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Abstract

High-impact and low-probability extreme events including both man-made events and natural

weather events can cause severe damage to power systems. These events are typically rare but

featured in long duration and large scale. Many research efforts have been conducted on the re-

silience enhancement of modern power systems. In recent years, microgrids (MGs) with distributed

energy resources (DERs) including both conventional generation resources and renewable energy

sources provide a viable solution for the resilience enhancement of such multi-energy systems dur-

ing extreme events. More specifically, several islanded MGs after extreme events can be connected

with each other as a cluster, which has the advantage of significantly reducing load shedding through

energy sharing among them. On the other hand, mobile power sources (MPSs) such as mobile en-

ergy storage systems (MESSs), electric vehicles (EVs), and mobile emergency generators (MEGs)

have been gradually deployed in current energy systems for resilience enhancement due to their

significant advantages on mobility and flexibility.

Given such a context, a literature review on resilience-driven planning and operation problems

featuring MGs is presented in detail, while research limitations are summarised briefly. Then, this

thesis investigates how to develop appropriate planning and operation models for the resilience

enhancement of networked MGs via different types of DERs (e.g., MGs, ESSs, EVs, MESSs, etc.).

This research is conducted in the following application scenarios:

• This thesis proposes novel operation strategies for hybrid AC/DC MGs and networked MGs

towards resilience enhancement. Three modelling approaches including centralised control,

hierarchical control, and distributed control have been applied to formulate the proposed

operation problems. A detailed non-linear AC OPF algorithm is employed to model each MG

capturing all the network and technical constraints relating to stability properties (e.g., voltage

limits, active and reactive power flow limits, and power losses), while uncertainties associated

with renewable energy sources and load profiles are incorporated into the proposed models

via stochastic programming. Impacts of limited generation resources, load distinction intro

critical and non-critical, and severe contingencies (e.g., multiple line outages) are appropriately

captured to mimic a realistic scenario.

• This thesis introduces MPSs (e.g., EVs and MESSs) into the suggested networked MGs against

the severe contingencies caused by extreme events. Specifically, time-coupled routing and

scheduling characteristics of MPSs inside each MG are modelled to reduce load shedding when

large damage is caused to each MG during extreme events. Both transportation networks and
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power networks are considered in the proposed models, while transporting time of MPSs

between different transportation nodes is also appropriately captured.

• This thesis focuses on developing realistic planning models for the optimal sizing problem of

networked MGs capturing a trade-off between resilience and cost, while both internal uncer-

tainties and external contingencies are considered in the suggested three-level planning model.

Additionally, a resilience-driven planning model is developed to solve the coupled optimal siz-

ing and pre-positioning problem of MESSs in the context of decentralised networked MGs.

Internal uncertainties are captured in the model via stochastic programming, while external

contingencies are included through the three-level structure.

• This thesis investigates the application of artificial intelligence techniques to power system

operations. Specifically, a model-free multi-agent reinforcement learning (MARL) approach

is proposed for the coordinated routing and scheduling problem of multiple MESSs towards

resilience enhancement. The parameterized double deep Q-network method (P-DDQN) is

employed to capture a hybrid policy including both discrete and continuous actions. A coupled

power-transportation network featuring a linearised AC OPF algorithm is realised as the

environment, while uncertainties associated with renewable energy sources, load profiles, line

outages, and traffic volumes are incorporated into the proposed data-driven approach through

the learning procedure.
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Chapter 1

Introduction

1.1 Context

Extreme natural disasters, such as flooding, earthquakes, and hurricanes, can affect the status of

components in power systems (e.g., power plants, substations, and cables) and cause severe power

outages. According to [6], seven of ten major storms during the last four decades have occurred in

the last 10 years and each event caused the huge economic loss (over 1 billion dollars). Such events

are typically rare and therefore not anticipated, while their impact on power systems is immense.

In order to deal with these so-called high-impact low-probability (HILP) events, the concept of

“resilience” is introduced in power systems. Resilience etymologically comes from the Latin word

“resilio” and refers to “the ability of a system to anticipate and withstand external shocks, bounce

back to its pre-shock state as quickly as possible and adapt to be better prepared to future catas-

trophic events” [7]. In [8], the difference between reliability and resilience is discussed and resilience

is regarded as a compromise and necessary component of reliability. In [4], resilience is defined as

a dynamic and ongoing procedure for improving robustness and operational flexibility to deal with

uncertainties, compared with reliability normally considered as a static concept. More differences

between typical outages and natural-disaster induced outages can be found in [1]. Considering the

large disruptions caused by extreme events, the main task for a resilient power system is to maintain

the continuity of power services to critical loads (e.g., hospitals, police stations, and data centres).

Decentralisation and digitalisation are rapidly transforming the energy sector, as illustrated in

Figure 1.1. Increasingly popular, distributed energy resources (DERs), including diesel generators

(DGs), photovoltaic (PV) plants, wind turbines (WTs), and energy storage systems (ESSs), are

5



6 Chapter 1. Introduction

disrupting the traditional top-down philosophy of power systems [9]. Particularly, energy systems

are experiencing an unprecedented shift from a centralised to a decentralised operation paradigm

featuring networked MGs and other local energy networks, which can introduce benefits concern-

ing cost reduction, resilience enhancement, and security performance. Additionally, mobile power

sources (MPSs) have been gradually deployed in current energy systems for resilience enhancement

due to their significant advantages in mobility and flexibility. The importance of networked MGs

and the locality in general within the undergoing energy transition is schematically represented in

Figure 1.1.

Microgrids (MGs) are regarded as localised small power systems, which have two operational

modes: grid-connected mode and islanded mode [10]. Controllability is the biggest difference be-

tween an MG and a distribution system, and voltage control and frequency/load-generation balance

are two basic problems in the operation of an MG under grid-connected mode and islanding mode

respectively [11]. According to [12], MGs can provide higher load reliability compared to bulk power

systems. In [13], the feasibility of MGs as a local resource, a community resource, and a black start

resource is analysed. DERs in MGs, such as DGs, WTs, and PVs, can restore local loads via is-

landing schemes or restore global critical loads via dynamic boundaries and formation, if the utility

power supply is entirely or partially interrupted during extreme events. As such, this thesis partic-

ularly deals with the problem of optimal planning and operation for networked MGs in resilience

enhancement scenarios (i.e., in the presence of extreme events) focusing on appropriate operation

strategies for DERs, including both static and mobile, towards increasing security of supply.

1.2 Motivation and Objectives

In recent years, much research has been conducted on utilising MGs to enhance the resilience of

power systems, especially for distribution systems, e.g., using MGs as virtual feeders, dynamical MG

formations, islanding schemes of MGs, and networked MGs. In general, some papers regard MGs as

one type of DERs and use them to enhance the resilience of upper-level systems, while others focus

on enhancing the resilience of MGs through appropriate planning or operational strategies. Detailed

information about these different categories can be found in the next chapter. To summarise, all of

these exhibit some fundamental limitations as follows:

Most research chooses simplified modelling approaches for resilience-driven planning and opera-

tional problems of MGs (e.g., energy management systems (EMSs), DC OPF, or linearised Distflow),
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Figure 1.1: Importance of networked MGs in the undergoing energy transition.

which cannot effectively capture all the network and technical constraints related to stability prop-

erties, e.g., voltage limits, power losses, line capacity limits, etc. Note that MGs may reach their

operation limits more frequently and the risk of system failure is increased, when severe contingen-

cies are caused by extreme events. These highlight the importance of capturing all the operational

constraints and considering power dynamics in a resilience scenario.

Internal uncertainties and external contingencies occur due to the high-impact nature of extreme

events. However, most resilience-driven operational models fail to comprehensively consider the

influence of these uncertain parameters on final optimal results. As mentioned before, power systems

are undergoing a significant transition from fossil fuel resources to the decarbonlisation of renewable

energy resources (RESs), promising to address the environmental concerns [11]. The prediction of

renewable energy sources under extreme weather events can have large fluctuations, which shall be

appropriately considered in resilience-driven system operations.

There has been a large amount of research focusing on developing planning models for MGs or

networked MGs, e.g., optimal sizing, optimal positioning, and topology design. On the other hand,

research on resilience-driven planning problems is very limited, since the low-probability nature of

extreme events and the high modelling complexity of uncertainties and contingencies. However, the

high-impact nature of extreme events and the relatively higher frequency of occurrence are gradually

making it a necessity to capture resilience at the planning level.

Networked MGs can provide more benefits in reducing operational costs and restoring loads
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than a single MG through the power sharing between MGs. Three approaches have been proposed

to model the operation of networked MGs: centralised control, hierarchical control, and distributed

control. However, centralised control approaches normally suffer from the large computational

burden, especially with the increase of the number of MGs in the cluster, while privacy issues

might be caused due to the large scale of information sharing in local MGs. Additionally, both

centralised control and hierarchical control require a central controller to manage the operation

of the MG cluster, which might be unavailable during extreme events. Compared to centralised

control, control approaches featuring decentralisation are appropriate in the context of resilience

enhancement.

As discussed above, a large number of DERs have been deployed in modern power networks,

including DGs, PVs, WTs, and ESSs. Most existing research on resilience-driven planning and

operation is based on these static DERs, which might not be enough to deal with the severe con-

tingencies caused by extreme events. As such, it is necessary to develop effective combinatorial

strategies considering both static DERs and mobile DERs for resilience enhancement, due to the

high flexibility and mobility provided by MPSs. Additionally, large computational burden might be

caused due to the involvement of MPSs (e.g., a large number of integer variables), which motivates

researchers to develop more efficient operational strategies for MPS scheduling problems.

To summarise, this thesis will deeply analyse the benefits of MGs, appropriate modelling ap-

proaches, demand-side response led by MPSs, and decentralised approaches on the resilience en-

hancement of distribution systems. In more detail, the work will try to give answers to the questions

below:

• How to select and develop appropriate modelling approaches capturing detailed network and

operational constraints for MG planning and operation problems towards resilience enhance-

ment?

• How to comprehensively consider the influence of internal uncertainties associated with re-

newable energy sources and load profiles as well as external contingencies including multiple

line outages on optimal solutions?

• How to develop a comprehensive planning model for the optimal sizing problem of DGs and

ESSs in the context of networked MGs, which can capture the trade-off between resilience and

cost?
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• How to model the connection among MGs and develop appropriate strategies featuring decen-

tralisation to manage the power sharing among MGs towards load restoration after extreme

events?

• What would be the value of MPSs such as MESSs and flexible technologies such as demand

shifting, etc. in enhancing the resilience of power networks?

• How to apply model-free approaches such as reinforcement learning in coordinated operational

problems of multiple MESSs towards resilience enhancement?

1.3 Contributions

It can be envisioned that building-scale and local-aggregator MGs will become common in the

coming decades. Apart from distribution systems, MGs can potentially be applied to transmission

systems for resilience purposes and even to account for the connections between transmission systems

and distribution systems for resource sharing (e.g., MGs, DGs, MPSs, and battery units) to reduce

system costs and increase stability. As such, this work intends to analyse the impacts of regional

MGs on resilience enhancement.

The main contribution of this work is to model and analyse in depth the coordination of MGs,

MPSs (e.g., MESSs), and demand-side techniques towards resilience enhancement. Effective control

strategies for networked MGs (e.g., hierarchical control and distributed control) will be developed

to make decisions about power sharing among MGs during extreme events. Additionally, compre-

hensive planning models for the optimal sizing problems of networked MGs, DGs, and battery units

are developed to balance investment costs and resilience. In more detail, the contributions of this

research are listed hereafter:

• Existing literature on resilience-driven planning and operational strategies associated with

MGs is comprehensively reviewed across four distinct dimensions, i) modelling objectives and

metrics, ii) resilience scenarios, iii) modelling approaches, and iv) strategies and topologies.

Research limitations and future directions are briefly summarised.

• A resilience-driven operational strategy considering both the preventive stage and corrective

stage is developed for the resilience enhancement of a hybrid AC/DC MG. Preventive power

importing is used in the preventive stage for better preparedness before events occur, while

demand shifting is employed in the corrective stage to reduce load shedding.
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• A stochastic hierarchical control approach capturing EV routing and scheduling is developed

for the load restoration problem of networked MGs after an extreme event. Internal uncertain-

ties associated with renewable energy sources and load profiles as well as external contingencies

including multiple line outages are appropriately captured via stochastic programming.

• A stochastic distributed control approach is proposed for the resilience-driven operation of

networked MGs incorporated with the routing and charging/discharging characteristics of

MESSs, while a roll optimisation method is utilised to capture the flexibility of storage units

and power exchange. Uncertainties related to renewable energy sources and loads are consid-

ered via stochastic programming.

• A three-level defender-attacker-defender model is suggested to solve the optimal sizing problem

of networked MGs considering a trade-off between resilience and cost. A non-linear AC OPF

algorithm is employed for the modelling of each MG capturing all the technical constraints

related to stability properties (e.g., voltage limits, active and reactive power flow limits, and

power losses), while an adaptive genetic algorithm (GA) is proposed to handle the influence

of internal uncertainties and external contingencies.

• A resilience-driven planning model is proposed to solve the optimal sizing and pre-positioning

problem of MESSs in the context of decentralised networked MGs. Internal uncertainties

associated with renewable energy sources and load profiles are modelled via a stochastic pro-

gramming approach, while external contingencies including multiple line outages are captured

through the defender-attacker-defender structure.

• A resilience-driven multi-agent reinforcement learning (MARL) approach featuring parameter-

ized double deep Q-networks is developed for the coordinated routing and scheduling problem

of MESSs, which is reformulated as a Partially Observable Markov Game (POMG). Various

uncertainties including renewable energy sources, load profiles, line outages, and traffic vol-

umes are captured in the MARL training procedure, while a coupled power-transportation

network is realised as the environment.

1.4 Thesis outline

The remainder of this thesis is organised as follows:
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Chapter 2 comprehensively reviews existing research on resilience-driven planning and oper-

ation strategies associated with MGs, i.e., using MGs as resilience resources and enhancing the

resilience of MGs. Following this pattern, four different types of operational strategies for MGs

are illustrated: a) using MGs as virtual feeders, b) dynamic MG formation, c) islanding schemes of

MGs, and d) networked MGs. From the view of resilience modelling, commonly-used objective func-

tions, metrics, and modelling approaches are summarised to present a detailed operational scheme

of MGs in the context of resilience. More specifically, different types of MGs, control approaches

for MG clusters, and modelling approaches are listed and compared to show their advantages and

disadvantages and how they can be appropriately used for resilience-driven modelling.

Chapter 3 aims to provide a detailed operational model for a hybrid AC/DC MG towards

resilience enhancement in the presence of extreme weather events. Specifically, both the preventive

stage and corrective stage are considered, where preventive power importing is proposed to inject as

much energy as possible into battery units for better preparedness, and demand shifting is used in

the corrective stage to reduce emergency load shedding. A detailed AC OPF algorithm capturing

all the technical constraints relating to voltage, angle, and power losses is employed to model MG

operations, where load distinction into essential and non-essential, limited generation resources, and

severe contingencies are incorporated into the model for realistic decision making.

Chapter 4 focuses on a novel three-stage hierarchical control strategy for the resilience en-

hancement of networked MGs. In the first and third stages, several local MGs can run their own

AC OPF algorithm in parallel; thus, the computing time can be significantly reduced compared to

approaches related to centralised control. To capture the high-impact and low-probability nature of

extreme events, both internal uncertainties and external contingencies are captured in the proposed

model via a stochastic programming approach. Additionally, the routing and scheduling character-

istics of EV fleets are involved in this work for load restoration due to their mobility and flexibility.

Extensive case studies have shown that mobile EVs can obtain a much higher resilience level than

static EVs.

Chapter 5 proposes a distributed control approach featuring rolling optimisation towards the

load restoration problem of networked MGs after extreme events. Compared to the approach

suggested in Chapter 4, this method can both ensure fast response and realistic decision making due

to the utilisation of a linearised AC OPF algorithm, while it can capture the flexibility of both storage

systems and power exchange, and handle potential cascaded damage caused by extreme events due
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to the utilisation of rolling optimisation. Additionally, the scheduling and routing characteristics

of MESSs are introduced into the resilience-driven formulation of MG clusters for load restoration.

Uncertainties associated with renewable energy sources and load profiles are captured via stochastic

programming.

Chapter 6 suggests a three-level defender-attacker-defender (DAD) model for the optimal sizing

problem of networked MGs capturing a trade-off between cost and resilience. Both the capacities of

distributed generators and ESSs are considered in the proposed planning model, while both internal

uncertainties associated with load profiles and external contingencies including both line faults

and generator outages are captured through the robust-based three-level structure. A detailed AC

OPF algorithm is utilised at the operation level to ensure secure system operations and accurate

optimisation results. Simulations considering meshed networks and load distinction into critical

and non-critical are developed to demonstrate algorithm effectiveness in capturing resilience at the

planning stage and optimally sizing multiple parameters. The results indicate that higher resilience

levels lead to higher investment costs, while sizing networked MGs leads to decreased investment in

comparison with stand-alone MGs sizing.

Chapter 7 focuses on utilising the three-level defender-attacker-defender formulation to solve

resilience-driven optimal sizing and pre-positioning problems of MESSs in networked MGs with

distributed control. The upper-level problem is formulated as the master problem to obtain opti-

misation results against a certain contingency, while the middle-level problem and the lower-level

problem are merged as a subproblem to select a contingency that can cause the most severe dam-

age. An adaptive GA is employed to search for sizing and positioning decisions and capture various

potential attack actions, while a distributed control approach based on the consensus algorithm and

linearised AC optimal power flow is utilised to model MG operations and capture technical con-

straints relating to voltage and power loss. Uncertainties relating to renewable energy sources and

load profiles are incorporated into the model via stochastic programming. Extensive case studies

considering meshed networks and load discrimination into essential/non-essential are developed to

demonstrate the effectiveness of the proposed model on accurate decision making of MESS capacities

and initial locations.

Chapter 8 develops a novel MARL approach for the real-time automatic routing and scheduling

problem of multiple coordinated MESSs towards resilience enhancement after extreme events. A

parameterized multi-agent double deep Q-network capable of handling a hybrid continuous-discrete
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action space is proposed to output MESSs routing and scheduling decisions, while uncertainties

associated with renewable energy sources, load profiles, line outages, and traffic volumes are captured

through the training process of the proposed MARL method. The MESSs routing and scheduling

problem is reformulated as a POMG, including detailed settings of state, observation, action, reward,

and state transition. Both transportation and power networks are examined in the test system,

while a linearised AC-OPF algorithm is employed to capture all the technical constraints related to

stability properties, which is realised as the environment of the suggested MARL method. Extensive

case studies in the context of both 6- and 33-bus power networks have been developed to testify the

effectiveness and robustness of the proposed method in addressing such coordinated MESSs routing

and scheduling problems.

Chapter 9 concludes this thesis by summarising the main contributions of this research and

discussing potential directions for future work.

1.5 Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own work. This

thesis has not been submitted for any degree or other purposes.
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Chapter 2

Background Theory

2.1 Resilience and reliability

Both resilience and reliability are very important concepts in the context of power grids. Reliability

is defined as the ability of power grids to deliver electricity in the quantity and with the quality

demanded by users, which focuses on ensuring the lights on and is regarded as the end goal of

a power system [8]. On the other hand, a resilient power grid shall be designed to be capable of

withstanding external shocks and bounce back quickly when extreme events occur. More specifically,

strong adaptation is extremely critical when power grids aim to enhance resilience against various

extreme events including both natural disasters and man-made events, given their HILP nature. As

such, compared to reliability, resilience refers not only to withstand an event, but also to focus on

how to adapt and respond to this event, especially for HILP events.

From the perspective of contingencies, the concept of reliability with various interruption indices

is mainly applied to deal with typical outages, while resilience-driven approaches focus on severe

line outages caused by extreme events [1]. Detailed information about typical outages and severe

outages can be found in Table. 2.1. In this context, conventional planning and operational strategies

developed for power systems towards typical outages might not be enough for the power system

recovery from severe damages caused by extreme events. To deal with these challenges, advanced

technologies based on various types of DERs featuring decentralisation, flexibility and mobility may

be capable of providing reasonable solutions for the resilience enhancement of modern power grids.

In recent years, much research has focused on proposing resilience-driven planning and operational

models, e.g., using MGs for power system restoration after extreme events, which is described in

16
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Table 2.1: Differences between typical outages and severe outages caused by extreme events [1].

No. Typical outages Outages caused by extreme events

1 One component failure Multiple faults (e.g., line outages)
2 No stochastic characteristic High degree of uncertainty

3
No spatiotemporal correlation
for the failure

Spatiotemporal correlation
for the faults

4 Most DERs stay connected Some DERs may be out of service
5 Power networks remain intact Power networks may be damaged
6 Mainly involve power networks Influence other infrastructures
7 Quick restoration Difficult restoration

the following sections from the modelling perspective in more detail.

2.2 Resilience modelling objectives and metrics

Basic modelling objectives used in existing literature can be found in Table 2.2. There are many

papers using only load survivability or load restoration as modelling objectives, which assumes

that loads have a much higher priority than operational cost in emergency situations [14,15], while

operational costs are also considered in [3,16–21] as part of the modelling objectives because of large

pre-allocation cost or generation cost. To reduce frequency and voltage deviations is a commonly

utilised objective in transient modelling, which can be achieved by adjusting loads or scheduling DG

resources. Furthermore, there are papers considering both operational- and infrastructure-oriented

objectives, e.g., the failure rate of distribution system equipment [22] and the number of failed

lines [23].

Table 2.2: Resilience-oriented modelling objectives

Objective functions References

Load
Maximise load survivability or
restoration (critical and non-critical loads)

[14, 15,24–28]

Cost
Minimise generation cost,
pre-allocation cost or load shedding cost

[3, 16–21]

Transient
Reduce frequency and voltage
deviations, minimise power mismatch

[29–35]

To assess the resilience of the utilised networks and satisfy the aforementioned objectives, a great

deal of research has developed metrics as better summarised in Table 2.3. For instance, the work

presented in [22] adopts an analytical hierarchical process and percolation theory to assess topo-

logical resilience and composite resilience. In [36], a probabilistic framework is proposed to assess
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the resilience of distribution networks in four dimensions (technical, organisational, social and eco-

nomic). Among these studies, a multi-phase resilience trapezoid model and related resilience metrics

have been developed and widely used to assess different resilience-oriented strategies [4, 7, 37, 38];

the multiple-phase resilience curve is illustrated in Figure 2.1. Operational-oriented resilience and

infrastructure-oriented resilience are evaluated via different metrics. However, the work presented

in [7] does not involve concensus around how to assess the coordination effects of infrastructure-

oriented strategies and operational strategies.

R
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Figure 2.1: Multi-phase resilience curve [4]

Most resilience metrics presented in Table 2.3 are based on minimisation of load shedding. On

the one hand, metrics used in [39–42] are based on load survivability and focus on disturbance

progress and post-disturbance states. On the other hand, resilience metrics used in [15,17,19,43,44]

are concerned with critical load restoration, since the main objective and focus is on restorative

and post-restorative phases. Reference [17] develops four indices to capture both infrastructure and

operational resilience. Furthermore, several papers capture the whole process of extreme events

(disturbance progress state, post-disturbance degraded state and restoration state) and consider

both load survivability and restoration [45,46].

To summarise, a lot of resilience-related research on microgrids utilizes the multi-phase resilience

curve suggested by [4] to assess the impact of microgrids on system resilience. These studies are

mainly based on two assumptions: (1) unlimited energy supply during extreme events (e.g., unlim-

ited fuels, abundance of solar irradiation, wind, etc.); (2) the time and duration of an outage can

be predicted. These two assumptions guarantee the perfect combination between post-restorative
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state and infrastructure recovery state. However, natural disasters can cause the disconnection of a

distribution network and the transmission grid leading to unavailable utility power supply. Extreme

events can cause severe damage on energy supply chains, such as gas networks and fuel networks,

which leads to limited generation resources in islanded distribution networks. The highly uncertain

feature of extreme events (severe damage and large geographical scope) also makes it hard to ac-

curately predict the outage duration, which means it may be difficult to schedule planned optimal

strategies according to a clear blackout interval. If MGs or DERs are used to supply loads over

a specific period, they may fail to operate (e.g., due to fuel shortage) and the performance curve

(e.g., the restored load or frequency) will drop again during the post-restorative phase. Addition-

ally, subsequent damage from extended events may introduce further performance degradation to

distribution networks [31, 47, 48]. In these situations, the multi-phase resilience curve suggested

by [4] may not accurately capture the operation state of distribution networks.

2.3 Resilience-oriented modelling scenarios

Uncertainties, multiple contingencies and interdependencies are main features of outages due to

natural disasters [1]. An indicative timeline of a MG-based response in power systems capturing

these features and correlating them to resilience-proofing is illustrated in Figure 2.2. Essentially, the

timeline indicates how these features feed in the resilience process of power systems and responds

to the fundamental question of whether resilience is delivered by design or by operation. It is

shown that resilience, being such a complicated theme, is correlated to various phases of a power

system from the planning stage to operational stages in an iterative way (e.g., operational aspects

continuously affecting design stages). Thus, these features appear to be investigated in the literature

(partially or holistically) and the next sections highlight the various aspects relating to them. More

details can be found in Table 2.4.

2.3.1 The uncertain nature of information

There are several types of uncertainties considered in literature: renewable energy resources, load

profiles, network topologies, energy market prices, and time and duration of extreme events. On

the one hand, extreme events can lead to uncertain weather conditions and human activities, which

introduce more stochastic features in energy market price, renewable energy sources and load pro-

files. On the other hand, the damage caused by natural disasters is normally deeply severe and
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uncertain (e.g., multiple faults or power interruption). Due to extreme events, outage duration and

repair time may take from hours to several days or even weeks [49], which introduces the neces-

sary uncertainties surrounding time and duration of outages. Robust optimisation and stochastic

methods are two basic ways tackling uncertainties relating to natural disasters. In comparison with

scenario-based methods, robust optimisation can provide a guaranteed immunity against worst-case

realisation and with a relatively low computation burden [50]. However, inherent conservativeness

is a problem of robust optimisation.

In addition to stochastic method and robust optimisation, risk-based methods [51–53] and

data-driven methods [41] have been used to handle uncertainties relating to renewable generation

resources. Although the methods suggested by [41,53] are verified to be more effective than stochas-

tic method and robust optimisation methods, they both ignore interdependencies between different

uncertainties. Future research should focus on developing more valid methods to tackle multiple

uncertainties and their interdependencies caused by extreme events.

2.3.2 Multiple contingencies

There are mainly three types of contingencies considered in literature: multiple line faults, power

source damage and cascading failures. Except for [20, 43, 54–58] (which consider single line fault

or no line faults), the rest of the papers introduce multiple line faults to mimic a realistic sce-

nario, while references [15,16,19,24,25,29,31–34,55,56,59] introduce power source damage as part

of the considered contingencies. However, there is limited research capturing these two types of

contingencies in parallel.

Cascading failures occur if the failure of one component causes one or more components to

fail [60], which shows the spatiotemporal correlation of the faults happening due to extreme events.

Except for [61] and [62], there is little research focusing on handling cascading faults through

MG-based operations. It is also worth noting that MGs can equally be damaged from natural

disasters. However, most existing literature on islanding schemes assumes that the structure of

MGs remains intact after extreme events [3, 51, 63–66]. As such, it appears that there is a need for

resilience-oriented modelling problems to comprehensively and appropriately incorporate all possible

contingencies towards reflecting realistic scenarios.
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2.3.3 Interdependencies of different distribution networks

The interdependencies between distribution networks and other network infrastructures, such as gas

networks, water supply networks, transportation networks and communication networks, introduce

more challenges for load restoration process. In [39, 40], the interdependency between natural gas

networks and electricity infrastructures is presented via electrical power flow, thermal power flow

and natural gas flow, while the interdependency between power networks and water networks is

considered in [25,46].

Conventional restoration process has to be delayed until damaged components are accordingly

repaired, while rapid restoration processes can be achieved by deploying MPSs utilising intact

transportation networks. In [19,62,67–69], both transportation networks and distribution networks

are considered to present flexibility and advantages of MPSs. Specifically, the influence of road

damage on delivering MPSs is studied in [62, 67], which indicates that a longer travelling time

(caused by road damage) adversely impacts the objective function. Much research focuses on the

effectiveness of EVs on resilience enhancement [16, 29, 41, 56, 59, 63, 70–73]. However, these papers

all ignore the influence of transportation networks on EVs.

Overall, the interdependencies among different networks have significant impacts on optimal

operational strategies and introduce certain challenges to resilience enhancement. Future resilience-

oriented research may focus on how to appropriately model these interdependencies in order to

obtain more realistic solutions.

2.3.4 Technology of generation resources

Except for conventional distributed generators (e.g., diesel generators, micro-turbines, etc.), there

are several other types of generation resources utilised to enhance resilience, such as non-dispatchable

generators (e.g., WTs, PVs, etc.), battery energy storage systems (BESSs), EVs and MPSs. Wind,

PV and BESS devices are three widely-used generation resources in resilience studies and the ex-

istence of BESSs can handle the stochasticity introduced by renewable energy sources. Future

research may focus on developing appropriate models to tackle uncertainties and frequency/voltage

deviations caused by renewable energy sources. In addition, there are multiple papers considering

the application of MPSs and EVs on load restoration problems, which introduces challenges for

primary and secondary control of power systems.
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Figure 2.2: Timeline of the MG-based response in power systems

2.4 Resilience-oriented modelling methods

Optimal power flow (OPF) algorithms and energy management systems (EMSs) are two basic ways

towards modelling the static behaviours of power systems. OPF models can capture voltage, angle

variation, and power losses in addition to power balance, while EMS models typically consider the

power balance equation along with high-level operational constraints of each resource. The conven-

tional OPF models can further incorporate differential equations as transient stability-constrained

OPF (TSC-OPF) to capture the dynamic characteristics of frequency and voltage deviations.

Constraints considered in OPF and EMS models can be found in Figure 2.3. Voltage and

frequency characteristics of the networks can facilitate enhanced monitoring of their stability in-

dices and eventually lead to increased resilience and security of supply, even under contingencies.

Additionally, severe damage caused by extreme events makes power systems prone to voltage and

frequency limits violation. In such situations, optimal strategies based on EMS models may lead

to inaccurate solutions [98]. However, conventional OPF algorithms (that are considered to be an

appropriate dispatch tool) do not consider transient stability, unit commitment and ramping rates

of generators [7].
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Figure 2.3: Constraints incorporated in OPF, EMS and dynamic control models

2.4.1 Classical AC OPF algorithms

AC OPF related approaches can be further divided into three categories: a) the non-linear AC OPF

algorithm, b) OPF approaches after convex relaxation and c) linearised AC OPF algorithms with

simplified network constraints. On the one hand, these methods are capable of taking reactive power

and voltage into account; on the other hand, these approaches can be utilised for both meshed and

radial networks and effectively capture power losses through loss factors. Among these, only the non-

linear OPF is capable of obtaining solutions strictly subject to all the operational limits and power

flow equations, although the solution might be a local minimum. The most common formulation of

the objective function can be found in (2.1), aiming at the minimisation of the operational costs [99].

On the other hand, there are some other widely-used objective functions towards different purposes,

including the minimisation of losses, constraint violations and the number of control actions [2].

Specifically, the objective function shall focus on the restoration of essential demand when resilience-

driven operations are required. More details about this topic can be found in the next chapter.

min
Pg ,Qg ,v,θ

f(Pg, Qg, v, θ) (2.1)
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Constraints of the classical OPF algorithm include both power flow equations and operational

limits, which are detailed in the following. Power flow equations set the basic rule for safe power

transmission. The apparent power flow on branch (i, j) is shown in Eq. (2.2), where V , I, S

and Y refer to voltage, current, apparent power and network parameter coupled by the Ohms law

and Kirchhoff law respectively. According to the polar coordinate of voltage V , Eq. (2.2) can be

further decoupled into Eqs. (2.3) and (2.4), corresponding to the active and reactive power flow

on branch (i, j) [100]. As an explicit expression of Eq. (2.2), this is commonly used in various

OPF-based models. Note that both of these formulations involve high non-linear features, which

may cause large computational burden [101]. Following this decoupled fashion, the nodal power

balance equation can be given as Eq. (2.5). Furthermore, the operational limits associated with

branch flow, power generation, voltage and angle difference, given in Eqs. (2.6)-(2.8).

Sij = ViI
∗
ij = Y ∗

ijVi(V
∗
i − V ∗

j ) (2.2)

Pij = gij(v
2
i − vivj cos θij)− bijvivj sin θij (2.3)

Qij = −bij(v
2
i − vivj cos θij)− gijvivj sin θij (2.4)

∑

g∈BG

Pg − Pd,i =
∑

(i,j)∈L

Pij ,
∑

g∈BG

Qg −Qd,i =
∑

(i,j)∈L

Qij (2.5)

P 2
ij +Q2

ij ≤ (Smax
ij )2 (2.6)

Pmin
g ≤ Pg ≤ Pmax

g , Qmin
g ≤ Qg ≤ Qmax

g (2.7)

vmin ≤ vi ≤ vmax, θmin
ij ≤ θij ≤ θmax

ij (2.8)

Simplified AC OPF

As discussed above, the nonconvexity of the classical OPF is from Eqs. (2.3) and (2.4), where

variables are coupled tightly and lead to a nonconvex surface. To address this issue, two types of

approaches including OPF based on convex relaxation and OPF based on linearisation are developed

for handling the non-linear power flow equations. Detailed comparison between these approaches

can be found in Table. 2.5.

Regarding the OPF based on convex relaxation, power flow equations can be relaxed to in-

equalities ensuring a convex region and global optimum; nevertheless, obtained solutions may not
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Table 2.5: Comparison of the Different Categories of OPF Methods [2]

Properties
Computational
difficulty

Convergence Solution quality

OPF with strict
network model

NP hard problem Not guaranteed
Ensure stability
properties but may
be a local optimum

OPF with convex
relaxation

Terminate in a
polynomial time
(SOCP<QP<SDP)

Guaranteed
When relaxations are
inexact, no clear
physical meaning.

OPF with linearised
network models

Terminate in a
polynomial time

Guaranteed
Not strictly subject
to power flow, but are
close to be AC feasible

be able to clarify their physical meanings if the relaxation is inexact, which limits its application

on practical operations [2]. Specifically, the power flow Eq. (2.2) can be reformulated in Eqs. (2.9)

and (2.10). Eq. (2.9) is linearised by treating Wij as a variable and Eq. (2.10) can be transferred

to Eq. (2.11), indicating the matrix Wn×n is semidefinite with Rank 1 [102]. OPF algorithms

based on convex relaxation mainly include three formulations, i.e., second-order cone programming

(SOCP) relaxation, semidefinite programming (SDP) relaxation and quadratic programming (QP)

relaxation. More details about these formulations can be found in [2].

Sij = Y ∗
ijWii − Y ∗

ijWij (2.9)

Wii = ViV
∗
i , Wij = ViV

∗
j (2.10)

Wn×n � 0, rank(Wn×n) = 1 (2.11)

On the other hand, the OPF methods with linearised network models linearise power flow

equations, which can obtain optimal solutions very close to an AC feasible one if appropriate ap-

proximations are used. However, there still exists risk for the linearised OPF to obtain solutions

that do not satisfy power flow equations, which may require a further verification of AC feasibility

via power flow calculation. Linearised OPF approaches are used for current industrial practice of

many system operation centres and international standards organisations due to their computing

efficiency [2]. Among them, DC OPF is widely used for optimisation problems in market clearing,

system operation and planning. The simplified DC network model is calculated in Eq. (2.12), ne-

glecting reactive power and losses as well as assuming flat voltage profiles [103]. However, decision

making obtained from DC OPF might be inappropriate due to these simplifications, especially un-
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der situations that power systems frequently reach their operation limits. In this case, advanced

linearised AC OPF algorithms that can accurately capture both reactive power and power losses

are required [104].

Pij = bijθij = θij/xij (2.12)

Transient Stability-Constrained OPF

Conventional OPF algorithms (that are considered to be an appropriate dispatch tool) do not con-

sider transient stability, unit commitment and ramping rates of generators [7]. Modelling dynamic

behaviours is becoming essential in the designing part of a distribution system for resilience pur-

poses [13]. However, there is only limited research focusing on capturing dynamic control of MGs.

In [14,29,32,48,86,96,97], load sharing, load shedding or load restoration strategies are suggested to

maintain frequency and voltage excursions within admissible limits after extreme events. In [33,34],

a decentralised event-triggered strategy and two distinct modes of networked MGs are considered

to mitigate the system power imbalance caused by the failure of communication links (causing, for

example, load disconnection or DG disconnection). In [31,35,89], advanced devices, such as electric

springs, voltage control devices and grid-friendly appliance controllers, are employed to support the

coordination of multiple MGs and mitigate the transients caused by fluctuating renewable energy

sources and switching operations from grid-connected mode to islanded mode. In [30], the hierar-

chical control strategy of a DC MG including primary, secondary and tertiary controls is analysed

to present the merits of DC MGs on resilience enhancement.

Even though dynamic performance based on droop characteristics is important for the resilience

enhancement of power systems, it is worth noting that most research above uses dynamic simulations

to present frequency and voltage characteristics rather than model-based optimisation approaches.

As a model-based approach, transient stability-constrained OPF (TSC-OPF) algorithms can cap-

ture economic and secure power system operations. As explained in [105], TSC-OPF is formulated

as a semi-infinite optimisation problem for preventive control of power systems, utilising differential-

algebraic equations (DAEs) to model system stability properties. In general, this TSC-OPF prob-

lem can be described using Eqs. (2.13)-(2.17), while there are mainly three approaches available

for solving this time-consuming optimisation problem, including numerical discretisation, genera-

tion rescheduling and artificial intelligence algorithms [105]. However, it is worth noting that the

incorporation of large number of differential equations can cause large computational burden [106],
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which hasn’t been handled appropriately and may be a problem for resilience-driven operations due

to the requirement for fast response and close coordination. More advanced approaches are required

to overcome this challenge before its application in real-world system operations.

minC(x) (2.13)

subject to

g(x) = 0 (2.14)

hmin ≤ h(x) ≤ hmax (2.15)

dx/dt = f(x) (2.16)

x(t0) = x0 (2.17)

2.4.2 OPF problems with uncertainties

As discussed above, it is necessary to consider the influence of various uncertainties from DERs

(e.g., renewable energy sources and loads) on optimal results of OPF problems due to the high-

impact nature of extreme events and the high penetration of renewable energy sources. In this

subsection, important approaches on handling uncertainties are discussed in detail. In general,

there are mainly five approaches used to deal with uncertainties in OPF problems: a) scenario-

based stochastic optimisation, b) robust-based optimisation, c) risk-based optimisation, d) chance-

constrained optimisation and e) artificial intelligence technologies [107]. However, it is worth noting

that most of proposed OPF formulations in existing literature have been considerably complicated

due to the incorporation of various constraints (e.g., power balance and operation limits) and the

increase of network size. Thus, there is no doubt that capturing uncertainties in these models

will further increase complexity and raise a larger computational burden. Details about these five

approaches can be found hereafter:

Scenario-based optimisation has been widely used for various optimisation problems featuring

EMS or OPF, which is normally realised as an optimisation problem including two stages, i.e.,

here-and-now and wait-and-see [108]. The here-and-now stage formulates the optimisation as a

day-ahead structure across the whole uncertain set through the forecasting of uncertain parameters,

while the wait-and-see stage realises the optimisation as a real-time management problem towards
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each scenario obeying a certain probability distribution. Afterwards, optimisation problems at

these two stages are co-optimised and output final optimal solutions. Detailed formulation and

solving procedure of this approach have been presented in some of this work. However, it is worth

noting that scenario-based stochastic approaches may only be able to consider a small number of

scenarios due to the large computing burden, especially when a large number of scenarios need to

be involved. In this case, the limited number of scenarios may fail to represent the whole space

of uncertain variables and parameters [109]. On the other hand, scenario generation requires the

awareness of a certain probability distribution; nevertheless, the clear distribution of an uncertain

parameter might be unavailable in real-world cases.

Regarding robust-based optimisation, the main idea is to search the worst case scenario, and

then ensure that solutions do not violate the constraints of this scenario [110]. Because the only

focus of these approaches is the worst case scenario, they usually provide very conservative solutions.

On the one hand, these solutions can ensure secure system operations of power industries; on the

other hand, the solutions may be not very economical [109]. It is worth noting that maintaining

secure operations and ensuring the continuity of power supply to essential demand can be much

more important than cost-effective schemes in resilience scenarios. In this case, robust optimisation

might be a more appropriate method to capture the influence of uncertainties than scenario-based

optimisation. To find the worst case scenario and then output solutions, bi-level or even three-level

structure may be required, of which most are utilised for linearised DC network models [2]. As

one of robust-based approaches, a defender-attacker-defender (DAD) model is formulated in this

thesis to deal with resilience-driven planning problems of networked MGs. Novel features have been

included to achieve a better trade-off between economics and conservation.

Chance-constrained optimisation uses probabilistic constraints to replace the original determin-

istic constraints, making sure that the probability of constraint violation is smaller than a certain

threshold. In other words, it is allowed that decision making does not meet the constraints to a cer-

tain extent; nevertheless, the solution should guarantee that the probability within the constraint

condition is not less than a certain confidence level. Normally, chance-constrained optimisation

problems are intractable and difficult to solve [111]. To make a tractable representation of chance

constraints, certain probability distribution of forecasting errors is assumed in some approaches,

which is capable of achieving an analytical formulation, e.g., [112] and [113]. In [114], a sample

average algorithm is proposed to generate the distribution of uncertain variables and parameters

via the Monte Carlo simulation.
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Additionally, risk-based approaches can be used to capture uncertainties in mathematical models

through an additional risk term in the objective function. This term can be defined as the cost

of risks across multiple scenarios with different occurrence probability. For instance, ref. [115]

considers the wind curtailment and expected energy not served (EENS) as the risk term. Normally,

the risk term is presented in a non-linear formulation, which can be linearised via some convex

approaches [116].

Furthermore, compared to approaches featuring mathematical programming, RL [117], as a

data-driven and model-free approach, is suitable for resilience-driven operations because of its ability

to provide fast response and incorporate uncertainties and contingencies. RL-based approaches

eliminate the need to solve an optimisation problem in a time-coupled fashion and enables the

managed agents to provide an adaptive control scheme for various system dynamics and state

conditions without the knowledge of uncertain parameters.

2.5 Microgrids: benefits and types

MGs, as localised small power systems, contain electric loads (controllable and uncontrollable) and

DERs, e.g., conventional generation resources, renewable energy resources and even energy storage

devices, while they can be managed in a coordinated way involving two operation mode: grid-

connected mode when connected to the main grid and islanded mode when disconnected to the

main grid intentionally or unintentionally [5]. Different than the integration of demand side or the

interconnection of DGs, MGs have three fundamental features: a) intelligent control schemes, b)

local load, c) local micro sources [5]. Additionally, MGs are capable of providing various carbon

intensity services for the main grid through their high penetration of renewable energy resources

(e.g., PV panels and wind turbines) and high flexibility of demand-side technologies [118].

2.5.1 Benefits of DERs in the context of MGs

It is worth noting that power systems are undergoing a significant transition from the fossil fuel

resources to the decarbonlisation of renewable energy sources, promising to low-carbon future [119].

Moving towards low-carbon transition requires a significant increase in renewable energy sources.

As efficient integration schemes, MGs are capable of unlocking the full benefits of DERs and further

benefit threefolds, including: a) economic benefits or cost efficiency, b) environmental benefits, e.g.,
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reducing carbon emissions, c) technical benefits, e.g., improving reliability and resilience of power

systems [5]. Detailed benefits of DERs in the context of MGs have been schematically presented in

Figure 2.4.
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Figure 2.4: Benefits of local DERs categorised by criteria and stakeholders [5].

One element missed in the figure above is the benefit of DERs on resilience enhancement of

power systems (e.g., maintaining power supply and reducing load shedding during extreme events),

which has gradually become a fundamental requirement for system operations and is the main focus

of this thesis. Nowadays, HILP events have happened more frequently than before partly because

of the rapid climate change [120], which can cause severe damage to power systems. As local re-

sources, MGs and DERs are capable of providing power supply for the damaged grid, enhancing

the obstructed power flow and maintaining secure system operations. There has been much re-

search on developing resilience-driven planning and operation strategies based on MGs for resilience

enhancement. Detailed information can be found in the next section.

2.5.2 Types of MGs

Regarding the scale of MGs with applications, MGs vary significantly ranging from nano-scale (10-80

W) to mini-grids (100s of kW). According to the definition above, modern MGs mainly correspond
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to low voltage and small-scale power networks; nevertheless, a vast increase in MW-scale MGs

has been seen recently, which can even connect to distribution systems (especially in large urban

centres) [121]. More details are provided in this subsection for giving a picture on types of MGs

depending on the technologies utilised and the power electronics deployed. Typical structures of

AC MGs, DC MGs and AC/DC hybrid MGs have been better depicted in Figure 2.5. It can be

found that MGs often contain local DERs such as microturbines and solar PV panels outputting

AC power and DC power respectively, which requires the deployment of power electronics devices

for the appropriate connection between DERs and the MG.

Main grid Transformer

Wind turbine

PV array

DC storage AC loads

Interlinking 
converter 

Interlinking 
converter 

DC loads

PV array

EV Fuel cell

AC subgrid

DC subgrid

DC loads

AC loadsWind turbine

Fuel cell

Figure 2.5: Three types of MGs: AC MGs, DC MGs and hybrid MGs.

AC MG structures have been widely applied to integrate DERs in current utility grid and no

viability and security issues are raised since the involved technologies are mature and the modifica-

tions required are minor. More specifically, AC MG systems can easily modify their voltage levels

via transformers and are equipped with various protection devices having high fault management

capability for quick fault detections and clearings; nevertheless, power losses may be increased due

to reactive power circulation or DG synchronisation.

To deal with these issues, DC MGs are introduced, reducing the need for power electronics device

towards voltage level coordination. As illustrated in Figure 2.5, various DERs (e.g., fuel cells, battery

storage systems and PV panels) and demand (e.g., ventilation, heating and lighting) output or accept

DC power; thus, the utilisation of DC MGs can avoid power losses from power converting [122].

Since much less energy is dissipated as heat at the conversion stage, the requirement for ventilation

and cooling systems can be reduced significantly, which is very important for applications with

intense power usage, e.g., charging stations and data centres. [123]. Additionally, DC MGs can
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alleviate potential operation issues brought by reactive currents, synchronisation and harmonic

distortion [30].

As a configuration combining both AC and DC MG architectures through bidirectional AC/DC

interlinking converters, hybrid AC/DC MGs are utilised to increase the penetration of renewable

energy sources, battery storage systems and various demand-side technologies with minor modifica-

tions and reduced investment cost [124]. The power sharing between AC subgrids and DC subgrids

can better ensure power supply to demand and even reduce load shedding when a disturbance oc-

curs; hence, the reliability and resilience of this power system can be largely enhanced, which is

aligned with the main focus of this thesis. The typical network structure of an AC/DC MG is shown

in Figure 2.5, including both AC-type units (e.g., WTs and AC loads) and DC type units (e.g., PV

panels and DC loads).

2.6 Resilience-oriented strategies featuring MGs

Resilience-oriented strategies including operational and planning strategies are shown in Table 2.6.

Among them, DG islanding and network reconfiguration are two widely used methods for grid load

restoration, while feasible islanding is a valid way to guarantee resilience of a MG itself via islanding

schemes. Most existing research considers DGs with black-start capabilities as main power resources

of MGs. In addition, DG islanding, network reconfiguration and demand response are mainly applied

in the corrective state or restorative state, while preventive allocation and optimal sizing belong to

preventive planning strategies that normally consider both preventive and restorative states [125].

It is worth noting that feasible islanding and vulnerability-based line tripping are two preventive

operations, which focus on how to achieve a stable islanded MG. The latter two methods tend to

consider both preventive and corrective states rather than restorative state.

According to the roles of MGs and network topologies, the application of MGs can be categorised

in four separate areas: i) MGs as virtual feeders for global resilience, ii) dynamic formation of MGs

for global resilience, iii) islanded MGs for local resilience and iv) networked MGs for local resilience,

which are shown in Figure 2.6. The solid black lines correspond to cable lines and the dotted red

lines represent information flows between central controller and MGs. Types i) and ii) regard MGs

as a type of generation resources, while types iii) and iv) mainly consider how to guarantee local load

survivability of a MG itself. Note that type iv) in Figure 2.6 only represents the centralised control

method and other control methods (e.g., decentralised control or hybrid control) are not shown
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here. A summary of literature about MGs as resilience resources for global and local resilience is

presented in Table 2.7.

MG 1 MG 3MG 2

Central 

controller

Distribution network or Transmission network 

Main grid or substation

(a)

Distribution network or Transmission network 

MG 1 MG 3MG 2

Central 

controller

Main grid or substation

(b)

MG 1 MG 3MG 2

controller

Distribution network or Transmission network 

controller controller

(c)

MG 1 MG 3MG 2

Central 

controller

Distribution network or Transmission network 

(d)

Figure 2.6: Network topologies used by four types of strategies: (a) MGs as virtual feeders for global
resilience, (b) dynamic formation of MGs for global resilience, (c) islanded MGs for local resilience
and (d) networked MGs for local resilience.

2.6.1 MGs for global resilience

In this subsection, literature adopting AC MGs to supply critical loads due to their network flex-

ibility and service reliability is presented. When using MGs as virtual feeders, the limitation of

generation resources is an important modelling factor. When several MGs are dynamically formu-

lated, formatting principles (i.e., “one MG to one DG” or “one MG to multiple DGs”) decide the

number and network structures of MGs.

MGs as virtual feeders

This type of research assumes that the structure of existing MGs remains intact during extreme

events. Limited generation resources in MGs and accurate prediction of extreme events are assumed

to mimic a realistic scenario [17]. In [14,15], service restoration strategies based on network recon-

figuration and MGs are presented to restore critical loads. Both of them ignore non-critical loads
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and operational costs (e.g., generation cost and allocation cost). In [25], both operation-oriented

and infrastructure-oriented strategies including network reconfiguration, line hardening, upgrading

energy storage size in MGs are applied to enhance resilience. There are several studies incorporat-

ing operational cost or allocation cost as part of objective functions [16, 17, 19, 62]. A post-disaster

joint restoration scheme based on MPSs and network reconfiguration is proposed in [19, 62], while

a pre-hurricane resource allocation strategy is suggested in [16] to provide proactive preparedness

against natural disasters.

Many resilience-oriented studies assume unlimited generation resources in MGs during extreme

events [20,21,24,55–58,92]. Restoration strategies based on unbalanced three-phase power flow and

network reconfiguration are considered in [24,57,58,92] and EVs are employed in [56] for resilience

enhancement, while reference [55] suggests a decentralised control method based on game theory to

improve resilience and protect customer privacy. Proactive decisions (e.g., DG scheduling, energy

reserve services and demand-side response) are made in [20, 21] in the presence of a progressing

wildfire. Nevertheless, most of the above studies cannot entirely capture the features of extreme

events. For instance, only single fault is considered in [20, 55] and no line faults are considered

in [56, 57]. Reference [21] only differentiates resilience services from reliability ones according to

service duration and ignores the difference in severity and frequency.

Overall, most of the above research assumes that MGs are intact during extreme events. How-

ever, the structure of MGs may be damaged because of the highly uncertain nature of extreme

events. Ignoring the vulnerability of a MG itself may lead to unrealistic optimisation results and

even cause more damage on the whole power system. Furthermore, MGs normally have fixed

boundaries and self-controllability because of the considerations of customer privacy, load/power

balance and frequency/voltage control. In existing literature, most research on dynamic boundaries

of MGs assumes centralised control methods, which can be unrealistic in practice. Additional work

is required to develop models based on decentralised MGs.

MG formation based on DG islanding

Technologies, such as smart switches and DGs with black-start capabilities, highlight the research

relating to the dynamical formation of MGs for global resilience. In [26], a dynamic formation

mechanism of MGs is firstly suggested to restore critical loads via distributed generators and re-

motely controlled switches. Radial constraints are incorporated into this model in [94] to reduce
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computational burden, while a master-slave control technique is proposed in [27] to control the

formation of MGs. In [18, 69, 91], both infrastructure- and operation-based preventive strategies

(e.g., pre-positioning and optimal dispatch of MPSs, line hardening, DG placement and network

reconfiguration) are considered to dynamically formulate multiple MGs, while the optimal dispatch

of MPSs based on minimum-scale MG principle and looped topologies is employed in [48] to gen-

erate MGs. The above indicated studies assume that each formulated MG can include only one

distributed generator; in other words, the number of formulated MGs is pre-determined and fixed

before optimisation. Except for [18, 48], the rest of the studies do not consider multi-period dy-

namic operation of MGs. Additionally, reference [91] assumes that a hardened line will no longer

be damaged during extreme events, which can be considered unrealistic.

The dynamic formation of MGs with more than one distributed generators is considered in [28,

45,46,54,59,60,68,90,93,96]. In [28,45,54,60,93,96], operational strategies (e.g., network reconfig-

uration, demand-side response and optimal management of DERs) are considered to dynamically

formulate MGs, while both infrastructure- and operation-oriented preventive strategies (e.g., line

hardening, DG placement and network reconfiguration) are suggested in [46, 90] to restore critical

loads. Among these, both tie switches and sectionalizing switches are considered for network recon-

figuration in [28,45,46,60,90,93]. However, in addition to [28,96], these studies belong to one-shot

decisions and ignore the dynamic behaviours of loads and power output. Furthermore, the dynamic

manner of MPS dispatch is considered in [59,68] and the consideration of repair crews helps predict

the duration of restoration process. Reference [59] considers both load survivability and restoration.

To summarise, the combination and interdependency between infrastructure-oriented strategies,

such as line hardening [46, 90] and repair crews [68], and operational strategies, such as network

reconfiguration and DG islanding [45, 93], can bring more benefits for resilience enhancement than

a single strategy type. Strategies based on dynamic formation of MGs face two basic challenges.

On the one hand, dynamic reconfiguration of power systems highly depends on their communi-

cation networks, of which the vulnerability (e.g., communication failures) during extreme events

will influence the controllability of smart switches. On the other hand, smart network reconfigu-

ration techniques require a large number of remotely controlled switches, which necessitates high

investment. Even though there are studies considering the operational cost of switches as part of

the objective function (e.g., [93]), the installation cost and maintenance cost of smart switches are

ignored. Specifically, reference [48] points that dynamic formation of MGs based on “minimum-

scale coverage” can improve the survivability of MGs because of the small modelling scale. Future
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research may focus on defining the optimal design scale of MGs (e.g., bus numbers and maximum

power capacity) for resilience purposes.

2.6.2 MGs for local resilience

After distribution networks fail to operate during extreme events, a grid-connected MG can switch

into islanded mode and provide power supply and emergency demand response for local loads [49].

Models based on different types of MGs (e.g., AC MGs, DC MGs, AC/DC hybrid MGs) and control

methods (e.g., centralised control, decentralised control and hybrid control) have been developed.

A summary of existing literature can be found in Table 2.7.

Islanding schemes for local resilience

Grid-connected mode is used to make preparations for upcoming events via battery management

and generator pre-scheduling. In [39, 42, 52, 70, 78, 79, 81, 84], optimal strategies (e.g., vulnerabil-

ity analysis, conservation voltage regulation, network reconfiguration, demand-side response, risk

analysis, power importing in advance, and optimal sizing and operation of renewable energies with

storage units) are suggested to improve the preparedness against extreme events. In [41,71,76,82],

both the feasible islanding of AC/DC hybrid MGs and load survivability are considered; neverthe-

less, these models on AC/DC hybrid MGs consider only power balance equations to control power

flows. The omission of operational constraints relating to voltage, frequency and angle variation can

lead to inaccurate solutions [98]. Much as [76], other papers assume unlimited energy supply during

islanding mode. In [30], the hierarchical control strategy of a DC MG including primary, secondary

and tertiary controls is analysed to present the merits of DC MGs on resilience enhancement.

There are several studies focusing only on the operations of islanded MGs. Proactive operational

strategies based on network reconfiguration, DG allocation, demand-side response and vulnerability

analysis are proposed in [40,61,72,77,91] to minimise load shedding, while references [29,32,33,43,73,

80,83,85,87,97] adopt corrective control actions (e.g., DG scheduling, demand-side response, energy

storage management and load shedding strategies) to maximise economic performance and load

survivability or minimise voltage and frequency deviations. Line hardening is employed in [38, 61]

to enhance system resilience. Similarly to [91], these papers assume that a hardened line will no

longer be damaged during extreme events.
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Overall, there are several research limitations on the islanding schemes of MGs. Most literature

assumes that there is unlimited energy supply during islanding mode and the occurrence time of

extreme events can be predicted. Both can be considered unrealistic. Furthermore, most literature

tends to consider an islanding period shorter than 24 hours. However, a MG may stay in islanding

mode for a more extensive period of time, because of the difficulty to remove issues and reconnect

the MG [52]. It is necessary to consider a much longer operating horizon (e.g., at least several

representative days/weeks) to verify the effectiveness of proposed resilience strategies. It is also

worth noting that AC MGs are widely used for modelling purposes, while only limited literature

considers the benefits of AC/DC hybrid MGs and DC MGs on resilience enhancement [126].

Networked MGs for local resilience

Networked MGs can be used to decrease operational cost in grid-connected mode, while the en-

ergy sharing between networked MGs reduces load shedding in islanded mode [44, 63, 127]. Cen-

tralised control methods have been widely used to manage the power flow of networked MGs [53,95].

Strategies based on centralised control (e.g., optimal energy storage sizing [64], line hardening [95],

redundancy [95], proactive resilient scheduling [53], the routing of MPSs and network reconfigura-

tion [22, 67, 74, 95]) have been employed to restore loads. The above studies assume that the time

and duration of extreme events can be accurately predicted, which is unrealistic. Frequency and

voltage control strategies of networked MGs are employed in [31,35,86,89] to enhance resilience.

Compared with centralised control, decentralised control methods may not guarantee a globally

optimal solution but can better protect customer privacy, reduce computation burden and reduce the

dependence of networked MGs on communication networks [66, 75]. Reference [88] considers both

grid-connected mode and islanded mode according to different objectives: cost minimisation, and

voltage stability and load survivability respectively. However, this paper does not consider relative

preventive strategies in grid-connected mode. References [34, 66, 75] consider only islanded mode

of networked MGs and employ operational strategies (e.g., flexible division and unification control,

risk-based and self-healing strategies) to restore loads or reduce frequency deviations. Hierarchical

control schemes are considered in [63,65] to enhance the resilience of networked MGs. Reference [3]

presents a nested energy management strategy for networked MGs to guarantee both network

resilience and customer privacy. Overall, it can be highlighted that centralised energy management

systems offer better solutions, while decentralised energy management systems lead to reduced
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operational costs and protected customer privacy. Typical network configurations of hierarchical

control and decentralised control are presented in Figure 2.7, while detailed limitations of above

control approaches can be found in Table. 2.8.

MG 1 MG 3MG 2

Central 

controller

Distribution network or Transmission network 

Local controller Local controller Local controller

(a)

MG 1 MG 3MG 2

Distribution network or Transmission network 

Local controller Local controller Local controller

Decentralised control algorithms 

for power sharing

(b)

Figure 2.7: Network MGs based on different control approaches: (a) Hierarchical control, (b)
decentralised control.

Table 2.8: Limitations of different control approaches in the context of networked MGs [3].

NO. Type Limitations

1 Centralised control
1.Raise large computational burden;
2.Fail to consider customer privacy;
3.Require expensive communication setup.

2 Decentralised control
1.Unaware of global system information;
2.Hard to reach optimum due to individual objectives.

3 Hybrid control
1.Depend on central controllers;
2.May lead to privacy issues.

Going further, most literature on networked MGs adopts AC MGs as basic units, except for

references [3, 63] that consider AC/DC hybrid MGs. Optimal strategies of networked MGs based

on DC MGs and hybrid MGs may be developed in the future. Much research cannot appropriately

capture the main features of resilience-oriented modelling. For instance, except for [66, 67, 74, 75]

(consider multiple line faults), other research assumes that the structure of networked MGs remains

intact during extreme events. Except for [3, 63, 65, 67], the rest of the papers do not consider the

contingency of interrupted interconnection between two networked MGs. Additionally, ancillary

devices introduced in [31, 35, 89] may lead to cost problems. Furthermore, operations of networked

MGs have a high requirement for communication systems so that communication failures may cause

large damage on networked MGs.



Chapter 3

Resilience-driven operation of a

hybrid AC/DC MG

3.1 Introduction

As discussed before, both centralised control and hierarchical control approaches require the involve-

ment of central controllers for energy management between MGs. This chapter aims to propose

novel mathematical models for the resilience-driven operation of networked MGs based on central

controllers. As far as the resilience-driven modelling and operations of MGs are concerned, various

techniques have recently been proposed for the resilience enhancement of traditional AC MGs fea-

turing centralised control, since research in this area is a lot more mature. On the one hand, there

is much research utilising the grid-connected mode of AC MGs to make preparations for upcoming

events via battery management or generator pre-scheduling (e.g., [52, 78, 84]). On the other hand,

there are several papers only focusing on the resilience-driven modelling and operations of AC MGs

in islanded mode ( [40, 72,77]), e.g., demand-side response.

In comparison with AC MGs, hybrid AC/DC MGs or DC MGs have the advantages to incorpo-

rate these DC sources and loads, which is becoming more crucial because of the recent widespread

of DC sources and loads [128]. In [126], future MGs are predicted to be hybrid AC/DC MGs.

However, there is only limited research focusing on the development of resilience-driven operational

strategies for AC/DC MGs or DC MGs. In [71, 76, 82], both feasible islanding and the surviv-

ability of critical loads are considered to enhance the resilience of a hybrid MG. Based on above

research, a data-driven method is suggested in [41] to estimate the impact of dynamic uncertain

43
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Figure 3.1: Schematic of the MG under consideration.

bounds on the resilient operation of hybrid MGs and a demand response program is considered to

reduce load shedding during emergency period. In [85], a robust dispatching model is developed to

obtain the robust plans in the worst scenario for a hybrid MG with the consideration of uncertain

event occurrence time. In [97], a resilience analysis framework is put forward to study the fault

ride-through capability of a DC MG against unknown cyber attacks. Note that these models on

AC/DC hybrid MGs consider only power balance equations to control power flows. The omission

of operational constraints relating to voltage, power loss and angle variation can lead to inaccurate

solutions [129]. Additionally, except for [76], the rest of the papers all assume unlimited energy

supply during islanded period.

To summarise, there is no significant research comprehensively considering main modelling de-

tails of a realistic resilience scenario, which shall definitely influence the accuracy and reality of

optimal solutions. In this chapter, an as realistic as possible resilience-based scenario is considered

for accurate optimal solutions. Within this context, limitation of generation resources, uncertain

event occurrence time and two types of contingencies, including multiple line faults and the inter-

rupted connection between two subgrids, are investigated capturing main features of extreme events

(high uncertainty and severity) and further verifying the effectiveness of the proposed operational

strategy. The distinction of critical loads and non-critical loads is also considered. Additionally, to

clearly show the influence of limited generation resources, we investigate an islanding period lasting

48 hours after extreme events.
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Figure 3.2: Schematic of the MG under consideration.

On the other hand, a comprehensive operational strategy considering both grid-connected mode

and islanded mode is developed for the resilience enhancement of an AC/DC hybrid MG. In grid-

connected mode, the objective is to minimise the operational cost and to import power from the

main grid to be prepared for upcoming events, while the primary objective in islanded mode is

to maximise load survivability. Day-ahead scheduling is used to appropriately demonstrate the

benefits of BESSs and demand shifting on resilience enhancement. A detailed AC OPF algorithm is

incorporated into the proposed model instead of a simple energy management strategy in order to

yield more accurate solutions capturing critical operating characteristics, such as voltage profiles,

active and reactive power flow, and power losses. Note that the dynamic characteristics related

to frequency and voltage deviations require the incorporation of differential equations, which is

not considered in the suggested AC OPF algorithm. The outline of the proposed resilience-driven

operation strategy is illustrated in Figure 3.1.

3.2 Problem formulation

The structure of the utilised hybrid AC/DC MG is presented in Figure 3.2. AC and DC subgrids

are linked through an interlinking converter. Both the AC and DC subgrids have a conventional

generator (e.g., diesel generators in AC side and fuel cells in DC side) and an ESS. In the AC

subgrid, a WT is installed as renewable energy resource, while a PV is used as renewable energy

resource in the DC subgrid. Note that the voltage control capabilities of inverter-based renewable

generators and storage units are not considered in the following case studies.
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3.2.1 Resilience operation mode before event occurs

Before receiving the first alert signal, the objective is to minimise operational cost, while the main

goal after the alert is to try to keep a high level of energy stored in ESS units as well as to reduce

operational cost, which is given in (3.1). It is worth noting that the duration of the preventive

stage after receiving the event warning is assumed to be deterministic (i.e., fixed duration), while

a sensitivity analysis considering different event occurrence time and duration is conducted in case

studies to capture the effect of the uncertainty surrounding event occurrence in a simple but rather

effective way. In the future, a scenario-based stochastic model can be developed to capture the

influence of uncertain event time and duration in a more realistic manner.

The operational cost includes the cost from power exchange with main grid, generation cost and

load shedding cost. The first four terms refer to generation cost and load shedding cost in AC and

DC subgrids respectively. The next term is the cost of power exchange with main grid, while the

last two terms relate to the energy storage level of ESS units in AC and DC subgrids respectively.

Because the occurrence time and duration of extreme events cannot be accurately predicted, the

MG will start being prepared after receiving the first warning. In other words, the MG will try to

keep a high energy storage level of ESS units in the whole preventive stage. Therefore, the values of

coefficients αAC and αDC shall be larger than the generation and power exchange cost. It is worth

noting that each storage unit may have a different coefficient at different time points according to

their potential contributions on load survivability and the possibility of event occurrence. The risk

preference of operators also influences the values of αAC and αDC . For instance, a large value of

α may be chosen if the load survivability during events is highly valued by the operator, while the

coefficients may have a small value if the operator has a high level of risk tolerance.

F1 =
∑

t∈T

∑

g∈NAC
g

cgP
AC
g,t +

∑

t∈T

∑

b∈LAC
bus

clsPAC,ls
b,t +

∑

t∈T

∑

g∈NDC
g

cgP
DC
g,t +

∑

t∈T

∑

b∈LAC
bus

clsP
DC,ls
b,t

+
∑

t∈T

cbP buy
t −

∑

t∈T

csP sell
t −

∑

t∈T

∑

b∈SAC
bus

αACESAC
b,t −

∑

t∈T

∑

b∈SDC
bus

αDCESDC
b,t

(3.1)

The optimisation is posed as a minimisation problem, subject to the constraints represented by

(3.2)-(3.21). Active and reactive power balance equations at each bus b are shown in (3.2) and

(3.3), while the classical equations pertaining to power flow problems are presented in (3.4) and

(3.5). Equation (3.6) shows the power buying and power selling cannot occur simultaneously and
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equation (3.7) corresponds to the power exchange limit between the MG and main grid.

P buy
t − P sell

t + P d
b,t − P c

b,t +
∑

g∈NGb

Pg,t + P ls
b,t = P ex

b,t + P l
b,t + P ic

t , ∀t ∈ T, ∀b ∈ Nbus (3.2)

∑

g∈NGb

Qg,t +Qls
b,t = Qex

b,t +Ql
b,t +Qic

t , ∀t ∈ T, ∀b ∈ Nbus (3.3)

P ex
b,t =

∑

p∈Nbus

Vb,tVp,t(Gbpcosδbp,t +Bbpsinδbp,t), ∀t ∈ T, ∀b ∈ Nbus (3.4)

Qex
b,t =

∑

p∈Nbus

Vb,t, Vp,t(Gbpsinδbp,t −Bbpcosδbp,t), ∀t ∈ T, ∀b ∈ Nbus (3.5)

P buy
t · P sell

t = 0, ∀t ∈ T (3.6)

P buy
t , P sell

t ≤ Pmax, ∀t ∈ T (3.7)

Note that P ic
t and Qic

t in (3.2) and (3.3) represent the power flow through the interlinking converter

connecting AC and DC grids. They are determined by (3.8) based on a droop control strategy,

while power exchange limits can be found in (3.9). ∆e represents the difference between the fre-

quency and DC voltage, which can be found in (3.10). A normalisation procedure called ‘feature

scaling’ in statistics is utilised to bring the measurements in a per unit basis as described by (3.11),

where ωmax, ωmin and V max
DC , V min

DC correspond to the frequency and DC voltage operational limits,

respectively. Therefore, the given dataset in values are converted within the range of [-1,1] to allow

comparison of ω̂ and V̂DC and then calculate ∆e. This procedure effectively couples DC voltage

and AC frequency and eventually obtains the resulting power sharing. More details about the im-

plemented droop control strategy can be found in [129,130]. However, it is worth noting that both

active and reactive power in the employed droop control strategy are used in response to the same

deviation ∆e, which may be a lack of flexibility. In this context, more flexible control strategies can

be utilised for more effective power sharing between AC and DC subgrids.

P ic = −
1

γp
∆e, Qic = −

1

γq
∆e (3.8)

| Pic |≤ P lim
ic , | Qic |≤ Qlim

ic (3.9)

∆e = ω̂ − V̂DC (3.10)

ω̂ =
2 · ω − (ωmax + ωmin)

ωmax − ωmin
, V̂DC =

2 · VDC − (V max
DC + V min

DC )

V max
DC − V min

DC

(3.11)
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Equations (3.12)-(3.14) represent the operational constraints regarding voltage limits, line capac-

ities and angle variation, while equations (3.15)-(3.16) correspond to the power generation limit

of conventional generators. Given that a detailed AC OPF is employed to model a hybrid MG

capturing voltage and frequency, ramp-up and ramp-down constraints have not been considered as

no significant changes of generation would be allowed within one time interval.

V min ≤ Vb,t ≤ V max, ∀t ∈ T, ∀b ∈ Nbus (3.12)

Si,t ≤ Slim
i , ∀t ∈ T, ∀i ∈ Nbr (3.13)

|δb,t − δp,t| ≤ δlim, ∀t ∈ T, ∀b, p ∈ Nbus (3.14)

Pmin
g ≤ Pg,t ≤ Pmax

g , ∀t ∈ T, ∀g ∈ Ng (3.15)

Qmin
g ≤ Qg,t ≤ Qmax

g , ∀t ∈ T, ∀g ∈ Ng (3.16)

Inequalities (3.17) and (3.18) denote the limits for the charging and discharging power of ESSs, while

equation (3.19) ensures that charging and discharging cannot occur simultaneously. Equation (3.20)

gives the limits for minimum and maximum energy storage, which can also be presented via the

state-of-charge (SOC) level. The dependence of energy storage level at each time interval on the

previous time step is introduced in equation (3.21). Note that these constraints only capture the

features of the AC subgrid; therefore, equations (3.12), (3.13), (3.15) and (3.17)-(3.21) are duplicated

in this model and accordingly modified to account for the DC subgrid. In other words, to simplify

the model formulation, the DC subgrid model developed in this chapter follows similar principles as

the AC subgrid without extra control strategies, where the detailed formulation of the DC subgrid

can be found in [131].

0 ≤ P c
b,t ≤ Pmax

b , ∀t ∈ T, ∀b ∈ Sbus (3.17)

0 ≤ P d
b,t ≤ Pmax

b , ∀t ∈ T, ∀b ∈ Sbus (3.18)

P c
b,t · P

d
b,t = 0, ∀t ∈ T, ∀b ∈ Sbus (3.19)

ESmin
b ≤ ESb,t ≤ ESmax

b , ∀t ∈ T, ∀b ∈ Sbus (3.20)

ESb,t = ESb,t−1 + (ηcP c
b,t − ηdP d

b,t)∆t, ∀t ∈ T − {1}, ∀b ∈ Sbus (3.21)
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3.2.2 Emergency operation mode during the event

In emergency mode, it is assumed that the hybrid MG will be disconnected from the main grid and

severe line outages can happen inside the MG. However, note that it is also realistic to assume that

MGs stay connected with the main grid during extreme events (e.g., supporting the critical load

restoration in the main grid), which is not considered in this thesis. The objective for minimising

operational cost would translate into maximisation of load survivability due to the emergency situ-

ation, given in (3.22). Note that load curtailment is coupled with a significantly high value of lost

cost cls.

F2 =
∑

t∈T

∑

g∈NAC
g

cgP
AC
g,t +

∑

t∈T

∑

b∈LAC
bus

clsPAC,ls
b,t +

∑

t∈T

∑

g∈NDC
g

cgP
DC
g,t +

∑

t∈T

∑

b∈LAC
bus

clsP
DC,ls
b,t (3.22)

In addition to equation (3.2), other constraints in this mode are same as those in resilience operation

mode. Because power exchange is interrupted, the active power balance equation is modified as

equation (3.23). Furthermore, it is assumed that the MG has limited generation resources in islanded

mode, which accounts for equations (3.24) and (3.25). Note that constraints relating to limited

generation resources also need to be duplicated and modified for the DC subgrid.

P d
b,t − P c

b,t +
∑

g∈NGb

Pg,t + P ls
b,t = P ex

b,t + P l
b,t + P ic

t , ∀t ∈ T, ∀b ∈ Nbus (3.23)

GSg,t = GSg,t−1 − Pg,t∆t, ∀t ∈ Te/{1}, ∀g ∈ Ng (3.24)

GSmin
g ≤ GSb,t ≤ GSIni

g , ∀t ∈ T, ∀g ∈ Ng (3.25)

Equations (3.26)-(3.28) correspond to the demand shift response in AC subgrid. As described in

constraint (3.26), the ratio βf (0 ≤ βf ≤ 1) represents the maximum percentage of load type f for

load shift and Tf is the acceptable shifting horizon for load type f . βf = 0 implies that load f

does not exhibit any time-shifting flexibility, while βf = 1 implies that the whole demand can be

shifted in acceptable time horizon. Constraint (3.27) ensures that load shifting is energy neutral

for any types of loads within the operating horizon and load shifting does not involve energy losses.

In equation (3.28), P l,base
b,t means the total base load without load shifting and P l

b,t exhibits the

total load of bus b at time point t after load shifting. The constraints related to limited generation

resources and demand shift also need to be duplicated and modified for the DC subgrid, i.e., with
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the DC notations.

− βfP
l
b,f,t ≤ P lsh

b,f,t ≤ βfP
l
b,f,t, ∀t ∈ Tf , ∀f ∈ NL, ∀b ∈ Nbus (3.26)

∑

t∈Tf

P lsh
b,f,t = 0, ∀f ∈ NL, ∀b ∈ Nbus (3.27)

P l
b,t = P l,base

b,t +
∑

f∈NL

P lsh
b,f,t, ∀t ∈ Tf , ∀f ∈ NL, ∀b ∈ Nbus (3.28)

3.2.3 Resilience index

A resilience index (RI) (3.29) is used to evaluate the effects of MGs on load survivability, which

corresponds to the percentage of total curtailed loads before infrastructure restoration starts (e.g.,

dispatch of repair crews). This metric will be 0 when a MG can entirely restore all the loads within

this period, while a bigger RI is coupled with worse performance of MGs. In this chapter, the

original performance R0(t) (i.e., pre-disturbance state) and the real-time performance R(t) (i.e.,

performance across the event evolution) consider both critical loads and non-critical loads. As

such, R(t) can be calculated by the performance of critical loads Rc(t) and non-critical loads Rn(t),

which are multiplied by different weighting factors wc and wn respectively. Note that selection of

the weighting factors wc and wn indicates the significance of critical loads and non-critical loads

(wc > wn).

RI =

∫ T
0 (R0(t)−R(t))

∫ T
0 (R0(t))

, where R0(t) = wcRc
0(t) + wnRn

0 (t), R(t) = wcRc(t) + wnRn(t). (3.29)

3.3 Case studies

We assume that the first warning occurs at t = 0, and then the hybrid MG switches into resilience

operation mode to import power from main grid and be prepared. When the extreme event occurs,

the MG switches into islanded mode (the occurring time remains uncertain) to protect itself for at

least two days. To appropriately present the advantages of ESS units on resilience enhancement, the

day-ahead scheduling method is employed to run the AC OPF algorithm to make decisions about

power output of generators, power exchange and battery energy management. WT and PV devices

are considered as non-dispatchable generation resources and have a capacity of 100 kW and 50 kW

respectively, while wind power, solar power and load profiles are extracted from [129] and can be
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found in Figure 3.3. The parameters associated with lines, generators and ESSs are specified in

Table 3.1-3.3 respectively.
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Figure 3.3: (a) Load profiles, (b) Wind profiles and PV profiles.

It is more realistic to assume that not all loads would be critical, hence this simulation extends

the model by introducing discrimination of loads into critical and non-critical. For example, in a

building-scale MG the critical loads could be lights and lift motors and the non-critical loads could

be kitchen and toilet appliances [129]. Similar to [71], it is assumed that loads L3 in bus 3 of AC

subgrid (around 30% of total loads) and L7 in bus 7 of DC subgrid (around 50% of total loads)

are critical loads with high curtailment cost, while the rest of the loads are non-critical loads with

relatively low curtailment cost. It is worth noting that there is no standard for the ratio of critical

and non-critical loads in a power network, and the ratio and location of critical loads will affect the

optimal scheduling results.

3.3.1 Simulation I - Effect of preventive power importing

We assume there are 15000 kWh energy reserve in AC subgrid and 6000 kWh energy reserve in DC

subgrid. Note that, according to this assumption, the AC subgrid has enough energy to support

itself for a long period, while the DC subgrid has a large risk of energy shortage. In the first
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Table 3.1: Line data corresponding to the hybrid AC/DC MG of Figure 2

Line between
bus i → j

Reactance
(Xli[p.u.])

Resistance
(Rli[p.u.])

Capacitance
(Cli[p.u.])

Maximum
flow [kVA]

0 → 1 0.200 0.100 0.040 100
0 → 3 0.200 0.050 0.040 100
0 → 4 0.300 0.080 0.060 100
1 → 2 0.250 0.050 0.060 60
1 → 3 0.100 0.050 0.020 60
1 → 4 0.300 0.100 0.040 60
1 → 5 0.200 0.070 0.050 60
2 → 4 0.260 0.120 0.050 60
2 → 5 0.100 0.020 0.020 60
3 → 4 0.400 0.200 0.080 60
4 → 5 0.300 0.100 0.060 60
6 → 7 - 1.040 - 120
6 → 8 - 1.040 - 120

Table 3.2: Characteristics of generators in the hybrid MG

Type Subgrid Min-Max Capacity (kW)

Diesel generator AC subgrid 0-150
Fuel cell DC subgrid 0-150

Table 3.3: Characteristics of ESS units in the hybrid MG

Type Subgrid
Min-Max
SOC (kWh)

Power
capacity (kW)

Initial
SOC (kWh)

ESS AC subgrid 0-200 50 100
ESS DC subgrid 0-2000 100 100
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investigated scenario, the hybrid MG needs to be prepared at every time point (from t = 0h to t

= 11h) in the preventive stage. Note that a sensitivity analysis on different event occurrence time

will be shown later to capture the influence of uncertain nature of an extreme event. A 48-hour

islanding period is considered as the emergency situation to appropriately present the advantages of

the proposed resilience strategy and the impacts of energy shortage. Furthermore, a strategy which

does not consider preventive power importing (i.e., base case without resilience enhancement) is

simulated for comparison. The objective function of the base case ignores the last two terms in

equation (3.1), which means that no preventive power importing strategy is applied. Constraints in

the base case are the same as those in the resilience case.

Figure 3.4(a) shows that the resilience strategy guarantees the survivability of critical loads in

the first 24-hour islanding period, while the strategy without resilience causes 144.58 kWh load

shedding of critical loads. Additionally, load shedding of non-critical loads is reduced from 422.43

kWh to 273.82 kWh. Figure 3.4(b) shows that load shedding occurs in both cases when the hybrid

MG switches into islanded mode, because of the interrupted connection between the MG and main

grid. Additionally, the proposed resilience strategy results in less load shedding in the first 24-hour

islanded period than the strategy without resilience. The reason is that more energy is stored in ESS

units through power importing in preventive stage. Figure 3.5(a)-3.5(b) indicate that storage units

in both AC and DC sides charge in the preventive stage and keep a high state of energy. As one of the

most common proactive ways to enhance resilience, the advantages of preventive power importing

have been appropriately presented. However, in the second 24-hour period, both cases yield large

load shedding, because of the deficiency of generation resources in DC subgrid. Figure 3.4(b) also

illustrates that the proposed strategy only has a positive effect on load survivability in the first 24

hours of islanded mode. The reason is that imported power in the proposed strategy is not enough to

support a longer islanding period, because of the limitation of battery capacity and the duration of

preventive stage. The further load shedding primarily demonstrates the impact of energy deficiency

on resilience.

With respect to the suggested resilience index, Table 3.4 shows that, the proposed strategy

obtains a smaller RI value (0.0117) in the first 24 hours than the strategy without resilience (0.0427),

while the same RI value is achieved in both cases during the last 24 hours because of the energy

deficiency in DC subgrid. To summarise, with the consideration of preventive power importing, the

resilience of the AC/DC hybrid MG (RI value from 0.1184 to 0.1028) is enhanced.
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Figure 3.4: Simulation I: (a) Energy not served [kWh], (b) Percentage of survived load.
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Figure 3.5: Simulation I: (a) Battery storage change in AC subgrid, (b) Battery storage change in
DC subgrid.
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Table 3.4: Resilience index in Simulation I

No resilience With resilience

RI (12-59h) 0.1184 0.1028
RI (12-35h) 0.0427 0.0117
RI (36-59h) 0.1940 0.1940

Furthermore, as depicted in Figure 3.4(a), both cases have a great deal of critical load shedding

in DC subgrid in the second 24-hour islanding period. Note that the critical load shedding takes

approximately 50% of total load shedding in the last 24 hours and all curtailed loads are from DC

subgrid. In other words, the discrimination of critical and non-critical loads has no significant effects

on reducing critical load shedding in the last 24 hours. A potential explanation to this would be the
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Figure 3.6: Simulation I: (a) Bus voltage in DC subgrid with resilience, (b) Bus voltage in DC
subgrid without resilience.

fact that DC voltage in bus 8 (connecting non-critical loads) is reaching its minimum allowed value

(i.e., 0.8 p.u.) avoiding more non-critical loads in bus 8 to be curtailed; this is illustrated in Figure

3.6. Because of the voltage constraints, the hybrid MG has to curtail critical loads to ensure power

balance. Note that voltage at bus 6 connected with a conventional generator is also down to the

minimum value, which means no more loads can be supplied in this period. This is an important

aspect of the proposed model, as typical energy management systems found in the literature would

neglect the influence of voltage and obtain less critical load shedding; this would lead to violation of

technical requirements. Even though more load shedding is caused through the proposed AC OPF
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algorithm, the result ensures an intact power system with no violation of technical requirements;

this would be increasingly important in larger-scale MGs, as more and more MGs are embedded

into distribution networks.

Note that we also assume that the event may happen at any time point in the preventive stage

because of its uncertain nature. In this scenario, the hybrid MG needs to be prepared at every time

point from receiving the first warning about an event to event occurrence. To entirely present the

effects of preventive power importing on resilience enhancement, a sensitivity analysis on different

event occurrence time is done and the results can be seen as follows. Figure 3.7 shows that the

case with resilience obtained less load shedding than the case without resilience for all the different

time points of event occurrence. It can also be concluded that a longer preventive stage allows more

power injection and achieves more resilience.
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Figure 3.7: Simulation I: Sensitivity analysis on different event occurrence time points.

3.3.2 Simulation II - Effect of demand shifting

Demand shifting may be one of the most effective and economic ways to reduce load shedding

during extreme events, compared with other strategies (such as MPSs or EVs). In this subsection,

the effects of demand shifting on reducing load shedding and enhancing resilience are appropriately

investigated. Preventive power importing and discrimination of loads into critical and non-critical

are also considered. Note that the effect of limited generation resources has already been illustrated

in Simulation I, so a 24-hour islanding period is considered to simplify this case. Additionally, we

assume that shiftable loads can be shifted across the whole scheduling horizon.

Figure 3.8(a) shows that non-critical load shedding is gradually reduced as the percentage of

shiftable loads increases; for clarity, no critical load shedding is caused when demand shifting is

applied. However, when the percentage of shiftable loads is over 15%, demand shifting has no

effects on load survivability. Figure 3.8(b) shows the change of resilience index RI, which is reduced
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with the increase of the percentage of shiftable loads. When the percentage of shiftable loads is

over 15%, resilience index RI reaches the minimum value (0.0054).
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Figure 3.8: Simulation II: (a) Energy not served [kWh] for non-critical loads under different per-
centage of shiftable loads, (b) Change of RI with the percentage of shiftable loads.

3.3.3 Simulation III - Impact of contingencies

Most existing literature assumes that the structure of an islanded MG is intact during extreme

events. However, a MG can be damaged because of the highly uncertain nature of extreme events.

To account for such cases, two types of contingencies including multiple line faults (contingency

1) and interrupted connection between AC and DC subgrids (contingency 2) are considered here

to appropriately mimic a realistic scenario and further highlight the advantages of the proposed

resilience strategy. Both preventive power importing and demand shifting (15% shiftable loads)

are considered. As far as multiple line faults are concerned, it is assumed that the line between

bus 3 and bus 4 and the line between bus 4 and bus 5 are damaged during the investigated event.

Figure 3.9(a) presents that the resilience strategy still obtains less load shedding than a strategy

without resilience, while the proposed strategy successfully protects critical loads in the first 24 hours

after extreme events. Tab. 3.5 shows that the resilience strategy also obtains a lower resilience index

RI (0.0056) than a strategy without resilience (0.0431).
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In the simulated case, the power transfer from the AC subgrid to the DC subgrid supports the

latter to reduce its load shedding. However, this connection can be interrupted during extreme

events, as is the case in this simulation. Specifically, an interruption between the two subgrids

has been modelled for 10 hours. Figure 3.9(b) demonstrates that the proposed resilience strategy

obtains much less critical load shedding (from 340.62 kWh to 68.37 kWh) and total load shedding

(from 729.64 kWh to 336.09 kWh) than a strategy without resilience in the first 24 hour islanding

period. Bus voltage changes in both cases are shown in Figure 3.10. When the connection between

the AC and DC subgrids is interrupted, DC voltages in all three buses are reduced and particularly

bus 6 and bus 8 are down to the minimum value; see red circles on Figure 3.10 indicating DC voltage

reaching its minimum limit.

Table 3.5 shows that the resilience strategy also obtains a lower resilience index RI (0.0210) than

a strategy without resilience (0.0747), because of the consideration of preventive power importing

and demand shifting. Even with the consideration of contingencies, the advantages of the proposed

strategy are clearly shown with these results.
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Figure 3.9: Simulation III: (a) Energy not served [kWh] under multiple line faults, (b) Energy not
served [kWh] under interrupted connection.
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Figure 3.10: Simulation III: (a) Bus voltage in DC subgrid under interrupted connection [with
resilience], (b) Bus voltage in DC subgrid under interrupted connection [without resilience].

3.4 Cost analysis

Extensive simulations considering different case studies have been presented to verify the effective-

ness of the proposed resilience strategy. In all simulations, the proposed resilience strategy obtains

better solutions (lower load shedding and a better RI value) than a strategy without resilience. In

simulations I-III, the proposed resilience strategy successfully guarantees the survivability of critical

loads in the first 24-hour period of the scheduling horizon. Table 3.6 shows that, even though power

importing brings slightly higher operation cost in preventive stage, it is worth employing this strat-

egy for resilience purposes, as load survivability is more important than economical profits during

emergency situations; of course this is appropriately reflected in the total operation cost. It can be

deducted that the proposed strategy would become more economical if the event occurrence time

is accurately predicted, because it only needs to improve the storage level of ESSs in one specific

time point rather than the whole preventive stage. Table 3.6 also shows that demand shifting is an

effective way to balance load and power and reduce load shedding. With the increase of the per-

centage of shiftable loads, the total operational cost is gradually reduced and the generation cost of

conventional generators is slightly increased, which means that the energy has been more effectively

used for load survivability. Generally, the cost analysis presented in Table 3.6 is consistent with the
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results for resilience index shown in previous sections.

Table 3.5: Resilience index in Simulation III

No resilience With resilience

24h-RI (line faults) 0.0431 0.0056
24h-RI (interrupted connection) 0.0747 0.0210

Table 3.6: Comparison of costs between simulations I-III

Preventive
cost (£)

Generation
cost (£)

Shedding
cost (£)

Total
cost (£)

S1 - Base case
(without resilience)

423.16 943.18 50037.5 51403.84

S1 - Resilience case
(no load shifting)

496.43 921.40 13691.40 15109.23

S2 - Resilience
(5% shiftable loads)

496.43 933.42 9684.80 11114.65

S2 - Resilience
(10% shiftable loads)

496.43 941.50 7022.10 8190.03

S2 - Resilience
(15% shiftable loads)

496.43 943.52 6345.23 7785.18

S3 - Resilience
and contingency 1

496.43 943.52 6609.67 8049.62



Chapter 4

A hierarchical control approach for

networked MGs

4.1 Introduction

Recently, much research has focused on the benefits of networked MGs on resilience enhancement.

Energy sharing between networked MGs is an effective way to reduce load shedding [44, 127]. In

comparison with a single MG, networked MGs can provide operational flexibility and enhance

resilience [132]. Centralised control, distributed control and hierarchical control are three basic

approaches to operate networked MGs. Planning and operation strategies based on centralised

control have been widely developed to enhance the resilience of networked MGs (e.g., [67,74,95,133].

However, each MG normally has fixed boundaries and self-controllability due to customer privacy.

The requirement of centralised control for high information sharing among MGs may introduce

security problems.

A detailed survey about previous studies on networked MGs can be found in Table 4.1. It

is shown that there is no significant amount of literature considering both networked MGs and

mobile storage units. Additionally, most papers utilise linearised OPF or EMS to model power

systems, which lead to inaccurate solutions [134]. In fact, only one reference ( [74]) considers the

utilisation of the entire AC OPF; nevertheless, this paper employs centralised control method for

MG operation, which leads to large computing burden (the paper only considers a 2-hour scheduling

horizon to reduce computing time). Furthermore, most papers tend to utilise radial networks for case

studies. However, meshed networks may guarantee a higher resilience level than radial networks,

61
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when extreme events happen; needless to say that meshed networks are common in power systems

across the globe. In this chapter, a hierarchical control approach incorporating uncertainties and

contingencies based on a detailed AC OPF formulation is developed to model networked MGs, while

both static storage units (e.g., batteries) and mobile storage units (e.g., EVs) are employed for load

restoration.

4.2 Operation of networked MGs

Figure 4.1 illustrates that three MGs are connected with each other and are controlled by a central

controller and multiple local controllers, where the central controller will only make decisions on the

power exchange among MGs. There is no connection between the main grid and MGs during extreme

events; nevertheless, a MG can utilise tie-lines or smart switches to be connected and exchange

power with nearby MGs. The main task of MG operation during extreme events is to maintain the

continuous supply of critical loads, reduce load shedding [15] or maximise the cumulative service

time of MGs to loads [14]. As such, the final objective of each MG local controller in the network is

to minimise load shedding cost including critical and non-critical load shedding, which can be found

in (4.1). Multiple scenarios are simulated via stochastic programming to capture the uncertainties

with renewable energy sources and loads and ensure the effectiveness of the proposed resilience

strategy.

F =
∑

s∈S

ps
∑

t∈T

∑

b∈Lbus

clsP ls
b,t,s (4.1)

MG 1 MG 3MG 2

Central 
controller

Distribution network or Transmission network 

Local controller Local controller Local controller

Figure 4.1: Networked MGs based on hierarchical control.

A flowchart of the proposed resilience enhancement strategy based on hierarchical control and
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EVs can be found in Figure 4.2. During an extreme event, each MG switches into islanded mode

and runs its AC OPF algorithm via local controller to calculate their power surplus or power

shortage for the next scheduling horizon (e.g., 24 hours). Voltage limitations and potential power

loss through power flow are considered in the utilised AC OPF. The results will be reported to the

central controller, which makes final decisions on the power exchange among MGs and then returns

these decisions to each MG respectively. According to these decisions, each MG employs once again

its local AC OPF algorithm (capturing EV routing) to eventually schedule its generation resources

ensuring load survivability. Note that EVs are only used as back-up resources at the third stage due

to potential privacy concerns. In other words, EV fleets will be employed for resilience enhancement

only when there still exists load shedding at the third stage.

Going further, as suggested in [16,59], the proposed stochastic hierarchical control approach can

choose to utilise utility-owned EV units for resilience enhancement. Note that EVs have been used

for load restoration purposes; this extends to both research applications and real-world examples

[16, 59]. Furthermore, it would be interesting to discuss the possibilities of utilising privately-

owned EVs for resilience enhancement. Extreme events are characterised by high impact and low

probability. The main task during extreme events is to maintain the continuity of supply to critical

loads. In this context, resilient responses against extreme events may require coordinated efforts of

different infrastructures and organizations. Thus, the utility may be able to obtain the temporary

authority needed to use even privately-owned EVs for load restoration [59].

4.2.1 Hierarchical control for power sharing

After MGs switch into islanded mode, load shedding may be caused because of the loss of power

support from the main grid and the potential limitation of available generation resources. To

minimise load shedding, a hierarchical control approach is employed to make decisions on power

exchange among MGs.

Stage 1 - calculate power shortage or power surplus

In the first stage, every MG runs AC OPF algorithm in the stand-alone condition and calculates

power shortage or power surplus via a day-ahead scheduling method. These signals are sent to the

central controller. The local objective function for each MG at stage 1 is given by (4.2), where

the first two terms are related to the cost for power surplus and power shortage and the last term
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Islanded MGs

MG day-ahead scheduling

Central controller scheduling

MG day-ahead re-scheduling with EVs

Event occurs

Event ends

Done

Report power surplus/shortage

Return power decisions to each MG
Stage 2

Stage 3

Stage 1

Yes
No

Networked MGs with power sharing

Figure 4.2: The proposed resilience strategy based on hierarchical control and EVs.

corresponds to the potential load shedding cost under different scenarios. Note that the process

of calculating power shortage/surplus for each MG has been formulated as a stochastic problem in

which decisions are made via a set of scenarios [138]. Variables of both here-and-now and wait-and-

see type are included in equation (4.2), where variables on power exchange (i.e., the first two terms)

are regarded as here-and-now decision variables and the others (e.g., load shedding or power output

of generators) are wait-and-see variables depending on the realisation of each scenario.

F1 =
∑

t∈T

cshoP sho
t −

∑

t∈T

csurP sur
t +

∑

s∈S

ps
∑

t∈T

∑

b∈Lbus

clsP ls
b,t,s (4.2)

The optimisation is posed as a minimisation problem, subject to typical AC OPF constraints.

The active power balance equation at the exchange bus b is shown in (4.3), while the reactive

power balance equation is shown in (4.4). Classical equations pertaining to power flow problems are

presented in (4.5) and (4.6). Equation (4.7) shows that power shortage and power surplus cannot

occur simultaneously, while equation (4.8) corresponds to the power exchange limit between the MG

and nearby MGs. Note that Tmax
ij means the tie-line capacity between two MGs (e.g., MG i and

MG j). Furthermore, extreme events may cause potential damage on energy supply chains, such

as gas networks and fuel networks, and therefore generation resources (e.g., fuel reserve) within one
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MG may be limited [15]. It is, therefore, reasonable to assume that each MG has limited generation

resources during extreme events, which accounts for equations (4.9) and (4.10). GSIni
g corresponds

to the initial energy reserve of a MG when an event occurs and generator g will fail to operate when

GSIni
g reaches its minimum value GSmin

g . ESS-related constraints and operational constraints on

voltage limit, line capacity, angle and generator limits are all included into the model.

P sho
t − P sur

t + P d
b,t,s − P c

b,t,s + P ls
b,t,s +

∑

g∈NGb

Pg,t,s = P ex
b,t,s + P l

b,t,s, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (4.3)

∑

g∈NGb

Qg,t,s +Qls
b,t,s = Qex

b,t,s +Ql
b,t,s, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (4.4)

P ex
b,t,s =

∑

p∈Nbus

Vb,t,sVp,t,s(Gbpcosδbp,t,s +Bbpsinδbp,t,s), ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (4.5)

Qex
b,t,s =

∑

p∈Nbus

Vb,t,sVp,t,s(Gbpsinδbp,t,s −Bbpcosδbp,t,s), ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (4.6)

Psho,t · Psur,t = 0, ∀t ∈ T (4.7)

Psho,t, Psur,t ≤ Tmax
ij , ∀t ∈ T (4.8)

GSg,t,s = GSg,t−1,s − Pg,t,s∆t ∀t ∈ T − {1}, ∀g ∈ Ng (4.9)

GSmin
g ≤ GSb,t,s ≤ GSIni

g , ∀t ∈ T, ∀g ∈ Ng, ∀s ∈ S (4.10)

Stage 2 - make decisions on power exchange

In the second stage, the central controller makes decisions about the power exchange between MGs

and then sends these decisions back to the local controller of each MG. The objective function of

the central controller is captured in (4.11), which aims to minimise the total power shortage of

networked MGs. Note that there exists a possibility that not every MG can get enough power to

cover its shortage. In other words, load shedding may still exist after the power exchange between

MGs.

F2 =
∑

t∈T

∑

i∈M

cshoPfsho(i, t) (4.11)

The constraints of the second stage can be found in equations (4.12)-(4.16). Among these, equa-

tion (4.12) refers to the power balance, while constraints (4.13) and (4.14) refer to the limitations of

extra generation and final power shortage. P buy
ij,t and P sell

ij,t correspond to active power bought and
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sold from MG j to MG i at time t respectively. Constraint (4.15) corresponds to the power exchange

limitation of tie-lines and constraint (4.16) exhibits that power buying and power selling between

MGs cannot occur simultaneously, where Tmax
ij represents the tie-line capacity between MG i and

MG j.

P fsur
i,t +

∑

j∈M/i

(P buy
ij,t − P sell

ij,t ) = P sho
i,t − P fsho

i,t (4.12)

0 ≤ P fsur
i,t ≤ P sur

i,t , ∀t ∈ T, ∀i ∈M (4.13)

0 ≤ P fsho
i,t ≤ P sho

i,t , ∀t ∈ T, ∀i ∈M (4.14)

P buy
ij,t + P sell

ij,t ≤ Tmax
ij , ∀t ∈ T, ∀i, j ∈M (4.15)

P buy
ij,t · P

sell
ij,t = 0, ∀t ∈ T, ∀i, j ∈M (4.16)

4.2.2 Stage 3 - Re-scheduling with EVs

In the third stage, each MG receives the decisions on power exchange and runs its own AC OPF again

to obtain optimal solutions that ensure the decisions obtained by the central controller are respected,

while mobile EV fleets are also incorporated into the model to tackle potential contingencies and

ensure load survivability. Note that EVs are only allowed to move inside one MG, as typically MGs

have fixed boundaries and self-controllability due to customer privacy concerns [135]. The objective

function of each MG at stage 3 can be found in (4.1), which corresponds to minimise total load

shedding under different scenarios. The active power balance in the exchange bus b is replaced by

equation (4.17), where the first two terms correspond to power exchange between MG i and other

connected MGs, followed by the charging/discharging patterns of batteries and EVs. The rest of

the terms are as described earlier. Constraints (4.5)-(4.6) and (4.9)-(4.10) are also considered in

this stage.

∑

j∈M/i

(P buy
ij,t − P sell

ij,t ) + P d
b,t,s − P c

b,t,s +
∑

k∈Nev

(P ev,d
b,k,t,s − P ev,c

b,k,t,s)+

∑

g∈NGb

Pg,t,s + P ls
b,t,s = P ex

b,t,s + P l
b,t,s, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S

(4.17)

EV-related constraints are shown in equations (4.18)-(4.24). To mimic a realistic situation, EV

scheduling horizon is represented by Tev, which may be different from the MG scheduling horizon

T . At the end of the EV scheduling horizon, the storage level of EV fleets should be over or
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equal to a target value to make sure that EVs can continue being utilised by their owners for

sufficient amount of time after extreme events, which is appropriately demonstrated by equation

(4.24). Additionally, it is assumed that utilised EVs have bi-directionality capabilities and can

move between different buses within each MG. Inequalities (4.18) and (4.19) refer to the limits of

charging and discharging power for EV fleet k, where P ev,c
b,k,t,s and P ev,d

b,k,t,s correspond to charging

and discharging behaviors of EV fleet k in bus b at time t under scenario s respectively. Integer

variable ub,k,t,s = 0 means that the EV fleet k does not connect with bus b at time t under scenario

s and vice versa, while inequality (4.20) represents that EV fleet k can only connect with one bus

b at time t. Constraint (4.21) corresponds to the transportation of EV fleet k within a MG, where

T trl
bp represents the travelling time of the EV fleet k from bus b to bus p [18]. Inequality (4.22)

gives the limits with minimum energy storage and maximum energy storage of EV fleet k, while

constraint (4.23) introduces the dependence of energy storage level at each time interval on the

previous time step. Note that, due to the small scale of the MG and the assumption of EV fleets,

the power consumption of EVs on the road is not considered, while one power loss term can also be

added in constraint (4.23), as suggested in [59,139].

The incorporation of technical constraints (e.g., (4.5)-(4.6)) and EV routing makes the model

become a mixed-integer non-linear programming (MINLP) problem, which is normally difficult to

solve with the consideration of time-coupled constraints. However, the suggested model is based

on a hierarchical control approach and the model formulation of each MG at stage 3 can be solved

via a distributed manner, which largely reduces the computation burden. As such, the suggested

model can be solved by commercial solvers, such as BONMIN and DICOPT [140].

0 ≤ P ev,c
b,k,t,s ≤ ub,k,t,s · P

max
k , ∀b ∈ Nbus, ∀k ∈ Nev, ∀s ∈ S (4.18)

0 ≤ P ev,d
b,k,t,s ≤ ub,k,t,s · P

max
k , ∀b ∈ Nbus, ∀k ∈ Nev, ∀s ∈ S (4.19)

∑

b∈Nbus

ub,k,t,s ≤ 1, ∀t ∈ Tev, ∀k ∈ Nev, ∀s ∈ S (4.20)

ub,k,t,s − ub,k,t+1,s ≤ 1− up,k,t+h,s, ∀t ∈ Tev − {1}, ∀k ∈ Nev,

∀b 6= p ∈ Nbus, ∀h ∈ [1, ...,min(T trl
bp , Tev − t)], ∀s ∈ S

(4.21)

EV min
k ≤ EVk,t,s ≤ EV max

k , ∀t ∈ Tev, ∀k ∈ Nev, ∀s ∈ S (4.22)
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EVk,t,s = EVk,t−1,s+(ηc
∑

b∈Nbus

P ev,c
b,k,t,s−η

d
∑

b∈Nbus

P ev,d
b,k,t,s)∆t, ∀t ∈ Tev−{1}, ∀k ∈ Nev, ∀s ∈ S (4.23)

EV (k, Tev, s) ≥ EV tar
k , ∀k ∈ Nev, ∀s ∈ S (4.24)

4.2.3 Uncertainty modelling

Uncertainties relating to renewable energy sources and load profiles shall be considered to capture

realistic fluctuations and output more realistic results. Firstly, this chapter utilises Monte-Carlo

simulation to produce a large number of scenarios (e.g., 1000) initially based on a normal distribution

function with 5% and 3% errors in PVs and load profiles respectively [138]. On one hand, it is

worth noting that the scenario number shall be large enough to capture the fluctuating nature of

renewable energy resources and load profiles; on the other hand, the distribution function is only

used for scenario generation, while other distribution functions (e.g., Beta distributions) can also

be employed for more realistic representation. Secondly, the agglomerative hierarchical clustering

method (bottom-up approach) with Ward’s linkage is employed to group and reduce the number

of scenarios [141]. Finally, 10 scenarios are produced to represent the uncertainty set of renewable

sources and loads. Hierarchical clustering can construct a hierarchy of clusters by employing a

measure of similarity between groups of data points [142]. For clusters k1 and k2, the distance

measure dk1,k2 can be calculated as follows:

dk1,k2 =‖ Γkl − Γk2 ‖2

√

2nk1nk2/(nk1 + nk2) (4.25)

where nk1 and nk2 are the numbers of scenarios in clusters k1 and k2, Γkl and Γk2 represent the

centroids of clusters k1 and k2, and ‖ · ‖2 is Euclidean distance. After obtaining these clusters,

medoid points of clusters are selected to represent final 10 scenarios. Given that initial 1000 scenarios

have the same occurrence probability, the probability of each final scenario can be calculated as the

ratio of the number of initial scenarios that belong to the cluster and the number of scenarios [141].

Additionally, it is worth noting that this method can also be used to cluster weighted scenarios with

different occurrence probabilities, if appropriate variance reduction techniques are applied [143].

Regarding external contingencies, three levels of contingencies with different probabilities are

considered to represent different damage levels of each MG caused by extreme events. For instance,

single line fault for each MG will be the lowest level of damage, while three faulted lines correspond

to the highest level of damage. Normally, the higher level of damage has lower probability of
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occurrence. In this chapter, the probability set [0.5, 0.3, 0.2] accounts for the occurrence probability

of three levels of damage respectively. As such, a total of 30 scenarios are generated to represent

the influence of uncertainties and contingencies.

4.2.4 Resilience index

The final objective function (4.1) is calculated in a decentralised way, which is not suitable for

the performance evaluation of multiple MGs. Therefore, a resilience index (RI) is utilised in this

chapter for better evaluation, which is shown in (4.26) and corresponds to the ratio of weighted

load shedding and total weighted loads under event scenarios. This area metric will be 1 when a

MG can fully restore all the loads within the period T , while a smaller RI corresponds to worse

performance of MGs (i.e., larger load sheding). Note that the original performance R0(t) (i.e., the

state before event occurs) and the real-time performance R(t) (i.e., performance across the event

evolution) consider load distinction. For instance, R(t) can be calculated by the performance of

critical loads Rc(t) and non-critical loads Rn(t), which are multiplied by different weighting factors

wc and wn. Selection of the weighting factors wc and wn indicates the significance of critical loads

and non-critical loads (wc > wn). It is worth noting that the RI suggested in this chapter is

expressed via restored loads, while the RI suggested in the previous chapter corresponds to the

ratio of the curtailed loads. In general, they focus on the same information in a similar manner.

RI =

∫ T
t0
R(t)

∫ T
t0
R0(t)

, R0(t) = wcRc
0(t) + wnRn

0 (t), R(t) = wcRc(t) + wnRn(t). (4.26)

4.3 Comparative case studies

The structure of an AC MG is presented in Figure 4.3, where a diesel generator and a PV plant are

installed as conventional energy sources and renewable energy sources respectively, while a BESS

unit and EV fleets are also appropriately installed and connected with this MG. Note that EV fleets

are connected with bus 3 in Figure 4.3, which only represents the initial position of EV fleets.

When an extreme event occurs, each MG switches into islanded mode and is connected with

the rest of the MGs via tie-lines. The day-ahead scheduling method is employed to run the AC

OPF algorithm and make decisions about power output of generators, power exchange and battery

energy management. Conventional generators in all three MGs have capacities of 250 kW, 350 kW,
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Figure 4.3: An AC MG utilised in simulations.

300 kW respectively, while the PV plant in each MG has a capacity of 100 kW. Each MG includes

a low power-high energy battery (e.g., 50 kW/200 kWh) and EV fleets with a total of capacity

300 kWh. In the following case studies, the distinction between critical and non-critical loads is

captured. For example, the critical loads could be lights and lift motors in a building-scale MG,

and the non-critical loads could be kitchen and toilet appliances [98]. Similar to [71], the loads L3

in the bus 3 of each MG (around 30%) are critical loads with high load shedding cost, while other

types of loads are non-critical loads with low curtailment cost. Load profiles and PV profiles can

be found in Figure 4.4, which are extracted and scaled from [98,144].

4.3.1 Simulation I: Hierarchical control and centralised control

To verify the effectiveness of the proposed hierarchical control strategy, the comparison study be-

tween hierarchical control and centralised control is suggested in this subsection. A total of 10

scenarios are considered to represent uncertainties relating to renewable energy sources and loads.

Furthermore, it is assumed that there are only limited generation resources (e.g., 3000 kWh energy

reserve) in MG 1 and MG 3, which may lead to load shedding in these two MGs. All the simulations

were run on Intel i7-8700u processor using 8 GB RAM.

Comparison results can be found in Table 4.2. Note that all comparison studies in this subsection

do not consider the advantages of EV routing on tackling contingencies, because the centralised

control method based on AC OPF cannot solve the proposed MINLP problem even under one
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Figure 4.4: Simulation I: (a) Load profiles, (b) PV profiles.

single scenario. More details about the utilisation of EV fleets under hierarchical control can be

found in the next subsection. RI in all three cases are very close, while the computation burden of

the suggested hierarchical control method is much lower than that of the centralised method. The

effectiveness of the suggested hierarchical control method has been clearly shown in this simulation.

Note that computation burden under centralised control (CC) would significantly increase with the

addition of more connected MGs, while the computing burden of hierarchical control (HC) shall not

be largely increased because of the decentralised operation of each MG. This demonstrates that in

a future setup, where tens or hundreds of MGs may be connected, a centralised control algorithm

would struggle to provide a dispatch in time, while the proposed hierarchical control method would

be well-placed to provide a quick response (even though it may be slightly sub-optimal).

Table 4.2: Comparison between hierarchical control and centralised control

Control
methods

10 scenarios 5 scenarios 1 scenario
HC CC HC CC HC CC

RI 97.56% 97.64% 97.57% 97.64% 97.72% 97.76%
Time 406.23s 3571.22s 208.54s 992.83s 12.95s 95.43s
Status Optimal Optimal Optimal Optimal Optimal Optimal

Figure 4.5(a) illustrates the result of load shedding based on the hierarchical control across the

24-hour horizon. In both cases, there is no load shedding in MG 2, while MG 1 and MG 3 have

non-critical load shedding because of the limitation of generation resources. Power exchange results
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can be found in Fig. 4.6, where the power sharing from MG 2 has reached the maximum in both

cases. Fig. 4.5(b) shows that the total load shedding in MG 1 or MG 3 is less than their total power

shortage, which means that more more power needs to be imported to avoid load shedding because

of the existence of power loss. This is an important aspect of the proposed model, as hierarchical

control strategies based on typical EMSs would neglect the influence of operational constraints and

directly regard load shedding as equal to the power shortage, which can be inaccurate. The AC

OPF algorithm utilised in this chapter can obtain more accurate solutions about power shortage

and power surplus than EMS models. It can be anticipated that the total error between real power

shortage and load shedding may become much larger with the increase of the number of MGs and

the complexity of MG structure.
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Figure 4.5: Simulation I: (a) Energy not served based on hierarchical control under one-scenario
simulation (i.e., deterministic formulation), (b) Power shortage and load shedding in MG 1 and MG
3 based on hierarchical control under one-scenario simulation.

4.3.2 Simulation II: EV scheduling for contingencies

In this subsection, three different levels of contingencies are incorporated into the model to investi-

gate the effect of EV routing on resilience enhancement. Faulted lines in the contingency set can be

found in Table 4.3, where line 1-3 means that the line between bus 1 and bus 3 is damaged. As such,

a total of 30 scenarios are considered to represent the impacts of uncertainties and contingencies.
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Figure 4.6: Simulation I: (a) Power exchange among MGs based on centralised control under one-
scenario simulation, (b) Power exchange among MGs based on hierarchical control under one-
scenario simulation.

To better present the advantages of mobile EV fleets, a comparison study considering two cases

(mobile EVs and static EVs) is developed, where results can be found in Table 4.4. In general,

considering the mobility aspect of EVs during extreme events obtains higher resilience levels than

considering static EVs.

Table 4.3: Faulted lines under three different levels of contingencies

Level 1 Level 2 Level 3

MG 1 line 1-3 line 1-5, line 2-5 line 0-3, line 1-3, line 3-4
MG 2 line 0-4 line 1-4, line 3-4 line 2-4, line 1-4, line 3-4
MG 3 line 2-4 line 3-4, line 4-5 line 2-5, line 3-4, line 4-5

EV routing under load profile 1 is illustrated in Table 4.5, where the number corresponds to a

certain bus and “T” represents transportation. It can be found that all EVs connect with bus 3

at first and then travel to the bus with the need for power support. After EVs run out of energy,

they may travel to bus 0 for charging and then move back to the bus requiring power support. It

is worth noting that the critical load (load 3 in bus 3) in MG 1 has been entirely isolated under

the level 3 contingency and EVs travel between bus 0 and bus 3 to support the critical load as well

as enhancing resilience (RI 67.24%). For comparison, the RI of MG 1 using static EVs is 64.77%.

It can be concluded that mobile units become much more important and effective than static ESSs
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when damage is caused on the system (e.g., entirely isolated loads).

Table 4.4: Comparison between mobile EVs and static EVs

RI Time Status

Mobile EVs 94.98% 1380.05s Optimal
Static EVs 92.92% 1179.98s Optimal

Table 4.5: EV routing under different levels of contingencies for load profile 1.

Contingency
Time (h)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MG 1, level 1 3 3 T 5 T 2 2 T 3 T 1 T 2 2 2
MG 1, level 2 3 T 5 T 3 T 5 5 5 5 5 T 4 T 5
MG 1, level 3 3 3 3 3 T 0 0 0 0 T 3 3 3 3 3
MG 2, level 1 3 T 2 2 2 T 0 0 0 T 2 2 2 2 2
MG 2, level 2 3 3 T 0 0 T 2 2 2 2 2 2 2 T 4
MG 2, level 3 3 T 5 5 5 T 4 4 4 4 4 4 T 2 2
MG 3, level 1 3 3 T 2 2 T 5 T 1 T 3 T 5 T 4
MG 3, level 2 3 T 2 2 2 2 T 5 5 5 5 5 5 T 5
MG 3, level 3 3 T 5 5 T 0 0 T 5 5 5 5 5 5 5

4.4 Sensitivity analysis

Most research assumes that fully-charged EVs are utilised for resilience enhancement; nevertheless,

uncertain event occurrence time may lead to a shorter EV charging duration (e.g., a shorter pre-

ventive stage), which means that EVs may not have enough time to be fully charged. A sensitivity

analysis about event occurrence time is shown in Table 4.6, where fully-charged EVs correspond to

a longer preparation duration in comparison with partially-charged EVs that represent a shorter

preparation horizon. Table 4.6 illustrates that, even though marginal, fully-charged EVs obtain a

higher resilience level than partially-charged EVs, because of the longer charging duration. Note

that all the sensitivity studies are based on a total of 30 scenarios.

Table 4.6: Influence of event occurrence time

Initial SoC (kWh) RI

Fully-charged EVs 300 94.98%
Partially-charged EVs 200 94.31%

The capacity of tie lines has a significant influence on the power sharing between MGs, where

larger capacity means larger power sharing between MGs. Figure 4.7(a) shows that a higher re-

silience level is achieved with the increase of power exchange limitation. The RI of MG 2 remains

stable under different situations, while the resilience levels of MG 1 and MG 3 both increase largely

when the capacity of tie lines is increased from 50 kW to 100 kW.
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Additionally, the allowable EV scheduling horizon in each MG may be different during ex-

treme events under different situations (e.g., different local policies). Another sensitivity analysis

is suggested in Figure 4.7(b) to show the impacts of different allowable EV scheduling horizons on

the resilience enhancement of each MG. A higher resilience level is achieved in each MG with the

increase of EV charging duration.
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Figure 4.7: Sensitivity analysis: (a) Influence of power exchange limitation Tmax
ij , (b) Influence of

different EV scheduling horizons Tev.



Chapter 5

A stochastic decentralised approach

for load restoration

5.1 Introduction

Planning and operational strategies based on centralised control (e.g., [74, 95]) or hierarchical con-

trol (e.g., [136, 137]) have been widely developed for load restoration purposes of networked MGs.

However, communication links between a central controller and local MGs may be interrupted after

extreme events. In comparison with control approaches based on central controllers, distributed

control approaches may not guarantee a globally optimal solution but can protect customer pri-

vacy and reduce the dependency of networked MGs on communication networks [132]. However,

as mentioned in previous chapters, most papers on distributed control utilise EMSs to model MG

operations which can only capture power balance equations of a MG model. Given the absence

of detailed constraints for the network nodes/branches, it is impossible to use EMSs to model the

spatial flexibilities of MESSs. Note that MESSs can introduce significant merits for resilience en-

hancement of power systems via delivering power and energy as backup power sources for critical

load restoration [59]. Furthermore, the absence of technical constraints relating to voltage, angle and

power loss may lead to unstable MG operations and inaccurate solutions, since power systems will

be operated much closer to their stability limits under high uncertainties and severe contingencies.

Apart from EMS-based models, a stochastic bi-level optimisation model is developed in [88] to

coordinate the power exchange between MGs and the utility grid in a decentralised way. However,

this paper utilise a linearised distflow for MG operations, which ignores power losses through lines

77
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and can only be applied in radial networks. Note that MGs might have different network structures,

other than traditional distribution systems [139]. Meshed networks include a more uniform power

flow and can provide benefits for improving voltage profiles and reducing power losses; a feature that

introduce stronger capabilities of meshed networks to withstand severe contingencies and improve

resilience [145].

To summarise, there has been much research on distributed control of networked MGs; nev-

ertheless, existing literature solves the optimisation problem on an hourly basis or ignores long

timeframes, which cannot capture the flexibility of storage units, especially for mobile energy stor-

age systems (MESSs). One of reasons for this is that consensus-based algorithms found in the

literature (e.g., [63, 135]) address power sharing between MGs in independent time periods, which

are inherently unable to capture any time-coupled flexibility [146]. It is necessary to develop a

model to comprehensively consider such flexibility under distributed control. Additionally, existing

literature tends to utilise linearised models for MG operations due to the need of reducing com-

puting burden. There is little research focusing on control approaches, which can capture technical

constraints relating to stability properties for accurate decision making and secure MG operations

as well as ensuring computing efficiency. Furthermore, there is no significant amount of research

focused on distributed control approaches capturing the merits of MESSs for resilience enhance-

ment of networked MGs. Therefore, this chapter proposes a stochastic distributed control approach

based on rolling optimisation for the resilience enhancement of networked MGs, which can effectively

bridge a gap in this respective area. The contributions are summarised hereafter:

• A three-stage distributed control approach based on rolling optimisation is introduced for

resilient scheduling of MGs. A time-coupled linearised AC OPF algorithm is used in the first

stage to capture the flexibility of storage units and ensure computing efficiency.

• Time-coupled routing of MESSs inside each MG is modeled for load restoration, while trans-

porting time of MESSs between different buses is appropriately incorporated in the model.

• A detailed AC OPF algorithm is utilised in the third stage to capture stability properties

relating to voltage, angle and power loss to ensure no violation of technical constraints.

• Uncertainties with renewable energy sources and loads are captured in the first stage via a

stochastic linearised OPF algorithm. Multiple line faults and load distinction are included in

the case studies to capture a realistic scenario.
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Figure 5.1: The proposed distributed control approach based on rolling optimisation.

5.2 Outline of the suggested distributed control approach

Extreme events are characterised by high impact and low probability, which cause high uncer-

tainty and severe damages including: 1) uncertain event time and duration; 2) uncertain generation

resources and load profiles; 3) severe damages (e.g., multiple line faults); 4) unavailable power re-

sources; 5) unavailable central controllers; 6) MGs losing their connection to the utility grid. Con-

sidering the above mentioned properties, the suggested control approach should be decentralised

and flexible enough against extreme events [65]. Uncertainties with renewable generation resources

and load profiles, load distinction into critical and non-critical, and technical constraints relating to

stability properties shall also be taken into account. As such, this chapter proposes a three-stage

distributed control approach based on rolling optimisation to make decisions on power exchange

among MGs for resilience enhancement, which is schematically represented by Figure 5.1. A more

detailed description of the various elements coming together can be found hereafter:

5.2.1 Rolling optimisation

When an event occurs, MGs may switch into islanded mode (from grid-connected mode) due to

intentional or unintentional islanding schemes. To minimise the influence of this event, MGs will
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choose to connect with nearby MGs through communication links, if communication resources

between them are still available. According to Figure 5.1, each MG will schedule their resources

based on the rolling optimisation method and calculate the power shortage and power surplus. Note

that rolling optimisation is used to optimise the system operation for the next time slot while taking

future time slots into account [65]. Figure 5.2 shows that the suggested approach utilizes a linearised

AC OPF algorithm through a 24-hour scheduling horizon capturing uncertainties and time-coupled

flexibility, while decisions (e.g., power exchange and MESS scheduling) on the first time step are

implemented and eventually verified through a detailed AC OPF algorithm to ensure no violations

of technical constraints.

As mentioned before, distributed control based on consensus algorithm is inherently time-

independent, which cannot effectively capture the flexibility of MESSs and power sharing. However,

the suggested rolling optimisation approach provides the advantage of handling unforeseen changes

via appropriate operational measures as well as capture of the above flexibilities. Additionally,

the influence of uncertain event time and duration on MG operations can be significantly reduced,

since rolling optimisation methods are run in a hourly basis and have no dependence over the com-

plete scheduling horizon. Furthermore, the computing efficiency increases due to the utilisation of

linearised AC OPF in the first stage, compared with an entirely non-linear AC OPF algorithm.

5.2.2 Uncertainty modelling

Uncertainties relating to renewable energy sources (e.g., PVs) and load profiles shall be considered

in rolling optimisation due to the high unpredictable nature of extreme events, since accurately
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updated forecasts over a long rolling horizon may be unavailable. This chapter utilises a scenario-

based stochastic programming approach to capture these uncertainties. Monte-Carlo simulation is

employed to initialize a large number of scenarios (e.g., 1000 scenarios) according to a normal distri-

bution function, where PV and load profiles are associated with 5% and 3% errors respectively [138].

To ensure an appropriate trade-off between computing time and accuracy, the agglomerative hier-

archical clustering method (bottom-up approach) with Ward’s linkage is employed to group and

reduce the number of scenarios [141]. Finally, an uncertain set containing several scenarios with dif-

ferent probabilities (e.g., 10 scenarios) are produced to represent the abovementioned uncertainties.

Detailed information about this method can be found in the previous chapter.

5.2.3 MG operation based on distributed control

As shown in Figure 5.2, the suggested distributed control approach is divided into three dis-

tinct stages: 1) linearised stochastic AC OPF capturing time-coupled behaviours of MESSs; 2)

a consensus-based algorithm calculating power exchange for the next time step; 3) a detailed AC

OPF used to obtain accurate results and avoid the violation of technical constraints. Details of the

suggested rolling optimisation approach can be found hereafter:

Stage 1 - Calculate power surplus/shortage

In the first stage, every MG runs a time-coupled linearised AC OPF algorithm in a stand-alone

condition (i.e., not connected to other MGs) and calculates power shortage or power surplus (i.e.,

P e) within the scheduling horizon. Note that only signals for one step will be sent to the second

stage to calculate final results on power exchange. The objective function of one local MG in this

stage can be found in (5.1). The first term corresponds to the real power surplus or power shortage,

while the second term is related to the total load shedding cost capturing a set of uncertainties.

In other words, the process of calculating power shortage/surplus for every MG is formulated as a

scenario-based stochastic problem in which results are obtained according to a set of scenarios [138].

Variables on power shortage/surplus and the scheduling of MESSs are realised as here-and-now

decision variables, while the others (e.g., load shedding or power output of generators) are wait-

and-see variables depending on the realisation of each scenario.

F1 =
∑

t∈T

ceP e
t +

∑

s∈S

ps
∑

t∈T

∑

b∈Lbus

clsP ls
b,t,s (5.1)
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The incorporation of typical technical constraints and MESS routing makes the model become

a MINLP problem, which is extremely difficult to solve with the consideration of time-coupled

constraints and a set of uncertainties. In line with the requirements of resilience enhancement for

computing efficiency, linearised techniques developed in [147] are used to simplify the non-linear

OPF into a MILP formulation to obtain a trade-off between computing time and accuracy in the

first stage. As such, the optimisation is posed as a minimisation problem, subject to linearised

AC OPF constraints. The active power balance equation at the exchange bus b is shown in (5.2),

while the reactive power balance equation is shown in (5.3). Classical equations pertaining to power

flow problems are presented in (5.4) and (5.5). P ex
b,t,s and Qex

b,t,s represent active and reactive power

exchange between considered bus b and other buses at time t under scenario s respectively, while

δbp,t,s corresponds to the voltage angle difference between buses b and p at time t under scenario s.

Constraints (5.6)-(5.7) refer to the network model, where Pbp,t,s and Qbp,t,s correspond to the active

power and reactive power through the line from bus b to bus p. PL
bp and QL

bp represent active and

reactive power losses, which can be linearised via the loss factors suggested by [147], while equation

(5.8) corresponds to the power exchange limit between the MG and nearby MGs. Note that Tij

means the tie-line capacity between two MGs (e.g., MG i and MG j).

P e
t +

∑

k∈Nmes

(Pmes,d
b,k,t − Pmes,c

b,k,t ) + P ls
b,t,s +

∑

g∈NGb

Pg,t,s = P ex
b,t,s + P l

b,t,s (5.2)

∑

g∈NGb

Qg,t,s +Qls
b,t,s = Qex

b,t,s +Ql
b,t,s (5.3)

P ex
b,t,s =

∑

(b,p)∈Nbr

Pbp,t,s + (
∑

p∈Nbus

Gbp)V
2
b,t,s (5.4)

Qex
b,t,s =

∑

(b,p)∈Nbr

Qbp,t,s − (
∑

p∈Nbus

Bbp)V
2
b,t,s (5.5)

Pbp,t,s = Gbp(V
2
b,t,s − V 2

p,t,s)/2−Bbpδbp,t,s + PL
bp, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (5.6)

Qbp,t,s = −Bbp(V
2
b,t,s − V 2

p,t,s)/2−Gbpδbp,t,s +QL
bp, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (5.7)

− Tmax
ij ≤ P e

t ≤ Tmax
ij , ∀t ∈ T (5.8)

Furthermore, events may cause potential damage on energy supply chains, such as gas networks

and fuel networks, and therefore generation resources (e.g., fuel reserve) within one MG may be

limited [15]. Therefore, it is reasonable to assume that each MG only has limited generation
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resources, which accounts for equations (5.9) and (5.10). GSIni
g corresponds to the initial energy

reserve of a MG when an event occurs and generator g will fail to operate when GSIni
g reaches its

minimum value GSmin
g .

GSg,t,s = GSg,t−1,s − Pg,t,s∆t ∀t ∈ T/{1}, ∀g ∈ Ng (5.9)

GSmin
g ≤ GSb,t,s ≤ GSIni

g , ∀t ∈ T, ∀g ∈ Ng, ∀s ∈ S (5.10)

Equations (5.11)-(5.12) represent the operational constraints of voltage limit and line capacity, while

equations (5.13)-(5.14) correspond to the power generation limit of conventional generators. These

constraints capture the technical features of MGs and ensure the accuracy of obtained solutions.

Note that V 2
b,t,s can be treated as a variable in this linearised OPF. Constraint (5.12) is quadratic

and defines a convex region, which can be linearised via the piecewise linearisation method suggested

in [104]. As such, the typical AC OPF is linearised into an MILP formulation and can be solved

efficiently via commercial softwares (e.g., CPLEX and GUROBI) [140]. Compared with EMS or

DC OPF, this linearisation method takes reactive power and voltage into account. Compared with

linearised Distflow, this approach can be utilised for both meshed and radial networks and effectively

capture power losses through loss factors. However, there still exists risk for the linearised OPF to

obtain solutions that do not satisfy power flow equations; hence, it is necessary to verify the practical

feasibility of obtained solutions through a detailed AC OPF algorithm, which is introduced in the

third stage.

V 2
min ≤ V 2

b,t,s ≤ V 2
max, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (5.11)

P 2
bp,t,s +Q2

bp,t,s ≤ Slim
i , ∀t ∈ T, ∀i ∈ Nbr, ∀s ∈ S (5.12)

Pg,min ≤ Pg,t,s ≤ Pg,max, ∀t ∈ T, ∀g ∈ Ng, ∀s ∈ S (5.13)

Qg,min ≤ Qg,t,s ≤ Qg,max, ∀t ∈ T, ∀g ∈ Ng, ∀s ∈ S (5.14)

MESS-related constraints are shown in equations (5.15)-(5.20). It is assumed that MESSs are

transportable energy storage systems that can move between different buses within each MG. In-

equalities (5.15) and (5.16) refer to the limits of charging and discharging power for MESS k. Integer

variable ucb,k,t and udb,k,t correspond to charging and discharging decisions of MESS k in bus b at

time t. Constraint (5.17) ensures that power charging and discharging cannot occur simultaneously,

while MESS k can only be connected with one bus at time t. Note that ucb,k,t = 0 and udb,k,t = 0
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mean that the MESS k does not connect with bus b at time t and vice versa. Constraint (5.18)

corresponds to the transportation of MESS k within a MG, where T trl
bp represents the travelling time

of the MESS k from bus b to bus p [18]. Inequality (5.19) gives the limits with minimum energy

storage and maximum energy storage of MESS k, while constraint (5.20) introduces the dependence

of energy storage level at each time interval with the previous time step.

0 ≤ Pmes,c
b,k,t ≤ ucb,k,t · P

max
k , ∀t ∈ T, ∀b ∈ Nbus, ∀k ∈ Nmes (5.15)

0 ≤ Pmes,d
b,k,t ≤ udb,k,t · P

max
k , ∀t ∈ T, ∀b ∈ Nbus, ∀k ∈ Nmes (5.16)

∑

b∈Nbus

ucb,k,t + udb,k,t ≤ 1, ∀t ∈ T, ∀k ∈ Nmes (5.17)

[ucb,k,t + udb,k,t]− [ucb,k,t+1 + udb,k,t+1] ≤ 1− [ucp,k,t+h + udp,k,t+h],

∀t ∈ T/{1}, ∀k ∈ Nmes, b 6= p ∈ Nbus, h ∈ [1, ...,min(T trl
bp , T − t)]

(5.18)

ESmin
k ≤ ESk,t ≤ ESmax

k , ∀t ∈ T, ∀k ∈ Nmes (5.19)

ESk,t = ESk,t−1 + (ηc
∑

b∈Nbus

Pmes,c
b,k,t − ηd

∑

b∈Nbus

Pmes,d
b,k,t )∆t (5.20)

Stage 2 - Consensus algorithm for power exchange

After extreme events, the main communication between central and local controllers in each MG

may be unavailable. In this context, local controllers in each MG may connect with each other

via available local communication resources, which renders the application of distributed control

approaches valid for the decision making of power exchange between different MGs under emergency

situations. In this chapter, a consensus-based algorithm is employed to optimise power sharing and

reduce load shedding. Note that consensus algorithms have recently gained popularity in power

dispatch problems because of their fast convergence and stability [63]. Given by the consideration

of resilience, the incremental cost of load shedding λn,t of each MG constitutes the consensus

variables. Each MG estimates the values of their power shortage through Stage 1 and then update

these estimates by exchanging information with their neighbouring MGs, where the communication

network is represented by matrices P and Q. According to reference [63], these two matrices have

the following properties:

• P is a row-stochastic matrix (summation of row entries is equal to one), while Q is a column-
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stochastic matrix and Q = P T .

• Pmn > 0 means that MG m is connected to MG n.

• The values of P and Q can be free to choose, which will not influence the convergence rate.

The suggested consensus algorithm involves a four-step iterative process outlined below:

Step 1 (Initialisation) Using the results from Stage 1, the power shortage/surplus and power

mismatches estimated by MG m are noted as below. Note that P sho
m,t and P sur

m,t will be derived from

P e of each MG.

P sho
m,t , P

sur
m,t , P

mis
m,t , ∀m ∈M, ∀t ∈ T (5.21)

Regarding MG m, the power obtained from connected MGs is initialised as P ob,0
m,t , where 0 means

the first iteration. Note that P ob,0
m,t can be initialised as any feasible values. Additionally, the total

available or required power P total
t in the local network and the power mismatch Pmis,0

m,t can be

calculated as follows:

P total
t = min[

∑

m∈M

P sur
m,t ,

∑

m∈M

P sho
m,t ] (5.22)

Pmis,0
m,t = P total

t /M − P ob,0
m,t (5.23)

Step 2 (Consensus variable update) At each iteration k, each MG m updates λm,t and P ob
m,t based

on the values of consensus variables obtained from connected MGs, which can be seen as (5.24). η

is the learning gain constant, while αm and βm correspond to the parameters for load curtailment

penalty cost.

λk+1
m,t =

∑

n∈M

Pmnλ
k
n,t + ηPmis,k

m,t (5.24)

P ob,k+1
m,t = (λk+1

m,t − βm)/(2αm) (5.25)

Step 3 (Power mismatch update) Each MG m updates its power mismatch estimates based on i)

its neighbouring MG estimates and ii) a correction term which is given by the difference between

its optimal responses at the two most recent iterations.

Pmis,k+1
m,t =

∑

n∈M

QmnP
mis,k
n,t − (P ob,k+1

m,t − P ob,k
m,t ) (5.26)

Step 4 (Convergence check) This process is repeated until the mismatch is within the acceptable

range, e.g., less than ǫ. This condition assures the convergence of the algorithm. In general, the
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algorithm can converge within 50 iterations with a tolerance value of 0.01. However, to avoid any

non-convergence, a slightly larger tolerance value can be applied for the iteration process.

Pmis
m,t ≤ ǫ, ∀m ∈M (5.27)

Stage 3 - Detailed AC OPF for feasible solutions

As mentioned before, MG operations may be much closer to stability limits due to the high-impact

nature of extreme events, which leads to the necessity to ensure no violation of technical constraints

relating to voltage, angle and power loss. Solutions obtained from the linearised AC OPF algorithm

in the first stage may not satisfy classical non-linear power flow equations, even though computing

efficiency can be guaranteed. As such, a detailed AC OPF algorithm capturing all the technical

constraints is employed in this stage to obtain final results on load shedding for accurate decision

making. Since only one time slot is considered, and the routing decisions of MESSs and power

exchange results for the current step have been confirmed by the first stage and the second stage,

the computing efficiency of using the detailed AC OPF can be ensured. The objective function can

be found in (5.28), which includes one term relating to total load shedding cost in the current time

step.

F3 =
∑

b∈Lbus

clsP ls
b,t (5.28)

Linearised power flow equations ((5.4)-(5.7)) are replaced by the typically non-linear power flow

equations, which can be found in (5.29)-(5.30). The quadratic constraint (5.12) relating to line

capacity can be verified, while other constraints relating to voltage limits, generation limits and

power balance will be the same as those in the first stage. As such, the non-linear model of a

detailed AC OPF is employed, which can be used for verification of decisions on power exchange

and MESS routing. To ensure that solutions with good quality are found, a non-linear solver called

‘IPOPT’ is utilised to solve this operational problem [148].

P ex
b,t =

∑

p∈Nbus

Vb,tVp,t(Gbpcosδbp,t +Bbpsinδbp,t), ∀t ∈ T, ∀b ∈ Nbus (5.29)

Qex
b,t =

∑

p∈Nbus

Vb,tVp,t(Gbpsinδbp,t −Bbpcosδbp,t), ∀t ∈ T, ∀b ∈ Nbus (5.30)
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Figure 5.3: An AC MG utilised in simulations.

5.3 Case studies

The distributed control approach described in the previous section has been applied to the networked

MGs illustrated in Figure 5.3; note that these MGs switch into islanded mode after extreme events

and connect with each other for power sharing. Each MG includes a conventional generator (e.g.,

diesel generators), a photovoltaic array and a MESS as power sources. Solar irradiation and load

profiles are illustrated in Figure 5.4, where the data are extracted from [98, 144]. Conventional

generators in each MG have capacities of 150 kW, 350 kW and 100 kW respectively. As far as

the MESSs are concerned, each MG includes one MESS containing a typical low energy-low power

battery (e.g., 50 kW/200 kWh), which is placed on an initial location of bus 3. Through the extensive

analysis of the following case studies, this chapter addresses fundamental modelling challenges

pertaining to the operation of networked MGs with mobile units. All simulations have been run on

Intel i7-8700u processor using 8 GB RAM.

As mentioned before, the key focus should be on critical load restoration during extreme events;

hence, the discrimination of critical and non-critical loads is captured in following case studies. This

chapter assumes that around 30% of the loads are critical with high curtailment cost, while other

types of loads are non-critical with relatively low curtailment cost. Regarding uncertainty modelling,

a total of 10 scenarios are generated to represent uncertainties relating to renewable energy sources

and loads. The set of uncertainties in MG 1 has been illustrated in Figure 5.5. Additionally, the

network status after the event (contingencies) can be found in Table 5.1. It is worth noting that this

chapter assumes a severe damage in each MG to mimic the high impact nature of extreme events.
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Figure 5.4: Data description: (a) Load profiles, (b) PV profiles.
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Figure 5.5: Uncertainty sets of : (a) load profiles, (b) PV profiles.

Table 5.1: Contingencies in networked MGs.

MG 1 MG 2 MG 3

Line faults line 1-3, 3-4 line 2-4, 2-5, 3-4 line 1-5, 3-4, 4-5
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5.3.1 Simulation I: Results of MESS routing and distributed control

In this subsection, optimisation results using the suggested distributed control are demonstrated,

where Table 5.2 illustrates the results of load shedding in each MG including both critical and non-

critical load shedding. Note that there is only minimal critical load shedding in MG 1, while other

MGs have no critical load shedding. Table 5.1 shows that line faults happening in MG 1 are both

related to bus 3, which is connected with critical loads, while MG 2 and MG 3 only have one faulted

line connected with bus 3; hence, critical load shedding is indeed expected in MG 1. As shown in

Figure 5.4(a), MG 3 obtains the largest total load shedding due to the highest load level and the

relatively low generator rating, while MG 2 has the lowest total load shedding due to the largest

generator rating. Load shedding in an hourly basis is illustrated in Figure 5.6. More intensive load

shedding is caused in networked MGs during the period of peak load level (e.g., 10-15 hours).

Table 5.2: Simulation I: Total load shedding in each MG.

Critical load shedding (kW) Total load shedding (kW)

MG 1 1.36439 210.783
MG 2 0 155.917
MG 3 0 1392.86
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Figure 5.6: Simulation I: Hourly load curtailment of each MG

Regarding the 24-hour routing of MESSs in each MG, they can be found in Table 5.3. Generally,

MESSs travel back and forth between bus 0 connecting the generator and other buses connecting

loads towards load restoration. Note that the suggested rolling optimisation can consider the mo-

bility of MESSs during a long scheduling horizon, compared with hourly resolutions which cannot

capture the flexibility of MESSs. To further exhibit the merits of MESSs on load restoration, a

comparison study between MESSs and ESSs is suggested here, where MESSs and ESSs have same

power capacities and energy capacities. Table 5.4 reports optimal results on using MESSs and ESSs

for resilience enhancement respectively. Obviously, MESSs obtain much less total load shedding

cost due to the mobility merit. Additionally, much critical load shedding is avoided when MESSs
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are employed.

Table 5.3: Simulation I: MESS routing inside MGs for resilience enhancement.

MGs
Time (h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

MG 1 3 3 3 T 5 5 5 5 5 5 T 0 0 0 0 T 5 5 5 5 5 5 T 0
MG 2 3 T 0 T 5 5 5 5 5 5 T 0 0 0 0 T 5 5 5 5 5 5 T 0
MG 3 3 T 0 0 T 5 5 5 5 T 0 0 0 0 T 5 5 5 5 T 0 0 T 5

Table 5.4: Discussion: Comparison between MESSs and ESSs including load shedding and cost.

Critical load
shedding (kW)

Total load
shedding (kW)

Load shedding
cost (k£)

MESSs 1.36 1759.56 264.07
ESSs 56.73 2257.04 344.23
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Figure 5.7: Simulation I: MESSs charging/discharging patterns during extreme events.

Figure 5.8(a) presents the power exchange results from the consensus algorithm, while Fig-

ure 5.8(b) shows the iteration of power mismatch between MGs for t = 0. After extreme events, all

MGs switch into islanded mode and the generator in MG 2 has the largest capacity, which triggers

the power flow from MG 2 to the other two MGs. Additionally, Figure 5.4(a) shows that MG 3 has

the highest load level, therefore receives significantly more power from MG 2 than MG 1 does.

The advantage of the detailed OPF algorithm can be found in Figure 5.9. Voltage profiles of

bus 3 in all three MGs are within the range of voltage limits (e.g., 0.9-1.1 p.u.). This is important,

as typical energy management systems found in the literature would not capture the voltage con-

straints; this would lead to violation of technical requirements. Even though the voltage constraint

of OPF may negatively impact on the operational cost for keeping voltages stable, it can capture

realistic optimisation results and ensure safe MG operations; a highly important feature as we move

in broad decentralisation.
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Figure 5.8: Simulation I: (a) Power exchange based on distributed control, (b) Power mismatch for
t = 0.

5.3.2 Simulation II: Effect of limited generation resources

The above case study assumes that generation resources are unlimited, which is the reason that

there is consistently power sharing between MGs as shown in Figure 5.8(a) and there is almost no

critical load shedding in each MG. However, as mentioned before, the generation resources may be

limited during extreme events, because of the potential disruption of the energy supply chain. In

this case study, the effect of limited generation resources on optimal results is exhibited, where it is

assumed that MG 1-3 only have 3500 kWh, 10000 kWh and 5000 kWh available resources during

the event.
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Figure 5.9: Simulation I: Voltage profiles of each MG in bus 3.

Results about final load shedding between MGs can be found in Table 5.5. It is shown that

critical load shedding is caused in MG 1 and MG 3, while total load shedding in every MG has
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increased compared with results in the case study above. The reason can be found in Figure 5.10(a),

which exhibits the final power sharing results between MGs. In the first 12 hours, there is a large

amount of power supply from MG 2 to other MGs. However, after that, intensity and frequency of

power sharing between MGs reduces a lot leading to larger load shedding in MG 1 and MG 3. This

is because the suggested rolling optimisation method always considers a complete scheduling horizon

(e.g., the next 24 hours). As such, after around 12 hours, MG 2 tends to distribute its generation

resources for its own future usage (i.e., reducing load shedding) rather than using them for power

sharing, which causes the reduced amount of power sharing during 15-20 hours. Figure 5.10(b)

illustrates that there is much more load shedding caused in MG 1 and MG 3 in the last 10 hours.

Table 5.5: Simulation I: Load shedding in each MG under limited generation resources.

Critical load shedding (kW) Total load shedding (kW)

MG 1 56.18442 580.78514
MG 2 0 107.08655
MG 3 9.78499 1962.20392
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Figure 5.10: Simulation II: (a) Power exchange under limited generation resources, (b) Hourly load
curtailment of each MG.

5.3.3 Simulation III: Non-cooperative behaviour of MGs

The main difference between networked MG systems under centralised control and distributed con-

trol is the protection of MG privacy and the localized decision making. As suggested in [135], MGs
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may try to manipulate certain parameters for further improving their own benefits (e.g., reducing

operational cost), which is categorised as non-cooperative or dishonest behaviour. Especially during

extreme events, it may be feasible for a certain MG to maintain higher levels of energy under its

own territory for self-protection by reporting wrong values of parameters.

The model developed in this chapter can simulate the non-cooperative behaviour of MGs via a

simple method explained hereafter. Let’s assume that MG 2 may tend to reduce power export to

the other MGs, since it has a conventional generator with a large rating and may be reluctant to

share more energy to other MGs during an event. In this case, MG 2 may choose to reduce the value

of parameter Tmax
ij (e.g., from 150 kW to 100 kW or 50 kW), which will have a significant influence

on optimal results of power exchange between MGs and final results of load shedding cost. As

expected, Figure 5.11 illustrates that load shedding cost has largely increased when MG 2 reduces

its power exchange limitation from 150 kW to 100 kW or 50 kW. Figure 5.12 corresponds to the

power exchange under the non-cooperative behaviour of MG 2, which exhibits that less power can

be imported into MG 1 and MG 3.

MG 1 MG 2 MG 3
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4
10

5

150 kW
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Figure 5.11: Simulation III: Load shedding cost under non-cooperative behaviours of MG 2.

5.4 Discussion

5.4.1 Sensitivity analysis investigating the influence of different rolling horizons

This section illustrates, through an appropriate sensitivity analysis, the influence of different rolling

horizons on optimal results of the proposed scheme; refer to Table 5.6. On the one hand, selecting

a very short horizon (e.g., 5 hours) would not sufficiently capture information regarding future

uncertainties, which may lead to increased load shedding cost. On the other hand, if a long horizon

(e.g., 24 hours) is selected, MGs may be convinced to share their resources conservatively which

would cause slightly more load shedding, compared with a shorter horizon (e.g., 15 hours). All three
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Figure 5.12: Simulation III: Power exchange between networked MGs (a) under 50 kW limit of MG
2, (b) under 100 kW limit of MG 2.

cases shown in Table 5.6 can be efficiently solved in an hourly basis via commercial softwares, while

longer scheduling horizon would lead to longer computing time; note the exponential increase in

computing time. Additionally, it shall be mentioned that the selection of the scheduling horizon is

empirical and shall be appropriately decided according to realistic scenarios. For instance, a longer

scheduling horizon could be used to better capture future uncertainties, if the event was to last for

a long period (e.g., several days).

Table 5.6: Comparison between different scheduling horizons.

Load shedding cost (k£) Computing time for one step (s)

5 hours 283.02 0.76
15 hours 253.20 6.67
24 hours 264.07 29.04

5.4.2 A comparison of computing time between a typical centralised control and

the distributed control approach

Table 5.7 illustrates that the computing time based on a centralised control approach is much longer

than that based on the suggested distributed control approach under different scheduling horizons.

The reason is that MG operations in the first and third stage of the suggested distributed control

approach can be run in parallel, which largely reduces the computing burden. This comparative
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analysis demonstrates the merits of the proposed approach in terms of computing efficiency, which

becomes significantly important in energy systems with high penetration of distributed energy

sources that should be managed as close to real time as possible.

Table 5.7: Computing time of centralised control and distributed control under different scheduling
horizons.

distributed control centralised control

5 hours 0.76s 5.58s
15 hours 6.67s 304.96s
24 hours 29.04s 3102.34s

5.4.3 Summary

To summarise, a three-stage stochastic distributed control approach based on rolling optimisation

is suggested to enhance the resilience of networked MGs. Specifically, a stochastic linearised OPF is

utilised in the first stage to capture the influence of uncertainties relating to renewable generation

resources and load profiles as well as the flexibility of MESSs. A consensus-based algorithm is em-

ployed in the second stage to obtain results of power sharing between MGs, and finally a detailed AC

OPF algorithm constitutes the third stage towards capturing technical constraints regarding stabil-

ity properties and obtaining accurate solutions. Overall, the suggested approach provides benefits

over other distributed control approaches found in the literature, as it can capture uncertainties,

MESS routing and stability properties as well as ensuring computing efficiency. Additionally, this

approach can be applied in different networked structures including both radial and meshed net-

works. Load distinction into critical and non-critical, the limitation of generation resources and the

non-cooperative behaviours of MGs are appropriately considered in case studies to capture realistic

scenarios and verify the effectiveness of the suggested rolling optimisation approach.



Chapter 6

A resilience-driven planning model for

networked MGs

6.1 Introduction

As mentioned in the previous chapter, networked MGs can be utilised to decrease system cost in nor-

mal operation mode, while the energy sharing between MGs reduces load shedding during extreme

events [44]. As such, networked MGs introduce further benefits for resilience enhancement than a

standalone MG. Compared with the optimal sizing problem of a standalone MG, the planning prob-

lem of networked MGs is much more complicated due to more flexible operations, power exchange

modelling and incorporation of more DERs [149]. There has been research focused on developing

effective investment strategies for the normal operation of networked MGs (e.g., [150–152]). How-

ever, above papers only consider the internal uncertainties relating to generation resources and load

profiles. External contingencies relating to potential extreme events, such as multiple line faults or

power source damage, are ignored in above research.

In this context, resilience-driven planning problems of networked MGs have not been fully

addressed in existing literature. One of the few papers that have considered resilience at planning

stage (i.e., [64]) suggests an optimal sizing framework for energy storage units to enhance both

resilience and reliability. However, this paper only considers the problem of battery sizing and

utilises EMS to model the operation of networked MGs, which can lead to inaccurate solutions.

Additionally, this paper considers single line fault as part of resilience modelling, which may be

unrealistic; note that normally a resilience scenario should be based onN−K contingencies. In [149],

96
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a two-stage chance constrained stochastic conic model is suggested to address the planning problem

of networked MGs considering multi-site investment and dual-mode operations. In [153], a risk-

averse mixed integer conic model is developed to design networked MGs considering reorganisation

of the MGs boundaries. However, these two papers only consider MG islanding as the external

contingency and [149] utilises a single-bus system to represent each MG, which may be unrealistic.

Additionally, [149] considers several fixed capacities for the sizing problems of DERs, which can

lead to over investment. To summarise, the research discussed above [64, 149, 153] simplifies OPF

algorithms and utilises stochastic programming for uncertainty modelling, which makes it difficult

to represent all possible scenarios ensuring the accuracy of the solution. When a detailed non-linear

AC OPF is considered, computing efficiency and feasibility of solutions may not be guaranteed.

As such, a robust-based method needs to be developed to ensure the required resilience level of

networked MGs in the worst scenario, which is more realistic and efficient for planning problems

considering both resilience and cost.

As far as the planning stage is concerned, there is no significant amount of research focusing on

the optimal sizing problem of networked MGs capturing considerations both for resilience and cost,

especially with the consideration of both internal uncertainties and external N−K contingencies. In

the operational level, all the literature tends to utilise EMS or linearised OPF to model MGs towards

computational burden, however this may lead to inaccurate solutions. Additionally, linearised OPF

algorithms utilised in several papers can only be suitable for radial networks, which limits its

applications on other networks (e.g., meshed networks). Note that MGs might have different network

structures, other than traditional distribution systems [139]. Meshed networks include a more

uniform power flow and can provide benefits for improving voltage profiles and reducing power losses,

which introduce stronger capabilities of meshed networks to withstand severe contingencies and

improve resilience [145]. Therefore, this chapter proposes a three-level defender-attacker-defender

model that can bridge a gap in this respective area. The key contributions of this chapter are

summarised hereafter:

• A three-level model based on modified adaptive genetic algorithm (AGA) and non-dominated

sorting genetic algorithm II (NSGA II) is developed for the optimal sizing problem of net-

worked MGs considering a trade-off between resilience and cost. AGA is utilised to obtain

decisions for the normal planning problem in the first level and generate attacking plans in

the second level, while NSGA II is utilised to make a compromise between resilience and cost
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in the third level.

• Internal uncertainties relating to load profiles and external contingencies caused by extreme

events including both multiple-line faults and power source damage are considered via the

proposed AGA at the second level to mimic a realistic scenario and guarantee high reliability

of the determined solutions. Note that there has been no research focusing on how to handle

contingencies caused by power source damage and even further combining multiple types of

contingencies.

• Detailed time-coupled AC OPF algorithm capturing technical constraints is utilised to model

networked MGs for accurate solutions, which can capture the flexibility of ESSs and ensure

the accuracy and efficiency of power sharing between MGs. A 96-hour scheduling horizon

(i.e., 4 representative days) is utilised to represent a realistic scenario in the normal planning

problem. An agglomerative hierarchical clustering method is utilised to group and select load

data for the representative days and uncertainties relating to load profiles.

• The optimal sizing problem of both back-up generators and batteries is considered to demon-

strate the effectiveness of the suggested three-level model on determining multiple parameters,

while the approach is applied to a setup of networked MGs with a meshed structure and dis-

crimination of loads into critical and non-critical.

6.2 Three-level model formulation

The optimal design and operation of networked MGs, as any other power system, is a notoriously

hard problem because of the increased modelling complexity introduced by integer variables of

sized assets and non-linear constraints pertaining to the AC power flow formulation [98]. It may

be extremely time-consuming or impossible to directly solve this type of problems utilising current

commercial software, especially when many parameters (e.g., over 3 parameters) need to be eval-

uated. Additionally, to address the requirement of resilience enhancement, a set of contingencies

(e.g., multiple line faults and/or power source damage) shall be considered in the model to simulate

emergency operations and ensure feasible solutions towards resilience, which largely increases the

complexity of the suggested planning problem.

To solve this mixed integer non-linear problem (MINLP) with uncertainties and contingencies,

a three-level planning model is designed in this chapter. The process can be found in Figure 6.1,
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while the input and output of each level have been presented in Figure 6.2. In the first level, the

optimal sizing problem of networked MGs under normal operation is considered, while the second

and third levels are formulated as a defender-attacker-defender model iteratively to capture a trade-

off between resilience and cost [154]. A detailed explanation about the suggested three-level model

can be found hereafter:

• In the first level, a meta-heuristic technique based on a modified AGA is utilised to tackle

the normal optimal sizing problem of networked MGs (without the consideration of any con-

tingency). After the AGA converges, the sizing results (e.g., capacities of generators and

batteries) are sent to the second level.

• In the second level, different attacking plans are generated via the AGA to capture the influ-

ence of the worst event scenario on current sizing decisions and obtain the solution with the

largest loss (i.e., load shedding). In this level, attacking plans will include power source dam-

age, multiple line faults and be used towards maximising the load shedding cost of networked

MGs. After the AGA converges, the attack plan that causes the largest load shedding cost

will be sent to level three. If the selected attack plan still obtains a resilience level over the

predefined target, current sizing results will be the final decisions and the iterative process

ends. Note that attack plans to be determined in level two are based on the optimal sizing

results obtained either from level one or level three (depending on the stage the algorithm has

reached).

• In the third level, a multi-objective problem is formulated to consider the trade-off between

investment cost and resilience as well as reducing the conservatism of final solutions. The

problem is formulated via a NSGA II algorithm, where two objective functions (cost minimi-

sation and resilience maximisation) are considered. Both the normal operational problem and

the operational problem incorporating the selected attacking plan from the second level are

considered. Eventually, the NSGA II will output several pareto solutions with different levels

of cost and resilience. Then, according to the predefined resilience target (e.g., 65%), the

solution that achieves the target (i.e., over 65%) and also obtains the lowest cost is selected

and fed back to the second level for the next round of attack/verification.

To ensure that solutions with good quality are found, a non-linear solver called ‘IPOPT’ is utilised

to solve the operational problem of networked MGs subject to the previously-obtained investment

decisions [148].
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As far as resilience assessment is concerned, the resilience trapezoid, a widely-used multi-phase

resilience trapezoid approach has been suggested in [7]. Following this method, a resilience index

(RI) corresponding to the percentage of weighted survived loads during extreme events is utilised in

this chapter, which can be found in (6.1). P ls
m,b,t and P l

m,b,t correspond to load shedding and original

load level in bus b of MG m at time t, while Te refers to the scheduling horizon in emergency

operation mode and cls is utilised to represent different weights of critical and non-critical loads.

RI = 1−

∑

m∈M

∑

t∈Te

∑

b∈Lbus
clsP ls

m,b,t
∑

m∈M

∑

t∈Te

∑

b∈Lbus
clsP l

m,b,t

(6.1)

6.2.1 First level-normal optimal sizing

The evaluation function for the normal planning of networked MGs is presented in (6.2), which

includes the operational cost F1 and the investment cost of back-up generators and ESSs. Note that

the definition of F1 has been given in equation (6.3) including generation cost, power exchange cost,

load shedding cost and overslack cost, while Cgen and Cess refer to investment costs of generators and

batteries respectively. To meet the requirements of traditional power systems and mimic a realistic

scenario, networked MGs utilised in this chapter will be operated via a centralized control method.

The basic structure of isolated networked MGs is exhibited in Figure 6.3. MGs are connected with

each other and are all managed by a central controller, which will make decisions on the power

exchange among MGs. It is envisioned that this MG structure can capture the setting found in the

MG of a so-called high-value building (e.g., hospitals, trading centres, etc.) within an urban centre.

min F0 = F1 +
∑

b∈Ngen

Cgen +
∑

d∈Ness

Cess (6.2)

The AC OPF is utilised to assess the operational problem at hand, specifically for minimising the

total system cost in both normal operation mode (without contingencies) and emergency operation

mode (with contingencies), such as total generation cost and load shedding cost. The cost for

load shedding shall be much larger than the cost for generation. Note that there should be no

load shedding in normal operation, while the operator may need to curtail loads to guarantee the

operation of networked MGs under emergency operation mode. In other words, the main target for

resilience can be regarded as reducing load shedding. In mathematical terms, the objective function

of the normal operation problem is given by (6.3). The first two terms involve the generation cost

of conventional generators (e.g., diesel generators) and load shedding cost respectively. The third
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Figure 6.3: The structure of networked MGs.

term corresponds to the power exchange cost among different MGs and the fourth term is included

to avoid infeasibilities, and in practice is modelled as a slack bus with a very high cost. The normal

operational problem is posed as a minimisation problem, subject to the classical non-linear AC OPF

constraints described in Chapter 3 and Chapter 4, while ESS-related constraints are also considered

in the operational model.

min F1 =
∑

m∈M

∑

t∈T

[
∑

g∈Ng

cgPm,g,t +
∑

b∈Lbus

clsP ls
m,b,t]

+
∑

m∈M

∑

t∈T

∑

n∈M/m

cemn | P
e
mn,t | +

∑

m∈M

∑

t∈T

∑

b∈Lbus

cosP os
m,b,t

(6.3)

6.2.2 Second level-event attacker

In this level, the main objective is to select the attacking plan that can cause the largest loss (i.e.,

load shedding) on current optimal sizing decisions, which can be formulated as a max-min problem.

The objective function can be found in equation (6.4), which is calculated as the ratio of weighted

load shedding cost over weighted load cost.

max min F2 =

∑

m∈M

∑

t∈Te

∑

b∈Lbus
clsP ls

m,b,t
∑

m∈M

∑

t∈Te

∑

b∈Lbus
clsP l

m,b,t

(6.4)

The classical equations pertaining to power flow problems have been provided in (6.5) and (6.6).

Integer variables xm,b,p and ym,g are utilised to represent the influence of contingencies including

both line faults and power source damage. xm,b,p represents the status of the line from bus b to bus

p at MG m, where xm,b,p = 1 corresponds to an intact line and xm,b,p = 0 means the line has been

damaged by extreme events. The power generation limit of conventional generators is modified as

equation (6.7)-(6.8), where ym,g = 1 represents the generator g is intact during emergency period
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and ym,g = 0 means the generator g is damaged or tripped. Instead of T , Te is utilised to represent

the time scheduling horizon at emergency mode. Other constraints (e.g., power balance constraints)

are the same as those in the first-level planning problem.

P ex
m,b,t =

∑

p∈Nbus

xm,b,pVm,b,tVm,p,t(Gbpcosδbp,m,t +Bbpsinδbp,m,t), ∀t ∈ Te, ∀b ∈ Nbus (6.5)

Qex
m,b,t =

∑

p∈Nbus

xm,b,pVm,b,tVm,p,t(Gbpsinδbp,m,t −Bbpcosδbp,m,t), ∀t ∈ Te, ∀b ∈ Nbus (6.6)

ym,gP
min
m,g ≤ Pm,g,t ≤ ym,gP

max
m,g , ∀t ∈ Te, ∀g ∈ Ng (6.7)

ym,gQ
min
m,g ≤ Qm,g,t ≤ ym,gQ

max
m,g , ∀t ∈ Te, ∀g ∈ Ng (6.8)

As such, the problem in the second level is still a MINLP problem because of the incorporation

of contingency-related integer variables. To capture feasible and accurate operational solutions as

well as to consider the influence of uncertainties and contingencies, the suggested AGA is utilised

to handle integer variables and solve the level 2 problem. More details about the solving procedure

can be found in Section 6.3.

6.2.3 Third level-defender

According to Figure 6.1, the third level is formulated as a multi-objective optimisation problem

considering a trade-off between cost and resilience, where one objective relates to cost minimisation,

which mainly considers reduction of investment cost in normal planning, and the other objective

is to maximise the resilience level (i.e., reducing load shedding) under the selected attacking plan

obtained from level 2, which may require more investment. Note that extreme events are featured

by low probability and unpredictability, which means that it may not be appropriate to invest a lot

for rare events. As such, a trade-off between cost and resilience is necessary for decision making at

the planning stage. The two objective functions have been formulated in (6.9) and (6.10), where

(6.9) is the same as the objective of the normal planning problem and (6.10) utilises the suggested

RI as the objective. The constraints of F3 1 and F3 2 are the same as the normal planning problem,

while F3 2 is based on the worst scenario s obtained in the second level.

min F3 1 = F0 (6.9)
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max F3 2 = RI (6.10)

Considering the incorporated integer variables relating to generator and battery ratings (MINLP

formulation), the multi-objective optimisation problem will be solved by NSGA II, which has the

advantage to output several pareto solutions capturing both resilience and cost for decision makers’

consideration. According to the requirement of decision makers, the solution over the required

resilience level with the lowest system cost will be selected and sent back to the second level for

next-round verification.

6.3 Problem solution procedure

6.3.1 Data preparation

As far as the normal planning problem is concerned, 4 representative days (96-hour scheduling hori-

zon) are selected from one-year data to ensure that typical load profiles across different seasons are

captured and the system is not oversized due to using a peak day. Note that the proposed optimal

sizing model is closer to operational planning rather than long-term multi-year infrastructure plan-

ning. As such, this is a choice to capture realistic scenarios and also guarantee computing efficiency.

Regarding uncertainties, 15 different load profiles are generated and employed to represent the load

uncertainty, which aims to represent the uncertain fluctuations of load profiles across a year. Ad-

ditionally, to ensure that a realistic scenario is captured, the data for both representative days and

uncertainties are from real data.

It is worth noting that the use of four typical days can be considered representative in the

following case studies, since there are four seasons in a year [155, 156]. Note that the suggested

model deals with static planning, which means that the assets (i.e., generators and batteries) are

to be sized once and the possibility for future load growth, additions/upgrades, and cascading

failures is not considered. Even though utilising a greater number of typical days is good practice

for a better approximation of total system cost, it is important to note that planning decisions are

mostly made by a small number of operating points (e.g., peak load level) [98]. Utilising typical days

for the representation of one-year duration is a common approach employed to reduce computing

burden for planning research without compromising solution integrity [155]. Additionally, there

has been research focusing on developing advanced approaches to select representative days more

effectively, which can reduce the number of representative days while maintaining similar accuracy.



6.3. Problem solution procedure 105

For instance, [157] has suggested an optimisation approach, which can ensure that the accuracy of

planning models by selecting 4 days is similar to the accuracy of other approaches selecting 24 days.

The agglomerative hierarchical clustering method (bottom-up approach) with Ward’s linkage is

employed to establish different groups of load data and identify representative days or an uncertainty

set from a different cluster [142]. After obtaining these clusters, medoid points of clusters are selected

to represent final scenarios (i.e., 4 representative days or 15 uncertain load profiles). Given that

each initial operating scenario has the same occurrence probability, the probability of each final

scenario can be calculated as the ratio of the number of initial scenarios that belong to the cluster

and the number of scenarios [141].

6.3.2 Modified adaptive genetic algorithm

Both the first and second level problems (min and max min) proposed in this chapter belong to

MINLP problems, because of the introduction of numerous binary variables to determine asset siz-

ing, attacking plans and non-linear constraints. To keep technical constraints under consideration,

this chapter suggested a modified adaptive genetic algorithm (AGA) to solve these MINLP models.

A genetic algorithm (GA), categorised as a global search meta-heuristic, mimics natural biological

procedures via operators such as crossover and mutation. The advantages of the GA is that it does

not suffer from the limitation of parameter numbers and is very efficient in terms of computational

time and programming simplicity [98]. However, traditional GA, which normally utilises a small

mutation rate (e.g., 0.01-0.1), may easily fall within a local minimum for the mathematical formu-

lation suggested in this chapter, while a large mutation rate (e.g., over 0.3) can make the problem

hard to converge. In this chapter, an AGA with local search and elitism [158] is developed to solve

these MINLP problems. Adaptive crossover/mutation probabilities and local search are utilised to

enhance the ability of the GA to avoid local optimum, while the application of elitism preserves

good offsprings and speeds up the convergence of GA. The iterative process of the suggested AGA

can be found in Figure 6.4.

The calculation rules of crossover probability (pc) and mutation probability (pm) are modified

and shown in (6.11-6.14) [159]. f ′ represents the smaller fitness value in two children that is

chosen for a crossover operation, while fave corresponds to the average fitness value of the whole

population and fmax regarding the largest fitness value in the whole population. k1, k2, k3, k4

and α are constant, which can take different values for different optimisation problems. In [159],
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Figure 6.4: Flowchart of the suggested AGA.

a set of values [1, 0.5, 1, 0.5] is suggested for k1, k2, k3 and k4. However, the very large value of

k1 and low value of k4 leads to non-convergence for the specific application. Since the first level

is formulated as a minimization problem, the value of f ′ may be equal to fmax. Therefore, it is

necessary to introduce the parameter α to avoid this problem, where α shall be slightly larger than

1. In this chapter, they take the values of 0.85, 0.5, 1, 1 and 2 respectively. Note that the criteria

for choosing the constants k1, k2, k3 and k4 and α are empirical (i.e., through tens of trial-and-error

simulations). In different optimization problems, they can take different values depending on the

purposes they serve. An explanation of the elitism process can be found in [158].

pc = k1
αfmax − fave

αfmax − f ′
, when f ′ ≤ fave (6.11)

pc = k3, when f ′ > fave (6.12)

pm = k2
αfmax − fave

αfmax − f ′
, when f ′ ≤ fave (6.13)

pm = k4, when f ′ > fave (6.14)

Last but not least, the modified AGA has stronger ability to avoid local minimum than a generic

GA; nevertheless, it still cannot utilise the nature of the problem to find and improve the optimal

solution. The poor local search ability may need the AGA to generate a large scale of populations



6.3. Problem solution procedure 107

to find the optimal solution. To strengthen the local search ability of AGA, this chapter suggests a

simple method to improve the qualities of solutions in every generation. The process of local search

is as follows:

• Select the child with the worst fitness value from every generation and replace it with the best

child;

• Randomly pick up one parameter from all determined ones and reduce the value of this

parameter by x (e.g., 3);

• Calculate the fitness value of the new child and add it to the offspring list.

Regarding the first level problem, capacities of back-up generators and ESSs can be initialised as

iterated generations (e.g., pairs of back-up generator ratings [200 kW, 200 kW, 200 kW] with the

range of [0 kW, 400 kW] and pairs of ESS ratings [40 kW, 40 kW, 40 kW] within the range of [0

kW, 100 kW]. Note that it is considered that the energy content of each ESS can be as high as four

times the selected capacity [98]. The fitness function is the total system cost provided iteratively

for each chromosome through the utilised AC OPF. The algorithm is considered to have converged,

when the optimal solution has not changed for more than a certain number of iterations (e.g., 20

or 30), or the maximum number of iterations has been reached (e.g., 100). Note that the suggested

three-level model is characterised by a highly non-linear nature in each level, which introduces

challenges in obtaining solutions with good quality. As such, this chapter has chosen a strict rule

of convergence to ensure that the suggested AGA can find solutions with good quality and better

avoid over investment. Particularly, the maximum number of iterations allowed is set to 100, while

in case the fitness function does not change for 20 iterations, then algorithm finishes.

Regarding the second level problem, internal uncertainties and external contingencies need to

be considered. As such, one chromosome has to include two different types of genes: i) the attack

plan including power source damage and line faults; ii) selected load profile from uncertainty set.

For instance, one attacking plan can be represented via a chromosome [2, 4, 5, 6, 1], which reflects

generator 2 and three lines [4, 5, 6] from different MGs being damaged in this attack plan, while

the load profile from cluster 1 is selected. Note that the local search technique is not utilised for

the second level problem.
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Figure 6.5: NSGA II flowchart.

6.3.3 NSGA II

The target of the third level problem is to obtain sizing solutions that can capture a trade-off between

cost and resilience. Hence, a multi-objective evolutionary algorithm based on NSGA II [160] is

adopted to solve the problem. The most significant advantage of NSGA II is that it can obtain an

optimal solution set rather than a single optimal solution, which gives operators more options for

decision making. Note that extreme events have a very low probability, even though the damage

may be huge. As such, if the power system is located in an area with a higher probability of extreme

events or decision makers have a low-risk tolerance, it may be necessary to invest more for a higher

resilience level; otherwise, there may be no need for pursuing a very high resilience level under

the worst scenario. The suggested multi-objective formulation at this level has the advantage of

avoiding the conservatism of final solutions and provides several options for decision makers. The

process of NSGA II can be found in Figure 6.5.

According to Figure 6.1, all three levels are formulated in an iterative way. One challenge

based on the suggested multi-objective formulation is how to guarantee the effectiveness of the

current solution against attacks from previous iterations. To improve the solutions step by step, it

is necessary to introduce a budget set for the initialisation of new offsprings. To make it clear, the

process of the suggested DAD model in iteration k can be found hereafter:
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1. Attack the current solution via AGA and select the attack plan with the largest loss.

2. Obtain the attack plan from level 2 and the previous sizing result of iteration k − 1, where

generator i is damaged and several lines are tripped. Assume the current budget group set is

represented by B. More details about updating B can be found in step (5).

3. Initialize the ratings of generators and batteries according to the current budget set B, which

guarantees the new solution will meet requirements of resilience against worst scenarios from

previous iterations.

4. Run NSGA II and obtain the pareto front. Select the solution with respect to the operators’

requirements (i.e., achieve desired resilience level and also with the relatively lowest system

cost). The solution is represented by [G1, G2, .....Gn] and [ES1, ES2, .....ESn], where G and

ES for generators and ESSs respectively.

5. To ensure that the updated solutions still meet the resilience requirement against the current

attack, it is necessary to generate a new group of budget plans
∑

g∈G/i P
max
g ≥

∑

g∈N/iGg

and Smax
b ≥ ESb, ∀b ∈ E for following iterations.

6. Add the new budget plans into set B and send the solution back to step (1) for next round

attack (i.e., iteration k + 1) and verification.

6.4 Case studies

The following case studies are specifically focusing on isolated networked MGs, which is in alignment

with other relevant research (e.g., [161]); hence a utility grid has not been included. The structure

of a typical AC MG utilised in this chapter is presented in Figure 7.4; note that an urban centre

composing of three MGs could have emergency backup generator(s) and ESSs (especially in the

future system setting). That is why in each MG a conventional generator (e.g., diesel generator) is

installed as a conventional energy resource, while an ESS unit is also installed and connected with

this MG through power converters. All operational and investment data related to the electricity

system are extracted from [144] and [98]. It is more realistic to assume that not all loads would

be essential. Similar to [71], it is assumed that the loads L3 in the bus 3 of each MG (around

30% of total loads) are critical loads with high curtailment cost, while other types of loads are
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Figure 6.6: Networked MGs utilised for simulations.

non-critical loads with relatively lower curtailment cost. Additionally, a 96-hour scheduling horizon

is formulated to capture the seasonal change of load profiles and the flexibility of ESSs.

6.4.1 Simulation I - Size generators under normal operation

In this case, three back-up generators are optimally sized via the AGA, while the sizing results in

three stand-alone MGs are utilised for comparison. As far as the storage devices are concerned, each

MG includes a low power-low energy battery (e.g., 50 kW/200 kWh). Figure 6.7(a) illustrates the

evolution of the total system cost across the AGA evolution, which converged within 50 iterations.

The lowest system cost and investment cost are £54464.20 and £45905.28 respectively, while the

optimal design corresponds to capacities of [52 kW, 362 kW, 270 kW] for the three back-up gener-

ators respectively. Note that the total system cost includes both investment cost and operational

cost.

When three stand-alone MGs are optimally sized separately with the solution [202 kW, 256 kW,

226 kW], the total system cost and investment cost are £110546.38 and £103090.56 respectively,

which are much larger than the cost obtained from the optimal sizing of networked MGs under

normal mode. Figure 6.7(b) exhibits that the optimal capacity of back-up generators in MG 1 (with

the highest investment cost) has been significantly reduced because of the consideration of power

sharing between MGs. It can be concluded that the power sharing between MGs can enhance the

ability of each MG to supply loads and then reduce investment cost. The power exchange results

in normal operation can be found in Figure 6.8(a), which show that MG 1 requires more power

support from other MGs. Figure 6.8(b) indicates how ESSs in different MGs charge and discharge
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Figure 6.7: Simulation I: (a) GA total system cost evolution of networked MGs; (b) Back-up
generator ratings in both cases.

when loads are significantly changed.

6.4.2 Simulation II - Trade-off between resilience and cost

As mentioned earlier, considering resilience at the planning stage is important for the normal op-

eration of networked MGs. In this subsection, the suggested three-level approach is utilised to

determine a trade-off between resilience and cost, and the results can be found in Figure 6.9. Fig-

ure 6.9(a) shows the pareto front of the NSGA II in the first iteration, where the sizing results

account for different combinations of cost and resilience. Generally, more investment cost leads to

a higher resilience level. The suggested multi-objective formulation can meet different requirements

and also avoid conservative results, which are normally caused by robust-based methods. Three

groups of results including ‘For RI 65 %’, ‘For RI 70 %’, ‘For RI 75 %’ are utilised to represent the

potential requirements of decision makers for resilience. Note that Figure 6.9(a) only exhibits the

results of the first iteration. If the obtained result fails to get through the attacking verification of

the second level, NSGA II needs to run again considering the newest attacking set and solutions

will also be updated.

Because the defender-attacker-defender model always considers the worst scenario, all three

groups of final results for resilience-driven optimal sizing of back-up generators can be obtained

within five iterations, which can be found in Figure 6.9(b). To achieve a higher resilience level,
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Figure 6.8: Simulation I: (a) Power exchange between MGs in normal operation; (b) Batteries
charging/discharging patterns at normal operation.

the sizing results of MG 1 and MG 3 have been significantly increased. Compared with the system

cost in normal planning problem, the system costs of all these three groups have increased, which

accounts for £69856.84, £80462.92, £98872.44 respectively. It can be expected that the investment

cost increases with the requirement of a higher resilience level. As mentioned earlier, the algorithm

is effective and can obtain final solutions within several iterations. For instance, the improving

process of the obtained solution for RI 65% is [52, 362, 270] → [73, 315, 296] → [88, 303, 309] →

[89, 309, 308] with the worst loss accounting for 46.71% → 37.41% → 36.61% → 34.88%.

Additionally, the verification of final optimal results can be found in Figure 6.9(c) which shows

that the results achieve the required resilience level, proving the effectiveness of the suggested

approach. Note that achieving 75 % resilience is actually a very high standard for decision makers,

because of the consideration of the worst scenario including both power source damage and line

faults; nevertheless, the total system cost under RI 75% is still lower than the system cost of stand-

alone MGs, and this is a significant result showing key direction for future operational and planning

considerations of MGs found in a network.

6.4.3 Simulation III - Size both generators and batteries

To further exhibit the effectiveness of the suggested three-level model on deciding multiple pa-

rameters, ratings of both generators and batteries are considered in the optimal sizing problem.

Figure 6.10(a) shows the sizing results under normal planning problem, where the results of stand-
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alone MGs are utilised for comparison. Compared with the battery settings [50 kW, 50 kW, 50

kW] used in previous simulations, battery ratings in all MGs reduce significantly to [24 kW, 20 kW,

20 kW], even though the sizing results of generators have been slightly increased to [77 kW, 365

kW, 272 kW]. It is proven that the suggested planning approach has the ability to size multiple

parameters at the same time and avoid unnecessary oversizing issues. Regarding three stand-alone

MGs optimally sized separately, the sizing results are [210 kW, 267 kW, 237 kW, 24 kW, 20 kW, 20

kW], while the total system cost and investment cost are £206149.92 and £198692.16 respectively,

compared with networked MGs accounting for total system cost £156324.37 and investment cost

£148003.20.
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Figure 6.9: Simulation II: (a) Pareto front after the first iteration of NSGA II; (b) Results consid-
ering both resilience and cost; (c) The final verification of the second stage attack.

Three groups of trade-off results between resilience and cost can be found in Figure 6.10(b).

Sizing results of battery units are basically the same as the normal planning problem, while generator

ratings slightly increased compared with the results of Simulation II. On the one hand, this illustrates

the effectiveness of the suggested planning model on obtaining a trade-off between resilience and
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Figure 6.10: Simulation III: (a) Back-up generator ratings under normal planning problem; (b)
Three groups of results considering both resilience and cost, where ‘G’ and ‘E’ account for generators
and batteries respectively.

cost; on the other hand, it can be concluded that battery ratings are less sensitive to resilience level

than generators, of which ratings directly influence the power & load balance. However, comparison

results between Simulation II and Simulation III also show that it is necessary to consider both

generators and batteries to avoid over investment and reduce system cost, because of the significantly

higher price of battery units.

6.4.4 Simulation IV - Sizing results considering MG islanding

The connection between MGs may be interrupted due to unstable cyber links or faulted lines during

extreme events; hence, it is necessary to consider the influence of MG islanding on sizing results

of each MG, which can be captured through the following points: 1) it is possible for every MG

to switch into islanded mode due to the interrupted connection or self-protection; 2) it anticipates

that islanded MGs can still achieve the required resilience level. Note that the above two points

are aligned with the suggested three-level model based on robust optimisation (i.e., capturing the

worst scenario). As such, it is reasonable to firstly calculate the optimal sizing results of each MG

in islanded mode and then regard these results as lower limits of the suggested three-level model.

To achieve this goal, the suggested model is firstly used to find the optimal sizing results for

each islanded MG. Note that these results will consider cost minimisation as well as ensuring the

expected resilience level of each MG under islanded mode. After that, these results will be treated
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as lower limits for the initialisation of DER ratings in the third level of the suggested model. For

instance, optimal sizings of generators in each MG under islanded mode account for [118 kW, 137

kW, 119 kW] with a resilience level 65% respectively, which means that the initialisation of generator

ratings in each MG at the third level shall not be lower than these values [118 kW, 137 kW, 119

kW]. If not, when one MG switches into islanded mode, it can not ensure the expected resilience

level. Using this method, the influence of MG islanding is appropriately considered in final sizing

results.

The optimal sizing results of DER ratings considering MG islanding have been updated to [118

kW, 286 kW, 280 kW] and [131 kW, 308 kW, 306 kW] for RI 65% and 70% respectively. Note that

sizing results under RI 75% do not change, since the limit has no influence on the final results when

RI 75% is expected. The comparison between sizing results with and without the consideration of

MG islanding can be found in Figure 6.11. Figure 6.11(a) and 6.11(b) correspond to the difference

of generator ratings on MG 1 and MG 2, while Figure 6.11(c) presents that total system costs for

RI 65% and RI 70% have increased with islanding consideration. The reason is that the generator

rating (the most expensive generator) in MG 1 has increased a lot to ensure the expected resilience

level when it switches into islanded mode during extreme events, which accounts for much larger

investment cost.

6.5 Cost comparison between case studies

This section serves as a cost comparison under normal operation between the previously presented

acse studies. Figure 6.12 illustrates the total system cost split into investment and operational

costs for each case investigated in the previous subsections. Obviously, sizing both generators

and batteries will lead to higher investment cost than sizing only generators. Additionally, it is

clearly demonstrated that under normal operation the majority of the costs are associated with the

investment via the comparison between Figure 6.12(a) and Figure 6.12(b), while the investment

cost increases when decision makers require higher resilience level across the networked MGs.

An interesting observation relates to the operational cost in Figure 6.12(b), which exhibits that

the operational cost decreases a bit with the increase of investment cost or required resilience level.

The reason for this is that decision makers tend to reduce investments in expensive generators

(e.g., the generator in MG 1) under the normal planning problem and increase expenditure in

more cost-effective generators (e.g., the generator in MG 2), which leads to higher energy exchange
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between MGs. However, when contingencies are considered, investment in expensive generators

shall increase, which actually reduces the power exchange cost between MGs under normal operation

mode.
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Chapter 7

Optimal sizing and pre-positioning of

MESSs

7.1 Introduction

Networked MGs are widely used as an effective strategy for load restoration and cost minimisation

during extreme events [44], while MPSs (e.g., MESSs) have attracted research interest due to their

mobility and flexibility compared to static resources [162]. As such, this chapter aims to develop

a resilience-driven planning model for optimal sizing and pre-positioning problems of MESSs in

decentralised networked MGs, which is generic enough to capture main contingencies caused by

both man-made events and natural disasters.

7.1.1 Networked MGs based on distributed control

Centralised control and hierarchical control have been employed for resilience-driven planning and

operations of networked MGs [6, 149, 163]. However, operations of networked MGs considered in

above research require central controllers for decision making, which might be unrealistic when an

extreme event occurs. Compared to control approaches requiring central controllers, MG operations

based on distributed control might not reach global optimum easily but can have faster response

and less dependence of each MG on a central controller [135]. Recently, much research focuses

on developing decentralised operation strategies for networked MGs, where linearised Distflow and

EMSs are two main approaches for MG modelling. As mentioned in previous chapters, these two

approaches have apparent limitations. Overall, operations of power systems can easily reach their

118
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stability limits during extreme events [164], which makes it a necessity to capture all the technical

constraints for safe MG operations.

As far as planning problems capturing networked MGs with distributed control are concerned,

there is not much research focused on this area. In [151], a planning model capturing cooper-

ative behaviours of interconnected MGs has been developed to deploy renewable energy sources

and minimise investment cost; nevertheless, only normal operations have been considered in this

paper. In [150], a power dispatch framework based on a consensus algorithm is proposed for the

planning and operation of networked MGs. However, this paper does not incorporate any uncer-

tainties or contingencies into the model. It can be concluded that there is no research focused on

resilience-driven planning problems of decentralised networked MGs capturing both uncertainties

and contingencies. Additionally, existing planning approaches on networked MGs mainly focus on

static DERs (e.g., generators and batteries). However, extreme events have the high-impact and

low-probability nature, which may lead to the requirement for higher flexibility than normal plan-

ning problems [165]. In this context, the sizing and pre-positioning problems of MPSs (e.g., MEGs

and MESSs) can be much more realistic and effective.

7.1.2 Mobile units for load restoration

Planning problems of distributed energy resources (e.g., storage systems) have attracted research

interest due to the trend of highly electrified future and the appearance of economical storage

options [166]. To better tackle the impact of severe contingencies, the incorporation of MPSs such

as MESSs and mobile emergency generators (MEGs) in power systems has become more and more

common for load restoration. For instance, in [16], a pre-hurricane resource allocation strategy

is suggested to provide proactive preparedness for distribution systems against natural disasters.

Generation resources such as diesel oil, transportable batteries and electric buses are considered for

allocation. In [18], a two-stage pre-sizing and positioning model of MESSs is proposed to restore

loads after extreme events. In [59], a two-stage pre-positioning framework is proposed to implement

resilient routing and scheduling of MPSs. Both load survivability and recovery performance of the

system are considered in the paper. In [69], a two-stage framework focusing on the pre-positioning

and optimal dispatch of MEGs is suggested to dynamically formulate multiple MGs and restore

critical loads after extreme events. However, the multi-period dynamic dispatch is ignored because

the allocated MEGs stand still at the same place.
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Except for the above pre-allocation problems, there has been much research focused on devel-

oping operational strategies of MESSs due to their mobility and flexibility for load restoration [167].

In [68], a co-optimisation model with the routing and scheduling of repair crews and MPSs is de-

veloped to restore distribution systems and enhance grid resilience. In [19], a post-disaster joint

scheme incorporating multiple MGs, MESSs, network reconfiguration and generation scheduling is

suggested for load restoration. In [168], a load restoration strategy based on rolling optimisation

is proposed to coordinate the routing decisions of MESSs and the reconfiguration of distribution

networks. However, the above papers only consider the operational level and do not include any

uncertainty.

There are limitations in the above research: firstly, no uncertainties relating to renewable en-

ergy sources and load profiles are considered on the above planning models; secondly, external

contingencies are handled via scenario-based stochastic programming, which may only be able to

consider small number of scenarios due to large computing burden; thirdly, most papers only con-

sider pre-positioning problems of MPSs (e.g., [16] and [59]) rather than both optimal sizing and

pre-positioning, which cannot fully present the advantages of MPSs. Above limitations or simplifi-

cations are all related to the large computing burden brought by the modelling of MPSs (e.g., the

introduction of large amounts of integer variables) and they will lead to inaccurate optimisation re-

sults. As such, it is necessary to develop a comprehensive planning model considering both optimal

sizing and pre-positioning problems of mobile units as well as capturing both internal uncertainties

and external contingencies via an appropriate approach. As mentioned before, different distributed

control approaches for networked MGs can largely reduce computing burden, which brings oppor-

tunities for the application of MPSs. Additionally, approaches based on robust optimisation may

be more appropriate for modelling severe contingencies [169].

To summarise, there is no significant amount of research focused on optimal sizing and pre-

positioning problems of MESSs for the resilience enhancement of decentralised networked MGs.

Additionally, direct mathematical programming approaches only featuring stochastic programming

can be inappropriate for solving the suggested problem due to the consideration of distributed

control, internal uncertainties and external contingencies. Therefore, this chapter proposes a novel

resilience-driven planning model for the optimal sizing and pre-positioning problems of MESSs

in decentralised networked MGs capturing both internal uncertainties and external contingencies,

which can bridge a gap in this respective area. The contributions are summarized hereafter:
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• A three-level defender-attacker-defender (DAD) model based on an adaptive genetic algorithm

(GA) is developed to solve the optimal sizing and pre-positioning problem of MESSs captur-

ing the main features of extreme events including both external contingencies and internal

uncertainties.

• A three-stage distributed control approach based on a consensus algorithm is developed for the

operational problem of networked MGs, while a linearised time-coupled AC OPF algorithm

is utilised to capture network constraints, technical constraints relating to stability properties

and the flexibility of MESSs.

• Internal uncertainties with renewable generation sources and load profiles are considered in

the operational model via scenario-based stochastic programming, while external contingencies

including multiple line outages are captured via the suggested DAD model.

• Extensive case studies considering different attack budgets, different scheduling horizons of

MESSs and a comparison between mobile units and static units are developed to present the

effectiveness of the suggested DAD model.

7.2 Outline of the suggested planning model

A typical DAD planning model includes three components, i.e., planner, attacker and operator,

where the planner is formulated as the upper-level problem in this context to determine optimal

resource allocation (e.g., MESS sizing and pre-positioning) against potential attacks [154]. The

attacker corresponds to the middle-level problem aiming at maximising total load shedding via

specific attack actions, while the operator is regarded as the lower-level problem representing the

responsive actions of MG operator against attacks from the middle level. It is worth noting that

decision variables in higher levels are treated as constants by lower-level problems [170].

To solve the suggested three-level optimisation problem, the first step is to merge the middle-

level problem and lower-level problem into a single-level formulation, which is realised as a max-min

subproblem to identify the worst-case scenario (e.g., the attack action causing most load shedding),

while the upper-level problem is designed as a master problem to make decisions on MESS sizing and

pre-positioning. The flowchart of the proposed three-level DAD model can be found in Figure 7.1.

The subproblem and the master problem will be solved via a column-and-constraint generation

(C&CG) method iteratively until convergence, where ǫ corresponds to the value of convergence
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tolerance [90]. Note that the C&CG algorithm has been widely used to efficiently solve various

mathematical models featuring robust optimisation [171]. Additionally, both internal uncertainties

and external contingencies are incorporated in the planning model. Uncertainties with renewable

energy sources and load profiles are captured via a scenario-based stochastic programming approach

in the decentralised operation of networked MGs, while the influence of contingencies including

multiple line outages are considered via the suggested DAD model. Specifically, the subproblem

can produce different attack actions relating to different line outages and select the attack action

that can cause the largest load shedding cost. After obtaining the selected attack action, the master

problem will update the current optimal sizing and pre-positioning results against this attack.

Important input and output information in the master problem and subproblem is illustrated in

Figure 7.2. It is worth noting that the master problem and the subproblem are further divided into

two levels. The upper level corresponds to the proposed adaptive genetic algorithm for handling

integer variables with optimal sizing, pre-positioning and attack actions, while the lower level refers

to the decentralised operation of networked MGs with uncertainties for load restoration. Distributed

power sharing between MGs is achieved via a consensus-based algorithm, while the operation of each

MG is formulated as a MILP problem and can be efficiently solved by commercial solvers. Detailed

mathematic formulation of the subproblem and the master problem can be found in the next section.

As mentioned before, extreme events are featured by high impact and low probability, which may
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Figure 7.1: Outline of the suggested three-level DAD model.
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Figure 7.2: Information flow of the suggested DAD model.

cause temporary damage on central controllers or the communication between central and local

controllers in each MG; nevertheless, local connections between MGs may still be reliable, which

renders the application of distributed control approaches for the decision making of power exchange

between different MGs under emergency situations. In this case, operations of MG clusters based on

a distributed control approach is more realistic for the suggested resilience-driven planning problem.

As such, a consensus-based algorithm is utilised in this chapter to decide the power exchange between

networked MGs, which is featured by the fast convergence and stability [172].

7.3 Problem formulation

7.3.1 Master problem

To consider the trade-off between total system cost and resilience (e.g., total load shedding), the

objective function at the planning level should include both MESS sizing cost and allocation cost

(Cmes) and operational cost (Fop) of each MG, which is illustrated in (7.1).

Fmas =
∑

m∈M

Cmes +
∑

m∈M

F op (7.1)

where the operational cost of a certain MG corresponds to (7.2), which includes generation cost

and load shedding cost across a set of scenarios. S represents the uncertainty set and ps refers to

the occurrence probability of scenario s, while cg corresponds to generation costs of conventional
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generators.

F op =
∑

s∈S

ps
∑

t∈T

∑

g∈Ng

cgPg,t,s +
∑

s∈S

ps
∑

t∈T

∑

b∈Lbus

clsP ls
b,t,s (7.2)

The proposed operational model based on distributed control can be divided into three stages: (a)

Obtain results on power surplus or shortage of each MG through the linearised AC OPF algorithm

capturing uncertainties; (b) Update decisions on power exchange using a consensus-based algorithm;

(c) Run the linearised AC OPF again to re-schedule each MG according to updated power exchange

results. Detailed information about each stage can be found hereafter:

Stage 1 - Calculate power surplus/shortage

In this stage, a time-coupled linearised AC OPF algorithm is run in each local MG allowing power

surplus or power shortage results to be obtained, which is represented by the variable P e. Specif-

ically, P e > 0 means power shortage, while P e < 0 corresponds to power surplus. Note that the

algorithm is run by each MG in a stand-alone condition (i.e., not connected to other MGs) dur-

ing this stage. The objective function of one local MG in this stage can be found in (7.3), which

includes the calculated power surplus or power shortage and the total load shedding cost across

a set of uncertainties. Notably, a scenario-based stochastic problem is formulated to capture un-

certainties pertaining to load profiles and renewable energy sources [138]. Variables relating to the

scheduling of MESSs and power sharing are realised as here-and-now decisions, while other variables

(e.g., active power output or load curtailment) are regarded as wait-and-see decisions, which are

influenced by the scenario set.

F1 =
∑

t∈T

ceP e
t +

∑

s∈S

ps
∑

t∈T

∑

b∈Lbus

clsP ls
b,t,s (7.3)

MG operations shall be realised as a cost minimisation problem capturing constraints pertaining

to the AC OPF algorithm; nevertheless, the well-known classical AC OPF algorithm includes high

non-linearity. If MESS routing decisions are further incorporated, the operational model becomes

a MINLP problem, which is extremely difficult to solve with time-coupled constraints and a set of

uncertainties. As such, linearised techniques developed in [147] are used to simplify the original

MINLP problem into a MILP formulation. Constraints related to MESS routing and charging/dis-

charging behaviours are also incorporated into the proposed operation model [18].
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Stage 2 - Consensus algorithm for power exchange

In this stage, the consensus-based algorithm is used to optimise the power sharing and reduce

load shedding because of its fast convergence and stability [63]. Given by the consideration of

resilience, the incremental cost of load shedding λn,t of each MG constitutes consensus variables.

After estimating the values of their power shortage in stage 1, each MG updates these estimates

by exchanging information with their neighbouring MGs, where the communication network of this

MG cluster is represented by matrices P and Q [63]. The suggested consensus algorithms involve a

four-step iterative process, which is can be found in Chapter 5 in more detail.

Stage 3 - Re-scheduling with updated power exchange results

After local controllers in each MG receive the updated decisions on power exchange from the second

stage, these results are used to update MG operations and obtain final operational cost. As such,

the final objective function of a certain MG m is similar to that in the first stage, which can be

found in (7.4) including both generation cost and load shedding cost.

Fop =
∑

s∈S

ps
∑

t∈T

∑

g∈Ng

cgPg,t,s +
∑

s∈S

ps
∑

t∈T

∑

b∈Nbus

clsP ls
b,t,s (7.4)

The constraint relating to active power balance at a certain bus b is modified as per equation (7.5).

Note that the first term represents the final power exchange result of MG m from nearby MGs,

while the second and third terms correspond to MESS discharging and charging respectively. The

rest of the terms have been described in previous chapters. Note that the rest of the constraints in

Stage 1 (e.g., MESS-related constraints and technical constraints) are also considered in this stage.

P ob,final
m,t +

∑

k∈Nmes

Pmes,d
b,k,t −

∑

k∈Nmes

Pmes,c
b,k,t + P ls

b,t,s +
∑

g∈NGb

Pg,t,s = P ex
b,t,s + P l

b,t,s (7.5)

7.3.2 Subproblem

In the subproblem, the main objective is to choose the attack that would cause the largest load cur-

tailment on current planning decisions. Following this target, the optimisation problem is designed

in a max-min structure, where the objective function is shown in (7.6) corresponding to the ratio
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of weighted cost of load curtailment over total weighted cost of loads across different scenarios.

max min Fsub =

∑

m∈M

∑

t∈T

∑

b∈Lbus

∑

s∈S psc
lsP ls

b,t,s
∑

m∈M

∑

t∈T

∑

b∈Lbus

∑

s∈S psclsP l
b,t,s

(7.6)

Equations relating to power flow problems have been modified and provided in (7.7) and (7.8).

Binary variables xb,p correspond to line status, where xb,p = 0 represents line outage. The rest

of the constraints (e.g., MESS-related and technical constraints) presented in Chapter 5 are also

incorporated into the subproblem.

P ex
b,t,s =

∑

(b,p)∈Nbr

xb,pPbp,t,s +
∑

p∈Nbus

xb,pGbpV
2
b,t,s, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (7.7)

Qex
b,t,s =

∑

(b,p)∈Nbr

xb,pQbp,t,s −
∑

p∈Nbus

xb,pBbpV
2
b,t,s, ∀t ∈ T, ∀b ∈ Nbus, ∀s ∈ S (7.8)

To summarise, the subproblem is a complicated max-min problem with a decentralised structure

capturing a set of scenarios. To effectively solve this problem, an adaptive GA is proposed to deal

with binary variables representing potential attacks, while a MILP solver is employed to solve the

lower-level minimisation problem. Details about the suggested adaptive GA are presented in the

next section.

7.4 Problem solving procedure

Regarding solving methodologies, approaches based on linear and mixed-integer mathematic pro-

gramming have been widely employed to solve different types of optimal sizing or pre-positioning

problems [129]; nevertheless, these approaches can be only employed in planning models based on

centralised control, since decentralised models normally include many different entities with their

own objective functions. Additionally, the subproblem is a two-level max-min problem, which

cannot be effectively solved via a direct mathematic programming approach. Furthermore, the

suggested model involves numerous binary variables to determine capacities, initial locations and

routing decisions of MESSs and potential contingencies, which causes significant increase of com-

puting time. As such, it is necessary to further divide the master problem and subproblem into

two stages. As such, a meta-heuristic approach based on an adaptive GA is employed to solve

the suggested model through handling integer variables relating to MESS capacities, locations and

potential contingencies, while routing decisions of MESSs are decided by the operational model.
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GA is utilised as a global search technique for optimisation problems due to its feature of imitat-

ing natural biological procedures and programming simplicity [129]. With adaptive crossover/muta-

tion probabilities, the GA can have the ability to utilise a large mutation rate and better avoid local

optimum. As such, an adaptive GA is more suitable to solve the mathematic formulation suggested

in this chapter. Furthermore, a technique called elitism is incorporated into the suggested adaptive

GA to preserve offsprings with good quality and enhance the ability of convergence [158]. Figure 7.3

illustrates the detailed process of the suggested adaptive GA. The suggested adaptive GA starts

from the initialization of chromosomes that represent MESS ratings and positions. These chromo-

somes are sent to the operational problem of decentralised networked MGs for calculating the fitness

function. Afterwards, the results are fed back to the adaptive GA for evaluation. Then, the best

candidates are selected through a tournament, while adaptive crossover and mutation are applied

to these candidates and alter their composition according to related probabilities of crossover and

mutation. Finally, the next generations or offsprings are produced for the next-round iteration.

Initialization of MESS ratings 

and locations

Fitness function evaluation

Convergence?

Selection

Crossover

Mutation

Optimal 

solution

Run AC OPF against the 

selected specific contingency
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No

Yes

Figure 7.3: Flowchart of the suggested adaptive GA.

Regarding the master problem, capacities and locations of MESSs are initialised as iterated

generations (e.g., [100 kW, 3]), where 100 kW and 3 represent the capacity and initial position of

the chosen MESS respectively. It is assumed that the MESS energy content is equal to four times

the selected capacity [129], while it is worth noting that both energy and power capacities can also

be optimised as variables. The total system cost including both investment cost and operational cost
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is employed to represent the fitness function of each chromosome. Similarly to the master problem,

various contingencies can be initialised to represent locations of faulted lines with the range of [0,10]

for each MG. For example, one attack in the subproblem corresponds to a certain chromosome (e.g.,

[2, 3, 5, 4, 1, 3]), which means that lines represented by those numbers are attacked and impacted

by the investigated event.

7.5 Case studies

Figure 7.4 illustrates the network structure of an AC MG utilised in this chapter. In each MG,

conventional generators (e.g., diesel generators) are installed as conventional generation resources

with capacities of 100 kW, 300 kW and 150 kW, while PV devices and MESS units are deployed

in each MG through power converters. Note that MESSs are connected with bus 3 as shown in

Figure 7.4, which is only for presentation, since the final location of each MESS will be decided

via the DAD model. Additionally, MESSs employed in the model belong to utility-owned units as

suggested in [16,59]. Data relating to load and PV profiles are extracted from [144] and [129], where

load profiles in each MG are illustrated in Figure 7.5. Uncertainties with load profiles and renewable

energy sources are represented via 10 scenarios obtained from the stochastic programming approach

suggested in [138].

AC load 1

Interlinking 

AC busbar

B0

B1

B3

B5

B4

AC load 3

AC load 2

G1

MESS

MG 2

MG 3

MG 1

B2

PV

AC load 4

Figure 7.4: Networked MGs used in case studies.

Additionally, to capture the main focus of MGs during an extreme event (e.g., essential load

restoration), the case studies presented hereafter consider the discrimination of essential and non-

essential loads. As suggested in [71], around 30% of total loads in each MG is regarded as essential
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Figure 7.5: Data illustration of load profiles in networked MGs.

loads with large shedding cost, while other loads are assumed to be non-essential loads with relatively

lower shedding cost.

7.5.1 Optimal sizing and pre-positioning of MESSs

Results on optimal sizing and pre-positioning of MESSs can be found in Table 7.1 under two sets of

attack budgets, where AB = 6 and AB = 3 represent that the event can cause at most 6 and 3 line

outages, respectively. Regarding power capacities, the MESS in MG 2 obtains the largest capacity,

while the MESS in MG 1 owns the smallest capacity. The reason is that the conventional generator

in MG 2 has the largest rating, which requires much larger MESS capacity for more effective energy

transmitting. Compared to MG 2, MG 1 has a generator with small rating and a relatively low

load level, which both reduce the need for a large MESS capacity. Table 7.1 also shows that much

larger MESS capacities are required with the increase of attack budgets from AB = 3 and AB = 6.

Regarding initial locations of MESSs, it seems that bus 3 and bus 0 in each MG are the most

common chosen locations. The potential reason is that these buses are more important than other

buses in each MG. For instance, bus 3 is connected with essential loads, while bus 0 is connected

with the conventional generator in each MG.

Table 7.1: Optimal sizing and pre-positioning results of MESSs in each MG under different attack
budgets.

Attack Budget No. of MG MESS Capacity Initial Location

AB = 6
MG 1 118 kW Bus 3

MG 2 212 kW Bus 5

MG 3 197 kW Bus 0

AB = 3
MG 1 97 kW Bus 3

MG 2 115 kW Bus 0

MG 3 108 kW Bus 4
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Behaviours of MESS routing in each MG against the worst contingency can be found in Table 7.2,

where ‘T’ corresponds to transportation. It can be found that all MESSs move back and forth

between bus 0 and other buses (e.g., bus 3 and bus 5) for charging and discharging. In other words,

when the energy content of a MESS is low, it can move to bus 0 for charging and then travel to

one bus that needs power supply. Additionally, it can be found that average travelling times of

MESSs inside each MG are reduced with the increase of MESS capacities or attack budgets. In

other words, MESSs with large capacities may require fewer travelling times due to the stronger

ability of charging and discharging. When attack budgets are increased, the MG system tends

to increase the capacity of MESSs against more severe contingency. Larger capacities allow much

higher energy content and relatively longer discharging durations for load restoration, which leads to

decrease of average travelling times (i.e., due to being connected to the grid). Charging/discharging

behaviours of MESSs in each MG under the worst contingency are illustrated in Figure 7.6. It

is worth noting that the value of final energy content of each MESS equals to the initial value,

which corresponds to the cycling constraint of battery units for realistic simulations. Except for the

influence of severe contingencies, it can also be found that load and PV profiles have influence on

charging/discharging patterns of MESSs, especially when the attack budget is low. For instance,

Figure 7.6(b) illustrates that all the storage devices charge during the hours of high sunshine (e.g.,

around 10-15 h). Additionally, MESSs charge when the load level is relatively low and discharge

when the load level has significantly increased (e.g., during 5-10 h).

Table 7.2: MESS routing decisions inside MGs against the final worst contingency.

Attack
Budget

No. of
MG

Time (h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

AB = 6
MG 1 3 T 0 0 0 T 3 3 3 3 3 3 T 0 0 0 0 T 3 3 3 3 3 3
MG 2 5 T 0 0 0 0 T 4 4 4 4 4 T 0 0 0 0 T 5 5 5 5 5 5
MG 3 0 0 0 T 5 5 5 5 T 0 0 0 0 T 4 4 4 4 T 0 0 T 2 2

AB = 3
MG 1 3 T 0 0 0 T 5 5 5 5 T 0 0 0 0 T 3 3 T 5 5 5 T 0
MG 2 0 0 0 0 T 5 5 5 5 5 T 0 0 0 0 T 5 5 5 5 T 0 T 5
MG 3 4 T 0 0 0 0 T 3 3 3 3 3 T 0 0 0 0 T 5 5 5 5 T 0

7.5.2 Results of distributed control based on linearised AC OPF

As mentioned before, a distributed control approach based on a consensus-based algorithm is utilised

to formulate the operational problem of networked MGs, while a linearised AC OPF algorithm is

employed to capture stability properties relating to voltage and power losses. Figure 7.7 presents the
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Figure 7.6: Charging/discharging patterns of MESSs in each MG: (a) AB = 6, (b) AB = 3.

power exchange results from the suggested control approach under the worst contingency. During

extreme events, MGs lose the connection to the main grid and MG 2 owns the most generation

resources, which triggers more power flow from MG 2 to two other MGs.

The advantage of the used linearised AC OPF algorithm can be found in Figure 7.8, which

illustrates voltage profiles of MG 2. Note that voltage in bus 3 reaches the minimum value (e.g., 0.9

p.u.) at most time snapshots, which shows that MGs need to operate very close to their stability

limits under severe contingencies. As mentioned before, typical EMS-based models fail to capture

all the technical constraints relating to voltage profiles, which can cause unstable MG operations.

Although considering these constraints to ensure stable voltage profiles in the operational model

may have a negative influence on the total operational cost, they can lead to realistic optimisation

results and reliable decision making (e.g., reasonable sizing and positioning results of MESSs).

7.5.3 Comparative case studies

When it comes to mobile units, it might be unrealistic to consider a 24-hour scheduling horizon of

MESSs. In other words, the scheduling horizon of MESSs might be different from MGs. As such,

the first comparison is conducted to show the influence of a shorter MESS scheduling horizon on

final optimal sizing and pre-positioning results. Table. 7.3 illustrates the planning results of MESSs
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Figure 7.7: Power exchange based on distributed control: (a) AB = 6, (b) AB = 3.

under a 15-hour scheduling horizon. It can be found that the final power capacities of MESSs

significantly increase, compared with the sizing results in the previous case study. The reason is

that MESSs have to consider shorter travelling time with a much shorter scheduling horizon, which

leads to larger power capacities for more efficient charging and discharging so that the number of

moving between different buses can be reduced. However, it can also be anticipated that larger

capacities lead to larger investment, while a shorter scheduling horizon of MESSs will cause larger

potential load shedding. Detailed information on cost and load shedding can be found in the next

section. Figure 7.9 corresponds to the charging and discharging process of MESSs in each MG

under two types of attack budgets. Note that the initial energy content of MESSs is the same as the

final energy content of MESSs, which reduces the influence of MESS initial energy on optimisation

results so that the effectiveness of mobility of MESSs can be shown significantly.
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Figure 7.8: Voltage profiles of MG 2 when AB = 6.
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Table 7.3: Optimal sizing and pre-positioning results of MESSs in each MG with a 15-hour schedul-
ing horizon.

Attack Budget No. of MG MESS Capacity Initial Location

AB = 6
MG 1 176 kW Bus 0

MG 2 326 kW Bus 5

MG 3 235 kW Bus 0

AB = 3
MG 1 114 kW Bus 5

MG 2 149 kW Bus 0

MG 3 123 kW Bus 3
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Figure 7.9: Charging/discharging patterns of MESSs in each MG: (a) AB = 6, (b) AB = 3.

The second comparison aims to present the advantages of utilising MESSs for resilience en-

hancement compared to static ESSs. As such, extra cases focusing on the optimal sizing and

pre-positioning of ESSs are done via the suggested approach, where the results under two types

of attack budgets can be found in Table 7.4. On the one hand, it can be found that final power

capacities of ESSs (around 30 kW) are significantly lower than those of MESSs. It is because ESS

units can only be located in one fixed bus and the charging/discharing behaviors are influenced by

related line thermal capacities. Even though larger capacities are arranged for these ESS units,

these capacities can not be fully used due to the lack of mobility. On the other hand, all three ESSs

are located in bus 3 in each MG according to final positioning results. The potential reason is that
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bus 3 is connected with essential loads, which are much more important than non-essential loads.

Additionally, it seems that the final sizing results of ESSs under different attack budgets are very

similar. In other words, the capacities of ESSs are not improved significantly when attack budgets

increase from 3 to 6, which implies that using ESSs against contingencies during an event may not

be as effective as MESSs. It is obvious to consider that much larger load shedding can be caused

when using ESSs against the worst contingency. Detailed discussion on cost and load shedding can

be found in the next section. Furthermore, Figure 7.10 corresponds to the charging and discharging

process of static ESSs in each MG under different attack budgets.

Table 7.4: Optimal sizing and pre-positioning results of ESSs in each MG.

Attack Budget No. of MG ESS Capacity Location

AB = 6
MG 1 26 kW Bus 3

MG 2 26 kW Bus 3

MG 3 33 kW Bus 3

AB = 3
MG 1 25 kW Bus 3

MG 2 25 kW Bus 3

MG 3 28 kW Bus 3
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Figure 7.10: Charging/discharging patterns of ESSs in each MG: (a) AB = 6, (b) AB = 3.
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7.5.4 Performance testing in a larger system

The MG system used in the previous section considers 3 MGs, which might be not enough to validate

the scalability of the suggested DAD model and the adaptive GA. As such, a larger system including

6 MGs fully modelled via the linearised AC OPF algorithm as well as capturing uncertainties and

contingencies is employed in this subsection to prove the effectiveness of the proposed algorithm.

The optimal sizing and pre-positioning results of this larger system can be found in Table 7.5.

The MESS in MG 2 has the largest capacity because of the largest rating of conventional gen-

eration and the high load level, while MG 1 and MG 4 receive relatively small MESS capacities due

to the small generation rating and low load level. Specifically, when the attack budget increases

from AB = 3 to AB = 6, MESS capacities in each MG are enlarged against more severe contin-

gencies. These findings are aligned with previous case studies. As such, it can be concluded that

the suggested three-level model still achieves good performance in obtaining realistic sizing and

pre-positioning results, even though a larger system with more parameters is under consideration.

The reason is that GA is featured by the ability to effectively consider multiple parameters or de-

cision variables for optimisation problems [129], while distributed control approaches also have the

advantages of high scalability and relatively low communication burden.

Table 7.5: Optimal sizing and pre-positioning results of MESSs in each MG.

Attack Budget No. of MG MESS Capacity Location

AB = 6
MG 1 157 kW Bus 3

MG 2 267 kW Bus 0

MG 3 205 kW Bus 5

MG 4 140 kW Bus 3

MG 5 194 kW Bus 0

MG 6 191 kW Bus 0

AB = 3
MG 1 94 kW Bus 4

MG 2 119 kW Bus 0

MG 3 113 kW Bus 3

MG 4 60 kW Bus 0

MG 5 102 kW Bus 3

MG 6 98 kW Bus 0
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7.6 Discussion

Results on system cost and load shedding under different case studies are discussed in this section.

Several additional case studies considering a larger attack budget (AB = 9) and ESSs with a

15-hour scheduling horizon are included to conduct a comprehensive comparison. Figure 7.11(a)

illustrates the investment cost of MESSs and ESSs in this MG system under three different types of

attack budgets. The investment cost of MESSs has been significantly increased when more severe

contingencies are considered, while investment of ESSs does not change much due to the lack of

mobility and the incorporated cycling constraint. Figure 7.11(b) corresponds to the ratio of weighted

curtailed loads on total demands under the worst contingency, which presents that using MESSs for

resilience enhancement leads to significantly lower load shedding than using ESSs, while a longer

scheduling horizon of MESSs or ESSs leads to much lower total load shedding.

Figure 7.11(c) shows that total system costs including both investment cost and load shedding

cost under each case significantly increase when more severe contingencies are caused. It can be

found that using ESSs to reduce load shedding obtains the worst performance (highest total system

cost), even though the investment cost of ESSs is much lower than that of MESSs (shown in

Figure 7.11(a)). Additionally, MESSs with a 24-hour scheduling horizon achieves considerably cost

savings compared to other cases.

To summarise, a three-level DAD model focusing on the influence of the worst scenarios is sug-

gested to solve an optimal sizing and pre-positioning problem of MESSs for resilience enhancement

of networked MGs. At the planning level, a tailor-made adaptive genetic algorithm is employed

to optimally size and locate MESSs in each MG as well as producing potential attack actions; at

the operational level, a three-stage distributed control approach based on consensus algorithm is

utilised to obtain the power sharing results between MGs, while a linearised AC optimal power flow

algorithm incorporating technical constraints relating to voltage and power losses is employed to

model MG operations for more accurate optimisation results. Uncertainties relating to load profiles

and renewable energy sources are captured in the model via a scenario-based stochastic program-

ming approach. It is concluded that MESSs can be more effective for load restoration than static

ESSs when extreme events occur, while capacities of MESSs increase when larger attack budgets

are considered.
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Figure 7.11: Cost analysis with different attack budgets: (a) Investment cost, (b) Ratio of load
shedding, (c) Total system cost.



Chapter 8

MARL for MESS routing and

scheduling

8.1 Introduction

The energy industry has undergone major transformations in various sectors because of a number

of economic, environmental and technical factors over the last few decades. Among them, the

most important one is the significant increasing penetration of DERs including both static and

mobile units to the energy mix, especially renewable energy sources [173]. Model-based optimisation

approaches have been developed to model the routing and scheduling process of MPSs towards

resilience enhancement of power networks [162], which are better summarised in previous chapters,

e.g., two-stage pre-allocation problems of MPSs [16, 18, 59] and operation problems of MESSs [19,

68,168,174–176].

8.1.1 Research limitations of model-based approaches

It can be concluded that extensive efforts have been made to study the MESS routing and scheduling

problems in terms of their flexibility and mobility against extreme events [167]. However, the

limitations of research above cannot be erased and are summarised hereafter. First, no optimisation

models comprehensively consider the uncertainties related to both renewable energy sources and load

profiles; second, uncertainties are handled via scenario-based stochastic programming approaches,

which may only be able to capture small number of representative scenarios. Both these limitations

or simplifications are due to the large computational burden caused by the modelling of MESSs (e.g.,

138
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the incorporation of large amounts of integer variables and time-coupled characteristics), which can

lead to inaccurate and unrealistic optimisation results. Additionally, resilience-driven operations

normally require fast response due to their high-impact nature; nevertheless, above approaches may

not be able to provide timely services for the damaged system. Furthermore, the model-based

optimisation problem discussed above assumes that the MESSs require the complete knowledge

of the experiment environment, e.g., power networks, transportation statuses, accurate uncertain

parameters. However, such assumptions are normally impractical considering the highly stochastic

and dynamic real-world environment.

To this end, compared to approaches featuring mathematical programming, reinforcement learn-

ing (RL) [117], as a data-driven and model-free approach, is suitable for resilience-driven opera-

tions because of its ability to provide fast response and incorporate uncertainties and contingencies.

However, there is not much research focused on RL approaches for resilience-driven MESS routing

problems. The only research comes from [177], which formulates the routing problem of MESSs as

a Markov decision process (MDP) for load restoration and resource dispatching of MGs. However,

this paper regards each MG as a single node without detailed network structure, which can be

unrealistic. The high-impact nature of extreme events on power networks is not captured in this

approach. As such, it is necessary to investigate the research of coordinated MESS routing and

scheduling problem capturing both transportation and power networks. Regarding RL approaches

for resilience-driven operations of power systems, a model-free approach based on deep reinforcement

learning (DRL) is developed in [178] to reschedule DERs for the resilience enhancement of a distri-

bution system. However, this paper does not aim at the optimisation of MESS routing decisions,

which can be much more complicated due to the hybrid action space including both continuous

(scheduling) and discrete (routing) actions.

8.1.2 State-of-the-art RL methods

The application of RL on demand response problems has been increasingly recognised, as reviewed

in [179]. In general, the applied RL methods can be divided into two categories: 1) discrete action

space; and 2) continuous action space. In discrete action space, the conventional Q-learning (QL)

is regarded as the fundamental RL method that has been applied to various areas. In [180], a

QL method augmented with Monte-Carlo tree search is proposed to dispatch the BESS in MGs

incorporating uncertainty of PV generation and demand. In [181], a QL-based operation strategy
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is proposed for optimal operation of BESS in both grid-connected and islanded modes under MG

concept. The objective of BESS in grid-connected mode is to maximise its profit, while the ob-

jective of BESS in islanded mode is to minimise the load shedding amount in the entire system

by cooperating with the MG. For multi-agent setup, QL is used to help home energy management

system (HEMS) optimally control the various smart devices with the objective of reducing energy

cost [182]. A framework for residential MG energy scheduling mechanism with V2G system is built

under the concept of multi-agent QL [183], while the fuzzy QL is used for a multi-agent decen-

tralised energy management in MGs to address power balancing problem between production and

consumption units [184]. However, QL relies on a look-up table to represent the Q-value function

for each possible state-action pair and thus suffers severely from the curse of dimensionality. The

discretisation of both state and action spaces may distort the feedback that the agent receives on

the impact of its actions on the environment and adversely affect the feasible action space, resulting

in sub-optimal control policies.

In view of the limitations above, deep Q-network (DQN), combining deep learning with RL,

recently has been explored in developing more complex control problems, driven by its ability in

handling high-dimensional continuous state space. In [185], a DQN method is proposed to learn an

optimal policy for carbon storage reservoir management problem. In [186], a DQN-based energy

management of hybrid electric bus is proposed to achieve 5.6% fuel economy better than QL.

In [187], authors develop a DQN-based flexible and scalable smart charging strategy for electric

vehicles (EVs) that reduce the grid congestion and increase user comfort. However, in empirical

experiments, much research found that the conventional DQN suffers from its Q-value overestimates

since the weight values are used for both selection and evaluation of an action [188]. To resolve

this issue, authors in [188] propose a variant of DQN, named double deep Q-network (DDQN),

that decouples selections from the evaluation. In DDQN, a primary network is used to choose the

action and a target network is used to generate the target Q-value for that action. In [189], authors

propose a distributed operation strategy for a BESS using DDQN method in both grid-connected

and islanded modes. The results show that the proposed DDQN method can perform better in

case of a longer time span and a larger MG system. In [190], a DDQN method is implemented to

learn the optimised control actions for battery storage under very complex environment with price

uncertainty. In [191], a DDQN method is proposed to control the charging/discharging schedule of

a BESS and the reserve purchase schedule of a wind power producer in electricity markets under

the uncertainties of wind generation and electricity price. On the other hand, DQN and DDQN are
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also widely used for multi-agent setup. In [192], a multi-agent DQN method is proposed to solve

an automatic peer-to-peer (P2P) energy trading problem among multiple prosumers with PV and

storage systems. In [193], a multi-agent DQN method is adopted to optimise the distributed energy

management and strategy in a MG market. Although DQN and its variant DDQN employ a deep

neural network (DNN) to approximate the Q-value function, generalizing well to high-dimensional

continuous state space, it performs poorly in problems with continuous action space because the

employed DNN is trained to produce discrete Q-value estimates rather than continuous actions.

In this regard, the second category is characterised by policy gradient (PG) theorem [117] that

can directly optimise the probability of taking an action or the action value rather than estimating

the Q-value function. In [194], authors develop a stochastic policy gradient (SPG) method with

capability of handling multiple actions simultaneously to optimise the building energy management

consumption and cost. The proposed SPG method is able to efficiently cope with the inherent

uncertainty and variability in PV generation, and users energy behaviors. In [195], authors success-

fully develop a SPG method to optimise the energy consumption of a single household considering

multiple smart devices. The experiments find that SPG converges at a faster convergence rate but

results in an unstable policy. This is because SPG generally suffers from low sampling efficiency

and high variance in its gradient estimates which result in a lower performance evaluation. To

resolve this issue, a deterministic policy gradient (DPG) is proposed in [196] that directly computes

action values in a deterministic manner. In [197], authors use a continuous DPG method to manage

the state-of-the-charge (SoC) of a BESS providing the enhanced frequency response. In [198], a

DPG method is proposed to design an optimal energy management algorithm for BESS in smart

homes. The numerical results demonstrate that the proposed method can save energy cost by more

than 10% without sacrificing user’s comfort with respect to the system without BESS. Furthermore,

PG theorem has been adopted to many multi-agent environments in demand response problems.

In [199], a multi-agent deep deterministic policy gradient (MADDPG) method is adopted to obtain

the optimal schedule for different machines in a discrete manufacturing systems energy manage-

ment. In [200], authors use an improved MADDPG method based on double-side auction market

to formulate an automated P2P energy trading problem among multiple consumers and prosumers.

In [201], a combination of MADDPG method and parameter sharing (PS) technique is proposed to

enhance the scalability of a large-scale multi-agent system with privacy perseverance.

The above literature has successfully applied different kinds of RL and DRL methods to many

promising single-agent and multi-agent research problems. Nevertheless, both of two categories
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are incapable of handling hybrid discrete-continuous action space, which means the method can

simultaneously generate discrete and continuous actions at the same time step. This drawback is

particular in the setting of the examined problem, since the action domains model both the discrete

(routing) and continuous (charge/discharge schedules) action spaces.

8.1.3 Contributions

This chapter aims at addressing the real-time routing and scheduling problem of multiple MESSs in

the context of both power and transportation networks towards resilience enhancement, which can

effectively bridge research gaps discussed above. A novel multi-agent deep reinforcement learning

(MADRL) method based on parameterised double deep Q-network (P-DDQN) and PS technique is

employed to implement routing decisions of the studied MESSs in transportation network and also

determine their corresponding charging/discharging schedules in power network, while uncertainties

associated with renewable energy sources, demand patterns, line outages, and traffic volumes are

incorporated into the proposed framework. The novel contributions of this chapter are described as

follows:

(1) A Partially Observable Markov Game (POMG) is proposed to formulate the coordination ef-

fect of the real-time automatic MESSs routing and scheduling problem for the load restoration

of power networks after extreme events. As such, both the spatial and temporal flexibility of

MESSs can be fully exploited.

(2) A novel MADRL method, namely P-MADDQN, is proposed to efficiently solve this MESSs

routing and scheduling coordination problem by integrating the parameterised policy to model

the hybrid discrete-continuous action space, introducing the double deep Q-networks (DDQN)

[188] to stabilise the training performance, abstracting a collective index to represent the

system dynamics, and using a PS framework to enhance the training efficiency.

(3) Both the structures of transportation networks and power networks are formulated into the

environment of the proposed MADRL method for realistic decision making process. A traf-

fic network model is proposed to capture the impact of traffic time and congestion, while

a linearised AC-OPF algorithm capturing dynamic network reconfiguration is employed to

incorporate all the technical constraints relating to stability properties and coordinate with

MESS routing and scheduling decisions.
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(4) Extensive case studies are developed to evaluate the superior performance of the proposed P-

MADDQN method in achieving resilience enhancement and reducing computational time, and

is capable of adapting to various uncertainties of renewable energy sources, load profiles, line

outages and traffic volumes. Finally, the proposed P-MADDQN method demonstrates its scal-

ability to different environments related to the MESS number and the power-transportation

network size.

8.2 Mathematical models of MESS routing and system operations

8.2.1 Problem setting

As an emerging technology, MESSs have been gradually deployed in power networks for emergency

considerations due to their mobility and flexibility, compared to the static ESSs. This chapter

focuses on the routing process of a group number of MESSs incorporated with the charging/dis-

charging behaviours in the context of power networks incorporated with transportation networks.

These MESSs are allowed to move between different buses towards load restoration after extreme

events, while the traffic time and congestion impact between different nodes are also captured

through the proposed transportation network. Note that severe damage caused by extreme events

may significantly exacerbate traffic congestion, leading to much longer commuting time. Regard-

ing the power network, DERs are appropriately deployed, including conventional generations (e.g.,

diesel generators (DGs)) and renewable energy sources (e.g., photovoltaics (PVs)), while the electric

demand including both essential and non-essential loads is reasonably assigned to certain buses. Ad-

ditionally, MESSs are connected to the power network through charging stations. The routing and

scheduling process of MESSs and the context of power-transportation networks are schematically

represented in Figure 8.1.

Some related works consider that MESSs are utility-owned and scheduled by the system operator

[19,59,174]. However, it might be time consuming to make a fast-responding decision accounting for

the complex power-transportation network and the vast system uncertainties. Furthermore, MESSs

have their own travelling plans and operation characteristics [202]. Therefore, system operator may

not acquire the accurate mathematical models and parameters of MESSs to solve a centralised

control problem. Such perspectives are also discussed in [59]. In order to address the above issues,

decentralised approach is becoming a future trend for next-generation resilient distribution system



144 Chapter 8. MARL for MESS routing and scheduling

MESS 1

B0

B3

B1

B2

B5

B4

DG

PV

L1

L4
L2

L3

Transportation 

network

Power

network

routing

scheduling

B0

B3

B1

B5
B2

B4

charge

discharge

Line 

outage

MESS 2

MESS I

Aggregator

RL algorithm

local 

information

control 

policy

transportation 

information

power

information

Figure 8.1: The scheme of routing and scheduling processes of multiple MESSs in a coupled power-
transportation network.

[1]. This chapter thus assumes that all MESSs are from independent owners that can operate in a

distributed manner without a central controller, thereby preserving their private information [203].

However, an aggregator is still introduced to communicate with each MESS and provide for MESSs

proper incentives to reach a cooperative fashion. In this setting, MESSs can make their own routing

and scheduling decisions without the operator’s commands, but also ensure the control optimality

via the incentive signals. More specifically, the operation time step is ∆t = 30 mins, where t ∈ [1, T ]

and T = 48 is the total number of time steps during the daily horizon. At each time step t, after 1)

reading the local information of line status (outage or not); 2) observing the local power information

of electric demand, PV generation and the local transportation information of map location and

traffic volume; and 3) measuring the MESS information of battery SoC, each MESS with a smart

automatic control algorithm that can optimally manage 1) the route selections in transportation

network; and 2) the charging/discharging power rates of battery storage in power network.

On the other hand, once the route selections and power rates of all MESSs are determined,

the power network equips a microgrid central controller (MGCC) that can optimally manage the

energy schedules of each controllable component (DGs and loads) to minimise the load shedding cost

towards resilience enhancement. The system is fully modelled by a linearised AC-OPF algorithm

capturing all the network constraints and technical constraints related to stability properties, which

ensures accurate optimisation results and secure system operations compared with DC OPF or

linearised Distflow models. However, it is worth noting that a non-linear OPF algorithm can also

be used here for more accurate optimisation results, while the training time will significantly increase

due to its non-linear nature. Additionally, dynamic network reconfiguration [204] is performed to
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coordinate with the routing and scheduling behaviours of MESSs via the smart switch operations.

This section presents the details of the proposed mathematical models including the MESS routing

and charge/discharge scheduling, transportation network models, and the AC-OPF algorithm for

power system operations.

8.2.2 MESS routing and scheduling

In the context of mathematical programming, the routing and scheduling behaviors of MESSs can

be formulated as equations (8.1)-(8.6). In detail, constraints (8.1) and (8.2) limit the charging power

Pmes,c
i,b,t and discharging power Pmes,d

i,b,t of MESS i, where integer variables uci,b,t and udi,b,t represent

the charging and discharging decisions of MESS i in bus b at time t respectively. Equation (8.3)

ensures that the power charging and discharging patterns cannot be triggered simultaneously, while

MESS i can only be connected with at most one bus per time step t. When both uci,b,t and udi,b,t

equal to 0, the MESS i is not connected to bus b at time step t and vice versa. Constraint (8.4)

represents the moving actions of MESS i within the power network, where T trl
bp,t represents the

travelling time of MESSs from bus b to bus p at time step t [18]. The detailed explanations and

calculations of travelling time T trl
bp,t are discussed in Section 8.2.3. Constraint (8.5) restricts the

minimum and maximum energy storage levels Emes
i,t of MESS i, while the time-coupling constraint

of energy storage level between two consecutive time steps is presented in (8.6).

0 ≤ Pmes,c
i,b,t ≤ uci,b,t · P

max
i , ∀i ∈ I, ∀b ∈ B, ∀t ∈ T (8.1)

− udi,b,t · P
max
i ≤ Pmes,d

i,b,t ≤ 0, ∀i ∈ I, ∀b ∈ B, ∀t ∈ T (8.2)

∑

b∈B

uci,b,t + udi,b,t ≤ 1, ∀i ∈ I, ∀t ∈ T (8.3)

(uci,b,t + udi,b,t)− (uci,b,t+1 + udi,b,t+1) ≤ 1− (uci,p,t+h + udi,p,t+h),

∀i ∈ I, b 6= p ∈ B, ∀t ∈ T − {1}, ∀h ∈ [1, ...,min(T trl
bp,t, T − t)]

(8.4)

Emin
i ≤ Emes

i,t ≤ Emax
i , ∀i ∈ I, ∀t ∈ T (8.5)

Emes
i,t = Emes

i,t−1 + (ηci
∑

b∈B

Pmes,c
i,b,t +

∑

b∈B

Pmes,d
i,b,t /ηdi )∆t, ∀i ∈ I, ∀t ∈ T − {1} (8.6)
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8.2.3 Transportation network modelling

The transportation network consists of several pairs of original and destination nodes (O-D pairs)

designed for these MESSs to connect with. Each O-D pair is connected by a set of routes (Ro)

through the network, while each route consists of several transportation roads (R) [204]. MESSs

commute through the routes of each O-D pair to connect with certain nodes for charging and

discharging power towards resilience enhancement.

4

Original 

node
1 3

r1

r2

r3

r4

Destination 

node

Node Road

2

Figure 8.2: The route combinations of one O-D pair.

As shown in Figure 8.2, there are several routes consisting of different roads (e.g., r1 − r4)

between one O-D pair, while each road r has different commuting time T trl
r,t at different time point

t due to the dynamics of traffic volumes represented by V trl
r,t . As such, the travelling time T trl

r,t may

be influenced by traffic congestion, which can be calculated by (8.7) according to the U.S. Bureau

of Public Roads [205]. T trl,0
r is the driving time in the state of free prevailing driving, while Cr, α

rd

and βrd correspond to the capacity of road r and the retardation coefficients, respectively. Note that

this function can describe the relationship between travel time and traffic volume but also reflect

the road impedance from the characteristics of traffic flow itself. The travelling time of an O-D pair

(route) k is defined as (8.8), where Θr,k is used to indicate whether road r is part of route k. Thus,

if congestion happens on road r, the travelling time on route k will also increase accordingly.

T trl
r,t = T trl,0

r [1 + αrd(
V rd
r,t

Cr
)β

rd

], ∀t ∈ T, ∀r ∈ R (8.7)

T trl
k,t =

∑

r∈R

T trl
r,t Θr,k, ∀t ∈ T, ∀k ∈ Ro (8.8)

The real-time traffic volume V trl
r,t on road r at time step t can be calculated by (8.9), which is

determined by the base flow drdr,t [206] (other types of vehicles in the transportation network with

specific daily patterns) and the number of MESSs on the road r at time step t (represented by the
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sum of urdi,r,t).

V rd
r,t = drdr,t +

∑

i∈I

urdi,r,t, ∀t ∈ T, ∀r ∈ R (8.9)

Finally, given the travelling time T trl
r,t , the average speed V avg

r,t of road r at time step t can be

calculated by (8.10), where Lr is the commuting distance of road r.

V avg
r,t =

Lr

T trl
r,t

, ∀t ∈ T, ∀r ∈ R (8.10)

8.2.4 Power network modelling

To ensure secure operations and incorporate MESS routing, this subsection introduces the linearised

AC-OPF algorithm for resilience-driven operations. Maintaining the continuity of essential loads

(e.g., police stations and data centres) during extreme events is the main driver of resilience-driven

operations. Hence, the widely-used objective function is to minimise the expectation of the weighted

load shedding cost capturing load distinction into essential and non-essential, which can be found

hereafter:
∑

t∈T

∑

d∈Nload

E
{

clsd P
ls
d,t∆t

}

(8.11)

where the expectation operator E is taken over the randomness of system uncertainty parameters

(e.g., electric demand, PV generation, and line outages), and corresponding stochastic decision

variables (e.g., power flows, DG power outputs, and voltage angles), clsd and P ls
d,t refer to the load

shedding cost and the quantity of load shedding for load d respectively. Note that high uncertainties

shall be captured in resilience-driven operations due to the high-impact nature. Stochastic program-

ming and robust optimisation are two-commonly employed approaches to deal with the influence

of uncertainties; nevertheless, both of them have obvious limitations, i.e., suffering from computing

burden or inherent conservativeness of optimisation results respectively. In this regard, the data-

driven nature of RL approaches allows encapsulating uncertainties in various input scenarios, which

is convenient and efficient.

The original optimisation problem is posed as a cost-minimisation problem, subject to the

following linearised AC-OPF constraints [147]. The active power balance at the exchange bus b

is presented in (8.12), while the reactive power balance corresponds to (8.13). The sets Bed, Bdg,

Bpv and Bmes correspond to the nodal demand, DG, PV and MESS located at bus b, respectively.

Notably, the charging/discharging characteristics of MESSs (i.e., Pmes,c
i,b,t and Pmes,d

i,b,t ) have been
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incorporated into (8.12) for ensuring active power balance. Classical equations pertaining to power

flow problems and operational constraints are linearised and incorporated into the model.

∑

d∈Bed

P ls
d,t+

∑

g∈Bdg

P dg
g,t+

∑

g∈Bpv

P pv
g,t =

∑

i∈Bmes

(Pmes,d
i,b,t +Pmes,c

i,b,t )+P ex
b,t+

∑

d∈Bed

P ed
d,t, ∀b ∈ B, ∀t ∈ T (8.12)

∑

g∈Bdg

Qdg
g,t +

∑

d∈Bed

Qls
d,t = Qex

b,t +
∑

d∈Bed

Qed
d,t, ∀b ∈ B, ∀t ∈ T (8.13)

In addition, if the utilised power network follows a radial structure, the system radiality should

be maintained in the network reconfiguration process, subject to the following constraints (8.14)-

(8.17) [68]. However, it is worth noting that other network structures (e.g., meshed networks)

can also be utilised for MG modelling. Specifically, constraints (8.14)-(8.16) introduce a fictitious

network with the same structure as the power network, ensuring that 1) the fictitious network

has |Ne| − 1 closed branches where Ne is the number of electric buses, 2) all fictitious nodes are

connected [207]. Constraint (8.17) restricts the real power network to close a subset of closed

branches in the fictitious network. ebp,t corresponds to the connection status of line (b, p) in the

fictitious network (1 if closed, 0 if open), while g and M refer to the fictitious substation node and

a big enough number respectively. Detailed information of this network reconfiguration scheme can

be found in [68].
∑

(b,p)∈L

ebp,t ≤ |Ne| − 1, ∀(b, p) ∈ L, ∀t ∈ T, (8.14)

∑

(p,b)∈L

fpb,t −
∑

(b,p)∈L

fbp,t = 1, ∀b ∈ B/g, ∀t ∈ T, (8.15)

− ebp,t ·M ≤ fbp,t ≤ ebp,t ·M, ∀(b, p) ∈ L, ∀t ∈ T, (8.16)

ybp,t ≤ ebp,t, ∀(b, p) ∈ L, ∀t ∈ T, (8.17)

8.2.5 Challenges

It is worth noting that solving the above MESS routing and scheduling problems (Section 8.2.1) in

this coupled power-transportation network (Sections 8.2.2-8.2.3) is very challenging. First, MESSs

are independently owned that cannot acquire the explicit mathematical models and technical pa-

rameters of transportation network and AC-OPF algorithm. Similarly, MGCC cannot make the

centralised decisions for MESSs if they are not utility-owned. Second, a vast number of system un-

certainties and dynamics (renewable, demand, line outages, and traffic volumes) need to be handled
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by MESSs in the complicated power-transportation network. Although scenario-based stochastic

optimisation approaches have been widely applied for many applications to deal with uncertainties,

the large computation burden cannot be ignored when requiring fast-responding time to resilience

enhancement problem. In order to address the above two issues, this chapter proposes an alternative

solution method and reformulates the above model-based mathematical optimisation problem into

a model-free MADRL-based problem without a prior knowledge. Additionally, MADRL eliminates

the need to solve an optimisation problem in a time-coupled fashion and enables the MESS agents

to provide an adaptive control scheme for various system dynamics and state conditions without

the knowledge of uncertain parameters.

8.3 MESSs reformulation as a markov game

8.3.1 Markov game

Specifically, a RL setup is utilised to reformulate the coordination of MESS routing and scheduling

problem following a finite Partially Observable Markov Game (POMG) with discrete time steps.

The POMG is defined by a set of agents (MESSs) i ∈ I interacting with the environment E (i.e., the

coupled power-transportation network) [117], including: a set of environment states s ∈ S; a set of

local observation space {oi ∈ O1:I}; a set of action space ai ∈ A1:I ; a set of immediate scalar reward

function r(o, a) ∈ R1:I : O×A → R; and a state transition T (s, ai:I , ω) : S×A1:I×W → S following

a probability function P (s′|s, ai:I , ω) : S ×Ai:I ×W×S → R conditioned on the environment global

state s, the all agents’ actions ai:I , and the environment stochasticity ω ∈ W (e.g., renewable,

demand, line outages, and traffic volumes). The time interval between two consecutive time steps

∆t = 30 mins following the same setup in Section 8.2. MESS agent i employs a policy πi to interact

with POMG and emits a set of trajectories integrating with all agents’ observations, actions, and

rewards: {oi,1, ai,1, ri,1, oi,2, ..., ri,T }
I
i=1 over Oi:I × Ai:I × Oi:I → R. In detail, at each time step t,

each MESS agent i chooses an action ai,t according to its control policy πi(ai|oi) : Oi → P (Ai,W)

based on its local observation oi,t. The environment then moves into the next state according to

the state transition function T (s, a1:I , ω). Each MESS agent then obtains a reward ri,t and a new

local observation oi,t+1. The objective of each MESS agent is maximising its cumulative discounted

reward Ri =
∑T

t=0 γ
tri,t, where γ ∈ [0, 1) is the discount factor and T = 48 is the time horizon of

the operation problem. The POMG formulation of the proposed coordinated MESSs routing and

scheduling problem is detailed as the following subsections:
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8.3.2 Observation

The local observation oi,t observed by each MESS agent i at each time step t is defined as a 6-

dimensional vector:

oi,t = [Sline
i,t , P ed

i,t , P
pv
i,t , E

mes
i,t , N loc

i,t , V
trl
i,t ] ∈ Oi, ∀i ∈ I (8.18)

which consists of two parts: 1) the exogenous state features which represents the local information

unaffected by the action, including the line status (e.g., outage or not) Sline
i,t , the local demand

P ed
i,t or PV generation P pv

i,t , and the bus number where the MESS agent i is located at; and 2) the

endogenous state serving as the feedback signals of its executed routing and scheduling actions,

including the current battery SoC Emes
i,t , the transportation information of node index N loc

i,t and

traffic volume V trl
i,t of EV i. As such, each MESS agent only requires partial information from the

environment rather than the complete system knowledge.

8.3.3 Action

The action ai,t executed by each MESS agent i at each time step t is defined as a 2-dimensional

vector:

ai,t = [aloci,t , a
pow
i,t ] ∈ Ai, ∀i ∈ I (8.19)

which consists of two parts: 1) the discrete routing action aloci,t ∈ {0, 1, ..., N
rd} is selected from the

set of available routes upon the transportation node, where 0 indicates the idle status without any

routing behavior and N rd indicates the number of potential routes at transportation node N loc
i,t ,

as discussed in [208–210]; and 2) the continuous scheduling action apowi,t ∈ [−1, 1] represents the

magnitude of charging (positive) and discharging (negative) power of MESS agent i as a percentage

of its battery power capacity [−Pmax
i , Pmax

i ].

8.3.4 State transition

The state transition from time step t to t+1 is governed by st+1 = T (st, a1:I,t, ωt) with a probability

function P (st+1|st, a1:I,t, ωt). It is noted that the transition is influenced partly by the environment

state st, the all agents’ actions a1:I,t, and partly by the environment stochasticity ωt. In the

examined problem, this corresponds to the exogenous state features ωt = [P ed
t , P pv

t , Sline
t , V trl

t ] which
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are decoupled from the agent’s action and are characterised by inherent variability and uncertainty.

In this context, it presents significant challenges to identify suitable probabilistic models which can

fully capture such randomness since it is influenced by many exogenous factors, such as energy usage

behaviors, solar radiation, line status, and traffic volumes. RL remedies this problem in a data-

driven approach which does not rely on accurate models of the underlying uncertainties but learning

the characteristics through the constructed dataset via the machine learning techniques [117].

By contrast, the state transitions for endogenous features N loc
i,t , E

mes
i,t , and P ls

i,t are determined

by actions aloci,t and apowi,t of MESS agent i at time step t. More specifically, the control actions

ai,t executed to the environment are assumed as the inputs to determine the routing and charg-

ing/discharging power of MESS agent i as well as the AC-OPF algorithm outcomes. On the one

hand, N loc
t is determined by aloci,t , which corresponds to the route selections at network topology

with the consideration of transportation network, such as travelling time and traffic volumes. On

the other hand, the mutually exclusive quantities Pmes,c
i,t and Pmes,d

i,t (as a storage cannot charge

and discharge simultaneously) are managed by action apowi,t , limited by its minimum and maximum

SoC levels Emin
i , Emax

i and charging and discharging efficiencies ηci , η
d
i .

Pmes,c
i,t = [min(apowi,t Pmax

i , (Emax
i − Emes

i,t )/(ηci∆t))]+, ∀i ∈ I, ∀t ∈ T (8.20)

Pmes,d
i,t = [max(apowi,t Pmax

i , (Emin
i − Emes

i,t )ηdi /∆t)]−, ∀i ∈ I, ∀t ∈ T (8.21)

where [·]+/− = max /min{·, 0}. Given the charging and discharging power Pmes,c
i,t , Pmes,d

i,t and the

energy efficiency ηci , η
d
i , the state transition of Emes

i,t from time step t to t + 1 can be expressed in

(8.22) that captures the time-series characteristics of storage energy levels, which is also aligned

with equation (8.6).

Emes
i,t+1 = Emes

i,t + (ηciP
mes,c
i,t + Pmes,d

i,t /ηdi )∆t, ∀i ∈ I, ∀t ∈ T (8.22)

Once the locations and charging/discharging power schedules of all MESS agents are determined,

this information is an input into the AC-OPF algorithm as known quantities replacing MESS-

related variables (i.e., uci,b,t, u
d
i,b,t, P

mes,c
i,b,t , and Pmes,d

i,b,t ). Afterwards, MGCC solves the linearised

AC-OPF, each MESS agent i then can obtain the load shedding quantity P ls
i,t. It is notable that the

operation constraints of MESS in (8.1)-(8.5) are not violated through the [·]+/− and min[·]/max[·]

operators expressed in (8.20)-(8.21), while the operation constraints of AC-OPF algorithm are also
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not violated, since (8.11)-(8.17) (environment) is an independent optimisation problem that all the

constraints should be satisfied once an optimal solution is obtained. However, some scenarios may

occur if the charging/discharging power of MESS agents are extremely high or low, which results

in infeasible solutions of AC-OPF algorithm (8.11)-(8.17) when an extreme event occurs.

8.3.5 Reward

At the end of time step t, each agent i obtains its reward ri,t. The objective of the studied problem

is to reduce the system overall load shedding cost (8.11), where clsd corresponds to the load shedding

cost of load d. However, each agent is difficult to acquire the system global load shedding condition,

the reward function for each agent i at time step t thus can be designed as the negativity of its nodal

load shedding cost. In addition, once the AC-OPF algorithm becomes infeasible by the MESSs’

actions (as discussed above in Section 8.3.4), a penalty is required to avoid such actions in the

future states. However, it is difficult to design a proper penalty function. A relatively large value

may break the learning policy while a relatively small value may not be strong enough to penalise

such actions. To make a balance, the penalty function is designed, which is similar to the reward

function but uses the original load P ed
d,t as the baseline. As a result, the integrated reward function

of MESS agent i at time step t can be expressed as:

ri,t =















−clsd P
ls
d,t if AC-OPF is optimal

−clsd P
ed
d,t if AC-OPF is infeasible

, d = N loc
i,t , ∀i ∈ I, ∀t ∈ T. (8.23)

8.4 Multi-agent deep reinforcement learning method for hybrid

action space

8.4.1 State-of-the-art RL methods

Before introducing the proposed P-MADDQN method, a comprehensive review of the state-of-the-

art RL methods is provided for both discrete and continuous action spaces and their limitations

are analysed when applied to the proposed hybrid continuous-discrete (routing-scheduling) action

space problem.
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Discrete action space

The valued-based method is the fundamental RL method that first estimates a value function and

then outputs the greedy policy with respect to that estimate. Q-learning (QL) is one of the popular

value-based RL methods that learns the value of executing action a in state s in form of the expected

Q-value function Qπ(s, a) = E[R|st = s, at = a], which can be recursively updated as the Bellman

equation:

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Q
π(s′, a′)]] (8.24)

Deep Q-network (DQN) is another value-based method combing deep learning and QL that

approximates the Q-value function with deep neural networks (DNN) parameterised by θ:

L(θ) = E
[

(r + γmaxa′ Q
′(s′, a′)−Q(s, a))2

]

(8.25)

where Q′(·) is the target network whose parameters θ′ slowly follow θ, to give consistent target

during temporal-difference (TD) learning. In addition, the network being trained off-policy with

samples from a replay buffer (s, a, r, s′) ∼ D further stabilises the training performance.

However, the value-based QL and DQN both suffer from the discrete action space, which can not

be practically applied to the RL setup defined in Section 8.3. Although the continuous action space

(i.e., MESS charging/discharging schedules) can be discretised into finite intervals, the executed

actions are inaccurate, leading to the sub-optimal energy scheduling decisions. Furthermore, the

conventional DQN method exhibits the unstable evolution, since the learned Q-value function may

overestimate the Q-values, which then leads to the sub-optimal policies, as it exploits errors in the

Q-value function [188].

Continuous action space

In addition to the value-based methods, the policy-based methods directly models the optimal

actions. Stochastic policy gradient (SPG) [117] employs a DNN (parameterised by φ) which takes

as input a continuous state s, and outputs a continuous action sampling from the stochastic policy

a ∼ πφ(a|s) (action selection probability). The main idea is directly adjusting the parameter φ of the

policy in order to maximise the objective J(θ) = Es∼ρπ ,a∼πφ
[R(s, a)] by taking steps in the direction

of ∇φJ(φ). Using the Q-value function as the expected return, the gradient of the stochastic policy
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can be written as:

∇φJ(πφ) = Es∼ρπ ,a∼πφ

[

∇φlogπφ(a|s)Q
π(s, a)

]

(8.26)

where ρπ is the state distribution. Moving a in the direction indicated by this gradient ∇φJ(φ) can

increase the log-probability of choosing that a proportionate to the associated state-action value

function Qπ(s, a). To model continuous control, we represent the probability distribution of agent’s

action with a Normal distribution N (µ, σ2), and predict the mean µ and the variance σ2 of it with

a DNN, referred to as a Gaussian Policy [196]. However, the training of SPG is inefficient with low

sampling performance as both state and action spaces are required to be computed in the policy

gradient theorem. Furthermore, SPG normally has high training variance and slow convergence

speed without making use of the past experiences.

Moreover, it is also possible to adopt policy-based methods to continuous action space by

considering the deterministic policies µφ(s). Similar as (8.26), the deterministic policy gradient

(DPG) theorem [117] states that:

∇φJ(µφ) = Es∼ρπ
[

∇φµφ(s)Q
π(s, a)

]

(8.27)

Instead of optimising the distribution parameters in SPG, DPG directly outputs the action values,

thereby constituting a more efficient policy. However, similar as SPG, DPG is also incapable of

handling discrete action space for MESS routing selections in the investigated problem.

8.4.2 Proposed P-MADDQN method

In order to handle the hybrid continuous-discrete action space and further address the overesti-

mates of conventional value-based methods in a multi-agent setup, we propose a parameterised and

stable MADRL method based on parameterised action space and double DQN method, namely

P-MADDQN as depicted in Figure 8.3. In detail, P-MADDQN consists of three parts: 1) two

separate networks applied to construct the continuous and discrete action spaces, respectively; 2)

two separate Q-value networks applied to construct the target Q-values in order to reduce the bias

in updating the network weights; 3) an collective index to represent the system dynamics so as to

stabilise the training performance with privacy protection of each individual agent.
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Figure 8.3: Architecture of the proposed P-MADDQN method.

Parameterised Q-value function

This section introduces the proposed framework to handle the application with hybrid continuous-

discrete action space. We reconsider a POMG with a parametrised action space Ai for each agent

i, which consists of K discrete actions each associated with a continuous parameter xk. In specific,

any action ai ∈ Ai can be written as ai = (ki, x
k
i ), where ki ∈ {1, ...,Ki} is the discrete action, and

xki ∈ Xi is a continuous parameter associated with the k-th discrete action. Thus action ai,t is a

hybrid of discrete and continuous components with the value of the continuous action determined

after the discrete action is chosen. Then the parameterised action space Ai can be written as:

Ai =
{

(ki, x
k
i ) |x

k
i ∈ Xi, ∀k ∈ {1, ...,Ki}

}

, ∀i ∈ I (8.28)

In the sequel, {1, ...,Ki} is denoted by [Ki] for short. For the action space Ai in (8.28), the action

value function is denoted by Qi(oi, ai) = Qi(oi, ki, x
k
i ) where oi ∈ Oi, ki ∈ [Ki], and xki ∈ Xi. Then

the Bellman equation becomes:

Qi(oi, ki, x
k
i ) = Eri,o′i

[

ri + γ max
ki∈[Ki]

sup
xk
i ∈Xi

Qi(o
′
i, ki, x

k
i )
]

, ∀i ∈ I (8.29)

Here inside the conditional expectation on the right-hand side of (8.29), we first solve xk∗i =

argsupxk
i ∈Xi

Qi(o
′
i, ki, x

k
i ) for each ki ∈ [Ki], and then take the largest Qi(o

′
i, ki, x

k∗
i ). Note that

taking supremum over continuous space Xi is computationally intractable. However, the right-hand

side of (8.29) can be evaluated efficiently providing xk∗i is given.

To elaborate this idea, first note that, when the Qi function is fixed, for any oi ∈ Oi and
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ki ∈ [Ki], it can be viewed that

xk,Qi (oi) = argsupxk
i ∈Xi

Qi(oi, ki, x
k
i ), ∀i ∈ I (8.30)

as a function of local observation oi. That is, we identify (8.30) as a function xk,Qi : Oi → Xi. Then,

the Bellman equation in (8.29) can be rewritten as:

Qi(oi, ki, x
k
i ) = Eri,o′i

[

ri + γ max
ki∈[Ki]

Qi

(

o′i, ki, x
k,Q
i (o′i)

)

]

, ∀i ∈ I (8.31)

Note that this new Bellman equation resembles the classical Bellman equation in (8.24) with

A = [K]. Similar to DQN, a DNN Qi(oi, ki, x
k
i |θi) parameterised by θi is used to approximate

Qi(oi, ki, x
k
i ) for agent i. Moreover, for such a parameterised Qi(oi, ki, x

k
i |θi), x

k,Q
i (o) in (8.30) is

approximated with a deterministic policy network xki (·|φi) : Oi → Xi, where φi denotes the network

weights of the policy network for agent i. When θi is fixed, it is expected to find φi such that

Qi(oi, ki, x
k
i (oi|φi) | θi) = sup

xk
i ∈Xi

Qi(oi, ki, x
k
i | θi), ∀i ∈ I, ∀ki ∈ [Ki] (8.32)

Double Q-value function

Inspired by the technique in Double Q-learning [188] using a separate target Q-value function

to estimate the current Q-value, thus reducing the bias, two separate online Q-value networks

(Qi,1, Qi,2) parameterised by θi,1, θi,2 are introduced for each agent i, along with two target Q-value

networks (Q′
i,1, Q

′
i,2) parameterised by θ′i,1, θ

′
i,2. Then the two target values used to update the

online Q-value can be written as:

yi,1 = ri + γ max
ki∈[Ki]

Qi,1

(

o′i, ki, x
k
i (o

′
i|φi) | θi,1

)

, ∀i ∈ I

yi,2 = ri + γ max
ki∈[Ki]

Qi,2

(

o′i, ki, x
k
i (o

′
i|φi) | θi,2

)

, ∀i ∈ I

(8.33)

However, the values of Qi,1 and Qi,2 cannot be equal, and it is inevitable that the high value may

be overestimated. Therefore, we make a slight change on the basis of Double Q-learning, and take

the minimum value between these two estimates to get the target Q-value:

yi = ri + γ min
j=1,2

max
ki∈[Ki]

Qi,j(o
′
i, ki, x

k
i (o

′
i|φi) | θi,j), ∀i ∈ I (8.34)
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With this improvement, P-MADDQN can simultaneously train two Q-value networks and pick the

minimum value of them, thus alleviating the overestimation phenomenon.

Collective index

As discussed in Section 8.1.2, independent RL acquiring only local observations without others’

information may suffer from the instability issue, even though the Double Q-learning is adopted.

Furthermore, it is impractical to acquire and incorporate all other agents’ local observations into the

centralised Q-value networks, mainly driven by the privacy challenge and curse-of-dimensionality of

Q-value networks’ inputs increasing proportionally with the agent size and observation space. To

this end, this chapter assumes the MESS aggregator as a trusted third party who can provide the

utilised MESSs with system critical signals that reflect the collective behavior of all agents in the

training process. To this effect, the Q-value function (8.32) of each agent i is reformulated as:

Qi(oi, ki, x
k
i | θi) = Qi(hi, oi, ki, x

k
i | θi), ∀i ∈ I (8.35)

where hi =
∑

d∈Nmes
(P ed

d,t − P ls
d,t)/

∑

d∈Nload
(P ed

d,t − P ls
d,t) ∈ [0, 1] denotes the contribution of agent i

to the system overall load restoration. It can be observed that hi is an embedded function that not

only abstracts all other agents’ local observations (e.g., P ed
i−,t, P

pv
i−,t, S

ln
i,t, ∀i− ∈ I(i−), where I(i−)

donates the set of all other agents i− apart from i), but also reflects the status of agent i providing

the system resilience (the higher value of hi indicates the better performance of contributing to

resilience enhancement, and vice versa). As a result, this function provides a good approximation of

all other agents’ local observations as well as the overall system dynamics. Incorporating hi into the

Q-value function estimations, each agent can make acquainted decisions on the basis of the impact

of self and all other agents’ observations and actions, albeit not knowing their power-transportation

local information and control activities, thereby protecting the MESSs’ privacy and also improving

the training stability in multi-agent setup.

Training process

Similar as DQN, P-MADDQN is also an off-policy MADRL method that requires the past experi-

ences to update the networks. Since a POMG of I agents with the same observation, action and

reward function is considered, their policies can be trained with enhanced efficiency by using a

PS framework [201]. PS allows all agents to share the parameters of a single control policy. This
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enables the shared policy to be trained with the sample experiences gathered by all agents, while

still allowing different behaviors among different agents, since each agent receives different local ob-

servations. In order to realise this framework, it can be assumed that the experiences acquired from

the environment of all local MESS agents are transmitted to the central aggregator for updating

the shared hybrid policy parameterised by {θ1, θ2, φ} = {θi,1, θi,2, φi}, ∀i ∈ I. This shared policy is

then broadcast to all local MESS agents to compute actions executed to the environment. To this

end, a shared experience replay buffer D is also employed to store the past experiences of all agents,

where the buffer is a cache storing the past experiences of all agents acquired from the environment

(an experience is a transition tuple (si,t, ki,t, xi,t, ri,t, hi,t, s
′
i,t). For each time step t, a minibatch

of N experiences are uniformly sampled from the replay buffer {(sn, kn, xn, rn, hn, s
′
n)}

N
n=1 ∼ D to

compute the mean-squared TD error of two online Q-value networks:

LQ(θ1) =
1

N

N
∑

n=1

[

(

yn −Q1(hn, on, kn, xn | θ1)
)2
]

(8.36)

LQ(θ2) =
1

N

N
∑

n=1

[

(

yn −Q2(hn, on, kn, xn | θ2)
)2
]

(8.37)

yn =















rn if o′n is the terminal state

rn + γ min
j=1,2

max
k∈[K]

Qj

(

h′n, o
′
n, k, xk(o

′
n|φ) | θj

)

otherwise

, ∀n ∈ N (8.38)

Moreover, since the target is to find φ that maximises Q(h, o, k, xk(o|φ) | θ) with θ fixed, the loss

function for φ is presented as following:

LP (φ) = −
1

N

N
∑

n=1

Q1(hn, on, kn, xn|θ1) (8.39)

The network parameters of two Q-value networks and one policy network can be then written as:

θ1 ← θ1 − αθ1∇θ1L
Q(θ1) (8.40)

θ2 ← θ2 − αθ2∇θ2L
Q(θ2) (8.41)

φ← φ− αφ∇φL
P (φ) (8.42)
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where αθ1 , αθ2 , and αφ are the learning rates of the gradient descent algorithm for the two online

Q-networks and one policy network, respectively.

Algorithm 1 Training process of P-MADDQN

1: Initialise weights θ1, θ2, and φ for two Q-value networks and one policy network, respectively.

2: Initialise a replay buffer D, time-dependent exploration parameters σt, ǫt.

3: for episode (i.e., day) = 1 : M do

4: Initialise the global state s0

5: for time step t = 1 : T do

6: For each agent i, receives local observation oi,t

7: For each agent i, selects action ai,t = {ki,t, x̂
k
i,t} in (8.44) and (8.43) according to the current

local observation oi,t

8: Execute all agents’ actions ai:I,t to the environment

9: MGCC solves AC-OPF algorithm (8.11)-(8.17)

10: For each agent i, observes reward ri,t and next local observation o′i,t

11: For each agent i, transits local experience (oi,t, ki,t, xi,t, ri,t, hi,t, o
′
i,t) to aggregator

12: Aggregator stores all experience {(oi,t, ki,t, xi,t, ri,t, hi,t, o
′
i,t)}

I
i=1 to replay buffer D

13: Sample a random minibatch of N experiences from reply buffer

{(on, kn, xn, rn, hn, o
′
n)}

N
n=1 ∼ D

14: Update two Q-value networks and one policy network using (8.40)-(8.42)

15: Exponentially decay exploration parameters σt, ǫt

16: Update the environment state st ← s′t and new local observations oi,t ← o′i,t

17: end for

18: end for

In order to assist the agent in exploring the environment and acquire more valuable experi-

ences, two separate exploration noises are applied to the online policy. More specifically, a random

Gaussian noise N (0, σ2
t ) is added to the parameterised network output x(oi,t|φ), constructing an

exploration parameterised policy:

x̂(oi,t) = x(oi,t|φ) +N (0, σ2
t ), ∀i ∈ I, ∀t ∈ T (8.43)
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On the other hand, the exploration for discrete action follows the same ǫ-greedy policy in DQN:

ki,t(oi,t) =















max
ki∈[K]

Q1(hi,t, oi,t, ki, x
k
i (oi,t)) with probability 1− ǫt

a random sample from [K] with probability ǫt

, ∀i ∈ I, ∀t ∈ T (8.44)

Finally, the training process of the proposed P-MADDQN method for the coordinated MESS

routing and scheduling problem is presented in Algorithm 1.

Test process

The training process lasts for M episodes until the trained policy is being converged. Once in the

test process, we firstly collect the weight parameters φ∗ of policy network and θ∗1 of the first Q-value

network respectively trained in Algorithm 1. For each time step in the test daysD, each MESS agent

i observes the current local observation oi,t and accordingly executes control actions ai,t = {ki,t, xi,t}

(with the outputs of policy network and first Q-value network) to the environment. The actions are

then mapped to the operation models of power-transportation network (environment), transiting

to the next state and time step (Section 8.3.4).

Algorithm 2 Test process of P-MADDQN

1: Load the weight parameters φ∗ and θ∗1 trained by Algorithm 1

2: for test day = 1 : D do

3: Receive the initial state s0 of the test day.

4: for time step = 1 : T do

5: For each agent i, receives local observation oi,t

6: For each agent i, selects action ai,t = {ki,t, x̂
k
i,t} according to the local observation oi,t

7: Execute all agents’ actions ai:I,t to the environment

8: MGCC solves AC-OPF algorithm (8.11)-(8.17)

9: For each agent i, observes reward ri,t and next local observation o′i,t

10: Update the environment state st ← st+1 and new local observations oi,t ← o′i,t

11: end for

12: end for
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8.5 Input data and experiment setup

8.5.1 Experiment setup

The case studies evaluates the routing and scheduling process of 3 MESSs on a 6-bus power network

located in a 6-node transportation network, which are illustrated in Figures 8.4 and 8.5, respectively.

Red dotted lines in Figure 8.4 correspond to tie lines that can be closed against extreme events, while

four lines (branch 2− 5, 1− 2, 3− 4 and 4− 5) are equipped with smart switches towards dynamic

network reconfiguration [68]. Note that radial distribution networks are normally operated with a

number of tie switches for the potential network reconfiguration in fault conditions. When extreme

events occur, load restoration can be performed by utilising these normally-open tie switches. More

specifically, this chapter focuses on an isolated power network supported by DERs including both

conventional generation resources (e.g., DGs) and renewable energy sources (e.g., PVs), while 3

MESS agents are connected with the network for load restoration. All the operation data related

to the power system (e.g., PV and load patterns) are extracted from [144], which can be found in

Figures 8.6 and 8.7. The line data of the 6-bus power system can be found in Table 8.1, while the

parameters of important components are presented in Table 8.3. As mentioned before, it is necessary

to capture the load distinction into essential and non-essential for realistic decision making; hence,

around 30% of total loads are regarded as essential loads with high curtailment cost, while other

loads are realised as non-essential loads with low curtailment cost.

B0

B1

B2

B3

B4

B5

PV

Tie line

MESS

Diesel generator

PV PV panel

Load

Figure 8.4: Power network of 6-bus system.

Bus 4

Bus 1

Bus 5

Bus 3Bus 2

Bus 0

Figure 8.5: Transportation network with elec-
trical buses in 6-bus system.

In order to capture uncertainties associated with renewable energy sources and load profiles, a

Monte-Carlo simulation is used to output various scenarios (e.g., 10000) initially following a nor-

mal distribution function with 5% and 3% errors in PVs and load profiles to mimic the inevitable

forecasting errors since accurate updated forecasts might be unavailable in the context of resilience-

driven operations. Regarding the severe contingency caused by the event, it is assumed that random
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Figure 8.7: PV profile.

Table 8.1: Line data corresponding to the power network

Line between
two buses

Reactance
(Xbp[p.u.])

Resistance
(Rbp[p.u.])

Capacitance
(Cbp[p.u.])

Maximum flow
(Slim

bp [kV A])

0 → 1 0.200 0.100 0.040 100
0 → 2 0.200 0.050 0.040 100
1 → 3 0.300 0.080 0.060 100
1 → 4 0.250 0.050 0.060 60
2 → 5 0.100 0.050 0.020 60
1 → 2 0.300 0.100 0.040 60
3 → 4 0.200 0.070 0.050 60
4 → 5 0.260 0.120 0.050 60

line outages (maximum 2 lines per day) can occur in this power network, including the entire isola-

tion from the upper grid. On the one hand, it is worth noting that the choice of generated scenario

number is empirical, while the scenario number shall be large enough to capture the fluctuating

nature of renewable energy resources and load profiles. On the other hand, 2 line outages can be

regarded as severe damage in the small 6-bus system, while it can be expected that more load

shedding will be caused if more line outages occur.

With regards to the transportation network, it is assumed that each electric bus is located at one

specific road node, of which its traffic network data is presented in Table 8.2. More specifically, the

transportation time between two road nodes is half an hour and different electric buses are settled

in different road nodes. According to this routing scheme, the least travelling time between different

buses is 0.5 hr; nevertheless, some buses may need more time to reach (e.g., 1 hour from bus 0 to

bus 2), as illustrated in Figure 8.5. Additionally, road congestion may cause longer travelling time,

as described in equation (8.7). For instance, 10 min congestion happens between bus 5 and bus 0.

If the MESS agent still chooses the route 5 → 0, the travelling time will be 28.6 min. In order to

model the uncertainties of such traffic volumes, 5% errors are added in base flow of each route. In

this regard, it can be anticipated that MESS agents may tend to choose a routing scheme with short

transporting time in order to allow more hours for connecting with the grid and restoring demand

during a daily charging/discharging cycle.
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Table 8.2: Road data of 6-node 7-edge transportation network

Route between
two nodes

Capacity
(Cr[#])

Free flow travel

time (T trl,0
r [Min])

coefficients
(αrd, βrd)

0 → 5 1000 20.0 4, 0.15
0 → 3 1000 16.8 4, 0.15
1 → 2 1000 17.6 4, 0.15
1 → 4 1000 19.9 4, 0.15
2 → 5 1000 18.6 4, 0.15
2 → 3 600 23.7 4, 0.15
4 → 5 600 27.4 4, 0.15

Table 8.3: Characteristics of components in the electrical system

Component Parameters

DG Min-Max Capacity: 0-150 kW
PV Capacity: 50 kW

MESS Max power/energy capacity: 50 kW/200 kWh; Initial SoC: 0.5
Essential load Curtailment cost: 250 £ / kW

Non-essential load Curtailment cost: 150 £ / kW

8.5.2 Implementations of proposed P-MADDQN method

The network structure of the proposed P-MADDQN method for this experiment is shown in Figure

8.3 and explained as follows: the input data of the policy network is a 2-dimensional data vector

(None, 6), where None is the batch size of the training data, and 6 is input dimension of the

extracted state features defined in Section 8.3.2. The policy network outputs a (None, 1) vector

with a tanh activation function bounded by [−1, 1], representing the continuous action of MESS

charging/discharging decision apow. The two Q-value networks inputs the combination of continuous

action (i.e., policy network output) and the certain state features, and outputs a 5-dimensional

vector (None, 5) with a linear activation function, representing the Q-values of 5-dimensional

route actions. Note that the examined transportation network in Figure 8.5 is characterised by

the regular intersection with 4 potential routes per traffic node. If the investigated case includes

more direction choices, the action dimension can also be easily extended. The policy network and

two Q-value networks are formulated via the multilayer perceptrons (MLPs) with two hidden layers

containing 128 and 64 units, respectively.

During the training process, the RMSProp optimiser is used with a learning rate αθ1 = 1×10−3,

αθ2 = 1 × 10−3, and αφ = 1 × 10−4, respectively. The discount rate expecting a long-term return

within one episode γ = 0.99, while a replay buffer D = 1×105 and a minibatchN = 64 are employed,

respectively. For the RL exploration, a Gaussian noise process is added to the policy network for

continuous action, the standard deviation decreases exponentially from 2 to 0.05 within the first
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1,000 episodes and stays unchanged until to end in all experiments. Furthermore, the MESS agents

apply the ǫ−greedy policy for discrete action, with probability ǫ sampling a random action from [K]

or taking the greedy action with respect to the current Q-value function otherwise. The ǫ decreases

from 1 to 0.05 within 1,000 episodes as well. Finally, the proposed P-MADDQN method has been

implemented in Python with Tensorflow v2.6.0 [211], and the linearised AC-OPF algorithm of the

environment (Section 8.2.2) has been implemented in Pyomo with Gurobi solver [212].

8.5.3 Implementations of benchmark control methods

In order to validate the superior performance of the proposed P-MADDQN method in the coordi-

nated MESSs routing and scheduling problem, and to test how close the proposed method is to the

theoretical benchmark, we compare it against the various model-based optimisation and model-free

MADRL methods:

(1) Perfect-MILP: the MGCC solves a model-based deterministic MILP for the daily optimisation

problem with the objective function (8.11) and constraints (8.1)-(8.10), (8.12)-(8.17), which

assumes the perfect information of MESSs and AC-OPF mathematical models, technical pa-

rameters, and system uncertainties. More specifically, the demand and PV profiles are selected

as their mean illustrated in Figures 8.6 and 8.7, outage scenario includes two lines (0− 2 and

1 − 4), and serious congestion on route 4 − 5 (around 0.4 hr). Free flow travel time for each

traffic route used to calculate traffic volume is collected from Table 8.2. It is also mentioned

that the solutions under Perfect-MILP are considered as the theoretical benchmark of the

coordinated MESS routing and scheduling problem.

(2) Stochastic-MILP: the MGCC solves a scenario-based stochastic MILP for the daily optimi-

sation with the objective function (8.11) and constraints (8.1)-(8.10), (8.12)-(8.17), which

assumes the perfect information of MESSs and AC-OPF mathematical models and techni-

cal parameters, but considers the stochasticity of system uncertainties. More specifically, we

uniformly sample 10 scenarios for each uncertainty parameter of electric demand, PV gener-

ation, traffic volume, and line outages, thereby generating 104 scenarios in the constructed

uncertainty set. In order to make the optimisation computable, we use scenario reduction

technique [213] to obtain the most representative 10 scenario sets as the input of Stochastic-

MILP.
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(3) DQN: each MESS agent adopts a model-free independent-MADRL method with the employ-

ment of DQN method, discretising the continuous action space into 3 dimensions. In this

setting, the action space becomes 15 (3 × 5) dimensions. The control decisions (routing and

scheduling) are made by selecting the maximise Q-value with respect to the 15 discrete action

dimensions. The Q-value network is constructed by two hidden MLP layers with 128 and 64

units, respectively. The output layer is a linear activation function with 15 dimensions. The

other hyperparameters (e.g., learning rates, discount factor, buffer and batch size, ǫ− greedy

policy) are the same as the proposed P-MADDQN method in Section 8.5.2.

(4) P-MADQN: each MESS agent adopts a model-free MADRL method with the employment of

P-MADQN method, which is based on the proposed hybrid action space and PS framework.

But instead of using double Q-value function, P-MADQN directly adopts the conventional

DQN method for the parameterised Q-value network. As a result, there are only two networks,

one for the policy network and the other one for the Q-network. The network structures and

hyperparameters are the the same as the proposed P-MADDQN method in Section 8.5.2.

In order to make the experiments comparable, we run 5,000 episodes with the same 10 random

seeds and DNN weights initialisation for all three (including the proposed P-MADDQN) MADRL

methods.

8.6 Case Studies

8.6.1 Training performance

This section aims at comparing the training performance and the computational time of three

examined MADRL methods. Figure 8.8 illustrates the evolution of episodic total reward (i.e.,

minus system load shedding costs and penalty values) of all 3 MESS agents over 5,000 episodes for

different MADRL methods during the training process. More specifically, their corresponding values

are also collected in Table 8.4. Furthermore, their episodic training time as well as the number of

episodes and total training time required to reach convergence are summarised in Table 8.5.

The first observation is that all three MADRL methods show an upward trend and their policies

are being improved. This is because the MESS agents are in the status of exploring the environ-

ment without an optimised policy during the initial learning stage. However, as the learning process
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Figure 8.8: Episodic total reward of 3 MESS agents over 5,000 episodes for different MADRL
methods.

Table 8.4: The value of episodic total reward of 3 MESS agents over 5,000 episodes for different
MADRL methods

Method
Episode

1 200 500 1,000 2,000 3,000 5,000

DQN -333.98 -324.94 -311.26 -310.98 -310.26 -310.80 -312.00
P-MADQN -339.47 -318.38 -304.31 -306.83 -290.36 -290.25 -290.26
P-MADDQN -322.47 -314.43 -293.49 -300.95 -279.25 -280.69 -280.25

continues and more valuable experiences are acquired for updating the networks, the policies are

being improved and the rewards keep increasing for all three MADRL methods. More specifi-

cally, it can be observed that DQN (blue) as the most fundamental MADRL method converges

to the lowest reward level among three methods. This is because the naive discritization of ac-

tion space significantly hinders its effectiveness in addressing the continuous charging/discharging

behaviors of MESS, leading to the sub-optimal policy. In order to effectively deal with the hy-

brid continuous-discrete action space, P-MADQN (green) owing to its parameterised action space

algorithm exhibits a superior training performance. It can be further observed that P-MADQN

(converges around 1,200 episodes) exhibits a much more stable performance with respect to the

independent DQN (relatively stable around 3,400 episodes), this is because P-MADQN using PS

framework and collective index that can address the non-stationary issue of multi-agent environ-

ment. These advantages of PS framework and collective index can be achieved in P-MADDQN

(red) as well. Furthermore, compared to P-MADQN, P-MADDQN using double Q-value networks

learns a higher reward, as illustrated in Figure 8.8. In relative terms, the proposed P-MADDQN

achieves 10.18% / 3.45% higher average reward over MADQN / P-MADQN, respectively (Table

8.4).

Go further, we analyse their computational performance in the training process. It can be
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Table 8.5: Computational performance for different MADRL methods

Method Episodic training time (sec) Number of episodes Total training time (hr)

DQN 1.96 3,400 1.85
P-MADQN 2.51 1,200 0.84
P-MADDQN 2.97 1,800 1.49

observed from Table 8.5 that the episodic training time is the lowest in DQN (since this method

only needs to train one Q-value network to compute both routing and scheduling actions), higher

in P-MADQN (since this method trains an independent policy network to execute the scheduling

action), and the highest in P-MADDQN (since this methods additionally involves another Q-value

network and a collective index to stabilise the training performance). Furthermore, we can observe

that P-MADQN is the fastest method to reach convergence (around 1,200 episodes), this is owing

to the PS framework that all agents’ experiences are used to update one policy on every training

iteration. Furthermore, without double Q-network, the policy in P-MADQN is easier to be trained.

P-MADDQN exhibits a relatively slower training speed (around 1,800 episodes) due to the extra

training requirement of double Q-network. DQN results in the slowest training speed (around 3,400

episodes) due to the instability issue of independent learning algorithm. Finally, given the above

discussions and the presented value in Table 8.5, the proposed P-MADDQN costs 1.49 hr training

time to reach convergence.

8.6.2 Test evaluation

To test the performance evaluation of the proposed P-MADDQN method in the examined MESSs

routing and scheduling problem, we first uniformly pick up (sample) 7 days’ data from the uncer-

tainty distributions as the test set, then freeze and load the weight parameters of policy network

and online Q-value network, and finally apply them to respectively determine the automatic routing

and scheduling decisions for 3 MESS agents in the test data (Algorithm 2). In this section, the

proposed P-MADDQN is also compared with the four benchmark methods as introduced in Section

8.5.3, where their daily load shedding quantities and costs as well as the actions execution time over

the 7 test days for different control methods are presented in Table 8.6.

It can be observed that Perfect-MILP obtains the theoretic solutions of the averaged daily load

shedding quantity at 1,799 kWh and cost at 275 thous. £. Although the proposed P-MADDQN

cannot reach to the theoretic benchmark, such differences of quantity at 3.80% and cost at 2.43%

can be acceptable, which are also assumed as the reasonable solutions. However, theproposed
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Table 8.6: Averaged daily load shedding quantity, load shedding cost and execution time over 7 test
days for different control methods

Method Load shedding (kWh) Load shedding cost (thous.£) Execution time (sec)

DQN 2,104.02 322.97 0.0901
P-MADQN 1,954.31 296.41 0.1342
P-MADDQN 1,867.10 281.68 0.1163
Stochastic-MILP 1,901.78 288.89 486.6523
Perfect-MILP 1,798.84 275.01 42.6531

P-MADDQN is more efficient to handle the system uncertainties compared to the model-based

Stochastic-MILP and exhibits a lower daily load shedding quantity and cost. Moreover, for the

other two model-free MADRL methods (DQN, P-MADQN), both of them do not exhibit good

performance on the test set of the coordinated MESSs routing and scheduling problem, respectively

achieving 19.97% / 8.64% higher daily load shedding quantity and 17.44% / 7.78% higher daily load

shedding cost over Perfect-MILP.

The computational performance of the proposed P-MADDQN and the other benchmark meth-

ods is also compared in the last column of Table 8.6. It can be observed that the control scheme

of all three MADRL methods can be delivered in real-time around 0.1 sec averaged per day. How-

ever, the computational time is slightly higher in P-MADQN and P-MADDQN, since the network

structures are more complex when the policy network is involved. On the other hand, Perfect-

MILP (around 43 sec) and Stochastic-MILP (around 487 sec) exhibit much higher computational

time than MADRL methods by solving a model-based daily optimisation problem, because of the

introduction of a large number of integer variables. It is noted that control policies of MADRL

methods can adapt to various state scenarios (including renewable energies, demand patterns, line

outages, and traffic volumes) in the test set, since the policies have been well trained during the

training process, while the model-based approaches have to run individual optimisation for each

test day. Furthermore, although the training time of MADRL methods in Section 8.6.1 is higher

than the optimisation time of model-based methods in Section 8.6.2, their hybrid control policies

can be deployed to make the practical MESSs routing and scheduling decisions in 0.1 sec. More

importantly, MADRL methods is a model-free approach that does not require any knowledge of the

studied power-transportation systems. And in practice, these knowledge is normally not obtained.

The above results demonstrate that 1) the proposed P-MADDQN achieves a good performance

evaluation for the examined problem; 2) the proposed P-MADDQN is able to learn an effective

policy that can generalise to variable state information in different test days; 3) the MADRL
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methods exhibit a more favorable computational performance, rendering it the most efficient tool

in addressing the proposed real-time automatic MESS routing and scheduling problem, and also

destroy the impractical assumptions on acquiring the knowledge of power-transportation systems

and system uncertainties in model-based optimisation approaches.

8.6.3 MESS routing and scheduling analysis

To verify the learned hybrid policy in the P-MADDQN method, this section aims at analysing the

MESS routing process and charging/discharging characteristics in the examined 6-bus test system,

which are illustrated in Figure 8.9. One outage scenario (selected from the above 7 test days)

including two line outages (line 0 − 2 and line 1 − 4) and the isolation from the upper grid is

appropriately selected for presentation, as depicted in Figure 8.9. Additionally, the most serious

traffic congestion happens on the route 4 − 5, which can cause around 0.4 hr travelling delay of

MESS agents. The bar in Figure 8.10 presents the active power of charging/discharging and the

purple line with asterisks corresponding to the right Y-axis indicates the routing process of 3 MESS

agents. Furthermore, we also compare the load patterns before and after load shedding for different

buses in Figure 8.11. Finally, it may be interesting to analyse the voltage changes at different buses,

which are illustrated in Figure 8.12.

It can be observed from Figure 8.10 that 3 MESSs are initially connected with buses 3, 4 and

5 respectively, and discharge for restoring loads in the first few time steps. After fully or partly

discharging power, MESS agents will move to bus 0 for charging, since the conventional generator is

located at bus 0. After fully or partly charging power, MESS agents moves back to buses connected

with load (e.g., bus 5) for discharging power, since bus 5 has the highest load level. Following this

routing pattern, MESSs move to bus 0 for charging when the SoC level is low; then, they move

back and stays at buses connected with load after charging power. Note that all the MESS agents

move to bus 5 for discharging power due to the large load shedding occurring on bus 5, as depicted

in Figure 8.11. Additionally, Figure 8.10 illustrates that different MESS agents choose to charge or

discharge power in different time periods to reach a coordinated control fashion. Furthermore, it

can be found that it takes about 1 hour for MESS 2 to move from bus 4 to bus 5 in the first few

time steps; nevertheless, the ideal travelling time is around 0.5 h. This is because road congestion

happens on the road between bus 4 and bus 5 delaying the MESS travel. The advantages of MESSs

on reducing load shedding, the coordinated control of multiple MESSs and the impact of road
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congestion have been clearly shown in Figure 8.10.
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Figure 8.9: The 6-bus power system with line outages for presentation.
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Figure 8.10: Daily routing and scheduling decisions of 3 MESS agents.

Table 8.7: Switch operations of the 6-bus system for network reconfiguration during the restoration
process

Time period (hr) 1 1.5 3.5 10

Switch actions close 1-2, 3-4
close 4-5 and
open 2-5

close 2-5
and open 1-2

open 2-5
and close 1-2

Switch operations accounting for the dynamic network reconfiguration are described in Table

8.7. Specifically, tie line 1− 2 and 3− 4 are closed to restore the connection with bus 2 and bus 4

in the first time step after the damage happens; hence, most demand in bus 2 can be restored by

the power flow provided through tie lines and MESS agents can focus on other buses with power

shortage (e.g., bus 5). Additionally, tie line 4 − 5 is closed in the second time step to ensure the

power supply to the demand in bus 5, while line 2 − 5 is open to ensure the radial structure of
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Figure 8.11: Comparison between the original daily load and the daily load level after shedding for
different buses.
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Figure 8.12: Daily voltage profiles for different buses.

the power network. Through smart switch operations, the coordination scheme between dynamic

network reconfiguration and MESS routing has been shown clearly.

Furthermore, Figure 8.11 corresponds to the load changes while indicating the amount of load

shedding at each bus. It can be found that there is essential load shedding at bus 3, since the

severe contingency caused in the power network; nevertheless, the amount of load shedding is very

limited due to the importance of supporting essential loads. On the other hand, large load shedding

is caused at buses 2, 4 and 5, since these three buses are connected with non-essential loads and

close to the faulted lines. Specifically, bus 4 and bus 5 receive much larger load shedding than bus

2 due to the severe contingency occurring at the line between bus 1 and bus 4, bus 0 and bus 2,

respectively. More specifically, bus 5 obtains the largest non-essential load shedding, because of the

highest load level compared to bus 2 and bus 4.

The voltage changes at 4 buses are illustrated in Figure 8.12. It can be observed that all the

voltage levels are limited within the operational range (e.g., 0.9-1.1 p.u.) because of the incorpo-

ration of technical constraints. In addition, severe contingencies may require the electrical system

to operate very close to its stability limits. More specifically, the voltage level at bus 3 hits the

minimum value in most time steps due to the severe contingency caused by the event, while load

shedding is caused during these hours to ensure that the voltage level is within the reasonable range.

On the other hand, when large amount of non-essential demand is curtailed at buses 2, 4 and 5,

voltage levels are significantly raised. As discussed in Section 8.2.2, operation models based on EMS
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or DC-OPF are incapable of including all the technical constraints relating to stability properties,

which increase the risk of insecure system operations, especially when extreme events happen. Even

though the value of optimal solutions may be negatively influenced by these constraints since more

limitations are required in the operation model, the reality and reliability of the final optimisation

results can be guaranteed.

Table 8.8: Performance for different load types in 6-bus system

Performance
Essential load Non-essential load

Total
Bus 3 Bus 4, 5, 2

Quantity (kWh) 45.93 1858.72 1904.65
Cost (thous.£) 11.48 278.81 290.29

Finally, the quantity and cost of both essential and non-essential loads are summarised in Table

8.8. As discussed above, there is not much essential load shedding due to its large curtailment cost,

while large amount of non-essential loads have been curtailed for stable and safe operations of the

system. In relative terms, the non-essential loads (at buses 4, 5, 2) achieve 40 times load shedding

quantity and 24 times load shedding cost over the essential loads (at bus 3).

8.6.4 Test results in the IEEE modified 33-bus system

To further prove the scalability of the proposed P-MADDQN, a larger power network (i.e., a modified

33-bus system) is utilised in this section, as depicted in Figure 8.13. Several DGs and PVs are

appropriately installed, while 6 MESSs are initially located at different buses. It is assumed that

branches 7-20, 8-14, 11-21, 17-32, 24-28, 15-16, 20-21 and 25-26 are equipped with remote-controlled

switches [68]. The associated transportation network is illustrated in Figure 8.14, where MESSs are

allowed to move positions within 9 specified buses equipped with charging stations. To capture the

severe damage caused by extreme weather events, uncertain multiple line outages are assumed to

occur in this system, including the isolation from the main grid or substations. As such, there might

be no power supply from main grid and the system can only obtain power from local DERs. Load

profiles and PV profiles are extracted from [144], while a power/energy capacity of 100 kW/400 kWh

has been used in these MESSs due to the large network size. As discussed in Section 8.6.2, once

P-MADDQN is well-trained, its policy can be deployed in the test set and has shown its effectiveness

of resilience enhancement in 6-bus system. For 33-bus system, we use the same policy trained in

6-bus system (Section 8.6.1) and increase the number of MESS agents from 3 to 6, since the MDP

properties remains the same. However, it is worth noting that retraining or transfer learning can
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also be applied to achieve better training performance [214]. In other words, the 6 MESS agents in

33-bus system share the same policy trained in P-MADDQN. As a result, both system size and agent

numbers are increased in this section to investigate the scalability of theproposed P-MADDQN.
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Figure 8.13: Power network in 33-bus system.
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Figure 8.14: Transporta-
tion network with electrical
buses.

In order to verify the performance of the proposed MADRL method, a scenario with 7 branches

damaged by the natural disaster is randomly selected for the distribution system to analyse the

routing and scheduling characteristics of these MESS agents and the coordination with dynamic

network reconfiguration, as illustrated in Figure 8.13. Additionally, serious traffic congestion mainly

happens on routes 7 − 21 and 1 − 25. Detailed charging/discharging behaviors are also illustrated

in Figure 8.15, showing that 6 MESS agents moves back and forth between buses connected with

loads (e.g., bus 1, bus 15 and bus 32) and buses connected with generation resources (e.g., bus 23

and bus 25). Note that, the demand at bus 1, bus 2 and bus 3 has been entirely isolated from the

rest of the network and obtains no power supply due to severe line outages shown in Figure 8.13,

while bus 1 is connected with essential loads. As such, MESS agents (e.g., agent 2, 4 and 5) tend to

discharge more power at bus 1 to supply as much demand as possible through reasonable routing

and scheduling. Following this routing and scheduling pattern shown in Figure 8.15, most essential

demand at bus 1 is restored. On the other hand, it can be found that another half an hour time

period is required for the MESS agent 4 to route from initial position (bus 25) to bus 1 due to the

serious congestion occurring at route 1− 25. Meanwhile, MESS agent 5 chooses to acquire energy

from bus 23 connected with DERs rather than bus 25 due to the congestion between bus 1 and bus

25. The advantages of MESS routing and scheduling on load restoration and the impact of road

congestion on MESS routing decisions have been shown clearly.

Switch operations accounting for the dynamic network reconfiguration can be found in Table
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Figure 8.15: Daily routing and scheduling decisions of 6 MESS agents in 33-bus system.

Table 8.9: Switch operations of the 33 bus system for network reconfiguration

Time period 1 hr 1.5 hr 22 hr

Switch actions
close 7-20, 8-14,
17-32 and 24-28

close 11-21 open 20-21

8.9. Four tie lines including branch 17− 32, 24− 28, 8− 14 and 7− 19 are closed to provide energy

supply for areas with power shortage. For instance, after the severe damage happens, the demand

connected to bus 31 and bus 32 has been isolated from the power network; nevertheless, power

supply to this area is restored by closing the tie line 17− 32. Both bus 31 and bus 32 are connected

with essential loads, while there is no load shedding occurring on these two buses. It is worth noting

that large amounts of essential loads may be curtailed, if there is no tie line between 17− 32. Also,

MESS agents have to focus on this area for load restoration considering the significant importance of

essential loads. However, MESS agents can choose to connect with other important areas suffering

power shortage due to the existence of tie line 17− 32. As such, the effective coordination between

MESS routing and network reconfiguration has been shown appropriately.

In addition, we present the detailed load shedding information in Figure 8.16. Most buses
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Table 8.10: Performance for different load types in 33-bus system

Performance Essential load Non-essential load Total

Quantity (kWh) 40.37 5748.74 5789.11
Cost (thous.£) 10.10 862.31 872.41
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Figure 8.16: Comparison between original load and the load level after shedding at buses having
load shedding: (a) Essential load at bus 1, (b) Averaged non-essential loads at buses 2, 3, 5, 6,
11-13, 17, 18, 21.

connected with essential loads have no load shedding except for bus 1, while large amount of non-

essential load shedding is caused at other 10 buses. The only essential load shedding comes from

bus 1 due to the isolation of bus 1 with the left power network; nevertheless, it can be found that

most essential load at bus 1 is restored by the coordinated routing and scheduling of the MESS

agents. Notably, if static battery systems are utilised to supply the essential load at bus 1, it can be

predicted that large amount of essential load shedding will be caused due to the lack of mobility. As

a result, the advantages of MESSs have been further proven clearly in this case study. Finally, we

also compare the load shedding quantities and costs between the essential and non-essential loads

in Table 8.10, and also quantify their total values. Similar as the results obtained in the 6-bus

system (Table 8.8), there is a large amount of load shedding quantity occurred at the buses with

non-essential loads, resulting in serious costs with respect to the essential loads.



Chapter 9

Conclusions and future work

This research firstly reviews recent literature on resilience-oriented planning and operational models

and strategies based on MGs. Modelling details are appropriately presented across four dimensions:

objectives and metrics, resilience scenarios, control methods and strategies. Among these, load

restoration or survivability, cost minimisation, and frequency and voltage stabilities are three main

considerations for the selected objective functions, while uncertainty information, contingencies,

generation resources and interdependencies between different networks are four basic factors to cap-

ture the main features of resilience. Based on three control methods (OPF, EMS and dynamic

control), four types of network topologies (including utilisation of existing MGs for network re-

silience, dynamic formation of MGs, islanding schemes of MGs and networked MGs for resilience

enhancement) are presented with their advantages and disadvantages discussed in detail. Based on

the suggested framework for resilience enhancement, the following research on developing appropri-

ate resilience-driven planning and operational models has been done:

• An operational model considering preventive power importing and demand response is pro-

posed to enhance the resilience of AC/DC hybrid MGs during extreme events. Both grid-

connected and islanded modes are considered in the presented model. Preventive power im-

porting is used to prepare the MG for future events, while demand response is employed to

reduce load shedding and operational cost during emergency mode. Detailed OPF algorithm

capturing technical constraints is adopted to formulate the non-linear problem. The impact of

limited generation resources, the discrimination of loads into critical and non-critical, demand

shifting and contingencies on load survivability are appropriately illustrated.

• A hierarchical control strategy based on detailed AC OPF is proposed to deal with the power
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sharing problem between networked MGs for accurate solutions, while stochastic program-

ming is utilised to model uncertainties relating to renewable energy sources and load profiles.

Technical constraints relating to voltage, angle and power loss are appropriately captured in

the model, while the suggested approach can be applied on both meshed and radial networks.

Routing of EV fleets in each MG is employed to provide power support and reduce load shed-

ding. Three different levels of contingencies and the limitation of generation resources are also

incorporated into the model to mimic a realistic scenario.

• A three-stage distributed control approach based on rolling optimisation is developed for the

resilience-driven operation problem of networked MGs after extreme events. In the first stage,

a linearised AC OPF algorithm featuring stochastic programming is utilised to capture uncer-

tainties associated with renewable energy sources and load profiles and ensure fast response to

extreme events. In the second stage, a consensus-based algorithm is employed for the power

sharing between MGs. Note that the routing and scheduling decisions of MESSs in the first

stage and power sharing results in the second stage are sent to the third stage; after receiving

these results, the MG cluster runs a detailed AC OPF algorithm in the third stage to ensure

the feasibility of final optimal solutions.

• A three-level model is suggested for the optimal sizing problem of networked MGs considering

a trade-off between resilience and cost. A normal optimal sizing problem is considered in

the first level, while the second and third levels are combined as a defender-attacker-defender

model to capture resilience. An AGA is developed to consider the normal planing problem

in the first level and generate attacking actions in the second level. A detailed AC OPF

algorithm capturing technical constraints such as voltage, angle and power loss is utilised in

the operation of each MG to obtain accurate solutions, which is suitable both for meshed

and radial networks. A multi-objective optimisation problem based on NSGA II algorithm

considering resilience budgets is utilised to capture the trade-off between cost and resilience

in the third level. Two types of contingencies including power source damage and multiple

line faults and uncertainties with load profiles are incorporated into the model to represent

the highly uncertain nature of extreme events.

• The three-level defender-attacker-defender model developed in above chapter is employed to

solve an optimal sizing and pre-position problem of MESSs in the context of decentralised

networked MGs. The three-level structure is firstly reformulated as a master problem and a
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subproblem, where the subproblem is used to generate attack actions that can cause the most

severe contingency and the master problem is designed to produce optimal results against

the worst contingency. The master problem and the subproblem are run in an iterative way

until the pre-defined resilience level is achieved. Extensive case studies are developed to prove

the optimality, stability and scalability of the proposed planning model on realistic decision

making.

• A model-free real-time multi-agent deep reinforcement learning approach featuring parame-

terised double deep Q-networks is proposed to reformulate the coordination effect of MESSs

routing and scheduling process as a Partially Observable Markov Game, which is capable of

capturing a hybrid policy including both discrete and continuous actions. A coupled trans-

portation network and linearised AC OPF algorithm are realised as the environment, while

the internal uncertainties associated with renewable energy sources, load profiles, line out-

ages, and traffic volumes are incorporated into the proposed data-driven approach through

the learning procedure. Extensive case studies including both 6-bus and 33-bus power net-

works are developed to evaluate the effectiveness of the proposed approach. Specifically, a

detailed comparison between different multi-agent reinforcement learning and model-based

optimization approaches is conducted to present the superior performance of the proposed

approach.

9.1 Future Work

Even though a large amount of literature has focused on developing appropriate and effective re-

silience models and strategies, several challenges still need to be further considered and incorporated

into planning and operation models to better estimate and achieve the desired level of resilience

during extreme events. Future research directions, as indicated through the extensive literature

review, are summarised hereafter:

9.1.1 Dynamic model for frequency and voltage stabilities

Resilience-oriented models that combine static operational constraints and dynamic differential

constraints can lead to more accurate solutions. Uncertainties introduced by extreme events make

power systems reach their operating limits more frequently and increase the risk of system failure,
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which highlights the importance of considering power dynamics in a resilience scenario. However,

current resilience-driven modelling approaches for MGs are mainly based on EMS, unit commitment

(UC), or various linearised AC OPF algorithms, which focus only on steady-state driven control

of MGs and could make final optimisation results dynamically unstable. Hence, there is not much

research focused on the application of transient-stability constrained OPF on providing optimal

dispatch decisions for the stability properties of the MG.

Future work can concentrate on a novel dynamic model that can assist operators to make real-

time dynamic decisions on MG operations. More specifically, a dynamic model including both

static AC OPF constraints and differential equations relating to DERs can be developed to capture

potential frequency deviations and enhance resilience. Various battery storage systems can also be

integrated into the proposed model to investigate the benefits of enhanced voltage and frequency

control in MGs. In addition to energy storage, the vehicle-to-grid (V 2G) concept in supporting real-

time dynamic management of MGs might be included in the dynamic OPF. It can be anticipated

that this novel model will be capable of capturing realistic frequency and voltage deviations and

used for different resilience scenarios.

9.1.2 Realistic power system representation

Renewable energy sources are normally used to deal with the challenges of climate change. According

to recent research, it seems to be irreversible to increase the penetration of renewable energy sources

on power systems. However, renewable energy sources have lower capabilities in shock absorption

and their penetration may cause the system to fail under transient conditions [215], which highlights

the importance of developing more stable and robust power systems. To reduce the risk, the

proportion of renewable energy sources has to be carefully determined and the control challenges

caused by the intermittency characterizing renewable resources have to be tackled in the future.

Energy storage systems (e.g., mobile storage units and static storage units) can be employed to

reduce the impact of the fluctuating renewable energy resources [98].

Additionally, scenario-based optimization and robust optimization approaches are widely used

to tackle the uncertainties associated with renewable energy resources, which may only be able to

capture a small number of representative scenarios or lead to very conservative optimization results.

In this context, more advanced approaches, such as risk-averse, approaches and learning approaches,

shall be developed to ensure realistic model formulation while capturing the stochastic nature of
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renewable generation.

Furthermore, distribution systems are inherently unbalanced because of the random change of

load demands on each phase [13]. The existence of multiple uncertainties may cause a larger unbal-

ance in distribution networks. However, most literature assumes three-phase balanced distribution

networks for modelling purposes, which may be unrealistic [28]. Resilience-oriented models based

on unbalanced distribution networks need to be developed and the unbalanced dynamic control of

voltage and frequency can also be further researched to lead to more accurate results.

9.1.3 Interdependencies between different network structures

Except for power networks, other infrastructures, such as natural gas networks and district heating

networks, can also be influenced or even damaged by extreme events, and meanwhile, these systems

have very close interconnections among each other, which can introduce further challenges for the

resilience enhancement process. In this case, to achieve a higher overall resilience level, MGs can

even integrate multiple energy styles as multi-energy microgrids (MEMGs) for more effective energy

integration and coordination, which can be more beneficial for resilience enhancement. In detail,

MEMGs can be a combination of multiple conversion, distribution, and storage technologies that

are controlled to benefit from the synergy of various carriers, thereby electricity, heat, natural gas,

and so on optimally interact with each other to meet a higher-level resilience target, e.g., providing

energy supply for the critical loads in different energy sectors including electrical loads, gas loads,

and heat loads, etc. [216].

Additionally, since the energy sharing among MEMGs can drive more efficient use of various

energy styles, several MEMGs can use their higher controllability to further connect with each other

as interconnected MEMGs against extreme weather events after switching into islanded mode. These

interconnections of many localized MEMGs can better enable the resilience-driven operation and

real-time network control of integrated multi-energy systems at both the national level and the local

level through the appropriate information and communication technologies (ICT) infrastructure.

In this context, multiple interconnected MEMGs can facilitate the paradigm shift in delivering

resilience and security of supply from redundancy in assets and preventive control to more intelligent

operation through real-time corrective control actions [11]. To achieve real-time corrective control,

efficient MEMG operation frameworks featured by distributed control and privacy protection are

highlighted in the future.
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Furthermore, based on the multi-energy system mentioned above, transportation systems and

communication systems are also closely related to power systems. When the network structures

of these systems are damaged by extreme events, the resilience of power systems will also be in-

fluenced, e.g., more load shedding, slower recovery, etc. On one hand, mobile power sources may

not be fully utilised or even unavailable, if transportation networks are damaged. On the other

hand, interconnected MEMGs may not connect and exchange power with each other for resilience

enhancement, if extreme events destroy the communication infrastructures inside the MG cluster. A

possible solution to address the above issue is to further enable cooperation among different network

operators as integrated systems, which may be able to mobilise all available resources in a short

period for overall resilience enhancement.

9.1.4 Grid-connected MGs for resilience enhancement

As aforementioned in the introduction, MGs or MEMGs can integrate DERs (e.g., DGs, WTs, and

PVs) for load restoration at the local level via effective islanding schemes, while they can also stay

in grid-connected mode and assist the main grid in restoring critical loads, when the severe damage

is caused by extreme events. This thesis particularly deals with the problem of optimal planning

and operation for networked MGs based on islanding schemes towards resilience enhancement;

nevertheless, how to employ grid-connected MGs or MEMGs for grid load restoration via active

and reactive power support is not investigated in this work.

Future work can focus on developing effective control strategies for the active and reactive power

scheduling of multiple grid-connected MGs towards the overall resilience enhancement of power

networks. It is worth noting that MGs normally have fixed boundaries and self-controllability due to

the considerations of customer privacy, load and power balance, and frequency and voltage control.

In this context, distributed control approaches featuring privacy protection and fast response time

can be more appropriate for the resilience-driven scheduling problem of multiple grid-connected

MGs. Additionally, the advantages of different types of MGs (e.g., DC MGs or AC/DC MGs) are

worth investigation, since DC MGs normally have low cable losses and simplified control strategies

that can offer a more economical power delivery and higher resilience compared with AC MGs [30].

9.1.5 Advanced planning and operation strategies for resilience enhancement

Transportable generation resources are more flexible and effective than static distributed generation

resources when extreme events occur. In this thesis, EVs and MESSs have been employed for the
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resilience enhancement of networked MGs due to their significant mobility and flexibility; neverthe-

less, other mobile resources, such as mobile emergency generators (MEGs) and repair crews, are not

investigated in this thesis. As such, it is necessary to develop comprehensive operational strategies

for the coordinated routing and scheduling characteristics of these mobile generation and repairing

resources. It can be anticipated that the combination of these mobile resources can introduce more

benefits for resilience enhancement than a single type of resources. However, the combination of

multi-type resources (e.g., MEGs, MESSs, EVs, repair crews, etc.) can also bring challenges to

resilience-oriented modelling because of the incorporation of large amounts of integer variables [24].

In this context, machine learning based techniques and reinforcement learning approaches have the

potential in solving large-scale optimisation problems incorporating multi-type mobile resources.

On the other hand, the advantages of operational strategies are influenced and limited by the

decision-making at the planning stage (e.g., battery capacities and generator capacities), which leads

to the need for developing effective and economical planning strategies incorporating resilience mod-

elling [91]. To address this issue, planning models have been developed in this thesis, while these

models mainly focus on the optimal sizing problems of static and mobile DERs in the context of

networked MGs. It is necessary to develop a comprehensive planning model capturing elements

relating not only to optimal sizing but also optimal network reconfiguration and demand growth for

achieving enhanced levels of resilience in the presence of extreme events. Additionally, future work

can focus on developing advanced day-selecting approaches that capture all the operational inter-

actions between representative days and the variance in occurrence probability between different

scenarios. Furthermore, most planning models are based on traditional mathematical program-

ming methods, which are not very suitable for various power systems featuring distributed control.

As such, advanced planning approaches capable of decentralised optimisation need to be further

investigated in the future.
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Santos, “Microgrids with energy storage systems as a means to increase power resilience: An

application to office buildings,” Energy, vol. 172, pp. 1005–1015, 2019.

[80] H. Gao, Y. Chen, Y. Xu, and C.-C. Liu, “Dynamic load shedding for an islanded microgrid

with limited generation resources,” IET Generation, Transmission & Distribution, vol. 10,

no. 12, pp. 2953–2961, 2016.



BIBLIOGRAPHY 191

[81] A. Gholami, T. Shekari, and S. Grijalva, “Proactive management of microgrids for resiliency

enhancement: An adaptive robust approach,” IEEE Transactions on Sustainable Energy,

vol. 10, no. 1, pp. 470–480, 2017.

[82] A. Hussain, V.-H. Bui, and H.-M. Kim, “Fuzzy logic-based operation of battery energy storage

systems (besss) for enhancing the resiliency of hybrid microgrids,” Energies, vol. 10, no. 3,

p. 271, 2017.

[83] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “Stochastic energy management of

microgrids during unscheduled islanding period,” IEEE Transactions on Industrial Informat-

ics, vol. 13, no. 3, pp. 1079–1087, 2016.

[84] A. Khodaei, “Microgrid optimal scheduling with multi-period islanding constraints,” IEEE

Transactions on Power Systems, vol. 29, no. 3, pp. 1383–1392, 2013.

[85] H. Qiu, W. Gu, Z. Wu, S. Zhou, G. Pan, X. Yang, X. Yuan, and X. Ding, “Resilience-

directional robust power dispatching of microgrids under meteorological disasters,” IET Re-

newable Power Generation, vol. 13, no. 12, pp. 2084–2093, 2019.

[86] M. U. Shahid, M. M. Khan, K. Hashmi, R. Boudina, A. Khan, J. Yuning, and H. Tang,

“Renewable energy source (res) based islanded dc microgrid with enhanced resilient control,”

International Journal of Electrical Power & Energy Systems, vol. 113, pp. 461–471, 2019.

[87] D. Neves, A. Pina, and C. A. Silva, “Comparison of different demand response optimization

goals on an isolated microgrid,” Sustainable Energy Technologies and Assessments, vol. 30,

pp. 209–215, 2018.

[88] Z. Wang, B. Chen, J. Wang, et al., “Decentralized energy management system for networked

microgrids in grid-connected and islanded modes,” IEEE Transactions on Smart Grid, vol. 7,

no. 2, pp. 1097–1105, 2015.

[89] L. Liang, Y. Hou, D. J. Hill, and S. Y. R. Hui, “Enhancing resilience of microgrids with

electric springs,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2235–2247, 2016.

[90] Y. Lin and Z. Bie, “Tri-level optimal hardening plan for a resilient distribution system con-

sidering reconfiguration and dg islanding,” Applied Energy, vol. 210, pp. 1266–1279, 2018.



192 BIBLIOGRAPHY

[91] W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust optimization-based re-

silient distribution network planning against natural disasters,” IEEE Transactions on Smart

Grid, vol. 7, no. 6, pp. 2817–2826, 2016.

[92] C. Yuan, M. S. Illindala, and A. S. Khalsa, “Modified viterbi algorithm based distribution

system restoration strategy for grid resiliency,” IEEE Transactions on Power Delivery, vol. 32,

no. 1, pp. 310–319, 2016.

[93] F. Wang, C. Chen, C. Li, Y. Cao, Y. Li, B. Zhou, and X. Dong, “A multi-stage restoration

method for medium-voltage distribution system with dgs,” IEEE Transactions on Smart Grid,

vol. 8, no. 6, pp. 2627–2636, 2016.

[94] T. Ding, Y. Lin, G. Li, and Z. Bie, “A new model for resilient distribution systems by mi-

crogrids formation,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 4145–4147,

2017.

[95] A. Barnes, H. Nagarajan, E. Yamangil, R. Bent, and S. Backhaus, “Resilient design of

large-scale distribution feeders with networked microgrids,” Electric Power Systems Research,

vol. 171, pp. 150–157, 2019.

[96] Y.-J. Kim, J. Wang, and X. Lu, “A framework for load service restoration using dynamic

change in boundaries of advanced microgrids with synchronous-machine dgs,” IEEE Trans-

actions on Smart Grid, vol. 9, no. 4, pp. 3676–3690, 2016.

[97] J. Liu, X. Lu, and J. Wang, “Resilience analysis of dc microgrids under denial of service

threats,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3199–3208, 2019.

[98] A. O. Rousis, I. Konstantelos, and G. Strbac, “A planning model for a hybrid ac–dc microgrid

using a novel ga/ac opf algorithm,” IEEE Transactions on Power Systems, vol. 35, no. 1,

pp. 227–237, 2019.

[99] F. Capitanescu, “Critical review of recent advances and further developments needed in ac

optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57–68, 2016.

[100] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power generation, operation, and control.
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