19,293 research outputs found

    A realistic early-stage power grid verification algorithm based on hierarchical constraints

    Get PDF
    Power grid verification has become an indispensable step to guarantee a functional and robust chip design. Vectorless power grid verification methods, by solving linear programming (LP) problems under current constraints, enable worst-case voltage drop predictions at an early stage of design when the specific waveforms of current drains are unknown. In this paper, a novel power grid verification algorithm based on hierarchical constraints is proposed. By introducing novel power constraints, the proposed algorithm generates more realistic current patterns and provides less pessimistic voltage drop predictions. The model order reduction-based coefficient computation algorithm reduces the complexity of formulating the LP problems from being proportional to steps to being independent of steps. Utilizing the special hierarchical constraint structure, the submodular polyhedron greedy algorithm dramatically reduces the complexity of solving the LP problems from over O(k 3 m) to roughly O(k k m), where k m is the number of variables. Numerical results have shown that the proposed algorithm provides less pessimistic voltage drop prediction while at the same time achieves dramatic speedup. © 2011 IEEE.published_or_final_versio

    Management and Control of Domestic Smart Grid Technology

    Get PDF
    Emerging new technologies like distributed generation, distributed storage, and demand-side load management will change the way we consume and produce energy. These techniques enable the possibility to reduce the greenhouse effect and improve grid stability by optimizing energy streams. By smartly applying future energy production, consumption, and storage techniques, a more energy-efficient electricity supply chain can be achieved. In this paper a three-step control methodology is proposed to manage the cooperation between these technologies, focused on domestic energy streams. In this approach, (global) objectives like peak shaving or forming a virtual power plant can be achieved without harming the comfort of residents. As shown in this work, using good predictions, in advance planning and real-time control of domestic appliances, a better matching of demand and supply can be achieved.\ud \u

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Capturing Aggregate Flexibility in Demand Response

    Full text link
    Flexibility in electric power consumption can be leveraged by Demand Response (DR) programs. The goal of this paper is to systematically capture the inherent aggregate flexibility of a population of appliances. We do so by clustering individual loads based on their characteristics and service constraints. We highlight the challenges associated with learning the customer response to economic incentives while applying demand side management to heterogeneous appliances. We also develop a framework to quantify customer privacy in direct load scheduling programs.Comment: Submitted to IEEE CDC 201

    Power Management and Voltage Control using Distributed Resources

    Get PDF

    DeepMatching: Hierarchical Deformable Dense Matching

    Get PDF
    We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al 2005), the MPI-Sintel (Butler et al 2012) and the Kitti (Geiger et al 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures.We also propose a method for estimating optical flow, called DeepFlow, by integrating DeepMatching in the large displacement optical flow (LDOF) approach of Brox and Malik (2011). Compared to existing matching algorithms, additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation

    Resilience-driven planning and operation of networked microgrids featuring decentralisation and flexibility

    Get PDF
    High-impact and low-probability extreme events including both man-made events and natural weather events can cause severe damage to power systems. These events are typically rare but featured in long duration and large scale. Many research efforts have been conducted on the resilience enhancement of modern power systems. In recent years, microgrids (MGs) with distributed energy resources (DERs) including both conventional generation resources and renewable energy sources provide a viable solution for the resilience enhancement of such multi-energy systems during extreme events. More specifically, several islanded MGs after extreme events can be connected with each other as a cluster, which has the advantage of significantly reducing load shedding through energy sharing among them. On the other hand, mobile power sources (MPSs) such as mobile energy storage systems (MESSs), electric vehicles (EVs), and mobile emergency generators (MEGs) have been gradually deployed in current energy systems for resilience enhancement due to their significant advantages on mobility and flexibility. Given such a context, a literature review on resilience-driven planning and operation problems featuring MGs is presented in detail, while research limitations are summarised briefly. Then, this thesis investigates how to develop appropriate planning and operation models for the resilience enhancement of networked MGs via different types of DERs (e.g., MGs, ESSs, EVs, MESSs, etc.). This research is conducted in the following application scenarios: 1. This thesis proposes novel operation strategies for hybrid AC/DC MGs and networked MGs towards resilience enhancement. Three modelling approaches including centralised control, hierarchical control, and distributed control have been applied to formulate the proposed operation problems. A detailed non-linear AC OPF algorithm is employed to model each MG capturing all the network and technical constraints relating to stability properties (e.g., voltage limits, active and reactive power flow limits, and power losses), while uncertainties associated with renewable energy sources and load profiles are incorporated into the proposed models via stochastic programming. Impacts of limited generation resources, load distinction intro critical and non-critical, and severe contingencies (e.g., multiple line outages) are appropriately captured to mimic a realistic scenario. 2. This thesis introduces MPSs (e.g., EVs and MESSs) into the suggested networked MGs against the severe contingencies caused by extreme events. Specifically, time-coupled routing and scheduling characteristics of MPSs inside each MG are modelled to reduce load shedding when large damage is caused to each MG during extreme events. Both transportation networks and power networks are considered in the proposed models, while transporting time of MPSs between different transportation nodes is also appropriately captured. 3. This thesis focuses on developing realistic planning models for the optimal sizing problem of networked MGs capturing a trade-off between resilience and cost, while both internal uncertainties and external contingencies are considered in the suggested three-level planning model. Additionally, a resilience-driven planning model is developed to solve the coupled optimal sizing and pre-positioning problem of MESSs in the context of decentralised networked MGs. Internal uncertainties are captured in the model via stochastic programming, while external contingencies are included through the three-level structure. 4. This thesis investigates the application of artificial intelligence techniques to power system operations. Specifically, a model-free multi-agent reinforcement learning (MARL) approach is proposed for the coordinated routing and scheduling problem of multiple MESSs towards resilience enhancement. The parameterized double deep Q-network method (P-DDQN) is employed to capture a hybrid policy including both discrete and continuous actions. A coupled power-transportation network featuring a linearised AC OPF algorithm is realised as the environment, while uncertainties associated with renewable energy sources, load profiles, line outages, and traffic volumes are incorporated into the proposed data-driven approach through the learning procedure.Open Acces
    corecore