
Certainly Unsupervisable States

Simon Ware1, Robi Malik1, Sahar Mohajerani2, and Martin Fabian2

1 Department of Computer Science,

University of Waikato, Hamilton, New Zealand

{siw4,robi}@waikato.ac.nz
2 Department of Signals and Systems,

Chalmers University of Technology, Gothenburg, Sweden

{mohajera,fabian}@chalmers.se

Abstract. This paper proposes an abstraction method for compositional synthe-

sis. Synthesis is a method to automatically compute a control program or super-

visor that restricts the behaviour of a given system to ensure safety and liveness.

Compositional synthesis uses repeated abstraction and simplification to combat

the state-space explosion problem for large systems. The abstraction method pro-

posed in this paper finds and removes the so-called certainly unsupervisable

states. By removing these states at an early stage, the final state space can be

reduced substantially. The paper describes an algorithm with cubic time complex-

ity to compute the largest possible set of removable states. A practical example

demonstrates the feasibility of the method to solve real-world problems.

1 Introduction

Reactive systems are used extensively to control safety-critical applications, where a

small error can result in huge financial or human losses. With their size and complexity

continuously increasing, there is an increasing demand for formal modelling and anal-

ysis. Model checking [4] has been used successfully to automatically detect errors in

reactive systems. In some cases, it is possible to go further and synthesise, i.e., automat-

ically compute a controlling agent that removes certain kinds of errors from a system.

The controller synthesis problem has been studied by several researchers in com-

puting and control. The synthesis of a stand-alone controller from a temporal logic

specification is studied in [7, 19]. Synthesis has been generalised to the extraction of

an environment to interact with a given software interface [1], and to the construction

controllers interacting with a given environment or plant [2,5]. Supervisory control the-

ory [21] of discrete event systems provides a framework to synthesise a supervisor that

restricts the behaviour of a given plant as little as possible while ensuring the safety and

liveness properties of controllability and nonblocking.

Straightforward synthesis algorithms explore the complete monolithic state space of

the system, and are therefore limited by the well-known state-space explosion problem.

The sheer size of the supervisor also makes it humanly incomprehensible, which hin-

ders acceptance of the synthesis approach in industrial settings. These problems are ad-

dressed by compositional methods [3,8]. If a temporal logic specification is the conjunc-

tion of several requirements, it is possible to synthesise separate controller components

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for each requirement [5, 7]. Compositional approaches in supervisory control [9, 16]

exploit the structure of the model of the plant to be controlled, which typically consists

of several interacting components. These approaches avoid constructing the full state

space by first simplifying individual components, then applying synchronous composi-

tion step by step, and simplifying the intermediate results again.

This kind of compositional synthesis requires specific abstraction methods to guar-

antee a least restrictive, controllable, and nonblocking final synthesis result. Supervision

equivalence [9] and synthesis abstraction [16] have been proposed for this purpose, and

several abstraction methods to simplify automata preserving these properties are known.

This paper proposes another abstraction method that can be used in compositional

synthesis frameworks such as [9,16]. The proposed method finds all the states that will

certainly be removed by any supervisor. Removing these so-called certainly unsuper-

visable states at an early stage reduces the state space substantially. Previously, halfway

synthesis [9] was used for this purpose, which approximates the removable states. The

set of certainly unsupervisable states is the largest possible set of removable states, and

it can be computed in the same cubic complexity as halfway synthesis.

This paper is organised as follows. Section 2 introduces the terminology of super-

visory control theory [21] and the framework of compositional synthesis [9, 16]. Next,

Section 3 explains the ideas of compositional synthesis with certainly unsupervisable

states using the example of a manufacturing system. Section 4 presents the results of this

paper: it defines the set of certainly unsupervisable states, gives an algorithm to com-

pute it, performs complexity analysis, and compares certainly unsupervisable states to

halfway synthesis. Finally, Section 5 adds some concluding remarks.

2 Preliminaries

2.1 Events and Languages

Discrete event systems [21] are modelled using events and languages. Events represent

incidents that cause transitions from one state to another and are taken from a finite

alphabet Σ. For the purpose of supervisory control, the alphabet is partitioned into two

disjoint subsets, the set Σc of controllable events and the set Σu of uncontrollable events.

Controllable events can be disabled by a supervising agent, while uncontrollable events

occur spontaneously. In addition, the silent controllable event τc ∈ Σc and the silent

uncontrollable event τu ∈ Σu denote transitions that are not taken by any component

other than the one being considered. The set of all finite traces of events from Σ, in-

cluding the empty trace ε , is denoted by Σ
∗. A subset L⊆ Σ

∗ is called a language. The

concatenation of two traces s, t ∈ Σ
∗ is written as st.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministic automata, but nondetermin-

istic automata may arise as intermediate results during abstraction.

Definition 1. A (nondeterministic) finite automaton is a tuple G = 〈Σ,Q,→,Q◦,Qω〉,
where Σ is a finite set of events, Q is a finite set of states,→ ⊆ Q× (Σ∪{τu,τc})×Q

H1

fetch1 !put1

B1

!put1

!put1

!put1

get1

get1

⊥

H1 ‖B1 0

1 2

3 4

5

6 7
fetch1

fetch1

fetch1

fetch1

!put1

!put1

!put1

get1 get1

get1

get1

S 0

1 2

3 4

fetch1

fetch1

!put1

!put1

get1

get1get1

Fig. 1. Simple manufacturing system. Events fetch1 and get1 are controllable, while !put1 is

uncontrollable.

is the state transition relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is the set

of accepting states.

The transition relation is written in infix notation x
σ
→ y, and is extended to traces

and languages in the standard way. For example, x
τ
∗
u σ

−−→ y means that there exists a

possibly empty sequence of τu-transitions followed by a σ -transition that leads from

state x to y. Furthermore, x
s
→ means x

s
→ y for some y ∈ Q, and x→ y means x

s
→ y

for some s ∈ Σ
∗. These notations also apply to state sets and to automata: X

s
→ Y for

X ,Y ⊆ Q means x
s
→ y for some x ∈ X and y ∈ Y , and G

s
→ x means Q◦

s
→ x.

Example 1. Fig. 1 shows an automata model of a simple manufacturing system consist-

ing of a handler H1 and a buffer B1. The handler fetches a workpiece (fetch1) and then

puts it into the buffer (!put1). The event !put1 also increases the number of workpieces

in the buffer by 1. Afterwards the buffer can release the workpiece (get1), reducing the

number of workpieces in the buffer by 1. The buffer can store only two workpieces,

adding more workpieces causes overflow as represented by the state ⊥.

Definition 2. Let G1 = 〈Σ1,Q1,→1,Q
◦
1,Q

ω

1 〉 and G2 = 〈Σ2,Q2,→2,Q
◦
2,Q

ω

2 〉 be two

automata. The synchronous composition of G1 and G2 is

G1 ‖G2 = 〈Σ1∪Σ2,Q1×Q2,→,Q◦1×Q◦2,Q
ω

1 ×Qω

2 〉 (1)

where

(x1,x2)
σ
→ (y1,y2), if σ ∈ (Σ1∩Σ2)\{τu,τc}, x1

σ
→1 y1, and x2

σ
→2 y2 ; (2)

(x1,x2)
σ
→ (y1,x2), if σ ∈ (Σ1 \Σ2)∪{τu,τc} and x1

σ
→1 y1 ; (3)

(x1,x2)
σ
→ (x1,y2), if σ ∈ (Σ2 \Σ1)∪{τu,τc} and x2

σ
→2 y2 . (4)

Automata are synchronised in lock-step synchronisation [11]. Shared events must

be executed by all automata together, while events used by only one automaton (and

the silent events τu and τc) are executed by only that automaton. Fig. 1 shows the syn-

chronous composition H1 ‖B1 of the automata mentioned in Example 1.

Another common operation in compositional synthesis is hiding, which removes the

identity of certain events and in general produces a nondeterministic automaton.

Definition 3. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton and ϒ ⊆ Σ. The result of

controllability preserving hiding of ϒ from G is G\! ϒ = 〈Σ\ϒ,Q,→!,Q
◦,Qω〉, where

→! is obtained from→ by replacing each transition x
σ
→ y such that σ ∈ ϒ by x

τc→ y if

σ ∈ Σc or by x
τu→ y if σ ∈ Σu.

2.3 Supervisory Control Theory

Supervisory control theory [21] provides a means to automatically compute a so-called

supervisor that controls a given system to perform some desired functionality. Given

an automata model of the possible behaviour of a physical system, called the plant, a

supervisor is sought to restrict the behaviour in such a way that only a certain subset of

the state space is reachable. The supervisor is implemented as a control function [21]

Φ : Q→ 2Σ×Q (5)

that assigns to each state x∈Q the set Φ(x) of transitions to be enabled in this state. That

is, a transition x
σ
→ y with σ ∈ Σc will only be possible under the control of supervisor Φ

if (σ ,y) ∈ Φ(x). Uncontrollable events cannot be disabled, so it is required that Σu×
Q ⊆ Φ(x) for all x ∈ Q. Controllable transitions can be disabled individually, i.e., if

a nondeterministic system contains multiple outgoing controllable transitions from a

state x, then the supervisor may disable some of them while leaving others enabled [9].

If the plant is modelled by a nondeterministic automaton, then such a supervisor can be

represented as a subautomaton.

Definition 4. [9] Let G = 〈Σ,QG,→G,Q
◦
G,Q

ω

G〉 and K = 〈Σ,QK ,→K ,Q
◦
K ,Q

ω
K 〉 be two

automata. K is a subautomaton of G, written K ⊆G, if QK ⊆QG,→K ⊆→G, Q◦K ⊆Q◦G,

and Qω
K ⊆ Qω

G .

A subautomaton K of G contains a subset of the states and transitions of G. It rep-

resents a supervisor that enables only those transitions present in K, i.e., it implements

the control function

ΦK(x) = (Σu×Q)∪{(σ ,y) ∈ Σc×Q | x
σ
→K y} . (6)

As uncontrollable events cannot be disabled, the control function includes all possible

uncontrollable transitions. Not every subautomaton of G can be implemented through

control—the property of controllability [21] characterises those behaviours than can be

implemented.

Definition 5. [9] Let G = 〈Σ,QG,→G,Q
◦
G,Q

ω

G〉 and K = 〈Σ,QK ,→K ,Q
◦
K ,Q

ω
K 〉 such

that K ⊆ G. Then K is called controllable in G if, for all states x ∈ QK and y ∈ QG and

for every uncontrollable event υ ∈ Σu such that x
υ
→G y, it also holds that x

υ
→K y.

If a subautomaton K is controllable in G, then every uncontrollable transition pos-

sible in G is also contained in K. In Fig. 1, automaton S is controllable in H1 ‖B1. How-

ever, if state 5 was to be included in S, then because of the uncontrollable transition

5
!put1−−−→ 6, state 6 would also have to be included for S to be controllable. Controlla-

bility ensures that the control function (6) can be implemented without disabling any

uncontrollable events.

In addition to controllability, the supervised behaviour is typically required to be

nonblocking.

Definition 6. [15] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. G is called nonblock-

ing if for every state x ∈ Q such that Q◦→ x it holds that x→ Qω .

In a nonblocking automaton, termination is possible from every reachable state. The

nonblocking property, also referred to as weak termination [17], ensures the absence

of livelocks and deadlocks. Combined with controllability, the requirement to be non-

blocking can express arbitrary safety properties [9]. For example, the buffer model B1

in Fig. 1 contains the !put1-transition to the blocking state⊥ to specify a supervised be-

haviour that does not allow a third workpiece to be placed into the buffer when it already

contains two workpieces, i.e., it requests a supervisor that prevents buffer overflow.

Given a plant automaton G, the objective of supervisor synthesis [21] is to com-

pute a subautomaton K ⊆ G, which is controllable and nonblocking and restricts the

behaviour of G as little as possible. The set of subautomata of G forms a lattice [6], and

the upper bound of a set of controllable and nonblocking subautomata in this lattice is

again controllable and nonblocking.

Theorem 1. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. There exists a unique

subautomaton supC(G) ⊆ G such that supC(G) is nonblocking and controllable in G,

and such that for every subautomaton S ⊆ G that is also nonblocking and controllable

in G, it holds that S⊆ supC(G).

The subautomaton supC(G) is the unique least restrictive sub-behaviour of G that

can be achieved by any possible supervisor. It can be computed using a fixpoint itera-

tion [9], by iteratively removing blocking states and states leading to blocking states via

uncontrollable events, until a fixpoint is reached.

Definition 7. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. The restriction of G to

X ⊆ Q is G|X = 〈Σ,X ,→|X ,Q
◦∩X ,Qω ∩X〉, where→|X = {(x,σ ,y) ∈→ | x,y ∈ X }.

Definition 8. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. The synthesis step op-

erator ΘG : 2Q→ 2Q for G is defined as ΘG(X) = Θ
cont
G (X)∩Θ

cont
G (X), where

Θ
cont
G (X) = {x ∈ X | for all transitions x

υ
→ y with υ ∈ Σu it holds that y ∈ X } ; (7)

Θ
nonb
G (X) = {x ∈ X | x→|X Qω } . (8)

Given a state set X ⊆ Q, the operator Θ
cont
G removes from X any states that have

an uncontrollable successor not contained in X , and Θ
nonb
G removes any states from

where it is not possible to reach an accepting state via transitions contained in X . Thus,

Θ
cont
G captures controllability and Θ

nonb
G captures nonblocking. Both operators and their

combination ΘG are monotonic, and it follows by the Knaster-Tarski theorem [20] that

they have greatest fixpoints. The least restrictive synthesis result supC(G) is obtained

by restricting G to the greatest fixpoint of ΘG.

Theorem 2. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉. The synthesis step operator ΘG has a

greatest fixpoint gfpΘG = Θ̂G ⊆ Q, such that G|Θ̂G
is the greatest subautomaton of G

that is both controllable in G and nonblocking, i.e.,

supC(G) = G|Θ̂G
. (9)

Example 2. The automaton H1 ‖B1 in Fig. 1 is blocking, because the trace fetch1!put1

fetch1!put1fetch1!put1 leads to state 6, from where no accepting state is reachable. To

prevent this blocking situation, event !put1 needs to be disabled in state 5. However,

!put1 is an uncontrollable event that cannot be disabled by the supervisor, so the best

feasible solution is to disable the controllable event fetch1 in state 3. Fig. 1 shows the

least restrictive supervisor S = supC(H1 ‖B1).

In the finite-state case, the state set of the least restrictive supervisor can be calcu-

lated as the limit of the sequence X0 = Q, X i+1 = ΘG(X
i). This iteration converges in

at most |Q| iterations, and the worst-case time complexity is O(|Q||→|) = O(|Σ||Q|3),
where |Σ|, |Q|, and |→| are the numbers of events, states, and transitions of the plant

automaton G. However, often the behaviour the system is specified by a large num-

ber of synchronised automata, and when measured by the number of components, the

synthesis problem is NP-complete [10].

2.4 Compositional Synthesis

Many discrete event systems are modular in that they consist of a large number of inter-

acting components. This modularity allows to simplify individual components before

composing them, in many cases avoiding state-space explosion. This idea has been used

successfully for verification [8] and synthesis [9, 16] of large discrete event systems.

Given a system of concurrent plant automata

G = G1 ‖G2 ‖ · · · ‖Gn , (10)

the objective of synthesis is to find a least restrictive supervisor, which ensures non-

blocking without disabling uncontrollable events. The standard solution [21] to this

problem is to calculate a finite-state representation of the synchronous composition (10)

and use a synthesis iteration to calculate supC(G) = supC(G1 ‖ · · · ‖Gn).
A compositional algorithm tries to find the same result without explicitly calculat-

ing the synchronous composition (10). It seeks to abstract individual automata Gi by

removing some states or transitions, and replace them by abstracted versions G̃i. If no

more abstraction is possible, synchronous composition is computed step by step, ab-

stracting the intermediate results again.

The individual automata Gi typically contain some events that do not appear in any

other automata G j. These events are called local events, denoted by the set ϒ in the

following. After hiding the local events, the automaton Gi is replaced by Gi \! ϒ, which

increases the possibility of further abstraction.

Eventually, the procedure leads to a single automaton G̃, the abstract description

of the system G . After abstraction, the automaton of G̃ has less states and transitions

M2

M1

!put2

B2

!put1

B1

!put3

H3

!put4

H4

H1 H2
B3 B4

get3fetch2fetch1 get4

get2get1 fetch3 fetch4

input
2

!output
2

!output1 input1

W1

Fig. 2. Manufacturing system overview.

W1 Lock Produce M1 M2

⊥

!output1

!output1

!res

!sus

!lock

!res
!sus

!lock unlock

⊥
!output1

!output1

!output1
input1

!output1

fetch1

fetch2

get3

get4

input2 fetch4

fetch3

get2
!output2

get1

Fig. 3. Automata for manufacturing system model. Uncontrollable events are prefixed by !.

compared to (10). Once G̃ is found, the final step is to use it instead of the original

system, to obtain a synthesis result supC(G̃) = supC(G).
The abstraction steps to simplify the individual automata Gi must satisfy certain

conditions to guarantee that the synthesis result obtained from the final abstraction is a

correct supervisor for the original system.

Definition 9. Let G and H be two automata with alphabet Σ. Then G is synthesis equiv-

alent to H, written G ≃synth H if, for every automaton T , it holds that supC(G ‖T) =
supC(H ‖T).

Def. 9 is a special case of synthesis abstraction [16]. Synthesis equivalence requires

that the abstracted automaton H yields the same supervisor as the original automaton G,

no matter what the remainder of the system T is.

3 Manufacturing System Example

This section demonstrates compositional synthesis using a modified version of a manu-

facturing system previously studied in [13]. The manufacturing system consists of two

machines (M1 and M2) and four pairs of handlers (Hi) and buffers (Bi) for transferring

workpieces between the machines. Fig. 2 gives an overview of the system.

The manufacturing system can produce two types of workpieces. Type I workpieces

are first processed by machine M1 (input1). Then they are fetched by handler H1 (fetch1)

and placed into buffer B1 (!put1). Next, they are processed by M2 (get1), fetched by H4

(fetch4) and placed into B4 (!put4). Finally, they are processed by M1 once more (get4),

and released (!output1). Using a switch W1, users can request to suspend (!sus) or re-

sume (!res) production of M1, provided that the switch has been unlocked (unlock) by

HB1 0

1 2

3 4

5

⊥

fetch1

fetch1

fetch1

get1

get1

get1

get1

τu

τu

τu

W
0

1

2

3

4

5

6

7

8

9

10

11

⊥1 ⊥2 ⊥3

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

τuτu τuτu τuτu

τuτu τu τc

τc τc

τc τc

τc

Fig. 4. Automata encountered during compositional synthesis of manufacturing system example.

the system. Type II workpieces are first processed by M2, passed through H3 and B3,

further processed by M1, passed through H2 and B2, processed a second time by M2,

and released. The handlers and buffers are modelled as in Fig. 1, and Fig. 3 shows the

rest of the automata model of the system. Automata W1 and Produce use the blocking

states⊥ to model requirements for the synthesised supervisor to prevent output from M1

in suspend mode and to produce exactly two Type I workpieces.

In the following, compositional synthesis is used to synthesise a supervisor subject

to these requirements. Initially, the system is

G = M1 ‖M2 ‖W1 ‖Lock ‖Produce‖H1 ‖B1 ‖ · · · ‖H4 ‖B4 . (11)

In the first step, H1 and B1 are composed, so that event !put1 becomes an uncontrol-

lable local event and can be hidden. Thus, H1 and B1 are replaced by HB1 = (H1 ‖B1)\!

{!put1} shown in Fig. 4, where for graphical simplicity the two blocking states from

Fig. 1 are replaced by the state ⊥. Clearly, such blocking states must be avoided, and

since the silent uncontrollable transition 5
τu→⊥ cannot be disabled by the supervisor or

by any plant, state 5 must also be avoided. States 5 and ⊥ are certainly unsupervisable

states and are crossed out in Fig. 4. Automaton HB1 is replaced by the synthesis equiv-

alent abstraction ˜HB1 with 5 states, which is obtained by deleting states 5 and ⊥. The

same abstraction is applied to the other buffers and handlers.

After composition of W1, Produce, and Lock, events !sus, !res, !lock, and unlock

are local and can be hidden. Fig. 4 shows the result W = (W1 ‖ Produce ‖ Lock) \!

{!sus, !res, !lock,unlock}. Clearly, states ⊥1 and ⊥2 are blocking states. Moreover, the

only way to reach an accepting state from state 1 is via the transition 1
!output1−−−−−→ 5.

However, 1
τu→ 2

!output1−−−−−→ ⊥1, and since neither the supervisor nor any other plant can

disable τu, a supervisor that enables event !output1 in state 1, inevitably permits the

blocking state ⊥1. State 1 is a certainly unsupervisable state, and similar arguments

hold for states 2, 3, 5, 6, and 7. Deleting these states from W results in the synthe-

sis equivalent automaton W̃ . Next, M1 and W̃ are composed, which results in !output1

becoming a local event. The composed automaton, MW, has 28 states. Applying cer-

tain unsupervisability results in M̃W with 20 states. Replacing W1, Produce, and Lock

by M̃W gives the final abstracted system G̃ = M̃W ‖M2 ‖ ˜HB1 ‖ ˜HB2 ‖ ˜HB3 ‖ ˜HB4.

Finally, the components of G̃ are composed to calculate a supervisor. This requires

the exploration of the synchronous composition G̃ with 48400 states, in contrast to

the state space of the original system G with 1.3× 106 states. The final supervisors

calculated from G and G̃ are identical and have 4374 states.

4 Certain Unsupervisability

4.1 Certainly Unsupervisable States and Transitions

The above example shows that some states of an automaton G must be avoided by

synthesis in every possible context. That is, no matter what other automata are later

composed with G, it is clear that these states are unsafe. Blocking states are examples

of such states, but there are more states with this property.

Definition 10. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. The certainly unsupervis-

able state set of G is

Û(G) = {x ∈Q | for every automaton T = 〈Σ,QT ,→T ,Q
◦
T ,Q

ω
T 〉 and every

state xT ∈ QT it holds that (x,xT) /∈ Θ̂G‖T } .

(12)

A state x of G is certainly unsupervisable, if there exists no other automaton T

such that the state x is present in the least restrictive synthesis result Θ̂G‖T . If a state is

certainly unsupervisable, it is known that this state will be removed by every synthesis.

If such states are encountered in an automaton during compositional synthesis, they can

be removed before composing this automaton further.

Example 3. Consider again automaton HB1 in Fig. 4. Clearly, the blocking state ⊥
is certainly unsupervisable. In addition, state 5 is also certainly unsupervisable, be-

cause of the local uncontrollable transition 5
τu→⊥. As this transition is silent, no other

component disables it, and as it is uncontrollable, the supervisor cannot disable it.

Therefore, if the automaton ever enters state 5, blocking is unavoidable. It holds that

Û(HB1) = {5,⊥}.

In addition to states, it is worth considering transitions as certainly unsupervisable.

If an uncontrollable event υ can take a state x to a certainly unsupervisable state, then

all υ-transitions from x are certainly unsupervisable. Such transitions can be removed

because it is clear that no supervisor will allow state x to be entered while υ is possible

in the plant.

Definition 11. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. A transition x
υ
→ y with

υ ∈ Σu is a certainly unsupervisable transition if x
τ
∗
u υ

−−→ Û(G).

Example 4. Consider automaton W in Fig. 4. States ⊥1, ⊥2, and ⊥3 are blocking and

therefore certainly unsupervisable. The transition 5
!output1−−−−−→ 9 is certainly unsupervis-

able, because !output1 is uncontrollable and 5
τu→ 6

!output1−−−−−→⊥2 ∈ Û(W). The uncontrol-

lable event !output1 cannot be allowed in state 5, because if it was possible, blocking

in state ⊥2 would be unavoidable.

Further, as every path from state 5 to an accepting state must take the certainly

unsupervisable transition, it follows that state 5 is certainly unsupervisable. By similar

arguments, it is established that Û(W) = {1,2,3,5,6,7,⊥1,⊥2,⊥3}.

If the certainly unsupervisable states and transitions are known, they can be used to

simplify an automaton to form a synthesis equivalent abstraction.

Definition 12. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. The result of unsupervis-

ability removal from G is the automaton

unsupC(G) = 〈Σ,Q,→unsup,Q
◦ \Û(G),Qω \Û(G)〉 , (13)

where

→unsup = {(x,σ ,y) ∈→ | σ ∈ Σc and x,y /∈ Û(G)}∪ (14)

{(x,υ ,y) ∈→ | υ ∈ Σu, x /∈ Û(G), and y ∈ Û(G)}∪ (15)

{(x,υ ,y) ∈→ | υ ∈ Σu, x /∈ Û(G), and x
τ
∗
u υ

−−→ Û(G) does not hold} . (16)

The automaton resulting from unsupervisability removal has the same state set as

the original automaton G, only the initial and accepting state sets are reduced by re-

moving certainly unsupervisable states. All controllable transitions to certainly unsu-

pervisable states are removed (14), as these transitions can always be disabled by the

supervisor and therefore never appear in the final synthesis result. Uncontrollable tran-

sitions to certainly unsupervisable states, however, are retained (15), because they are

needed to inform future synthesis steps. If another component disables these events,

they may disappear in synchronous composition with that component, otherwise the

source state may have to be removed in synthesis. Uncontrollable transitions to other

states are deleted if they are certainly unsupervisable (16).

Example 5. When applied to automaton W in Fig. 4, unsupervisability removal deletes

all transitions linked to the crossed out states. While state ⊥3 is certainly unsupervis-

able, the shared uncontrollable !output1-transitions to this state are retained. They are

needed in the following steps of compositional synthesis. If some other component dis-

ables !output1 while in state 10 or 11, then these states may be retained, otherwise they

will be removed at a later stage.

The following theorem confirms that unsupervisability removal results in a synthe-

sis equivalent automaton. Therefore, the abstraction can be used to replace an automa-

ton during compositional synthesis without affecting the final synthesis result.

Theorem 3. Let G be an automaton. Then G≃synth unsupC(G).

Unsupervisability removal by definition only removes transitions and no states. Yet,

states may become unreachable as a result of transition removal, and unreachable states

can always be removed. Furthermore, it is possible to combine all remaining unsuper-

visable states, which have no outgoing transitions, into a single state [16].

4.2 Iterative Characterisation

The following definition provides an alternative characterisation of the certainly unsu-

pervisable states through an iteration. It forms the basis for an algorithm to compute the

set of certainly unsupervisable states.

Definition 13. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Define the set U(G) in-

ductively as follows.

U0(G) = /0 ; (17)

Uk+1(G) = {x∈Q | for all paths x = x0
σ1→·· ·

σn→ xn ∈Qω there exists i = 0, . . . ,n

such that xi
τ
∗
u→Uk(G) or i> 0 and σi ∈ Σu and xi−1

τ
∗
u σiτ

∗
u−−−−→Uk(G) } ;

(18)

U(G) =
⋃

k≥0

Uk(G) . (19)

The set Uk(G) contains unsupervisable states of level k. There are no unsupervis-

able states of level 0, and the unsupervisable states of level 1 are the blocking states,

i.e., those states from where it is not possible to ever reach an accepting state. Unsu-

pervisable states at a higher level are states from where every path to an accepting state

is known to pass through an unsupervisable state or an unsupervisable transition of a

lower level.

Example 6. Consider automaton W in Fig. 4. It holds that U0(W) = /0, and U1(W) =
{⊥1,⊥2,⊥3} contains the three blocking states. Next, it can be seen that 1 ∈U2(W),

because every path from 1 to an accepting state includes the transition 1
!output1−−−−−→ 5 with

!output1 ∈ Σu and 1
τu→ 2

!output1−−−−−→ ⊥1 ∈ U1(W). Likewise, it holds that 2,3,5,6,7 ∈
U2(W). No further states are contained in U2(W) or in Uk(W) for k > 2, so that U(W)=
U2(W) = {1,2,3,5,6,7,⊥1,⊥2,⊥3}= Û(W).

The following Theorem 4 confirms that the iteration Uk(G) reaches the set of cer-

tainly unsupervisable states.

Theorem 4. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Then U(G) = Û(G).

To determine whether some state x is contained in the set Uk+1(G) of unsupervisable

states of a new level, the definition (18) considers all paths from state x to an accepting

state. Such a condition is difficult to implement directly. It is more feasible to search

backwards from the accepting states using the following secondary iteration.

Definition 14. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Define the sets of super-

visable states Sk(G) for k ≥ 1 inductively as follows.

Sk+1
0 (G) = {x ∈ Qω | x

τ
∗
u→Uk(G) does not hold} ; (20)

Sk+1
j+1(G) = {x ∈ Q | x

σ
→ Sk+1

j (G), and x
τ
∗
u→ Uk(G) does not hold, and if

σ ∈ Σu then x
τ
∗
u στ

∗
u−−−→Uk(G) does not hold } ;

(21)

Sk+1(G) =
⋃

j≥0

Sk+1
j (G) . (22)

Given the set Uk(G) of unsupervisable states at level k, the iteration Sk+1
j (G) com-

putes a set of supervisable states, i.e., states from where a supervisor can reach an

accepting state while avoiding the unsupervisable states in Uk(G). The process starts as

a backwards search from those accepting states from where it is not possible to reach a

known unsupervisable state using only τu-transitions (20). Then transitions leading to

the states already found are explored backwards (21). However, source states x that can

reach a known unsupervisable state using only τu-transitions (x
τ
∗
u→Uk(G)), and known

unsupervisable transitions (x
τ
∗
u στ

∗
u−−−→Uk(G)) are excluded.

Example 7. As shown in Example 6, the first iteration for unsupervisable states of

automaton W in Fig. 4 gives the blocking states, U1(W) = {⊥1,⊥2,⊥3}. Then the first

set of supervisable states for the next level contains the two accepting states, S2
0(W) =

{8,9} according to (20). Then 4
!output1−−−−−→ 8 ∈ S2

0(W) and 8
τu→ 9 ∈ S2

0(W) and 10
τu→ 9 ∈

S2
0(W), and it does not hold that 4

τ
∗
u→U1(W) or 4

τ
∗
u !output1τ

∗
u−−−−−−−→U1(W) or 8

τ
∗
u→U1(W)

or 10
τ
∗
u→U1(W). Therefore, S2

1(W) = {4,8,10} according to (21). Note that 5 /∈ S2
1(W)

because despite the transition 5
!output1−−−−−→ 9 it holds that 5

τu→ 6
!output1−−−−−→ ⊥2 ∈ U1(W).

The next iteration gives S2
2(W) = {0,4,9,11}, and following iterations do not add any

further states. The result is S2(W) = {0,4,8,9,10,11}= Q\U2(W).

The following theorem confirms that the iteration Sk+1
j (G) converges against the

complement of the next level of unsupervisable states, Uk+1(G).

Theorem 5. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. For all k ≥ 1 it holds that

Sk(G) = Q \Uk(G).

4.3 Algorithm

Algorithm 1 is an implementation of the iterations in Def. 13 and 14 to compute the set

of certainly unsupervisable states for a given automaton G. First, the sets of certainly

unsupervisable states U and certainly unsupervisable transitions UT are initialised in

lines 2 and 3. Then the loop in lines 4–28 performs the iterations for Uk(G).
The first step is to compute the supervisable states Sk+1(G), which are stored in S.

In line 5, this variable is initialised to the set Sk+1
0 (G) containing the accepting states

that are not yet known to be unsupervisable. Then the loop in lines 7–15 uses a stack to

perform a backwards search over the transition relation, avoiding known unsupervisable

source states and known unsupervisable transitions. Upon termination, the variable S

contains the set Sk+1(G) of supervisable state for the next level.

Then the loop in lines 17–27 updates the sets U and UT . For every state that was not

added to S, it explores the predecessor states reachable by sequences of τu-transitions,

and adds any states found to U, if not yet included. By adding the τu-predecessors to the

set U immediately, the reachability tests in (20) and (21) can be replaced by the direct

membership tests in line 10. Next, for any new unsupervisable state x, the loop in lines

21–25, searches for possible uncontrollable transitions followed by sequences of τu and

Algorithm 1 Calculate U(G)

1: input G = 〈Σ,Q,→,Q◦,Qω 〉
2: U ← /0

3: UT ← /0

4: repeat

5: S←{x ∈ Qω | x /∈U }
6: stack.init(S)
7: while stack not empty do

8: x← stack.pop()

9: for all w
σ
→ x do

10: if w /∈ S and w /∈U and (w,σ) /∈ UT then

11: S← S∪{w}
12: stack.push(w)
13: end if

14: end for

15: end while

16: done← true

17: for all x
τ
∗
u→ Q\S do

18: if x /∈U then

19: U ←U ∪{x}
20: done← false

21: for all υ ∈ Σu \{τu} do

22: for all w
τ
∗
u υ
−−→ x do

23: UT← UT ∪{(w,υ)}
24: end for

25: end for

26: end if

27: end for

28: until done

29: return U

adds such combinations of source states and uncontrollable events to the set certainly

unsupervisable transitions UT .

The algorithm terminates if no new unsupervisable states are found during execution

of the loop in lines 17–27, in which case the flag done retains its true value. At this point,

the set U contains all certainly unsupervisable states.

4.4 Complexity

This section gives an estimate for the time complexity of Algorithm 1. Each iteration of

the main loop in lines 4–28, except the last, adds at least one state to U, which gives at

most |Q|+1 iterations. During each of these iterations, the loop in lines 7–15 visits each

transition at most once, giving up to |→| iterations, and the loop in lines 17–27 visits

up to |Q| predecessors of each state, which gives another |Q|2 iterations. Assuming that

the transitive closure of τu-transitions is calculated in advance, these iterations can be

executed without overhead. The inner loop in lines 21–25 has another |Q|2 iterations,

again assuming that the closure of τu-transitions is calculated in advance. However, the

inner loop is not executed more than once per state during the entire algorithm. The

complexity to compute the τu-closure in advance is O(|Q|3) [18].

Summing up these computation costs, the worst-case time complexity of Algo-

rithm 1 is found to be:

O((|Q|+1) · (|→|+ |Q|2)+ |Q| · |Q|2 + |Q|3) = O(|Σ||Q|3) . (23)

Thus, the set of certainly unsupervisable states can be computed in polynomial time.

This is surprising given the nondeterministic nature of similar problems, which require

subset construction [12]. For example, the set of certain conflicts [14], which is the

equivalent of the set of certainly unsupervisable states in nonblocking verification, can

only be computed in exponential time. In synthesis, the assumption of a supervisor with

the capability of full observation of the plant makes it possible to distinguish states and

avoid subset construction.

4.5 Halfway Synthesis

This section introduces halfway synthesis [9], which has been used previously [9, 16]

to remove unsupervisable states in compositional synthesis, and compares it with the

set of certainly unsupervisable states. It is shown that in general more states can be

removed by taking certain unsupervisability into account.

Definition 15. Let G = 〈Σ,Q,→,Q◦,Qω〉, and let Θ̂G,τu be the greatest fixpoint of the

synthesis step operator according to Def. 8, but computed under the assumption that

Σu = {τu}. The halfway synthesis result for G is

hsupC(G) = 〈Σ,Q,→hsup,Q
◦∩ Θ̂G,τu ,Q

ω ∩ Θ̂G,τu〉 , (24)

where

→hsup = {(x,σ ,y) ∈→ | x,y ∈ Θ̂G,τu }∪ (25)

{(x,υ ,y) ∈→ | x ∈ Θ̂G,τu , υ ∈ Σu \{τu}, and y /∈ Θ̂G,τu } (26)

The idea of halfway synthesis is to use standard synthesis, but treating only the

silent uncontrollable event τu as uncontrollable. All other events are assumed to be con-

trollable, because other plant components may yet disable shared uncontrollable events,

so it is not guaranteed that these events cause controllability problems [9]. After com-

puting the synthesis fixpoint Θ̂G,τu , the abstraction is obtained by removing controllable

transitions to states not contained in Θ̂G,τu , while uncontrollable transitions are retained

for the same reasons as in Def. 12.

Theorem 6. Let G be an automaton. Then unsupC(G)⊆ hsupC(G).

Example 8. When applied to automaton H1 ‖B1 in Fig. 4, halfway synthesis removes

the crossed out states and produces the same result as unsupervisability removal. How-

ever, it only considers states ⊥1, ⊥2, and ⊥3 of W in Fig. 4 as unsupervisable, because

the shared uncontrollable event !output1 is treated as a controllable event. This automa-

ton is left unchanged by halfway synthesis.

Halfway synthesis only removes those unsupervisable states that can reach a block-

ing state via local uncontrollable τu-transitions, but it does not take into account cer-

tainly unsupervisable transitions. Theorem 6 confirms that unsupervisability removal

achieves all the simplification achieved by halfway synthesis, and Example 8 shows

that there are cases where unsupervisability removal can do more. On the other hand,

the complexity of halfway synthesis is the same as for standard synthesis, O(|Σ||Q|3),
which is the same as found above for certain unsupervisability (23).

5 Conclusions

The set of certainly unsupervisable states of an automaton comprises all the states that

must be avoided during synthesis of a controllable and nonblocking supervisor, in every

possible context. In compositional synthesis, the removal of certainly unsupervisable

states gives rise to a better abstraction than the previously used halfway synthesis, while

maintaining the same cubic complexity.

The results of this paper are not intended to be used in isolation. In future work, the

authors will integrate the removal of certainly unsupervisable states with their composi-

tional synthesis framework [16]. It will be investigated in what order to apply unsuper-

visability removal and other abstraction methods, and how to group automata together

for best performance.

Certainly unsupervisable states are also of crucial importance to determine whether

two states of an automaton can be treated as equivalent for synthesis purposes. The

results of this paper can be extended to develop abstraction methods that identify and

merge equivalent states in compositional synthesis.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th ACM SIGSOFT Int. Symp.

on Foundations of Software Engineering 2001. pp. 109–120. Vienna, Austria (2001)

2. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-

tems. In: Hybrid Systems II, LNCS, vol. 999, pp. 1–20. Springer (1995)

3. Aziz, A., Singhal, V., Swamy, G.M., Brayton, R.K.: Minimizing interacting finite state ma-

chines: A compositional approach to language containment. In: Proc. IEEE Int. Conf. Com-

puter Design: VLSI in Computers and Processors, ICCD ’94. pp. 255–261 (1994)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

5. Baier, C., Klein, J., Klüppelholz, S.: A compositional framework for controller synthesis. In:

Katoen, J.P., König, B. (eds.) Proc. 22nd Int. Conf. Concurrency Theory, CONCUR 2011.

LNCS, vol. 6901, pp. 512–527. Springer, Aachen, Germany (Sep 2011)

6. Fabian, M.: On Object Oriented Nondeterministic Supervisory Control. Ph.D. thesis,

Chalmers University of Technology, Göteborg, Sweden (1995), https://publications.

lib.chalmers.se/cpl/record/index.xsql?pubid=1126

7. Filiot, E., Jin, N., Raskin, J.F.: Compositional algorithms for LTL synthesis. In: Chin, W.N.

(ed.) Proc. 8th Int. Symp. Automated Technology for Verification and Analysis, ATVA 2010.

LNCS, vol. 6252, pp. 112–127. Springer, Singapore, Singapore (Sep 2010)

8. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control

and Optimization 48(3), 1914–1938 (2009)

9. Flordal, H., Malik, R., Fabian, M., Åkesson, K.: Compositional synthesis of maximally per-

missive supervisors using supervision equivalence. Discrete Event Dyn. Syst. 17(4), 475–504

(2007)

10. Gohari, P., Wonham, W.M.: On the complexity of supervisory control design in the RW

framework. IEEE Trans. Syst., Man, Cybern. 30(5), 643–652 (Oct 2000)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley (2001)

13. Lin, F., Wonham, W.M.: Decentralized control and coordination of discrete-event systems

with partial observation. IEEE Trans. Autom. Control 35(12), 1330–1337 (Dec 1990)

14. Malik, R.: The language of certain conflicts of a nondeterministic process. Working Paper

05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand (2010)

15. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int. J. Found. Comput. Sci.

17(4), 797–813 (2006)

16. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional synthesis of modular

nonblocking supervisors. IEEE Trans. Autom. Control 59(1), 150–162 (Jan 2014)

17. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for service re-

placeability. J. Logic and Algebraic Programming 79(3–5), 233–244 (Apr–Jul 2010)

18. Nuutila, E.: Efficient Transitive Closure Compuation in Large Digraphs, Acta Polytechnica

Scandinavica, Mathematics and Computing in Engineering Series, vol. 74. Finnish Academy

of Technology, Helsinki, Finland (1995)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp.

Principles of Programming Languages. pp. 179–190 (1989)

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2),

285–309 (1955)

21. Wonham, W.M.: On the control of discrete-event systems. In: Nijmeijer, H., Schumacher,

J.M. (eds.) Three Decades of Mathematical System Theory. LNCIS, vol. 135, pp. 542–562.

Springer (1989)

