 

nondeterministic. We will therefore focus on the computational complexity in fashion of a 

single-iteration. In the watershed segmentation (flooding based), worst case, the searching of 

all descending paths is in the order of  (  ) [71]. 

In iteration of fuzzy C-means (FCM) clustering, the computations are divided into three steps 

and the total complexity is a joint sum of all individual steps. 

Step 1: update membership matrix 

    (∑ (
   ‖     ‖
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   ) Equation 2-14 

Step 2: calculate new seeds 
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Step 3: validation 
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The total complexity of FCM clustering in a single iteration is  (   
 

      ). Together 

with the computational complexity of watershed segmentation, the total complexity of WMC 

can be written into  (   
 

      ). With fuzzy factor m=2, the computational complexity 

of the WMC is in the order of   . The practical computational performance of each algorithm 

is given in the Table 2-7. The performance is based on a test with 14 images of the MTLn3 set. 

Table 2-7: Computational performance in seconds; executed on a 2.4 GHz P4 (single-thread) with 4GB RAM. All 

implementations of the segmentation algorithms are in Java. 

average time (sec) WMC Bernsen Otsu Level-set Hysteresis 

mean 4.46 754.3 1.14 2.34 0.06 

std 0.22 7.58 0.02 0.17 0 

 

From this analysis, we can deduce that the computational load of the algorithm will be in 

reasonable bounds and suitable for the type of application it was initially designed. Further 

implementation of concurrent computation in WMC has significantly reduced the computation 

time (cf. Table 2-8) by a linear factor equals to the number of threads. 

 
Table 2-8: Computational cost in seconds; executed on a 2.7 GHz i7 (8-thread) with 8GB RAM. All 

implementations of the segmentation algorithms are in Java. 

average time (sec) WMC (multi-thread) WMC (single-thread) 

mean 0.42 3.37 

std 0.08 0.12 

2.5 Conclusion and Discussion 
This chapter illustrated a number of image segmentation algorithms, which are applied in the 

image analysis procedures for high-content screens. In conclusion, from Table 2-3, Table 2-4, 

Table 2-5, and Table 2-6, it can be established that the WMC algorithm outperforms the other 

algorithms regardless image modality and image quality issues. Moreover, WMC has 

demonstrated a stable and robust performance for each image sets compare to other 

algorithms. This is in particular important for HT/HC screen studies since it is impossible to 

predict the output of treatments. Therefore, WMC algorithm is considered a good solution for 

HT/HC screen studies. 

The major advantage of the WMC algorithm is that it can deal with variations in staining 

intensity typical for bio-imaging and specific to high-throughput in vitro experiments (cf. Figure 

2-1). The local intensity variations in the image limit application of Otsu segmentation; it 

requires a global optimum for the threshold, which may not be possible. Along the same line, 

the level-set method is not suitable as it presumes a consistent intensity for the objects in the 

image. The regional approach in WMC followed by a local clustering transforms the 

segmentation to a local problem so that threshold levels can be found efficiently. For 

segmentation in cytomics edge based methods are noise susceptible, therefore intensity 

variations necessitate region based approaches. This is confirmed from our findings comparing 

Hysteresis segmentation to WMC, especially with more artificial noise or staining variations in 

the image (cf. Figure 2-1).  
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The WMC consists of three independent steps and if we consider these individually further 

improvements can be formulated. In step 1, the watershed algorithm, the initialization of the 

watershed algorithm is currently based on local maxima; other schemas must be investigated 

to render a better initialization. Now, a priori knowledge is not used whereas this might 

facilitate a better estimate for the initialization. In step 2, fuzzy weighted C-means clustering is 

used, however, other clustering approaches can be probed; similarly to step 1, a priori 

knowledge on the intensity distribution might be supportive in finding a better clustering 

approach. Regarding step 3, we implemented only a few of the situations of oversegmentation. 

This particular step of the algorithm can be adapted to experimental conditions, i.e. a priori 

knowledge can be tuned with respect to the experiment so as to overcome certain 

imperfections of earlier steps. In future research this will be elaborated, however, the global 

idea of the WMC algorithm will stand its case. 

The WMC has been successfully applied to other experiments in the domain of bio-imaging, 

e.g. detection of small vessels [18], cell membrane [70] and cytoskeleton formation [90]. With 

further generalization, the algorithm can be engaged in a broader scale of imagery. The future 

research on the tuning of the subsequent steps of the WMC algorithm will contribute to this 

generalization.   
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Chapter 3  

Robust Object Tracking for Cytomics 

3. Object Tracking in Study of Cell Dynamics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is based on the following publications 

 
Yan, K., LeDévédec, S., van de Water, B., Verbeek, F.J. (2009) "Cell Tracking and Data Analysis of in vitro Tumour 
Cells from Time-Lapse Image Sequences". In Proc. of International Conference on Computer Vision Theory and 
Application (VISAPP2009). 
 
Yan, K., Le Dévédec, S., Van de Water, B., & Verbeek, F. J., “Automated Analysis of Matrix Adhesion Dynamics in 
Migrating Tumor Cells”, (in preparation) 

 

  



40 
 

Chapter Summary 
Object tracking or video tracking is the procedure of following moving objects over consecutive 

frames in a video. The main principle of a tracking algorithm is to associate target objects from 

consecutive frames based on given linkage criteria such as minimum shape change or motion 

model. When performing dynamic analysis with a live cell HT/HC screen, object tracking is 

essential to provide phenotypical quantifications on migration behavior. Unlike standard video 

recording, HT/HC live imaging is based on time-lapse microscopy with a lower temporal-

resolution of only one frame for every couple of minutes. In HT/HC live imaging, the quantity, 

in terms of number of time points, must often be scarified to guarantee the image quality. As a 

result, the selection of a robust object tracking algorithm is important in the dynamic analysis 

HT/HC live imaging.  

 

This chapter introduces four tracking algorithms generally applied in HT/HC live cell screens 

using time-lapse imaging. These algorithms are divided into confidence measurement based 

and motion-model based. The confidence measurement based tracking algorithms include the 

blob tracking algorithm and the kernel density estimation (KDE) with mean shift tracking 

algorithm. These assume, regardless of migration, a minimum shape change only occurs 

between consecutive objects. Thus, often a shape model (KDE) or an overlap measurement 

(blob) are employed as linkage criteria.  The motion model tracking algorithm assumes that 

the object is moving in a quantifiable probability model and by knowing the previous location 

of the object it is possible to predict the next position of the object. Typical motion model 

tracking algorithms are the particle filter tracking algorithm employing Brownian motion 

model and the energy driven linear (EDL) model tracking algorithm employing linear motion 

model. The confidence measurement tracking algorithms should not be mixed with the motion 

model tracking algorithms since the former is an analysis based on shape similarity while the 

latter is an analysis relying on motion patterns.  
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3.1. Introduction 
Object tracking or video tracking is the image analysis procedure concerned with the linkage of 

objects. Here we define a video is a collection of frame captured at a temporal-resolution 

higher than 25 frame/second while a time-lapse image sequence is a type of video captured at 

a temporal-resolution lower than 25 frame/second. A HT/HC live cell screens in Cytomics often 

produces time-lapse image sequence instead of video.  

 

Unlike object tracking with standard video, object tracking with time-lapse image sequence 

faces several complexities; amongst which the velocity-to-temporal-resolution ratio (VTR) is 

the most essential one. We define the VTR as the ratio between object’s real velocity and 

temporal resolution of the video. A high VTR suggests there are more variations between 

objects from consecutive frames. In a high VTR image sequence, the between-frame 

association of the recognized object can be difficult. Moreover, motion of objects in live cell 

HT/HC screen are often the result of nonlinear deformation [91][92] that cannot be described 

by a rigid model [93][94][95]. The deformations introduce more morphological variation 

between objects. To guarantee the reliability of the tracking, the VTR of a time-lapse image 

sequence must exceed a minimum threshold that captures major morphological changes in 

objects.  

 

There are generally two sides to object tracking with time-lapse image sequences: (1) the 

recognition of the relevant objects and (2) the between-frame association of the recognized 

object. Recognition of the relevant objects is accomplished using image segmentation (cf. Ch. 

2). It is a laborious process due to the large volume of image data and its complexity is often 

determined by the robustness of image segmentation techniques. The tracking algorithms are 

based on, but not limited to, the following two properties:  

1. confidence measurement [9][10] 

2. motion models [31][17] 

The property (1) includes shape similarity measurements such as kernel density estimation 

[9][96] while the property (2) includes probability functions such as Brownian motion model 

[97][98]. In general, confidence measurement based tracking algorithm such as blob and mean 

shift tracking algorithms assume that a minimum shape change will only occur between 

consecutive objects while the motion model based tracking algorithms, such as particular filter 

tracking and energy driven tracking, assume that the next location can be predicted from all 

previous locations of the object. Recent studies show that further optimization based on tree 

diagrams [99] can improve the tracking decision.  

 

Tracking algorithms frequently used in HT/HC live cell screen are blob tracking, mean shift 

tracking, active contour tracking, and particle filter tracking: 

1. The blob tracking is a feature point based tracking algorithm that constructs object 

linkage using confidence estimation. It is a computationally cheap tracking algorithm 

that works well real-time tracking problems.  

2. The mean shift tracking is a model based tracking algorithm based on confidence 

estimation. Unlike blob tracking, the mean shift tracking algorithm recursively shifts 

the initial model to the most likely region in the consecutive frames.  
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3. Active contour tracking is a model based tracking algorithm that propagates the initial 

contour to each consecutive frame. It is a computationally intensive algorithm that 

requires human interference.  

4. The particle filter tracking is a feature point based tracking algorithm similar to blob 

tracking.  

In this chapter, all tracking algorithms i.e. blob tracking, KDE mean shift tracking, particle filter 

tracking, energy driven linear model tracking, as well as active contour tracking will be 

explained first. Subsequently, we perform a systematic estimation of tracking efficiency within 

the application domain of HT/HC studies using manually produced ground truth data sets. 

Finally, we will demonstrate the motivation behind selection of tracking algorithms in different 

combinations of imaging and research in cell biology.  

 

Blob Tracking Algorithm 

Blob tracking [100][101][102][97][33] is a straightforward tracking algorithm that links objects 

by confidence measurement such as measuring distance [103][104] or size changes between 

the target object and candidate object from consecutive frames (cf. Figure 3-1). However, as it 

is based on confidence measurement concepts, blob tracking can only track object with a 

mostly rigid body transformation[103].  

Select Centroid 

Blob

Measuring

Confidence

Next Frame

Locating

Candidates

Next Object

 
Figure 3-1 simple workflow of the blob tracking algorithm 

Mean Shift Based Tracking Algorithm 

The mean shift algorithm [105] is considered a real world application of an model based 

localization approach. It is a robust tracking solution [99][106][107][9][108][15] to associate 

object linkage by localizing an initial model in consecutive frames. For one n-frame video, the 

mean shift algorithm starts by converting the initial object into multiparametric density models 

and recursively update the mean shift factor based on a local density in the consecutive frames 

until a stationary location is reached. Finally, it associates the initial object with the candidates 

closest to the station location (cf. Figure 3-2). A kernel based mean shift tracking consists of 

two steps[105]:  

1. Non-parametric density estimation from an initial model. 

2. Steepest descent to locate the local maximum in a gradient space of density 

estimations given an initial model. 
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Figure 3-2 simple workflow of the mean shift based tracking algorithm 

Each trajectory begins with objects in one frame. These objects are converted into initial 

model defined in a multidimensional feature space. These dimensions include (1) the x-

coordinate of a binary mask of an object, (2) the y-coordinate of a binary mask of an object, (3) 

the intensity value at each pixel (x, y).  Given n data points xn in the d-dimensional space Rd, 

the kernel density estimator with kernel function K(x) (cf. Equation 3-2) and window 

bandwidth h, can be expressed as: 
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A Gaussian kernel is used as a radial symmetric kernel, expressed as: 
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Subsequently, the mean shift estimation is completed by steepest descent through iterative 

computation of: 

 the mean shift vector  (   )  

 the shifted model by          (   ) 

The steepest descent requires estimation of the gradient space  ( )     ( ), where the 

mean shift vector  (   ) is calculated by 
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  . Because of the shape change 

(deformation) of objects, the steepest descent does not necessarily converge at the centre of 

mass of the true candidate. We chose the object closest to the stationary point, at which the 

magnitude of (   ) is closest to zero, as the probable candidate.  

 

KDE mean shift tracking cannot provide a precise localization of the candidate position. 

However, it is more robust and flexible since the multiparametric density model can be derived 
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from any available information. As a result, the mean shift based algorithm does not 

necessarily rely on the relative position of candidates. Therefore, it is a good solution for 

tracking motile objects in time-lapse image sequences of low temporal-resolution. 

 

Particle Filter Based Tracking Algorithm 

Particle filter based tracking [36][65][109] is a lineage linkage based tracking method 

frequently employed in the study of random particle activity in physics [110]. This is a category 

of tracking algorithms that relies on a series of observations containing stochastic variation 

over the temporal dimension so as to produce a recursive statistical approximation; i.e., the 

spreading function of the underlying system states (cf. Figure 3-3). To further improve tracking 

accuracy, particle filter based tracking often includes linking strategies such as graph-based 

optimization [98] or Bayesian recursive estimation [110]. Particle filter based algorithms have 

been used in cell biology tracking problems like tracking random cell migration at low 

magnification [103]. 
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Figure 3-3 Simple workflow of particle filter based tracking 

 

Particle filter tracking method using Bayesian recursive estimation assumes that input    and 

the observations   can be modeled in this form: 

   ,   , …    is a first order Markov process such that   |        |    
(  |    ) at 

state k and with an initial distribution  (  ).  

 The observation   {         } are conditionally independent provided that   , 

  , …    are known. So each    only depends on   ,   |      |  
(  |  ). 
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The linkage is constructed based on recursively updating of the posterior distribution over the 

current state    given all observations   {         } up to a discrete frame number t as 

follows. 

 (  |  )    (  |  )∫  (  |    ) (    |    )
    

 Equation 3-3 

where the likelihood  (  |  ) at time t expresses the measurement model and  (  |    ) is 

the motion model. The posterior probability  (    |    ) is approximated recursively as a set 

of weights of N samples{    
( )

     
( )

}  
   

, where     
( )

 is the weight for the particle     
( )

. Using 

Monte Carlo approximation, Equation 3-3 can be calculated using Equation 3-4, whereas each 

particle is scored according to the approximation (cf. Equation 3-4). 
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 Equation 3-4 

 

Energy Driven Linear Tracking Algorithm 

The energy driven linear tracking algorithm (EDL) [16] is a particle filter tracking algorithm that 

we designed for our tracking problems in subcellular structures known as the matrix adhesion 

(MA). The EDL is based on empirical observation of MA dynamics [36][111][112] from which 

MAs are believed to move in a linear fashion along stress fibers. The EDL tracking algorithm 

consists of the following steps: 

1. Multivariate Gaussian model construction 

2. Density estimation 

3. Pairwise linkage 

4. Trajectory construction 

The complete workflow is illustrated in the Figure 3-4. We will first construct a probability 

model that describes the pseudo-motion behavior. Next, we denote    as the pixels set of the 

binary mask of one object at time point n. 

 

For one   , the pixel coordinates of its binary mask are stored as a (   ) matrix. Then the 

center of mass set     (  ) is first calculated and next from    and   , the covariance 

matrix    is calculated as: 

   
(     )(     ) 

   
 Equation 3-5 

Given object    and   , the algorithm further calculates the new center of nass   
  by 

  
       , where the shifting vector    is calculated as           , where the      is 

the mass center of     . For each   , an updated multivariate Gaussian model  (        ) is 

constructed based on    and     as: 
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, where the   is the column rank of   ; which in this case     since there are two columns. 
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Next for all      within the maximum searching radius     , the average per-pixel probability 

of      is calculated as: 

 (    )  
 

    
∑ (           ) Equation 3-7 

The average per-pixel probability p of      is employed as the score of the linkage. Figure 3-5 

illustrates a sample result of the score table. Instead of looking at a local optimum of linkage, 

the pairwise linkage intends to construct a linkage of global optima between time point n and 

n+1. If    can be linked to two successors, the algorithm always selects the pair with the larger 

per-pixel probability given  (        ). 

 

Finally, the algorithm searches through all pairs and constructs a trajectory. If    has no valid 

successor, the trajectory will be terminated. For this we use the following termination function 

F: 

 (    )  {
 (    )                  

‖       ‖           
 Equation 3-8 

, where the termination criterion      is an user-defined maximum search radius and the 

termination criterion      is an user-defined minimum per-pixel probability. 
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Figure 3-4 workflow of energy driven linear tracking 
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Figure 3-5 score table and pairwise linkage schema 

Active Contour Tracking Algorithm 

The active contour algorithm [101][103][45] is a top-down tracking algorithm combining both 

segmentation and tracking. From an initial model, active contour based tracking attempts to 

minimize an objective function associated with the current model in a recursive fashion. For an 

n-frame video, the active contour algorithm first adapts the initial contour for the object in 

frame i and then uses the adapted contour as the initial contour for frame i+1 until it reaches 

frame n. Such recursive propagation of initial model not only provides a self-adaptive 

segmentation procedure, but also an association between objects in consecutive frames. The 

accuracy and robustness of active contour based tracking is subject to the choice of energy 

definition and local search mechanism; these must be changed for different sets of image 

sequences. Moreover, active contour tracking always requires a manual initialization. 

Therefore, the active contour based tracking is less applicable in high-throughput analysis. We 

included a demo tracking using active contour tracking, but did not extend this to a large scale 

test. 

 

We selected an open-source implementation for each tracking algorithm category since these 

open-source implementations have already been used and optimized in the application 

domain of HT/HC studies. Using open-source implementations provides an independent 

starting point for the assessment of the performance of each algorithm. 

 Blob tracking → MTrack2 plug-in in Fiji [64] 

 Mean shift tracking → KDE mean shift plug-in in ImageJ [9] 

 Particle filter tracking → particle detector and tracking plug-in in Fiji [109] 

 Active contour tracking algorithm → AB snake in ImageJ [65] 

These algorithms are frequently employed in HT/HC studies. The efficiency of these tracking 

algorithms has not yet been assessed. In the next section, we perform a systematic 

quantification and characterization of the tracking performance of each algorithm in the 

application domain of HT/HC live cell screens.  
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3.2.  Performance Study 
The tracking efficiency of each algorithm is measured from a ground truth time-lapse image 

sequence containing manually segmented and tracked objects. Using manually segmented 

objects (cf. Figure 3-6c), we can assess the tracking accuracy of each algorithm without 

considering possible segmentation errors. Moreover, since each algorithm uses different 

information for linkage calculation, the manually segmented objects provide a mutual starting 

point by restrict tracking to be performed only with the manually segmented objects. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-6 (a) raw image from the HT/HC screen of random cell migration, (b) intensity equalized version of 

raw image (a), (c) manually segmented and tracking cells, (d) mass center of each object 

 

To assess tracking efficiency, here we introduce an assessment metrics consisting of five 

elements [113]: (1) true positive tracking, (2) false positive tracking, (3) global detection rate, 

(4) global fragmentation rate and (5) final score. The procedure is depicted in Figure 3-7 and 

described as following: 

Step 1 Ground Truth Production 

Observer is required to produce binary masks and trajectories of dynamic objects based on 

given time-lapse image sequence. 
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Step 2 Tracking with Prior Object Annotation 

The manually segmented binary mask (cf. Figure 3-6c) will be used by the blob and mean shift 

tracking algorithms. The manually segmented binary mask is converted into centers of mass 

for particle detection and tracking (cf. Figure 3-6d). In theory, such design should guarantee 

that all tracking algorithms are tracking the same set of objects. 

 

Step 3 Converting Tracking Output to Mutual Ground 

Each trajectory is converted into a multi-dimensional array (cf. Table 3-1) in which the path# is 

the unique index of each trajectory, the frame# is the frame index, the (MC_X, MC_Y) is the (x, 

y) coordinate of the center of mass the object. Given one trajectory, the extraction of 

corresponding object masks is illustrated in Figure 3-9. Since the different algorithm 

implementations produce various formats of output to describe trajectory information, the 

only possible way to compare the tracked trajectories from different implementation is to map 

trajectories back to the objects. 

 

Step 4 True Positive Tracking (TP) and False Positive Tracking (FP) 

Using state definition in Figure 3-8, the true positive tracking and false positive tracking are 

calculated for each tracking algorithm.  

 

Step 5 Global Detection Rate (GDR) 

Using the result from true positive tracking and false positive tracking, each path tracked is 

assigned to one ground truth path. From the global coverage, the global detection rate is 

calculated.  

 

Step 6 Global Fragmentation Rate (GFR) 

Using fragmentation definition in Figure 3-8, the global fragmentation rate is calculated for 

each tracking algorithm.  

 

Step 7 Final Tracking Score  

The final tracking score is derived from TP, FP, GDR and GFR (cf. Equation 3-16). 
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truth paths

Tracking with 

mutual object 
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Figure 3-7 Workflow of the tracking efficiency estimation 
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Table 3-1 Sample of trajectory table 

Path# Frame# MC_X MC_Y 

0 0 253.2 278.9 

0 1 260.9 283.4 

0 2 259.9 288.8 

0 3 255.3 287.9 

0 4 250.5 285.3 

0 5 246.8 285.3 

 

We illustrate the tracking efficiency of the algorithms against two types of image modalities:  

1. HT/HC screen of random cell migration using epiflorescence microscopy 

2. HC analysis of matrix adhesion (MA) dynamics using TRIF microscopy 

The manual segmentation and tracking of each object or observation, either cell or MA, are 

both accomplished by biologists (observers). Image quality was first enhanced (cf. Figure 3-6b) 

before being processed by each observer. During the observation, each observer starts with 

one cell and continuously draws the outline of the same cell along the entire sequence (cf. 

Figure 3-6c). When cell division occurs, the observer will track both daughter cells, separately, 

starting from the mother cell. In that particular case, there will be two manually tracked cells 

that have a partial identical trajectory. In the next section, the definition of the tracking 

efficiency metrics will be addressed. 

3.2.1. Tracking Efficiency Metrics 

True Positive Tracking (TP) and False Positive Tracking (FP) 

First, the true positive tracking and false positive tracking are defined for the tracking results. 

When comparing the tracked path to the ground truth path (cf. Figure 3-9), there are 

potentially three states for each time point in the trajectory (cf. Figure 3-8). The ‘match’ state 

is the good scenario at one time point in which objects from two paths are identical. The 

‘mismatch’ state is the state at one time point in which objects from two paths are not 

identical. The ‘no match’ state is the state at one time point in which there is no corresponding 

object presented in either the tracked path or the ground truth path. From these three states, 

we define the true positive and true negative of the tracking as following: 

1. The true positive tracking (cf. Equation 3-9) is measured by the number of objects in a 

trajectory with a ‘match’ state        divided by the length of the ground truth path 

   .  

2. The false positive tracking (cf. Equation 3-10) is measured by the number of objects in 

a trajectory with a ‘no match’ state           divided by the length of the ground 

truth path plus the length of the path being tracked        .  

3. The true negative (TN) is calculated by        . 

   
      

   
 Equation 3-9 

   
         

       
 Equation 3-10 

 

 



51 
 

Global Detection Rate (GDR) 

The global detection rate (cf. Equation 3-11) in tracking is a quantification of the success rate 

that each tracking algorithm can recognize all available paths. It is an indicator of the 

sensitivity of tracking algorithm to detect potential paths. A good tracking algorithm should 

not only fully recover a certain path but also recover all possible paths. Given ground truth 

path set     and tracked path    , and intersection        between     and    , the global 

detection rate is calculated from the size of        divided by the size of    . The intersection 

       the path overlapping calculated from tracking TP + FP.  

    
       

   
 Equation 3-11 

Global Fragmentation Rate (GFR) 

The global fragmentation rate in the tracking is the percentage of paths that are only tracked 

partially or available as fragmented trajectories. It is a supplementary quantification to global 

detection rate. In contrast to the global detection rate, which is an indicator of overall tracking 

sensitivity, the fragmentation rate is an indicator of overall tracking specificity. Figure 3-8 

illustrates a partially tracked result in which a tracking algorithm produces two path fragments 

that should belong to one ground truth path. 
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Figure 3-8 three states for each time point in one trajectory, red block: no match, green block: match, blue block: 

mismatch. 

 
Final Score (FS) 

The final score of tracking is the tracking efficiency weighted by the detection rate and the 

fragmentation rate. It indicates the overall performance of each tracking. The F1-score [87] is 

calculated given tracking TP and FP (cf. Equation 3-12, Equation 3-13 and Equation 3-14) and 

weighted using both GDR and GFR (cf. Equation 3-15). Contrary to weighted average, the 

production based final score enforces a balance amongst all subsystems. The final score is 

equal to one only if all three subsystems are approaching to one. Unlike a weighted average, if 

one of the subsystems approaches zero, the whole final score will approach zero. 

            
  

     
 Equation 3-12 

            
  

     
 Equation 3-13 
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 Equation 3-14 

       (     )     Equation 3-15 
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Figure 3-9 (a) extraction of an object mask given one trajectory (b) calculating trajectory overlap 
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3.2.2. Results of Efficiency Estimation 

MTLn3 plGFP Ground Truth 

The MTLn3 plGFP is an aggressive breast cancer cell line that is regularly used in studies on 

migration suppression [15] and growth factor inhibition [114]. This cell line has a motile 

behavior and being able to track these cells is often considered a major challenge in cell 

biology. For the experiment, the image acquisition is accomplished using Nikon TE2000 

epifluorescence microscope with a 40x lens (NA 0.75) and captured at a fixed temporal 

resolution of 5 min/frame. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3-10 efficiency estimation using MTLn3 plGFP test set 

 

The efficiency estimation (cf. Figure 3-10a) of each tracking algorithm shows that the KDE 

mean shift algorithm yields the highest TP-rate of 94.43% and the highest TN-rate of 92.04%. 

The particle filter tracking yields a TP-rate of 86.88% and a TN-rate of 88.68%. The MTrack2 

yields the lowest TP-rate of 36.02% and the lowest TN of 53.84%. The result shows that KDE 

mean shift tracking produces the best overall result compared to both particle filter and 

MTrack2 tracking. The slightly lower performance of the particle filter tracking is mostly due to 

the underlying assumption of Brownian motion. The Brownian motion model is a popular 

function to describe random motion of particles; however, we observe that random cell 

migration does not necessarily follow this pattern. Therefore, particle filter tracking is less 

efficient compared to KDE mean shift tracking in cell migration. The performance of MTrack2 is 

mostly due to the variable acceleration in cell migration; a sudden acceleration of cell motility 
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may cause the MTrack2 to prematurely terminate a track, leading to small fragments of 

trajectories which, de facto, should be merged.  

 

The global detection rate (cf. Figure 3-10b) shows the highest score for particle filter tracking 

78.79%; KDE mean shift tracking has slightly lower score of 76.77%. The MTrack2 scores 

60.10%. In our test, the results illustrate that the particle filter tracking demonstrates an 

acceptable sensitivity when detecting potential paths. The performance of KDE mean shift 

tracking algorithm is similar to the particle tracking algorithm. The MTrack2 ignores nearly half 

of the potential paths.  

The global fragmentation rate (cf. Figure 3-10c) shows that the KDE mean shift tracking has a 

chance of 6.81% to produce fragmented tracking result. The particle filter tracking shows the 

lowest fragmentation of 4.19%. Due to its distance based criterion and cells’ random 

acceleration, MTrack2 has the highest chance of performing a fragmented tracking.  

 

The final score (cf. Figure 3-10d), which brings all error estimation together, shows that in 

general KDE mean shift tracking algorithm and particle filter tracking algorithm both 

demonstrate robust performance in tracking the MTLn3 plGP cell line while MTrack2 is clearly 

underperformed due to a prefixed tracking criterion. Generally, the performance of KDE mean 

shift tracking algorithm is slightly higher than the particle filter tracking algorithm. Compared 

to the particle filter tracking algorithm, the KDE mean shift tracking algorithm produces a 

result with significantly higher TP value and TN value. Since most phenotypical quantifications 

at the single-cell level are derived per-trajectory instead of whole population, a higher per-

trajectory error may lead into wrong quantification while a redundant tracking may only shift 

the data distribution. Thus, it is preferable to use a tracking algorithm with high per-trajectory 

tracking accuracy. 

 

MTLn3 plGFP + EGF Ground Truth 

The ground truth set contains epidermal growth factor stimulated MTLn3 plGFP cells that 

demonstrate a significantly higher motility even compared to MTLn3 plGFP control cells. The 

cells are moving approximately five-times faster than MTLn3 plGFP control cells and twenty-

times compared to other cell lines. The current image acquisition is accomplished using the 

Nikon TE2000 epifluorescence mode with a 40x lens (NA 0.75) and captured at a fixed 

temporal resolution of 5 min/frame. The relatively high motility requires a higher temporal 

resolution than the actual resolution used. Consequently, manual segmentation and tracking 

of MTLn3 plGFP +EGF is considerably more difficult.  

 

The tracking error (cf. Figure 3-11a) shows that the tracking efficiency of both the KDE mean 

shift and the particle filter tracking algorithm is significantly decreased while the performance 

of MTrack2 is significantly increased. The major reason is due to that cells may move out of the 

field of view; then the MTrack2 will terminate the tracking while the other two algorithms may 

attempt to resume the tracking procedure. This also leads to the lower global detection rate of 

KDE mean shift tracking algorithm (cf. Figure 3-11b) since KDE mean shift intends to combine 

two ground truth paths into one tracked path when one ground truth path escapes the image 

frame. Moreover, although the early termination mechanism of MTrack2 may improve 
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tracking accuracy in MTLn3 plGFP +EGF, it receives more penalties from the GFR (cf. Figure 

3-11c). The final score of MTLn3 plGFP +EGF (cf. Figure 3-11d) shows a similar tendency 

compared to the results of MTLn3 plGFP. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3-11 efficient estimation using MTLn3 plGFP+EGF test set 

 

It may be that the KDE mean shift tracking provides a more accurate per-trajectory tracking. 

However, as the method lacks an early-termination mechanism and escaping detection in the 

implementation used for testing, its global performance is slightly lower than particle filter 

tracking. The particle filter tracking algorithm produces a result containing considerable 

amount of per-trajectory errors. In HT/HC study, it is preferred to have a low per-trajectory 

error over a low global error since most phenotypical quantifications are derived from each 

trajectory and not from the whole population. The MTrack2 produces low quality results due 

to highly aggressive cell behavior and non-linear shape deformation, and resulting in the least 

desirable outcome. However, from time-lapse sequence with better temporal resolution and 

less motile cells, it is still a computation inexpensive solution. Moreover, it is foreseeable that 

with both early termination mechanism and escaping detection implemented, the 

performance of KDE mean shift tracking algorithm should be higher than both particle filter 

tracing and MTrack2. 

 

Matrix Adhesion Ground Truth 

This ground truth set contains dynamic matrix adhesion (MA) [16][36]. The analysis of MA 

dynamics is an essential part of cell migration study (cf. Ch. 5). Compared to cell tracking, MAs 

have a simpler and monotonous morphology. There is only a limited amount of information 
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that can be used to distinguish two MAs. It complicates the tracking procedure since 

morphological heterogeneity between potential candidates is reduced, therefore leading to a 

higher false positive rate when building object linkages. 

 

Based on per-trajectory error estimation (cf. Figure 3-12a), it shows that energy-driven linear 

tracking algorithm has lower per-trajectory error compared to particle filter and MTrack2. In 

general, all three tracking algorithms can produce acceptable per-trajectory tracking 

accuracies. The slightly lower performance of particle filter tracking is mainly due to the 

assumption of Brownian motion model whereas of a linear motion model better fits the nature 

of MA dynamics [36]. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3-12 efficient estimation using matrix adhesion test set 

 

The global coverage rate (cf. Figure 3-12b) shows that the energy-driven linear tracking 

algorithm has the highest global coverage of 95.29%. The difference between the three 

algorithms, however are overall the same. 

 

The global fragmentation rate (cf. Figure 3-12c) shows that the energy-driven linear tracking 

has a result of lower quality whereas the particle filter and MTrack2 are slightly better. The 

result suggests that tracking result of EDL may contain more early-terminated trajectories 

compared to the particle filter and MTrack2 tracking.  

The overall performance (cf. Figure 3-12d) shows that the EDL has the best score compared to 

the particle filter and the MTrack2 tracking algorithm. However, the performance of MTrack2 
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shows similar performance as EDL. We conclude that both EDL and MTrack2 use all available 

information from binary mask and intensity landscape while particle tracking must rely on 

Brownian motion model which seems to be a false assumption in this particular tracking 

problem. 

3.2.3. Temporal Resolution Variance 

Temporal resolution is a measurement of video sampling rate. The ratio between temporal 

resolution and object velocity plays a crucial role in video tracking. A higher velocity-to-

temporal-resolution ratio (VTR) suggests that intermediate stage of object motion may be 

overlooked. As a result, a higher VTR means more variations and fewer similarities between 

objects in consecutive frames. Here we propose the Consecutive Displacement Rate (CDR) 

measurement of the VTR. The CDR is considered as a numeric indicator of tracking complexity. 

 

Consecutive Displacement Rate 

The consecutive displacement rate (CDR) is the pixel-based intensity-weighted difference 

between consecutive objects. Given consecutive objects A and object B, the CDR is expressed 

as: 

    
   ̅̅ ̅̅ ̅̅ ̅

   
 Equation 3-16 

 

From the algorithm descriptions (cf. §3.1) we can 

conclude that all tracking algorithms rely on certain 

similarity criteria when constructing a linkage 

between consecutive objects. A high CDR suggests 

that two objects share less overlap, thus, it suggests 

a potential shape change or significant position 

shifting. A significant position shifting may introduce 

an error to the tracking algorithm that relies on 

relative position such as blob tracking and particle 

filter tracking while a potential shape change causes a problem to the algorithm such as KDE 

mean shift tracking. Therefore, a good time-lapse image data set should express the lowest 

CDR as possible. 

 

 
(a) MTLn3 plGFP ctrl 

 
(b) MTLn3 plGFP EGF 

Figure 3-14 CDR of MTLn3 plGFP cell line under different conditions, red lines are tend lines by moving 

average 
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Figure 3-13 object difference and mutual area 
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Figure 3-15 snapshots of time-lapse image sequence of MTLn3 GFP channel 

 

Figure 3-14 shows that the CDR distribution of EGF stimulated cells significantly shifts to the 

right side of CDR distribution of control cells, suggesting at current temporal resolution the 

tracking of EGF stimulated cells becomes less efficient. It also shows that between consecutive 

time points EGF stimulated cells have more than 60% variation in either position or shape. 

Moreover, snapshots of the MTLn3 set (cf. Figure 3-15) clearly show that migration behavior of 

EGF stimulated cell is more aggressive and therefore difficult to model. 

 

Subsampling Performance Estimation 

To further characterize the effect of temporal resolution on tracking efficiency, a control test 

has been designed. The control test consists of the following steps: 

1. Capture image sequence with high temporal resolution (30 second/frame) 

2. Create subsampled image sequence by extracting one frame every rth frame 

3. Estimate CDR of subsampled image sequence (cf. Equation 3-16) 

4. Perform tracking on the subsampled image sequence 

5. Compare tracked path to ground truth path (cf. § 3.2.1) 

The effect estimation suggests that tracking true positive slightly decreases at increasing CDR 

(cf. Figure 3-16). This also suggests that tracking efficiency will be affected when complexity of 

object motility increases. We consider KDE algorithm for tracking with different CDR. From the 

test result, we observe that even with a relatively high CDR, the KDE algorithm still produce a 

tracking result of TP = 90.36% and TN = 94.36% (cf. Figure 3-16). 
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3.3. Conclusions and Discussion 
In this chapter, we have discussed four tracking algorithms that can be employed in the object 

tracking of HT/HC screens. The performance assessment of tracking algorithms shows that all 

tracking algorithms can produce acceptable tracking results for less motile objects such as 

MTLn3 plGFP cells. Our dedicated solutions, namely the KDE mean shift tracking algorithm and 

energy driven linear tracking can still produce a near optimal overall performance in aggressive 

cell behavior in an MTLn3 plGFP +EGF image set compared to other existing solutions.  

 

Further analysis of assessment results shows that irregular and local object deformation poses 

difficulties for confidence measurement based tracking algorithms. The robustness of 

confidence measurement is a determining factor behind successful tracking. In this case, the 

KDE mean shift algorithm clearly outperforms the blob tracking algorithm since the kernel 

density estimation is more flexible and robust to small shape deformation; e.g. deformation by 

cell protrusions.  

 

Compared to confidence measurement based tracking, motion model based tracking 

algorithms works best in object tracking when object shape information is limited, typically the 

matrix adhesion (MA) tracking. In the MA tracking scenario, confidence measurements 

between true and false candidates are less discriminative since the sizes of objects are around 

5~30 pixels. However, motion model based tracking algorithm takes advantage of the presence 

of shape information in tracking aggressive cell migration. Moreover, the assumption of a 

Brownian motion model or linear motion model is not necessary true for cell migration. The 

major drawback behind the motion model based tracking is the assumption of a fixed motion 

model; increasing robustness of motion model based tracking will require flexibilization of the 

motion model. 

 

From the advantages of each algorithm, we further conclude that the selection of a proper 

tracking algorithm should not only be based on a quality factor such as CDR. It should also be 

based on the availability of information on object shape and motion model. When information 

is limited, the choice of the tracking algorithm must be changed accordingly. Instead of 

considering either a confidence measurement or a motion model, a tracking solution 

combining both types of linkage criteria may produce more robust tracking results.  



60 
 

Acknowledgement 
 

The authors would like to thank Ying Shi for her meticulous work on making the benchmark 

data 

 

 

 

 

  



61 
 

Chapter 4 

A Study to Cell Migration Analysis 
 

4. Cell Migration Analysis 
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Chapter Summary 
In this chapter, we focus on estimating the practical performance of an image analysis solution 

within the scope of a live cell HT/HC screen study of tumor cell morphology and motility. In 

detail, we address the following research question: 

1. Can the unique phenotypical profile of cells treated with different growth factors be 

characterized using newly developed algorithms for image segmentation (cf. Ch.2) and 

object tracking (cf. Ch. 3) in HT/HC screen? 

Following the workflow of HT/HC screen (cf. Figure 1-2), this chapter is divided into three 

major sections. First, the experimental design and image acquisition procedure are illustrated. 

The selected growth factors and their expected cell responses are explained. Then the design 

of the image analysis solution is demonstrated and the motivation behind this design is 

explained. Next, the measurements of cell morphology and motility extracted through image 

analysis are illustrated. Finally, the variation in morphology and motility are derived from 

numerical measurements using data analysis. These results are compared to morphology and 

motility as described in the literature. 
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4.1. Workflow of Growth Factor Analysis 

4.1.1. Experiment Design 
Cell morphology and motility are critical parameters in many physiological as well as 

pathophysiological processes. Recent progress in the technology of live cell enables the 

capture of detailed information on morphology and motility for cell biology analysis. This 

chapter aims to use functional genomics and compound screening to unravel the mechanisms 

of tumor cell migration in the context of breast cancer metastasis. To that end, an image 

analysis solution is often used to provide an automated analysis solution for such HT/HC in 

vitro live cell screen. Central to this solution is the segmentation algorithm [62] (cf. Ch. 2). 

From the segmentation, a per-cell tracking over the time-lapse sequence is accomplished via 

tracking algorithm [9] (cf. Ch. 3). From the tracked cells, a set of numeric measurements 

related to tumor cell behavior is extracted.  

 

We validated this method through a pilot experiment that assays the random migration of 

highly motile tumor cells with growth factor regulation. As results, we obtained a sensitive, 

time-resolved profiling for every condition. During invasion and metastasis, migration is driven 

by growth factors, such as Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF),  

Hepatocy Growth Factor (HGF) and Transforming Growth Factor β1 (TGF-β1). All growth 

factors (GFs) are well known chemoattractants or cytokines involved in various cellular 

processes. However, the response of tumor cells at the level of cell migration to those growth 

factors, as supplemented individually or in combination, has not yet been quantified. To 

understand how those different GFs control the tumor cell motility, we performed an 

experiment that includes single exposure to the different GFs and combinations of GFs.  

 

Cell Culture 
Two subgroups of MTLn3 rat breast cancer cells [115] were cultured as previously described 

[116]. The MTLn3-plGFP is a standard MTLn3 cell line while the MTLn3-GB1 is an MTLn3 cell 

line with overexpression of the EGF-receptor. These MTLn3 cell-lines were previously 

described in other tumor migration studies [115][80]. They were maintained in MEM (Life 

Technologies, Inc., Gaithersburg, MD) supplemented with 5% fetal bovine serum (Life 

Technologies). During the random cell migration assay, the cells are exposed to different 

growth factors known to be involved in tumor progression in general and in tumor cell motility 

in particular. We analyzed the motility behavior of MTLn3 cells when exposed to 12 different 

treatments including: DMSO, EGF, FGF, HGF, TGF-β1, EGF+FGF, EGF+HGF, EGF+ TGF-β1, 

FGF+HGF, FGF+ TGF-β1, HGF+ TGF-β1, EGF+FGF+HGF+TGF-β1. The growth factors used are as 

follows: Epidermal Growth Factor (EGF, 100 µg/ml), Fibroblast Growth Factor (FGF, 100 µg/ml),  

Hepatocy Growth Factor (HGF, 20 µg/ml) and Transforming Growth Factor β 1 (TGF-β1, 20 

µg/ml). The overall plate design is given in Table 4-1. The DMSO treatment is considered the 

negative control group. 
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Table 4-1 Plate design of GF regulation experiment (plGFP-yellow, GB1-green), alphabet represents column index, 

number represents row index 

 
plGFP GB1 

 C D E F G H I J 

2 DMSO HGF EGF+HGF FGF+TGFβ DMSO HGF EGF+HGF FGF+TGFβ 

3 DMSO HGF EGF+HGF FGF+TGFβ DMSO HGF EGF+HGF FGF+TGFβ 

4 EGF TGFβ EGF+TGFβ HGF+TGFβ EGF TGFβ EGF+TGFβ HGF+TGFβ 

5 EGF TGFβ EGF+TGFβ HGF+TGFβ EGF TGFβ EGF+TGFβ HGF+TGFβ 

6 FGF EGF+FGF FGF+HGF all FGF EGF+FGF FGF+HGF all 

7 FGF EGF+FGF FGF+HGF all FGF EGF+FGF FGF+HGF all 

 

Live Cell Imaging 
Glass bottom 96-well plates (PAA) were coated with 20 µg/µl collagen type 1 (isolated from rat 

tails) for 1 hr at 37 ºC. Cells were plated directly onto the coated glass coverslips and imaged 

24 hrs after plating. Prior to the imaging, the medium was refreshed using serum free medium 

to starve the cells for at least 4 hrs. Cells were then placed on a NIKON Eclipse TE2000-E 

widefield microscope using a 20x objective lens (0.75 NA, 1.00 WD), perfect focus system, and 

a 37 oC incubation chamber. These cells are directly exposed to the different growth factors at 

the beginning of the experiment. The image acquisition was done with 3 locations per well and 

GFP signal was acquired every 5 min for a total imaging period of 12 hrs. The images are 

captured using a NIKON DQC-FS EMCCD camera with 16-bit pixel depth in 512x512 pixels. For 

each plate, we collected 144 time-lapse image sequences and this experiment was triplicated. 

4.1.2. Image Analysis 
For each plate, 144 time-lapse sequences are acquired. With a total number of three replicas, 

the MTLn3 Growth Factor Regulation experiment produced over 432 image sequences, each 

containing 145 frames. The whole experiment produced over 50k images. Therefore, the use 

of automated image analysis is essential. The major goal of image analysis solution is to 

automatically extract both motility and morphology quantifications from these images. To that 

end, we need to both extract individual cells and track them using an integrated solution 

combining both image segmentation and object tracking. These HT/HC images are first 

uploaded to the image management server for the sake of efficient data management. The 

pipeline is illustrated as four consecutive steps: (1) image preprocessing, (2) image 

segmentation, (3) object labeling, and (4) object tracking. 

4.1.2.1. Image Preprocessing 
For each image sequence, an image preprocessing procedure is first applied to improve image 

quality for segmentation using noise suppression or signal enhancement algorithms. The image 

preprocessing procedure contains four sequential steps (1) intensity normalization, (2) 

median filter, (3) Gaussian filter, and (4) Rolling ball filter. Each step removes or reduces 

image quality issues during the image acquisition. In the images (cf. Figure 4-1a), we observe 

an uneven illumination. In the cells, we observe an intensity variation. In addition, a high level 

Poisson noise [28][57][109] is observed in the images. 

 

Intensity normalization (cf. Figure 4-1b) is first employed to rescale the intensity values over 

the complete dynamic range. Intensity normalization is used to ensure that the entire dynamic 
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range is used by all images. The most common intensity normalization formula is described as 

following: 

   (     ( ))  
    

   ( )     ( )
 Equation 4-1 

, where   is the intensity values in the image and   is the bit-depth of the image.  

 

After the intensity normalization, a median filter [85] is applied to the image (cf. Figure 4-1c). 

A 3x3 median filter kernel [6] can effectively removes the Poisson noise [28][57][109].  

 

Subsequently, a Gaussian filter is applied (   , just above the Poisson noise) to the image (cf. 

Figure 4-1d) to create a smoother and more continuous intensity landscape for the seeded 

watershed algorithm.  

 

Finally, a rolling ball filter is applied to the image (cf. Figure 4-1e) to remove the uneven 

illumination due to autofluorescence [117][101] (cf. Figure 4-1b) from the culture medium. The 

current rolling ball filter uses a spherical kernel with a radius of 128 pixels so that the kernel is 

approximately little larger than a cell, leaving the dominant foreground signal. After 

preprocessing, the images are ready for segmentation. 

 
(a) raw image 

 
(b) intensity normalization 

 
(c) median filter 

 
(d) Gaussian filter 

 
(e) Rolling ball filter 

 
(f) binary mask 

 
(g) tracked trajectories 

  

Figure 4-1 intermediate results of image analysis 
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4.1.2.2. Image Segmentation 
An image quality assessment with 32 randomly selected images from the experiment (cf. 

Figure 4-2 raw images) shows that: 

1. Regardless the image preprocessing, object intensities are not consistent within the 

same image sequence. The object intensities are not consistent even for an object at 

different time points. Such variability seems to be related to different level of GFP 

expression in the cell [118][21].  

As a result, this image set has an average coefficient of variation (CV) of 4.3 (cf. Ch. 2 Equation 

2-8); consequently it is difficult to ensure a high score for both sensitivity and specificity. 

Therefore, the dedicated solution WMC segmentation algorithm (cf. Ch. 2) is used since it is 

designed to handle intensity variation. From the WMC algorithm (cf. Figure 4-1f), each object is 

labeled[119][120]. All labeled objects will be passed to the object tracking solution. 
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Figure 4-2 segmentation and tracking results for the different GF treatments 

4.1.2.3. Object tracking 
Cell tracking with this image set faces several limitations. First, since this experiment is a study 

of cancer cell migration behavior under the influence of a growth factor, the motility  of these 

cells (1.2~4.2 µm/min) [9][10] is higher compared to existing studies [121] (0.1~0.4 µm/min). 

Confidence measurement based tracking solutions such as overlap tracking cannot be easily 

adapted since the confidence measurement no longer applies. The variation in the cell motility 
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under different treatments complicates the performance of motion model based tracking.  

Moreover, during cell migration a cell is exposed to non-rigid deformations. As a result, the 

image set has an average consecutive displacement rate (CDR) of 0.3 (cf. Ch. 3 Equation 3-16), 

which for the temporal-resolution is barely sufficient to capture the continuity of cell body 

deformation and position shift during cell migration. Therefore, here we employ the robust 

tracking solution KDE mean shift tracking algorithm. The KDE algorithm can produce a higher 

overall performance and robustness in tracking cells with constantly changing migration 

patterns (cf. Figure 4-2 tracked trajectories). Once consecutive objects are tracked, 

measurements will be further extracted from both binary masks and trajectories. 

4.1.2.4. Morphology and Motility Measurement 
For image analysis two categories of measurements are introduced: the morphology 

measurements and motility measurements [9][10]. The morphology measurements are 

quantifications describing the shape change of each object. They are derived from the binary 

mask and the associated intensity information of the original image. The motility 

measurements are quantifications describing the object motion pattern. They are derived from 

trajectories obtained from the object tracking algorithm. With both motility and morphology 

measurements, we will further quantitatively compare cell behavior under different 

treatments (cf. Figure 4-2). 

4.1.3. Data Analysis 
We designed a data analysis pipeline (cf. Figure 4-3) to extract comprehensive information 

from the data. The data analysis pipeline converts morphology and motility measurements 

into a representation to support the research question. The data analysis pipeline consists of: 

(1) overview, (2) target identification, (3) individual comparison, and (4) manual verification. 

Overview
Target 

Identification

Manual 

Verification

Individual 

Comparison

Hypothesis Test

Feature Selection

First-order 

Statistics

Second-order 

Statistics

Bayesian Network

Cross Correlation

 
Figure 4-3 data analysis workflow of cell migrations 

Overview 

In the overview, HT/HC measurements from different conditions and locations are combined 

and visualized to provide an overall pattern for the whole data set. The combination of the 

data set in the overview step is accomplished using low-order statistics such as mean or 

median, and the second-order statistics such as variance or correlation [14][102][122][12][123]. 

In practice, they are considered an efficient and fast representation over a large amount of 

data [10][15][124]. As a generalization of cell behavior, it is still rough. 

 

 

Target Identification 
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In the target the identification step, 

measurements are coupled for statistical 

comparison in order to verify whether these 

measurements are different by chance. Statistical 

significance tests [124][125][126] [127] or feature 

selection solutions (cf. Figure 4-4) [10][15][33][12] 

are used in this step. 

 

Temporal Profiling 

The low-order statistics do not reveal the 

temporal tendencies in the measurements. 

Therefore,  temporal-order statistics [39][12] are further used as dynamic modeling solution 

for cell behavior.  The typical solutions of cell behavior, i.e. a Dynamic Bayesian Network 

(DBN)[128][129][130] or a Hidden Markov model (HMM) [33][12], are frequently used in the 

modeling of spatio-temporal patterns [33][111]. 

 

User Verification 

The manual verification is the final step in data analysis. The researchers perform a check of 

the image analysis results of the interesting targets. They also perform a similar check over the 

control condition. In HT/HC, a behavior that is significantly altered may suggest an interesting 

target. User verification over these targets will provide further understanding of the data. It is 

possible that the image and data analysis may result in errors due to experimental bias or 

design flaws. The user verification of image analysis in both control condition and treated is 

considered an obvious necessity. We currently use the following checklist during user 

verification: 

 Too few foreground pixels being captured? 

 Too many background pixels being captured as foreground? 

 Most individual objects separated correctly? 

 Most objects captured? 

 Most object trajectories tracked? 

 Too many trajectories overlapping? 

 Too many early terminations of trajectories? 

 Is change/difference of measurement corresponding to observation for controls? 

In our approach, researchers are presented with a number of overlay images from each 

condition (cf. Figure 4-5) enabling a quick overview on the performance of segmentation and 

tracking frame-by-frame. In practice, users check the segmentation result by looking to how 

the overlay mask fits the user perception of the image content (cells) (cf. Figure 4-5 mask 

overlay). The trajectories are further overlaid (cf. Figure 4-5b) to the mask-overlay image (cf. 

Figure 4-5a) to allow users to check the tracking performance.  

 

 

 

 

 

 
Figure 4-4 top-3 measurements selected by 

feature selection between ctrl (blue), EGF treated 

(red), and HGF treated (magenta) cells. 
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Figure 4-5 manual verification of segmentation and tracking results of the targets 

4.2. Analysis of GF Regulation 

4.2.1. Differential effect of individual and combined GF stimulation 
In Figure 4-6, a heat map is generated from the mean values of all features and a hierarchical 

clustering is performed. From the heat map, it is clear that HGF treatment as a single growth 

factor or in combination with other GFs is the most potent regulator of the migration of MTLn3 

cells. Indeed, HGF alone and other combinations are all clustered together and the clustering is 

based on an increase in velocity and motion linearity (cf. §4.2.2 persistence). While EGF is not 

directly inducing an increase in cell velocity, it seems to affect the directionality of the cells. 

Surprisingly, TGF- β1 does not seem to have any measurable effect on the migration of MTLn3 

cells. Finally, FGF does affect cell size accompanied with a slight effect on motion linearity (cf. 

Figure 4-2).  

  
Figure 4-6 heatmap of the RCM3 data plGFP 
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4.2.2. HGF stimulation increases speed while EGF increases the migration 
persistence of MTLn3 cells  

In this section, we introduce the persistence or motion linearity as another very important 

parameter for cell migration. Persistence is defined as a measure of how efficient the cells 

move [10]. The analysis result (cf. Figure 4-7) shows that HGF alone or in combination (except 

for HGF+FGF) does significantly enhance the migration speed of MTLn3 cells. The EGF only 

slightly affects the speed and interestingly FGF and TGF- β1 do not affect the speed at all. 

Furthermore, it seems that an increased velocity is always associated with an increased cell 

protrusion measured through extension [9]. So we can conclude that faster cells show an 

increased extension as a major feature. On the one hand, the EGF alone or combined with 

TGF- β1 always affects the motion linearity. On the other hand, the HGF alone does not change 

much of the motion linearity of the MTLn3 cells. 

 
(a) velocity 

 
(b) extension 

 
(c) polarity 

 

Figure 4-7 RCM3 Growth Factor Regulation plGFP 
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4.2.3. Temporal-Order Statistics 
In many cell types, GFs have been reported to enhance the average migration speed. Especially 

in MTLn3 cells, EGF has been reported to increase the migration speed. The long term 

migration response of cells after exposure to EGF cannot be extrapolated from a known model. 

Basic first-order statistics do not reveal time related tendencies, temporal-order statistics [39] 

are further employed for the spatio-temporal analysis of cell migration. We plotted different 

parameters over the time-lapse (cf. Figure 4-8) and we ended up with descriptive time profile 

of the different stimulations. EGF stimluation did result in higher velocity through increased 

extension. Indeed, almost 1 hr after EGF stimulation the cells start to move faster until 

reaching a steady state (after approximately 5 hrs) of migration compared to the DMSO 

condition (negative control). On the other hand, a mixture of all GFs does greatly affect the 

migration speed of the MTLn3 cells since the temporal profile shows that the velocity increases 

continuously over the whole time-lapse sequence revealing a complex cascade of signaling 

that takes place at cellular level. This faster migration results in a continuous increase of cell 

extension. 

 

 
(a) velocity 

 
(b) extension 

 
(c) size 

 

Figure 4-8 temporal profile of plGFP 
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Cell tracks were generated and in our system it does reveal the heterogeneity in behavior 

within cell population. EGF stimulation indeed seems to increase the velocity only of a certain 

subpopulation, whereas the GF cocktail does affect all cells, resulting in a significant increase 

of the mean cell migration speed.  

4.3. Conclusions and Discussion 
Cell motility is an important event in many biological processes, such as tissue repair, 

metastatic potential, chemotaxis or analysis of drug performance. Cell migration and invasion 

are crucial aspects of tumor progression. It depends on the intrinsic capacity of the cells to 

move faster and more efficient. It is also depending on the tumor microenvironment that does 

produce all kind of cytokines or extra-cellular components. Understanding how tumor cells 

move and how their movement can be controlled by internal signaling pathways or external 

cues, in particular, contributes to our knowledge on tumor progression and metastasis 

formation. In order to obtain a better insight in the underlying processes leading to an efficient 

tumor cell migration, methods need to be developed that enable the study of migration at the 

individual cell level and in a high throughput fashion. Time-lapse imaging with fluorescent 

microscopy enables a thorough quantification of the cell dynamics at the level of migration. In 

this study, we successfully developed a computational approach that allows (1) reliable 

segmentation of migrating cells with a high degree of plasticity, (2) reliable tracking of fast and 

often dense migrating cells, (3) extraction of motility and morphology parameters over the 

time of imaging. In this chapter, we have illustrated a dedicated image analysis solution for 

HT/HC screen analysis combining robust Watershed Masked Clustering (WMC) segmentation 

algorithm and Kernel Density Estimation (KDE) mean shift tracking algorithm. This integrated 

solution produces an accurate profiling of cell migration behavior under the influence of 

growth factor regulation. 

 

To ensure that our methodology was sufficiently competent for fast moving cells, we 

performed a pilot study on the migratory behavior of the rat breast carcinoma MTLn3 cells. 

They show a mesenchymal morphology and do not cluster with cells from the negative control. 

They are highly motile and propose a challenge for finding good segmentation and tracking 

solutions. In contrast to generic solutions, our dedicated solution of WMC segmentation and 

KDE mean shift tracking algorithm demonstrated a good performance in term of both 

algorithm efficiency and representation of the biology.  

 

From the biological validation, we further conclude that robustness of both segmentation and 

tracking algorithm is a crucial factor behind successful analysis in a HT/HC screen study when 

cell responses from induced treatment are unknown. If the parameter set of an image analysis 

algorithm is tuned based on control cells demonstrating minimized cell protrusion and motility, 

with limited robustness, the same parameter set clearly is not optimized for treated cells such 

as +EGF cell that demonstrate an increasing cell protrusion and motility. The inflexibility not 

only produces errors in image analysis, but may lead to false conclusions. 

  

On the workbench we resolve this dilemma via the employment of a pilot experiment 

consisting of (1) control condition in which no treatment is induced, (2) positive control 

condition with a treatment resulting in the maximum expected responses, and (3) negative 
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control condition with a treatment resulting in no responses. Parameters of image analysis 

algorithms and the robustness of selected solutions are verified using the pilot experiment 

before being applied to full-scale HT/HC screen study.  
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Chapter 5  

A Study to the Dynamics of Matrix Adhesion 

5. Dynamic Matrix Adhesion Analysis 
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Chapter Summary 
In this chapter, we focus on assessing the performance of our image analysis solutions using a 

case study of the dynamics of a subcellular structure known as the matrix adhesion. We 

further divide the focus into two research questions: 

1. Can we extract morphology and motility measurements from matrix adhesion 

dynamics and cell migration? 

2. Can we identify correlation between measurements of matrix adhesion dynamics and 

cell migration? 

Matrix adhesions are the closest contacts between the cell and the extra-cellular matrix 

through which both mechanical forces and regulatory signals are transmitted. To that end, cell 

migration can be seen as a cyclic process controlled by the assembly and disassembly of matrix 

adhesions. Therefore, a study of the correlation between MA dynamics and cell migration will 

provide an understanding of the molecular mechanism controlling cell migration behavior. For 

now, the study focuses on first extracting measurements describing both matrix adhesion 

dynamics and cell migration. These measurements are further used to reveal correlations 

between the morphology or the motility of MA dynamics and cell migration.  

 

To achieve the current research questions, we will first extract measurements describing MA 

dynamics and cell migration using image analysis solutions discussed in Chapter 2 and Chapter 

3. Furthermore, with these measurements, we apply dependency tests to identify potential 

correlations between MA dynamics and cell migration. Following the path of analysis, this 

chapter is divided into two major sections. In the section 5.1, the design of image acquisition, 

image analysis and data analysis will be addressed. In the section 5.2, the results in biological 

context will be discussed. The result of analysis shows that our solution confirms a number of 

known correlations observed in previous studies and reveals several yet unknown biological 

phenomena.  
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5.1. Workflow of Matrix Adhesion dynamics Analysis 
Cell migration is an essential procedure involved in a number of processes and is especially 

important in cancer metastasis. In the cascade of cancer metastasis, an increasing in cell 

motility is crucial for cancer cells to invade the surrounding tissue. Matrix adhesions (MA) are 

the closest contacts between the cell and the extra-cellular matrix. Cancer cell migration can 

be seen as a cyclic process which is controlled by the assembly and disassembly of matrix 

adhesions. Therefore, the dynamics of matrix adhesion is very important [131] for the 

understanding of cell migration behavior, yet little is known about the molecular mechanisms 

that regulate adhesion dynamics and signaling during cell migration. In order to gain 

understanding of the relationship between cell migration and the dynamics of matrix 

adhesions (MA), we have developed an integrated approach consisting of image acquisition, 

image analysis and data analysis at both cellular and structural level: 

1. For the image acquisition, epifluorescence and total internal reflection fluorescence 

(TIRF) microscopy are employed to respectively visualize components including the cell 

body, the cell nucleus and matrix adhesions (TIRF). This results in multi-channel time-

lapse image sequences. 

2. From these image sequences, measurements of cell migration and matrix adhesion 

dynamics are extracted using dedicated image analysis pipeline. These measurements 

represent a spatio-temporal  quantification of the matrix adhesion dynamics in the 

migrating cell. Furthermore, a spatial model of the cell under migration is built, 

dividing the migrating cell into a number of characteristic regions that are 

subsequently used in the analysis. This cell body model is the key in our integrated 

approach to find correlation between matrix adhesion dynamics and cell deformation. 

3. From the measurements, dependency tests are applied to find significant correlations 

between matrix adhesion dynamics and cell deformation.  

Each step will be further illustrated in: experiment preparation and image acquisition (cf. § 

5.1.1), (2) image analysis (cf. § 5.1.2), and (3) data analysis (cf. § 5.1.3). 

5.1.1. Experiment Preparation and Image Acquisition 
Material Preparation 

The H1299 cell model, which ectopically expresses the GFP-paxillin matrix adhesion marker, is 

the well described lung carcinoma cell-line extensively used in cell migration assays [132]. 

H1299 cells (ATCC-CRL-5803) were cultured in RPMI (GIBCO, Life Technologies, Carlsbad, CA, 

USA) supplemented with 10% FBS (PAA, Pasching, Austria) and 100 International Units/ml 

penicillin and 100 µg/ml streptomycin (Invitrogen, Carlsbad, CA, USA). CELLview glass bottom 

dishes with four compartments were coated with 10 µg/µl fibronectin (Sigma Aldrich) for 1 hr 

at 37oC. H1299/GFP-paxillin cells were seeded on glass bottom dishes and grown at 37oC 

overnight. For random cell migration assays, phenol-red (pH indicator) free culture medium 

was used. Cells were maintained in a 5% CO2 humidified chamber at 37oC. Following this 

protocol, the cells are believed to be incubated with a minimum level of interference. 

 

 



78 
 

(a
) 

m
at

ri
x 

a
d

h
e

si
o

n
*

 

 

(b
) 

ce
ll 

b
o

d
y 

 

(c
) 

n
u

cl
e

u
s 

 
Figure 5-1 multi-channel imaging for MA dynamics analysis, image montage at time [0 min, 16 min, 24 min, 32 

min]; *signal reversed for visibility 

 

Image Acquisition  

In order to quantify both cell migration and MA dynamics, we captured time-lapse image 

sequences for each component using different imaging techniques. Prior to imaging, nuclei 

were labelled with 100ng/ml Hoechst 33342 [133] in culture medium for 45 min. H1299/GFP-

paxillin cells were imaged using a Nikon TiE2000 microscope equipped with a Perfect Focus 

System with 5% CO2 delivery to the sample dish. Images were acquired with a 60x oil objective 

(1.49 NA, 0.12 WD) and the image acquisition was controlled by NIS Elements (Nikon). The 

imaging setting is defined as follows:  

1. Matrix adhesions were captured using TIRF imaging with a 488nm laser line over a 

period of two hours, in one minute intervals. The TIRF imaging was used to detect the 

signal of GFP-paxillin that is localized in the first 80 nm of the cells where the MAs are 

found (cf. Figure 5-1a). The TIRF imaging is in particular useful for visualizing objects 

with a fast turnover and small size [134]. Additionally, it provides a good signal-to-

noise ratio for capturing dynamic matrix adhesions [135].  

2. The total signal of the cytoplasmic GFP, which represents the whole cell body 

information, is detected using wide field microscopy (cf. Figure 5-1b). The cytoplasmic 

GFP signal was acquired every three minutes over a period of two hours using wide-

field fluorescence. (3)  

3. At the same time interval (3-mins) and duration of 2-hrs, the Hoechst [133] signal for 

detection of the nucleus (cf. Figure 5-1c) was acquired using wide-field fluorescence.  
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Image Format 

The raw images are stored in the ND2 format; a commercial self-contained image data storage 

format proposed by NIKON. Due to its patented structure, ND2 format is not an open-source 

storage format and can only be accessed via the Windows-based native API provided by NIKON, 

consequently the ND2 format is not convenient for cross-platform data transportation. 

Therefore, the ND2 format is converted into TIFF image format. The conversion is conducted 

as follows: for each time point in a time-lapse image sequence, an image from the separated 

channels is stored as a 16-bit TIFF file (cf. Figure 5-2). As a result, the ND2 file is converted into 

a collection (time-lapse image sequences) of individual 16-bit TIFF files.  

 

ND2 Format Location

Time

Channel 16-bit TIFF

RGB AVI

Image Analysis

Data Demo

 
Figure 5-2 2D+T ND2 to TIFF conversion 

The converted TIFF files are organized and stored in a structure illustrated in Figure 5-2. The 

total length of image sequence is 120 ~ 240 images depending on the size of observation 

window. For data visualization, a copy of the 16-bit TIFF image is combined into multi-channel 

RGB AVI format by rescaling the 16-bit TIFF image into 8-bit. The RGB AVI format conversion is 

accomplished with ImagePro macro [136].  

 

In conclusion, by using two different fluorophores (GFP and Hoechst) and two different 

imaging techniques (TIRF and wide-field fluorescence), we are able to capture three different 

sets of information: the cell nucleus (wide-field/Hoechst), cell body (wide-field/GFP) and 

matrix adhesions (TIRF/GFP) respectively (cf. Figure 5-1). 

 

Different from the cell migration study in Chapter 4, the current imaging setting is not suitable 

for a high-throughput setting due to its time resolution. Image analysis is however still 

required to extract measurements of MA dynamics and cell migration. In the next section, we 

will discuss the image analysis pipeline. 

5.1.2. Image Analysis 
The image analysis pipeline answers to the first research question, namely to extract 

measurements of MA dynamics and cell migration. It is the essential step to convert images 

into measurements by using image segmentation and object tracking. In correspondence with 

the imaging setting of MA dynamics, the image analysis solution consists of three parts (cf. 

Figure 5-3). The selection of image segmentation and object tracking solution is based on the 

characteristic qualities of each of the channels. 
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Figure 5-3 workflow of MA image analysis 

5.1.2.1. Image Analysis for Matrix Adhesion (MA) Channel 
The image analysis of the matrix adhesion channel is illustrated in Figure 5-3 [green]. With TRIF 

microscopy, the GFP signal from the cytoplasm and the MAs are both captured. As a result, the 

MA channel (cf. Figure 5-4a) contain two layers of signals including the brighter MA signal and 

comparatively darker cytoplasmic signal. In order to extract only the MA, the cytoplasmic 

signals must be removed from the image. By treating the cytoplasmic signal as a part of the 

background, we extract the major MA signal using a combination of Gaussian blurring filter 

and rolling ball background subtraction algorithm [137]. Empirically we established both the   

of Gaussian filter and the kernel size    of the rolling ball filter. The choice of     is just 

larger than the average radius of MAs. The choice of      is twice the average radius of MAs. 

By applying both filters to the MA channel, we can suppress the cytoplasmic signal [35] while 

preserving the brighter MA signal (cf. Figure 5-4b) below the radius of the rolling ball. The 

resulting image only contains the dominant MA signal; the WMC segmentation algorithm will 

be used to create binary masks for the MAs (cf. Figure 5-4c).  

 

The motivation for the WMC segmentation algorithm is similar to the motivation given in Ch. 4.  

The MA image (cf. Figure 5-4b) contains a large intensity variation possibly due to the Z-

position of each MA. Moreover, the assembly and disassembly procedure of MAs will lead into 

a temporal change in intensity values of the same MA. To that end, the WMC segmentation 

algorithm is a good choice since it is designed to adapt the threshold based on local intensity 

information. Each object in the binary mask is labeled and tracked using the EDL tracking 

algorithm (cf. Figure 5-4d). As described in Chapter 3, the EDL tracking algorithm is designed 

for this particular kind of study. 
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(a)* raw MA image 

 
(b)* noise suppressed image 

 
(c)* binary mask 

 
(d)* tracked trajectories 

Figure 5-4 raw MA image and intermediate results of MA channel analysis (*) signal reversed for visibility 

5.1.2.2. Image Analysis for Cell Body Channel 
The workflow for the analysis of the cell body (CB) channel is illustrated in Figure 5-3. At the 

given magnification level, the cell body channel alone contains complex textures and multiple 

maxima that are sensitive to overcutting when segmented with WMC. To overcome potential 

overcutting, the cell body channel (cf. Figure 5-5a) is combined with the NC channel (cf. Figure 

5-5b) to introduce a more precise definition of the maxima for object separation. Since each 

cell body can only have one nucleus, the NC channel is a perfect seed channel for segmenting 

the cell body channel using WMC. The combined image is applied with a Gaussian blurring 

filter (   ) which is just larger than the average diameter of the MA, thereby suppressing 

the potential local maxima from the MA signal. Finally, the blurred image is segmented using 

WMC algorithm (cf. Figure 5-5c). Subsequently, each object is labeled and tracked using the 

overlap tracking algorithm (cf. Figure 5-5d). Objects touching the image border are discarded 

since they only give partial information. 

 

In order to analyze the MA dynamics with respect to cell behavior, we have modeled the cell in 

regions. From the binary mask of the cell body channel, six functional regions are defined 

within each mask. These regions are hierarchically related and the mixture of these 

relationships is illustrated in Figure 5-6. The definitions for each of the functional region is 

described in the literature [138][112]. The functional regions are derived from major episodes 

in the cell body deformation during cell migration. 
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(a) raw cell body image 

 
(b) cell body + nculeus image 

 
(c) binary mask 

 
(d)* tracked trajectories 

Figure 5-5 raw cell body image and intermediate results of cell body channel analysis  (*) signal reversed for 

visibility 

 

The MAs are assigned to each functional region so 

that, in each episode of cell deformation during 

migration, the study of MA dynamics can be 

assessed. The control mechanism behind MA-cell 

body correlation is often interconnected; therefore 

the study of difference between MA-cell body 

correlation models for the different functional 

regions may reveal new insights. Next, we will 

explain the regions: 

1. Peripheral Region (P): the cell membrane 

region at the border 

2. Central Region (C): the inner cytoplasm region around nucleus 

3. Protrusion Region (PR): lamellipodium protrusion formation 

4. Retraction Region (RE): cell body retraction  

5. Front Region (F): the whole leading edge of cell body during migration 

6. Back Region (B): the rear edge of cell body during migration 

 
Figure 5-6 relation between each region 
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(a) central [cyan] & peripheral [magenta] 

 
(b)  protrusion [blue], retraction [yellow] 

Figure 5-7 functional regions derived from cell body masks 

 

Peripheral and Central 

The peripheral region (P) and central region (C) (cf. Figure 5-7a) are two geometrical 

compartments in the cell body defined as follows: 

1. The peripheral region is the outer ring (near membrane) of the cell body mask 

2. The central region is the remaining area (inner part) of the cell body mask.  

Hereby, the peripheral region and central region are correspondingly defined as the outer ring 

and intra region of the cell body (cf. Equation 5-1) based on a user-defined width of that ring. 

In Figure 5-7a, a peripheral region [magenta] of a width of 20 pixels is illustrated; the width 

corresponds with image resolution and is derived from empirical observation. The peripheral 

region (P) and the central region (C) are mutually exclusive, this can be written as: 

(             )  (   ) Equation 5-1 

The definition of the peripheral and central region allows the study of MA dynamics near the 

cell border. From the literature [138][139], it has been reported that a rapid MA formation at 

the peripheral region is strongly associated with both cell motility speed and signaling. 

 

Protrusion and Retraction 

The protrusion region (PR) and the retraction region (RE) (cf. Figure 5-7b) are two regions 

derived from both geometrical and temporal information of the cell body. They are defined as 

the shape variation between the cell body masks from two consecutive time points as follows: 

          ̅ Equation 5-2 

          
̅̅ ̅̅ ̅ Equation 5-3 

, where    and      is the peripheral region of a cell body in     and (   )   frame. It is 

reported [138][15] that MA dynamics in the protrusion and retraction region, in terms of 

lifetime and turnover, is strongly associated with cell motility and migration polarity. 

 

Front and Back 

The front region (F) and back region (B) (cf. Figure 5-8c) are high-level perceptualizations of 

cell body regions. They represent the leading area and rear area of a cell migration. From 

recent studies [138][15][140], one can deduce the opinion that cell migration can be described 

by a combination of adhesion formation and cytoskeleton formation at both leading area and 

rear area. Empirical observations [138][140] suggest that lamellipodia protrusions are first 
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formed by expanding the cell body structure at the leading area. Cell body adhesions, i.e. 

matrix adhesions, are assembled in the protrusions to push the extracellular matrix to attach 

to the substrate surface. Meanwhile, at the rear area adhesions are gradually disassembled 

and release extracellular matrix from substrate surface. Some theories [140] also pointed out 

that the disassembly of cell body adhesions also provides pushing forces during migration.  

 

To study how the matrix adhesion dynamics in these two areas are connected to cell migration, 

we define the front region as the cell body region aligned with the leading edge direction   

while the back region as the cell body region is aligned with the rear edge direction. The 

leading edge direction (cf. Figure 5-7b) is defined as the direction of the joint force, assuming 

each protrusion region as pulling force [138][140] and each retraction region as pushing force 

[138]. Similarly, the rear edge direction (cf. Figure 5-7b) is defined as the opposite direction of 

the joint force, assuming each retraction region as pushing force. Given that: 

1. The pixels   ( )( ) belong to the protrusion region  

2. The pixels   ( )( ) belong to the retraction region 

3. The   ( ) and   ( ) represents the x-y coordinate of the pixel  ( ) at time point t 

4. The    ( ) and    ( ) denote the center of mass of nucleus at time point t 

5. The   is the direction of nucleus positional shift 

Then, the definition of the leading edge direction    and the rear edge direction    can be 

derived as follows: 

       (
∑  ( )  [   ( )    ( ) ( )] 

   

∑  ( )  [   ( )    ( ) ( )]
 
   

) Equation 5-4 

, where  ( )  |
 (  ( )( ))  

 
| Equation 5-5 

, where  (  ( )( ))      (
   ( )   ( ) ( )

   ( )   ( ) ( )
) Equation 5-6 

       (
∑   ( )  [   ( )    ( ) ( )] 

   

∑   ( )  [   ( )    ( ) ( )]
 
   

) Equation 5-7 

, where   ( )  |
  (  ( )( ))  

 
| Equation 5-8 

, where   (  ( )( ))      (
   ( )   ( ) ( )

   ( )   ( ) ( )
) Equation 5-9 

 

The weight factors  ( ) and   ( ) are introduced under the condition that the direction    

and    will contribute more to the pulling/pushing force, if the   and the    are aligned with 

the direction of nucleus position shift. By this notion, we intend to damp the pulling/pushing 

forces caused by small protrusions or retractions; as these are believed not to contribute to 

the migration [138]. 
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(a) principle of front and back region recognition 

 
(b) the selected cell 

 
(c) front region [red] and back region [green] 

Figure 5-8 front and back region recognition 

 

Each MA is located in either of the functional regions; in this manner the MA obtains a region 

label from the region model. A MA can be labeled with multiple regions, for example, a MA 

can be in protrusion region and at the same time in head region. Some of the regions are, 

however, exclusive. For example, a MA cannot be simultaneously assigned to the peripheral 

and the central region since the definition of peripheral and central region is mutually 

exclusive. Using definitions of the functional regions as grouping criteria, the per-region 

analysis of MAs allows MA dynamics to be linked directly to local cell deformation or migration.  

5.1.2.3. Image Analysis for Nucleus Channel 
The analysis of the nucleus (NC) channel (cf. Figure 5-9a) is illustrated in Figure 5-3. A Gaussian 

blurring filter is first applied to the image to smooth the intensities and remove noise [28]. 

Here we choose a      for the Gaussian filter that is sufficient to suppress the Poisson noise 

(cf. Figure 5-9a) [28] and create a more smooth intensity landscape within the nucleus (cf. 

Figure 5-9b). The blurred image (cf. Figure 5-9b) is segmented with WMC segmentation 

algorithm. The binary mask (cf. Figure 5-9c) is labeled and subsequently tracked using the 

overlap tracking algorithm (cf. Figure 5-9d). 
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(a) raw NC image 

 
(b) noise suppressed image 

 
(c) binary mask 

 
(d)* tracked trajectories 

Figure 5-9 raw NC image and intermediate results of NC channel analysis (*) signal reversed for visibility 

5.1.2.4. Phenotypical Quantification 
With image analysis (cf. Figure 5-3) measurements describing both MA dynamics and cell 

migration are extracted. Apart from the morphology and motility measurements [9], several 

correlation measurements are also introduced to describe morphological or motile association 

between cell body deformation and MA dynamics (cf. Figure 5-10).  

 

In order to extract the correlation measurements, objects from different channels are first 

related according to parent-child relationships. MAs are assigned to cell bodies as children 

based on the minimum distance between contour of cell body and MA. Nuclei are assigned in a 

child relation to the cell bodies based on the overlapping ratio between NC and cell body. 

From these two parent-child relationships, the following measurements are defined (cf. Table 

5-1): 

MA_TO_NC_DISTMA_TO_CBC_Dist

CB_TO_NC_DIST

MA_TO_NB_DIST

MA

CBC

NC

CB

 
Figure 5-10 visualization of correlation measurements described in the Table 5-1 (MA: Matrix Adhesion; CB: Cell 

Body; NC: Nucleus; CBC: Cell Body Contour) 
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Table 5-1 definition of correlation measurements in current study 

Correlation measurements 

Table Name Description 

MA_TO_NC_DIST The Euclidian distance between the center of mass of a MA to 
its NC,             

MA_TO_CB_DIST The minimum Euclidian distance from a MA to the nearest pixel 
of cell body contour according to MA label 

CB_TO_CB_DIST The minimum shifting distance between two consecutive cell 
body contours 

CB_TO_NC_DIST The shortest Euclidian distance between the center of mass of 
one NC to the cell body which it belongs 

MA_TO_NB_DIST The Euclidian distance between a MA to its nearest MA in the 
same cell body 

5.1.3. Data Analysis 

With measurements extracted from image analysis, we address the second research question, 

namely to identify correlated measurements between MA dynamics and cell body. To reveal 

correlation knowledge from in the data, an unsupervised correlation analysis is further verified 

based on expert observations and literature [36][138][141][112][111]. In the current 

implementation, the correlation analysis employs a statistical approach namely the Pearson 

cross-correlation [142] for potential linear correlation. The Pearson product-moment 

correlation, or simply Pearson correlation, is widely used as a measurement of the strength of 

linear dependence between two variables [124][143]. Here we calculate the correlation 

between measurements of MA and cell body in a pairwise fashion. By extracting significantly 

correlated measurements between cell bodies and MAs in each functional region, we hope 

explain numerical causality between MA dynamics and cell migration. Moreover, we hope to 

identify different patterns on how the MA dynamics in different functional regions is 

correlated to cell behaviors. 

  

User Verification 

The user verification step of MA dynamics is performed in a similar fashion as the cell 

migration study (cf. Ch. 4). With overlay information (cf. Figure 5-11), researchers are asked to 

assess the following aspects of the general performance of image analysis for each channel: 

1. Image segmentation 

2. Object separation 

3. Object tracking 

 MA Channel cell body Channel NC Channel 
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Figure 5-11 image with overlaid information for manual verification 

5.2. Phenotypical Correlation Study of the Live Cell 
Cell migration is a well-orchestrated event that consists of several phenotypical stages 

believed to be controlled by the assembly and disassembly of matrix adhesions. The study of 

how MAs controls cell phenotypes is important for the understanding of molecular control 

mechanisms behind cell migration. In this case study, we attempt to comprehend such 

correlation by introducing a high-content analysis of a cell model consisting of different 

functional regions. In section 5.1, we have demonstrated the possibility to quantitatively 

identify and verify potential correlations between the dynamics of MAs and cell migration. In 

this section, we will illustrate several correlations that are revealed and verified by our analysis. 

 

Matrix Adhesion Lifetime and Cell Migration Velocity 

A total collection of 29 time-lapse image sequences are captured using image acquisition 

settings described in §.5.1.1. All cells touching the image border or that are only partially 

present are discarded since they do not provide complete information on cell behavior and 

cannot be used to extract correct measurements of cell velocity or shape deformation. In this 

manner, there are 43 valid cells remaining for further analysis. Using the unsupervised K-

means clustering algorithm, these 43 cells are divided into a low-motile (cf. Figure 5-12) and a 

high-motile class (cf. Figure 5-13) based on their migration velocity. With the two motility 

groups, we intend to extract major differences between MA dynamics. These major 

differences in MA dynamics are potentially candidates for the correlation modeling procedure 

since they are most likely to be associated with control mechanism of cell migration.  

 

 
Figure 5-12 montage of low-motile cell 
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Figure 5-13 montage of high-motile cell 

For cells in each velocity group, their MAs, in total 896, are further divided into eight 

subpopulations based on their labels from cell body functional regions: 

1. MA Protrusion (MA PR): MAs located in the protrusion region of the cell body 

2. MA Retraction (MA RE): MAs located in the retracting region of the cell body 

3. MA Peripheral (MA P): MAs located in the peripheral region of the cell body 

4. MA Central (MA C): MAs located in the central region of the cell body 

5. MA Front: MAs located at the front  of the migrating cell 

6. MA Back: MAs located in the back of the migrating  cell 

7. MA Front PR: MAs located in protruding regions at the front of the migrating cell  

8. MA Back RE: MAs located in retracting regions in the back of the migrating cell 

MAs in each local cell region are separately analyzed. The Kolmogorov–Smirnov (K-S) test 

[124][144] is used for comparing measurements from each region since none of the MA or cell 

body measurements fits a normal distribution (based on Lilliefors normality test). The result of 

the K-S test with 95% confidence interval (cf. Figure 5-14) shows that: 

1. In general, MAs in high-motile cells display a shorter lifetime compared to MAs in low-

motile cells, suggesting that MA lifetime is correlated to cell velocity.  

2. The difference between MA lifetime in peripheral and central region is larger in low-motile 

cells compared to the high-motile cell, suggesting that a shorter lifetime of peripheral MAs 

is necessary for a higher cell motile.  

3. Surprisingly, the lifetime of central MAs is the lowest and does not differ between low-

motile and high-motile cells.  

4. In high-motile cells, the MA lifetime is always longer in the retracting region than in the 

protruding region. 

5. The difference in MA lifetime between protrusion and retraction regions is absent in low-

motile cells which may be an explanation for lower migration polarity. 
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Figure 5-14 MA lifetime variability given the difference in cell velocities 

Unsupervised Correlation Discovery 

In order to investigate all potential correlations, we implemented an automated solution (cf. 

§.5.1.3) using Pearson correlation analysis [124][143]. The Pearson correlation analysis is a 

popular measurement of linear dependency between random data. Moreover, in order to test 

whether correlation is statistically significant, the Pearson correlation analysis transforms the 

problem into a one-sample test with a bivariate distribution. In other words, it is tested 

whether the sampled data belongs to a hypothetical population with the same mean and 

standard deviation of the sampled data. Heatmap visualizations of the p-values of the 

correlation test between measurements of MAs in the Front-PR and cells are depicted in 

Figure 5-15 and Figure 5-16. Each row represents a phenotypical measurement of cell 

migration and each column represents a phenotypical measurement of MA dynamics. The 

heatmap visualization provides a fast overview of all potential correlations. 

 

 
Figure 5-15 the heatmap of the p-value of correlation test between all cell (column) and MA Front PR (row) 
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Figure 5-16 the heatmap of the p-value of correlation test between all cell (column) and MA Back RE (row) 

phenotypical measurements 

By exploring the heatmaps of Figure 5-15 and Figure 5-16, it is clear that cell shape changes 

such as elongation or protrusion formation are highly associated with nearly all MA 

phenotypical changes in these two regions. However, cell motility patterns such as velocity or 

polarity are have a strong correlation with only a few MA measurements such as MA count in 

Front PR or MA to cell body distance in Back RE. 

 

5.3. Conclusion and Discussion 
In this case study, we have developed a set of image and data analysis solutions for the 

quantification of matrix adhesion dynamics and cell migration. First, the image analysis 

converts high-content image data captured (cf. § 5.1.1) into characteristic measurements for 

matrix adhesion dynamics and cell migration. From the measurements, we further introduce 

an automated data analysis solution to reveal correlations between the morphology and the 

motility of matrix adhesion dynamics and cell phenotypes. At the current stage, the combined 

solution can well provide the possibility to increase further understanding on the regulation of 

MAs and how this affects cell migration. Moreover, it paves the way to a numerical expression 

of the control mechanism behind cell migration. 

 

There are several interesting issues that can be addressed in future studies: 

From image analysis perspective: (1) when cells are clustering with each other, the border 

region is becoming less identifiable; thus results in a more complex cell separation. (2) The MA 

has a very small size (5~10um) and short life time (3~15 frames), which does not always 

provide sufficient information to train a motion model for object tracking. (3) Longer exposure 

to laser may cause cell apoptosis while a reduction of temporal-resolution image most 

certainly results in loss information on morphology changes. Thus, it leads into bias in 

measurements that cannot be easily detected in data analysis. 
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From data perspective: (1) Pairwise linear or monotonic correlation can be easily detected. 

However, it has not yet been elaborated on how to extract more complex correlation model 

from the measurements. (2) Since current measurements are derived from empirical 

observations, some biological phenomena such as the length of a protrusion may be 

overlooked. Yet, it is unclear how to define new measurements that capture these biological 

phenomena.   
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Chapter 6 

Reasoning over Data in HT/HC Management 
 

6. HT/HC Data Management System 
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Chapter Summary 
In the Chapter 4 and Chapter 5, we have demonstrated two case studies on the HT/HC live cell 

screen. These two case studies are producing an amount of data on the scale of terabytes, 

which makes the organization and storage of these image data nontrivial. Additionally, 

phenotypical measurements of these HT/HC data must be integrated with other omics 

resources such as Entrez DB, Ensembl DB, BLAST engine to allow the construction of genotype-

to-phenotype models. To that end, an HT/HC database management system (HT/HC database 

system) is required to provide a platform for both data management and integration. 

 

Initially, the HDF5 format, a self-contained data storage file format has been employed in our 

study as a hierarchical data storage solution. The HDF5-based storage has proven to be an 

efficient data storage and transportation solution. However, it lacks a build-in searching and 

querying mechanisms allowing examine data in a comprehensive manner. To overcome the 

limitation self-contained data storage, we proposed a prototype HT/HC database system. This 

database system is not only designed for the management of HT/HC image data but also 

facilitates the integration with omics via a flexible programming API. Together with tools for 

data mining and semantic analysis tools, the HT/HC database system will eventually provide a 

multi-layer view of an experiment, which cannot be easily accomplished by self-contained file 

format such as HDF5. 

 

Several major challenges are encountered during the design of this HT/HC database system. 

Compared to other designs of concurrent database applications, the design of HT/HC database 

system faces the following challenges: (1) megabyte-scale data must be locked per transaction, 

(2) complex image analysis may lead to longer execution duration per transaction, and (3) a 

multithread-safe programming API is required when accessing data.  

 

In this chapter, a prototype design of HT/HC data management system is proposed to meet 

with these challenges. The chapter first introduces the principle design of the architecture of 

the HT/HC data management system. Subsequently, the architecture is further divided into a 

multilayer model which is comparable to the layered foundation of the OSI model. In the 

following sections, each layer is explained. 
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6.1. Principle Design of HT/HC Management System 
Initially, we focus on designing a seamless automated framework to complete the data 

processing for HT/HC screen studies [145][146]. Since the purpose of this system is 

straightforward, here we employ a task-driven user-centered design principle taking the 

empirical workflow of the HT/HC screen study (cf. Figure 1-1) as starting point. A HT/HC 

analysis first starts with the design of the experiment setting based on biological interests. The 

experiment design is further stored as plate designs. Subsequently, the specimens are 

visualized using microscopy. The captured images are uploaded to a network-attached storage 

(NAS) and quantified using image analysis. Eventually, the phenotypical measurements are 

further probed using machine learning and statistical analysis to provide a comprehensive data 

representation. From the workflow (cf. Figure 1-1), we defined a simplified functional division 

between each task during the HT/HC analysis. Moreover, the essential data type passed 

between each task is also defined. From the definitions, the general design of HT/HC data 

management system is illustrated as Figure 6-1.  

 

The general design follows the layered architecture similar to the OSI model [147]; as we 

descend each layer is closer to the raw data. During the design of our HT/HC data management 

system, we first start from the analysis workflow of an empirical HT/HC experiment (cf. Figure 

1-1). Compared to a software design following a requirement-driven approach, our approach is 

very applicable as there are no clear mutual requests definitions underlying different HT/HC 

screen experiments. The design of HT/HC screen experiment is often semi-systematic and 

there are very little similarities in the organization of experiment materials and perturbations 

employed in the experiment design (cf. Ch. 4 and Ch. 5). Moreover, the existing similarities are 

mostly related to the raw data produced during HT/HC screen experiment instead of biological 

materials. Therefore, the analysis workflow of HT/HC empirical experiments is a good starting 

point to study the limited amount of similarities among HT/HC screen experiments. This 

workflow illustrates the major steps in a HT/HC screen experiment. 

 

From the HT/HC analysis workflow (cf. Figure 1-1), two element types are defined. (1) The 

procedure element type defines a number of essential steps in a HT/HC experiment. (2) The 

data element type defines all sorts of basic raw data produced and transported in between 

procedures. Each procedure element receives an input data element and performs a collection 

of operations to produce an output data element. To that end, each procedure element is 

considered to be a functional module [148][149]. Furthermore, here we further generalized 

the HT/HC analysis workflow into a top-down layered architecture (cf. Figure 6-1). Each layer 

represents a collection of functional modules in the HT/HC analysis workflow. 

 

From the highest to the lowest layer (cf. Figure 6-1), these layers include (1) end-user GUI 

layer, (2) WS-API layer, (3) web service host layer, (4) database layer, and (5) computation 

layer. The top layer, namely the end-user GUI layer, is an encapsulated user interface that 

allows the end-user to access all functional modules with a general view. From this layer, the 

end-users are given the opportunity to perform a collection of customized pipelines of HT/HC 

screen analysis without having to understand the architecture of the functional modules such 

as image analysis, data analysis, and data management. The seamless integration of all lower 

layers functional modules is accomplished via the implementation of the Web Service based 
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Application Programming Interface (WS-API) layer. A Web Service (WS), by World Wide Web 

Consortium (W3C) definition [150], is a software system designed to support interoperable 

machine-to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically Web Services Description Language (WSDL)). Other systems 

interact with the Web service in a manner prescribed by its description using Simple Object 

Access Protocol (SOAP) messages, typically conveyed using HTTP with an XML serialization in 

conjunction with other Web-related standards. 

 

The WS-API layer is in fact a pseudo layer in which the functional module is wrapped in a web 

service shell. Such design takes advantage of the compatibility of WS-API and allows module 

developed in different programming languages to be able to communicate with each without 

implementing complex cross-language programming. Moreover, with the web service shell, 

updating in each module does not necessarily require additional changes in the dependent 

module. To physically host the WS-API layer, the web service host layer is introduced. These 

web service server hosts the foundations of programming API and software architecture. The 

image database layer is the major management layer providing an organized storage and 

distribution of image data, auxiliary image results, phenotypical measurements and 

supplementary documentation. The lowest layer, namely the computation layer, is the 

foundation layer which provides computational power for all higher layers.  

 

Following the top-down design of each layer, this chapter is organized as follows. In the next 

sections, we will focus on end-user GUI layer, WS-API layer, and the database layer since the 

computation layer is beyond the scope of management and the web service host layer 

employs only commercial and open-source software. Finally, we will address the database 

layer. 

 
Figure 6-1 the structure of HTS analysis platform 
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6.2. Implementation of Layers 
This section illustrates the fundamental design of the system architecture. The section follows 

the top-down design flow of the layered model depicted in Figure 6-1. In this section, the top 

three layers will be described. We will first start with the highest layer. 

6.2.1. End-user GUI Layer 

The end-user GUI layer is the highest layer providing a data input/output and a visualization 

mechanism. It is designed to be both starting point and end point of a HT/HC analysis. This 

layer is originally designed as a solution for metadata management in HT/HC such as the 

bookkeeping of experiment protocols. As introduced in Figure 1-1, HT/HC screen study starts 

with the design of the experiment; during which the researcher decides which materials and 

what conditions will be included. Such design is often referred as plate design. 

 

The plate design begins with the researcher first chooses one cell culture plate as the design 

model. A cell culture plate (cf. Figure 6-2a) is a plastic or glass plate containing a number of 

small wells each resembling an individual Petri disk that can hold live specimens. The actual 

dimensionality, meaning width and length, of cell culture plate is fixed. The numbers of rows 

and columns of the wells within the culture plate can be in 4x6, 6x8, 8x12 or even higher. A 

higher number of well allows more experimental perturbations (conditions) to be considered 

in one experiment. However, more wells also mean longer imaging time during HT/HC screen 

since, for microscopy, there always is a minimum duration to the imaging of each well. 

Depending on the complexity of experiment, the researcher often chooses a culture plate with 

sufficient wells to hold most experimental conditions meanwhile it should guarantee the 

shortest imaging duration as possible. To visualize the design procedure, here we introduce 

two empirical spreadsheet-based plate designs of HT/HC screen. 

  

Figure 6-2b is the experimental design of the growth factor regulation experiment described in 

Ch. 4. In this study, the researcher wants to extract phenotypical variability of cancer cells 

under the influence of different growth factors. To achieve this purpose, the researcher first 

selected four growth factors and two cell types from one cancer cell line. Each cell type will be 

treated with a single or combination of growth factors. Therefore, the researcher divides one 

8x12 culture plate into left and right section. The designated growth factors are mapped into 

the row and column of and stored in a spreadsheet.  

 

Figure 6-2c is the experiment design of a dynamic study EGF transportation pattern [29]. In 

this study, the researcher wants to quantify the transportation model of EGF in cells under 

different treatments. Again, two cell types are chosen for the study. Instead of employing live 

cell imaging, the researcher decided to fix cells at each time point including 10 min, 20 min, 40 

min, 80min, and 160 min (cf. Figure 6-2c [column]). Similarly, the whole culture plate is divided 

into left and right section to house two cell types and each column represent the fixing time of 

cells. The row represents different treatment the cells received. 
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(a) a 8x12 cell culture plate 

 
(b) Spreadsheet-based data management: growth factor regulation 

 
(c) Spreadsheet-based data management: EGF translocation experiment 

Figure 6-2 plate design in HT/HC screen 

When conducting a wet-lab experiment, this plate design will be followed. During the image 

analysis and data analysis, the same spreadsheet will also be used as bookkeeping information 

for data comparison. However, for large scale experiment such as siRNA functional screens, 

hundreds siRNA targets (conditions) will be manually mapped into the plate designs and each 

experiment requires 20~40 different plate designs to hold all targets. It is difficult to produce 

an error-free scenario when performing the design. Moreover, an error in the plate design will 

lead to a false-conclusion during image and data analysis since the original expectation of 

output may no longer fulfill due to the mismatch between bookkeeping information and the 

practical experiment being conducted. Therefore, to minimize or eliminate the manual process 

of the important bookkeeping mechanism, namely the plate design, here we design a seamless 

GUI for the plate design in HT/HC screen studies. 

 

The plate design GUI (cf. Figure 6-4) starts with an review of the design of a plate[145]. From a 

number of empirical studies, we extract the basic elements employed in most HT/HC screen 

studies. We introduce the concept of plate, well, condition, and group (cf. Figure 6-3). The 

design concept is to emulate the natural plate design procedure that researchers have used. 

To that point, the design of the plate design GUI follows a top-down flow instead of a 

requirement-driven. The plate is a representation of plate layout. Each plate contains a 

number of wells. There is fixed a one-to-many relationships between plate and wells. Instead 

of giving a fixed row and column number, we allow users to choose the number-id of row and 

column and fit a plate layout with the number of wells. The well represents a physical well in a 

culture plate. Each well contains a number of conditions which represents the actual 

treatment, treatment duration, cell type or any experiment perturbations that may be 

employed in the HT/HC screen. There is a many-to-many relationship between conditions and 

DMSO HGF EGF+HGF FGF+TGFbeta DMSO HGF EGF+HGF FGF+TGFbeta

DMSO HGF EGF+HGF FGF+TGFbeta DMSO HGF EGF+HGF FGF+TGFbeta

EGF TGFbeta EGF+TGFbeta HGF+TGFbeta EGF TGFbeta EGF+TGFbeta HGF+TGFbeta

EGF TGFbeta EGF+TGFbeta HGF+TGFbeta EGF TGFbeta EGF+TGFbeta HGF+TGFbeta

FGF EGF+FGF FGF+HGF all FGF EGF+FGF FGF+HGF all

FGF EGF+FGF FGF+HGF all FGF EGF+FGF FGF+HGF all

plGFP GB1

10 min 20 min 40 min 80 min 160 min 10 min 20 min 40 min 80 min 160 min

ctrl

mock

+EGF

plGFP GB1
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wells since a well can have a combination of perturbations (conditions). The group is a higher 

level concept of wells following some reasoning. For example, Figure 6-2c contains two groups 

which represent different cell types. 

  

Condition 1 PlateWell 1

Well n

Condition 2

Condition 3

Well 2

Group

 
Figure 6-3 Components in plate design 

With the GUI design (cf. Figure 6-4), we allow the end-user to first create an empty plate of 

chosen size. Then the end-user imports the master sheet of conditions which contains all 

experiment perturbations; meanwhile conditions can be added to the wells. Image analysis of 

logical groupings can be then performed. The major improvement of this GUI design over 

spreadsheet-based design is the introduction of what-you-see-is-what-you-get (WYSIWYG) 

principle and drag-&-drop design. 

 

The WYSIWYG design principle provides the foundation for GUI of plate design. Instead of 

using a table to emulate a plate layout, here we employ a row-column well map layout which 

is an exact map of the physical plate. It provides a straightforward overview of the whole plate 

without losing the possibility of zooming into a single-well.  

 

The drag-&-drop design allows a faster mapping from the master list of conditions to desirable 

well in the plate. By allowing multiple selections, the same condition can also be assigned into 

multiple wells with a single dragging; similarly, one well can be assigned with multiple 

conditions with a single dragging. Moreover, with colored labels for conditions, wells contain 

different conditions can be easily distinguished by color (cf. Figure 6-4). When displaying 

different conditions together, colors can be combined or switched off to improve fast 

recognition. In the screenshots (cf. cf. Figure 6-2c), the similar operation using spreadsheet-

based solution would require end-users to constantly switch between spreadsheets. Moreover, 

wells containing combined conditions cannot be easily visualized together. 

 

In Figure 6-6, the sequence diagram of the use of a plate design GUI is displayed. The user first 

finishes plate designs using the plate layout design interface (cf. Figure 6-4) and based on the 

design user will conduct wet-lab experiment. After collecting all images associated with the 

plate design, the user can upload all images and map them to the database using the ImageDB 

API. Subsequently, the user will initialize analysis of the screen and then the GUI will invoke 

image analysis API and pattern recognition API to produce intermediate results of the image 

and data analysis (cf. Figure 6-5a & b). By using different data analysis approaches, the user 
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may verify the initial hypothesis or compare phenotypical characteristics under different 

treatments.  

 
Figure 6-4 plate design GUI 

 
(a) intermediate results of image analysis 

 
(b) data analysis result 

Figure 6-5 front end of the data management system 
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End-user GUI Image Analysis API ImageDB APIPattern Recognition API

processing image

fetching data

analyzing data

process finished

return data

fetching data

return data

return conclusion

storing plate design

storing screen image
assoicate plate design

plate designing

screen uploading

screen analysis

 
Figure 6-6 sequence activity diagram of using end-user GUI 

6.2.2. WS-API Layer 

In order allow different functional modules to 

communicate with each other, a universal wrapping 

application programming interface (API) is required. 

Although it is possible to hardcode cross-module 

communication, such implementation may limit the 

extensibility of software and violates the encapsulation 

design. Therefore, we adapted the principle of Web Service 

based Application Programming Interface (WS-API) as the 

solution.  The W3C organization defines a "Web service" 

(WS) as "a software system designed to support interoperable machine-to-machine interaction 

over a network" (cf. Figure 6-7) [150].  

 

To take advantage of the flexibility of the Web Service, the WS-API of each function module is 

wrapped in a Web Service shell by following modular programming and published by web 

server supporting Web Service, such as Java Glassfish and Microsoft IIS. We will first use the 

ImageDB API as a sample to illustrate the abstract design of WS-API communication (cf. Figure 

 
Figure 6-7 web service architecture 
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6-8). Furthermore, we will briefly introduce the implementation of other functional modules 

such as plate design API, image analysis API, and pattern recognition API. 

  

ImageDB API 

The ImageDB API is a WS-API that grants database accessibility to other function modules. The 

design of ImageDB WS-API is illustrated in Figure 6-8. Such design provides several advantages:  

1) It is possible to access data set without understanding the complex internal 

relationships 

2) Internal structure or physical location of data are not visible to the end-users 

3) Internal modifications do not require updates at client state 

4) The modular design significantly improves extensibility and flexibility of cross-module 

communications.  

With the ImageDB API, other modules may exchange data without direct communication with 

each other. 

 

Server API

(Web Service)

DB

File

Local Security

Local Security
Client API

End-user

API Security

API Security

Secured Tunnel

Local Security

The System

End-user GUI ProviderClient API

Local Security

Peer DB

 
Figure 6-8 abstract design of WS-API communication 

 

NAS MonetDB

ImageDB API

 
Figure 6-9 underline structure of the ImageDB API 

In the design of ImageDB API, we have chosen for the MonetDB DBMS [151][152]. MonetDB is 

a leading open source database system that has been dedicated to the management of large 

datasets. Compared to other DBMSs, it is well-known for its performance in processing 

analytical queries on large scale data sets. Instead of storing data in a row-based memory 

block, the MonetDB stores data in a column-based memory block (cf. Figure 6-10). Thus, when 

processing analytical queries, only the required columns are loaded. Such design is in particular 

important when data contain extensive amounts of primary keys or if not all column data will 
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be involved in the analytical queries. According to our study [145][146], such storage structure 

provides an increased access speed since the conditional filtering can be executed much faster. 

 

Memory Block

Row 1

Memory Block

Row 2

Memory Block

Row n
 

(a) row-store structure 

Memory Block

Column 1

Memory Block

Column 2

Memory Block

Column n
 

(b) column-store structure 

Figure 6-10 row-store structure vs. column-store structure 

 

Plate Design Module 

The plate layout design provides a graphical user interface allowing end-users to rapidly deploy, 

modify, and search through plate designs, to which auxiliary data such as experimental 

protocols, images, analysis result and supplementary literature is attached. In addition the 

plate design provides fast cross-reference mechanism in comparing data from various origins. 

This module is also used as the front end for the visualization of results such as using heatmaps, 

cell detection, or motion trajectories. The underlying structure of the plate design module is 

illustrated in Figure 6-11.  

.NET Framework

Plate Design Kernel

(C#)

Internet Information Services 

(IIS)

Plate Design GUI (C# .NET)

Plate Design Web Service API

 
Figure 6-11 underline structure of the plate design API 

The plate design module is constructed in the JAVA language. Since most of the end-users are 

more familiar with Windows-based applications such as Excel, the Windows-based GUI using 

JAVA may further improve user satisfaction. Compared to other programming languages, JAVA 

is a platform independent programming language which allows the GUI to be directly run on 

computers with a Java Virtual Machine (JVM) installed without the need to recompile the code. 

 

Image Analysis Module 

The customized image processing and analysis is applied to obtain phenotypical measurements 

for each of the different treatments. An open source image processing kernel, i.e. ImageJ, is 

extended with packages providing customized and robust image segmentation and object 

tracking algorithms dedicated to various types of cytomics (cf. Figure 6-5b). The current 

package covers solutions to cell migration, cellular matrix dynamics and structure dynamics 

analysis (cf. Chapter 4 & Chapter 5). It has been practiced in HTS experiments for toxic 

compound screening of cancer metastasis [10][15], wound-and-recovery of kidney cells [70] 

and cell matrix adhesion complex signaling[29], etc. This module (cf. Figure 6-12) is designed as 
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WS-API. As the image analysis computation requires large image volumes to be processed, 

GRID computing is used to obtain results in reasonable time.  

 

The current WS-API serves as a wrapping class around the image analysis package kernel and 

transforms the functional module into a black box that can be access by other functional 

module.  

Image Analysis Package

Java Virtual Machine

Glassfish Server

Image Analysis Web Service API

 
Figure 6-12 underline structure of the image analysis API 

 

Data Analysis Module 

To maximize the availability of data analysis tools, we have included the PRTools package [153] 

as the machine-learning toolset kernel for the data analysis module. Furthermore, we develop 

a customized pattern recognition toolset for data analysis with spatio-temporal data. The data 

analysis module (cf. Figure 6-13) is implemented as WS-API using .NET output of MATLAB 

deployment tools. Such architecture allows a rapid adaptation to complex mathematical 

algorithms. Furthermore, the flexibility of GUI-based data mining procedures can be operated 

by the end-user with a minimum of knowledge on machine learning. 

Pattern Recognition 

MATLAB Script

MATLAB Complier Runtime (MRC)

Java Virtual Machine

Java Wrapping Glassfish Server

Pattern Recognition Web Service API

 
Figure 6-13 underline structure of the pattern recognition API 

 
Since we implemented centralized and platform-independent software architecture, end-users 

can update algorithms in real-time without compatibility or package dependency. 

6.3. Conclusion and Discussion 
The beta test shows that a workload previously taking one month can now be accomplished 

within a week using the HT/HC database system. The major workload is now mostly on 

experiment preparation and image acquisition since these two procedures are labor-intensive. 

Normally, the experiment preparation takes one day to accomplish while image acquisition will 

take another day. However, the image and data analysis of this image set takes a couple of 

hours. Complex experiment design requires more time to prepare and often prone to errors. In 

contrast, image analysis and data analysis can easily adapt the increase of in the amount of 

data by simply adding more computational power. 
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In terms of software design, the HT/HC DMS follows a modular design and all modules are 

implemented in the form of web services, therefore, updating the system is virtually 

instantaneous. Moreover, this framework is very flexible as it allows connecting other web 

services. Consequently, a fast response to new progress in image and data analysis algorithms 

can be realized. Additionally, the seamless design of HT/HC database system has significantly 

decreases manual errors in the data transportation, image analysis and data analysis. 

Comparing with solutions such as CellProfiler[82] or ImagePro, our solution provides a unique 

approach for HT/HC image analysis. It allows end-users to perform high-profile HT/HC analysis 

with a minimum level of prior experience on image analysis and machine learning. Moreover, 

the modular design allows faster connecting with other web services such as BLAST [154]. 

Consequently, a faster response to progress in image and data analysis can be realized. Further 

integration with online bio-ontology databases and open gene-banks is considered so as to 

allow integration of the data from other sources. Therefore, the platform can eventually 

evolve into an interdisciplinary platform for cytomics. 
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Chapter 7  

Conclusion and Discussion 

7. Conclusion and Discussion 
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7.1. Conclusions 
This thesis explored solutions for image segmentation and object tracking for high-

throughput/high-content (HT/HC) screens in cytomics studies. To demonstrate the usefulness 

of the solution, two case studies of cancer migration were discussed to elaborate the efficiency 

and limitations of several generic image and data analysis approaches frequently observed in 

HT/HC screen studies. From an analysis of these limitations, a number of dedicated algorithms 

are developed and evaluated. The evaluations show that the dedicated algorithms, namely 

watershed masked clustering (WMC) segmentation [62][29][15][10], kernel density estimation 

(KDE) with mean shift tracking algorithm [15][10][9], and energy-driven linear (EDL) model 

tracking algorithm, provide a more robust and accurate performance. From these dedicated 

algorithms, our case studies further demonstrate the possibility to produce an objective 

understanding of each unique phenotypic characteristic using morphology and motility 

measurements from both cellular and subcellular level. 

 

With a good automated data management in place [145][146], the analysis pipeline can be 

further performed in a more efficient manner. The data management system shields end-users 

from the underlying complexity of the computational approaches in the pipeline by providing 

an integrated high-end GUI. The automation beneath the GUI will enable to scale to a higher 

volume of image data which is custom to HT/HC screen, i.e. terabyte level. It may further 

increase the data accessibility and interdisciplinary data conformity by standardizing different 

HT/HC image formats and measurement structures. The interdisciplinary data conformity is an 

important feature since the ultimate goal of cytomics and quantitative microscopy is to 

integrate all –omics data to provide a numeric modeling of genotype-to-phenotype mechanism. 

 

Chapter 2 Robust Image Segmentation for Cytomics 

The Chapter 2 has illustrated a dedicated segmentation algorithm, namely Watershed Masked 

Clustering (WMC) algorithm, for high-throughput cytomic studies. When compared to other 

segmentation algorithms, the WMC is capable of producing an accurate segmentation results 

when image contains objects with nonlinear intensity and morphology variation. Such a trait is 

particularly useful in HT/HC screen studies since the responses of treatments are often unclear 

prior to the experiment. 

 

Chapter 3 Robust Object Tracking for Cytomics 

The Chapter 3 has illustrated two dedicated object tracking algorithms, namely the Kernel 

Density Estimation (KDE) with Mean Shift tracking algorithm and the Energy Driven Linear 

(EDL) model tracking algorithm. Compared to other tracking algorithms, these two algorithms 

show a robust tracking performance for cellular and subcellular objects without manual 

intervention. Moreover, they can be extended to other application domains if new motion 

models can be built. 

 

Chapter 4 A Study to Cell Migration Analysis 

In this case study, we have numerically extracted the morphology and motility characteristics 

of random cancer migration under the influence of different growth factor treatments using 

image and data analysis solutions described in Chapter 2 and Chapter 3. Compared to manual 

analysis, it is clear that an automated image and data analysis solution can provide a more 
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objective and reproducible understanding of a cell biology experiment. It is an important trait 

in cytomics studies since it allows the experiment to scale to a larger volume of data without 

scarifying the quality of analysis while it is impossible with manual analysis.  

 

Chapter 5 A Study to Dynamic Matrix Adhesion Analysis 

In this case study, we have demonstrated an integrated solution to quantify the morphology 

and dynamics of both matrix adhesions and cells using the automated image analysis solution 

described in Chapter 2 and Chapter 3. From the measurements, we further confirm several 

correlations between matrix adhesion dynamics and cell migration. This case study [16] is one 

of the few attempting to reveal the subcellular control mechanism behind random cell 

migration using an automated method. 

 

Chapter 6 Reasoning over Data in HT/HC Management 

In Chapter 6, we have demonstrated the design and implementation of a dedicated data 

management system. In our study (Ch. 4 & 5) the data management system serves as both the 

starting and the end point of the analysis by shielding the end-user from underlying complexity 

with a high-end integrated GUI [146][145]. Thus, it allows end-user to perform sophisticated 

HT/HC screen studies without an extended knowledge of image and data analysis. 

 

7.2. Discussion 
This thesis has explored the image and data analysis solutions for empirical HT/HC screen 

study. In the future, we will focus on making improvements in the following aspects. 

 

1. Experiment Preparation in HT/HC Screening 

Although, experiment preparation is beyond the scope of this thesis, in the two case studies (cf. 

Chapter 4 and Chapter 5) it has demonstrated how image quality is affected by the experiment 

preparation.  At current stage, the cell-to-cell variability [19] is a typical challenge frequently 

encountered in our research. Often cell behavior is subjected to number of factors such as cell 

age, local cell density, individual mutation, etc. It is possible to employ a normalization strategy 

similar to microarray data analysis [155][156][157], but it would reveal more information if the 

true mechanism behind the cell-to-cell variability can be understood. Dedicated research 

should be conducted to gain understanding of these phenomena. 

 

2. Image Acquisition 

Modern microscopes are frequently equipped with additional functional controllers allowing 

an on-the-fly adaptation of the microscope settings such as focus and position of specimens. 

However, these adaptation mechanisms are subjected to the heuristics from which the 

adaptation algorithm is built. For example, in the experiments underlying the work in Chapter 

5, frequently out-of-focus errors were encountered (cf. Figure 7-1). In addition, in live cell 

migration or subcellular dynamics study the temporal-resolution of image sequences is often 

sacrificed in exchange of a better image quality. Both issues are hardware related that can be 

significantly improved by new developments in the microscope technology. 
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Frame 1 focused 

 
Frame 50 out of focus 

 
Frame 100 slightly out of focus 

Figure 7-1 out-of-focus error during live cell imaging 

 

3. Image Analysis 

Tuning of Segmentation 

We believe that a mechanism of robust self-adaptation is the key to a successful image 

segmentation solution in HT/HC screen studies. For this adaptation mechanism, a robust 

representation of image heuristics [62][62] is crucial for its success. The sophistication of the 

self-adaptation mechanism can benefit most from new progress in machine vision [158]. 

 

Phenotypic Measurement 

The phenotypic measurements used in this thesis are capable of extracting each unique 

phenotypic profile of objects. However, they are often not scale-free [33][32][31] and cannot 

be compared across different microscopy settings. Moreover, for some cell phenotype, the 

current measurement is not optimized. For example, the velocity is often measured from the 

difference between objects in consecutive frames, but the difference is not necessarily only 

associated with motility (cf. Figure 7-2) [140][159]. A local regression approach [126] is 

frequently used to extract the majority trend of migration while a more sophisticated motion 

modeling solution [140][159] is preferred for the measuring of motility.  

 

 
(a) shifting of mass center is correlated to motion 

 
(b) shifting of mass center is correlated to deformation 

Figure 7-2 a Z-projection plot of cell body contours during migration 

 

4. Data Analysis 

In the case studies of Chapter 4 and Chapter 5, we use low-order statistics to provide some 

characterizations of cellular and subcellular dynamics; previously unknown or unverified. 

However, by losing the temporal dimension, it is very easy to overlook particular dynamic 

behavior behind control mechanism of cell migration. Therefore, the study of expanding 

temporal statistical analysis into temporal-spatial data is required. 

 

The HT/HC screen study is an emerging field in cytomics research. Together with image and 

data analysis it provides an efficient analysis tool for studies in functional genomics and cell 
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biology. There are challenges to be met in image and data analysis of HT/HC screen studies. 

However, with new approaches developed, it will be eventually possible to accomplish the 

genotype-to-phenotype modeling. This requires combining data from different aspects of the 

same study-object. Cytomics can provide accurate and well annotated data for such boarder 

view.  
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Nederlandse Samenvatting 
 
In het onderzoeksveld van de Cytomics staat het begrijpen van cellulair en sub-cellulair gedrag 

centraal. Om dergelijk onderzoek op een grote schaal te kunnen uitvoeren is automatisering 

noodzakelijk. Het doel van een experiment in cytomics is het bestuderen van bepaald gedrag 

van cellen uit beelden die worden verkregen van een geautomatiseerde microscoop opstelling; 

bijvoorbeeld voor het bestuderen en meten van de migratie van een kanker cel.  Dit specifieke 

doel wordt gerealiseerd door gebruik te maken van geschakelde beeldanalyse procedures. Het 

doel van deze beeldanalyse is om numerieke kenmerken uit de reeksen van beelden te halen 

met behulp van digitale beeldverwerkingstechnieken. Wanneer dit wordt toegepast op grote 

schaal op beeldreeksen afkomstig uit bio-experimenten dan spreekt men vaak van een “high-

content screening” (HCS) experiment. Als we het beeldanalyse probleem van een HCS-

experiment vergelijken met andere vraagstukken uit de beeldanalyse, dan zien we dat 

beeldreeksen die worden geproduceerd door HCS-experimenten zoals toegepast in studies 

voor cytomics, objecten bevatten die significant  variëren in intensiteit en vorm. Standaard 

oplossingen voor de beeldanalyse houden meestal geen rekening met inter-object variatie 

hetgeen foute resultaten introduceert. Met deze vaststellingen in gedachte ligt het focus van 

ons onderzoek op het ontwerpen van specifieke oplossingen voor de beeldanalyse die kunnen 

omgaan met de inter-object variatie in HCS-beeldreeksen waarbij een strategie wordt gebruikt 

in dewelke de berekeningen zich aanpassen aan de variatie in de data.  In dit proefschrift 

worden specifieke oplossingen behandeld voor twee belangrijke procedures in de 

beeldanalyse van HCS-beeldreeksen, te weten, (1) beeldsegmentatie en (2) object-volgen  

(beter bekend als object-tracking). 

 

(1) Beeldsegmentatie is de procedure waarbij objecten, zoals bijvoorbeeld cellen, in een beeld 

worden herkend. Het is vaak lastig om, gebruik makend van een standaard oplossing voor 

beeldsegmentatie, de instellingen voor deze procedure zo te kiezen dat er rekening wordt 

gehouden met de variatie tussen de individuele objecten. 

 

In het onderzoek beschreven in dit proefschrift, wordt de ontwikkeling behandeld van een 

adaptief algoritme, het zogenaamde “watershed-masked clustering” (WMC) algoritme. In 

vergelijking met andere algoritmes voor segmentatie laten we zien dat het WMC-algoritme 

een zeer goede en stabiele resultaten geeft in HCS-studies. 

 

(2) Object-volgen (object-tracking) is een procedure waarbij dynamische informatie wordt 

verzameld en geëxtraheerd van objecten in een beeldreeks; bijvoorbeeld de snelheid van 

migratie van een cel.  Een algoritme voor object tracking construeert links tussen objecten uit 

opeenvolgende beelden uit een beeldreeks waarbij gebruikt wordt gemaakt van informatie 

over de object-vorm en/of de object-positie. In het onderzoek in de celbiologie zijn de 

objecten cellen of sub-cellulaire structuren. Objecten per beeld in (ongeveer) dezelfde positie 

zijn en/of vergelijkbare vorm hebben worden aan elkaar gerelateerd. Omdat het een tijdreeks 

betreft kan er zo een “traject” worden vastgesteld en uit dit traject kunnen metingen zoals 

snelheid en bewegingspatroon worden berekend. 
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In het onderzoek beschreven in dit proefschrift worden twee “tracking” algoritmes 

geïntroduceerd, namelijk het algoritme bekend als “kernel density estimation with mean shift” 

en het algoritme bekend als “energy driven linear motion”. Onze testen hebben uitgewezen 

dat deze twee algoritmen accurate “tracking” resultaten genereren. Dit wordt eveneens 

bevestigd door de twee case studies die in dit proefschrift zijn gepresenteerd. 

 

De volgende twee case studies laten de bruikbaarheid van onze specifieke oplossingen voor 

beeldanalyse zien. 

 

Case-studie 1:  Onze beeldanalyse oplossing heeft het mogelijk gemaakt, metingen te 

verkrijgen voor motiliteit en morfologie van kanker cellen die behandeld waren met een groei-

factor.  De metingen kunnen worden gebruikt om de verschillen te onderscheiden in het 

gedrag van de cel zoals dat wordt geïnduceerd door verschillende groei-factoren.  Met de 

metingen kan een bijdrage worden geleverd aan het doorgronden van respons die door een 

medicijn wordt geïnduceerd uitgedrukt in motiliteit en morfologie. 

 

Case-studie 2:  In deze case-studie laat onze beeldanalyse oplossing de mogelijkheid zien om 

voor een sub-cellulair complex metingen te extraheren uit een beeldreeks. In het bijzonder 

wordt hiermee de dynamiek van matrix adhesie eiwitten die betrokken zijn bij de beweging 

van de cel geïllustreerd.  De analyse uit deze case-studie bevestigt op numerieke wijze  dat de 

omzet van deze matrix-adhesie complexen, uitgedrukt in duur van assemblage en 

disassemblage, sterk geassocieerd is met de regulatie van cel motiliteit.  

 

Met het beschikbaar hebben van een goed systeem voor data-management, kan de 

beeldanalyse op een efficiënte manier worden uitgevoerd. Het systeem voor datamanagement 

schermt de eindgebruiker af van de onderliggende complexiteit van de berekeningen in de 

beeldanalyse door een hoogwaardig grafisch gebruikers-interface (GUI). Het geautomatiseerde 

proces onderliggend  aan het gebruikers interface maakt het mogelijk om te schalen naar een 

groter volume van beelddata. Voorts neemt, door dit systeem, de toegankelijkheid van de 

interdisciplinaire data toe doordat een standaardisatie is doorgevoerd van data formaten en 

opslag van meetgegevens tussen verschillende experimenten. Deze standaardisatie van data 

formaten is een belangrijk kenmerk omdat een uiteindelijk doel van cytomics is, een integratie 

tot stand te brengen met andere –omics data zodat de correlatie tussen genotype en fenotype 

bestudeerd kan worden. 

 

Concluderend, het onderzoek dat in dit proefschrift wordt beschreven heeft tot doel efficiënte 

en robuuste oplossingen voor HCS analyse te ontwerpen. Door bestaande algoritmen te 

analyseren en bestuderen, hebben we algoritmen kunnen ontwerpen die goed passen bij de 

unieke karakteristieken van een HCS experiment. De case-studies laten zien dat de 

beeldanalyse oplossingen die zijn geïmplementeerd waarbij deze algoritmen worden gebruikt, 

een goed platform bieden voor het verkrijgen van objectieve informatie voor het doorgronden 

van biologische vraagstukken. Vergeleken met handmatige analyse kunnen de 

geautomatiseerde oplossingen voor beeldanalyse de HCS analyse verder objectiveren. Op deze 

manier wordt de weg bereid voor het begrijpen van de controle mechanismen die het gedrag 

van de cel bepalen.  
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English Summary 
 
Cytomics is the study to understand cellular or subcellular behavior. In order to do research in 

cytomics on a large scale, automation is needed. The goal of a cytomics experiment is to study 

the cell behavior from images captured with an automated microscope setup; for example 

measuring migration of a cancer cell. The goal is achieved by using an image analysis pipeline. 

The aim of image analysis is to extract numerical descriptors from image sequences using 

digital image processing. When applied on a large-scale to images from bio-experiments, this is 

often referred as a high-content screening (HCS) experiment. Compared to other image 

analysis problems, HCS experiments as employed in cytomics studies often produce image sets 

containing objects significantly varied in both intensity and shape. Generic image analysis 

solutions often overlook the between-objects variation, thereby producing false results. To 

that end, our research focuses on designing dedicated image analysis solutions to cope with 

the between-object variation in HCS images using a strategy through which the computation 

adapts to the variation in the data. In this thesis, dedicated solutions for two procedures, 

namely image segmentation and object tracking, in the image analysis of HCS experiment are 

illustrated: 

(1) Image segmentation is the procedure to extract objects from an image, i.e. cells. Often it is 

difficult to tune the parameters of a generic segmentation solution to the variation between 

individual images.  

In the research described in this thesis, a self-adaptive segmentation algorithm, namely the 

Watershed Masked Clustering (WMC) algorithm has been developed. Compared to other 

algorithms, the WMC that we developed has demonstrated a robust performance in HCS 

studies.  

(2) Object tracking is a procedure that will extract dynamic information from the objects, i.e. 

speed of migration. An object tracking algorithm builds linkages between objects from 

consecutive frames using information such as object shape and/or position. In cell biology 

studies, such an object can be a cell or a subcellular structure. Objects that are in proximity 

over frames and/or of similar shape will be related. From the trajectory, measurements such 

as a velocity or motion pattern can be extracted.  

In the research described in this thesis, two tracking algorithms, namely the kernel density 

estimation with mean shift algorithm and the energy driven linear modeling algorithm, are 

introduced. From our testing, these two algorithms produce accurate tracking results in both 

case studies illustrated in this thesis. 

The following two case studies demonstrate the applicability of our dedicated image analysis 

solutions: 

Case Study 1: Our image analysis pipeline was capable of extracting both motility and 

morphology measurements from growth factor treated cancer cell. These measurements can 

be used to distinguish the changes in cell behavior induced by different growth factors. These 

measurements can further contribute to an objective understanding of drug-induced 

responses in terms of cell motility and morphology. 
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Case Study 2: In this case study, our image analysis pipeline demonstrated the possibility to 

extract measurements for subcellular structures in a study on the dynamics of matrix 

adhesions. The analysis has numerically confirmed that the turnover of matrix adhesions, in 

terms of assembly and disassembly duration, is strongly associated with the regulation of cell 

motility.  

With a good data management system available, the image analysis can be performed in an 

efficient manner. The data management system shields end-users from the underlying 

complexity of the computational approaches in the image analysis by providing an integrated 

high-end graphic user interface (GUI). The automation underlying the GUI will enable to scale 

to a higher volume of image data. It further increases the accessibility of interdisciplinary data 

by standardizing different data formats and measurement structures between experiments. 

The standardization of data formats is an important feature since the ultimate goal of cytomics 

is to be integrated with other –oimcs data in order to study the genotype-to-phenotype 

correlation. 

In conclusion, the research described in this thesis aims to design efficient and robust HCS 

analysis solutions. By studying existing algorithms, several dedicated image analysis algorithms 

are designed to fit the unique image characteristics of HCS experiment. From the case studies, 

it shows that analysis pipelines using these dedicated algorithms can well provide a platform of 

extracting objective understanding of biological questions. Compared to manual analysis, an 

automated solution will objectivize HCS analysis. It further paves the way in the understanding 

of control mechanisms of cell behavior.  
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