613 research outputs found

    Certainly Unsupervisable States

    Get PDF
    This paper proposes an abstraction method for compositional synthesis. Synthesis is a method to automatically compute a control program or supervisor that restricts the behaviour of a given system to ensure safety and liveness. Compositional synthesis uses repeated abstraction and simplification to combat the state-space explosion problem for large systems. The abstraction method proposed in this paper finds and removes the so-called certainly unsupervisable states. By removing these states at an early stage, the final state space can be reduced substantially. The paper describes an algorithm with cubic time complexity to compute the largest possible set of removable states. A practical example demonstrates the feasibility of the method to solve real-world problems

    Minimizing nfa's and regular expressions

    Get PDF
    AbstractWe show inapproximability results concerning minimization of nondeterministic finite automata (nfa's) as well as of regular expressions relative to given nfa's, regular expressions or deterministic finite automata (dfa's).We show that it is impossible to efficiently minimize a given nfa or regular expression with n states, transitions, respectively symbols within the factor o(n), unless P=PSPACE. For the unary case, we show that for any δ>0 it is impossible to efficiently construct an approximately minimal nfa or regular expression within the factor n1−δ, unless P=NP.Our inapproximability results for a given dfa with n states are based on cryptographic assumptions and we show that any efficient algorithm will have an approximation factor of at least npoly(logn). Our setup also allows us to analyze the minimum consistent dfa problem

    An Algorithm for Pattern Discovery in Time Series

    Get PDF
    We present a new algorithm for discovering patterns in time series and other sequential data. We exhibit a reliable procedure for building the minimal set of hidden, Markovian states that is statistically capable of producing the behavior exhibited in the data -- the underlying process's causal states. Unlike conventional methods for fitting hidden Markov models (HMMs) to data, our algorithm makes no assumptions about the process's causal architecture (the number of hidden states and their transition structure), but rather infers it from the data. It starts with assumptions of minimal structure and introduces complexity only when the data demand it. Moreover, the causal states it infers have important predictive optimality properties that conventional HMM states lack. We introduce the algorithm, review the theory behind it, prove its asymptotic reliability, use large deviation theory to estimate its rate of convergence, and compare it to other algorithms which also construct HMMs from data. We also illustrate its behavior on an example process, and report selected numerical results from an implementation.Comment: 26 pages, 5 figures; 5 tables; http://www.santafe.edu/projects/CompMech Added discussion of algorithm parameters; improved treatment of convergence and time complexity; added comparison to older method

    Testing a system specified using Statecharts and Z

    Get PDF
    A hybrid specification language SZ, in which the dynamic behaviour of a system is described using Statecharts and the data and the data transformations are described using Z, has been developed for the specification of embedded systems. This paper describes an approach to testing from a deterministic sequential specification written in SZ. By considering the Z specifications of the operations, the extended finite state machine (EFSM) defined by the Statechart can be rewritten to produce an EFSM that has a number of properties that simplify test generation. Test generation algorithms are introduced and applied to an example. While this paper considers SZ specifications, the approaches described might be applied whenever the specification is an EFSM whose states and transitions are specified using a language similar to Z

    Proceedings of the Eindhoven FASTAR Days 2004 : Eindhoven, The Netherlands, September 3-4, 2004

    Get PDF
    The Eindhoven FASTAR Days (EFD) 2004 were organized by the Software Construction group of the Department of Mathematics and Computer Science at the Technische Universiteit Eindhoven. On September 3rd and 4th 2004, over thirty participants|hailing from the Czech Republic, Finland, France, The Netherlands, Poland and South Africa|gathered at the Department to attend the EFD. The EFD were organized in connection with the research on finite automata by the FASTAR Research Group, which is centered in Eindhoven and at the University of Pretoria, South Africa. FASTAR (Finite Automata Systems|Theoretical and Applied Research) is an in- ternational research group that aims to lead in all areas related to finite state systems. The work in FASTAR includes both core and applied parts of this field. The EFD therefore focused on the field of finite automata, with an emphasis on practical aspects and applications. Eighteen presentations, mostly on subjects within this field, were given, by researchers as well as students from participating universities and industrial research facilities. This report contains the proceedings of the conference, in the form of papers for twelve of the presentations at the EFD. Most of them were initially reviewed and distributed as handouts during the EFD. After the EFD took place, the papers were revised for publication in these proceedings. We would like to thank the participants for their attendance and presentations, making the EFD 2004 as successful as they were. Based on this success, it is our intention to make the EFD into a recurring event. Eindhoven, December 2004 Loek Cleophas Bruce W. Watso

    Rapid Recovery for Systems with Scarce Faults

    Full text link
    Our goal is to achieve a high degree of fault tolerance through the control of a safety critical systems. This reduces to solving a game between a malicious environment that injects failures and a controller who tries to establish a correct behavior. We suggest a new control objective for such systems that offers a better balance between complexity and precision: we seek systems that are k-resilient. In order to be k-resilient, a system needs to be able to rapidly recover from a small number, up to k, of local faults infinitely many times, provided that blocks of up to k faults are separated by short recovery periods in which no fault occurs. k-resilience is a simple but powerful abstraction from the precise distribution of local faults, but much more refined than the traditional objective to maximize the number of local faults. We argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We show that the computational complexity of constructing optimal control with respect to resilience is low and demonstrate the feasibility through an implementation and experimental results.Comment: In Proceedings GandALF 2012, arXiv:1210.202
    corecore