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Anssi Yli-Jyrä and Kimmo Koskenniemi

Symmetric Difference NFAs
Lynette van Zijl

Efficient Weighted Expressions Conversion
Faissal Ouardi and Djelloul Ziadi

Compact Representation of a Set of String-Classes
Abolfazl Fatholahzadeh

Reward Variance in Markov Chains: A Calculational Approach
Tom Verhoeff

Hardcoding and Dynamic Implementation of Finite Automata
Ernest Ketcha Ngassam, Bruce W. Watson, and Derrick G. Kourie

Stretching and Jamming of Finite Automata
Noud de Beijer, Derrick G. Kourie, and Bruce W. Watson





The Eindhoven FASTAR Days (EFD) 2004 were organized by the Software Construction
group of the Department of Mathematics and Computer Science at the Technische Universiteit
Eindhoven. On September 3rd and 4th 2004, over thirty participants—hailing from the
Czech Republic, Finland, France, The Netherlands, Poland and South Africa—gathered at
the Department to attend the EFD.

The EFD were organized in connection with the research on finite automata by the FASTAR
Research Group, which is centered in Eindhoven and at the University of Pretoria, South
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Repetitions in Text and Finite Automata1

Bořivoj Melichar
Department of Computer Science & Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Prague 2, Czech Republic

email: melichar@fel.cvut.cz

Abstract: A general way to find repetitions of factors in a given text is shown. We start with a
classification of repetitions. The general models for finding exact repetitions in one string and in
a finite set of strings are introduced. It is shown that d-subsets created during determinization of
nondeterministic factor automata contain all information concerning repetitions of factors. The
principle of the analysis of d-subsets is then used for finding approximate repetitions using several
distances for a general finite alphabet and for an ordered alphabet including the case of presence
of don’t care symbols. Complexity of finding repetitions is shown for exact repetitions in one
string.

1 Introduction

Let a text T = t1t2 . . . tn be given. Finding a repetition in text T can be
defined as determining whether some substring (factor) repeats in the given
text T . Furthermore, we can distinguish between exact and approximate
repetitions. For approximate repetitions we use several distances for both
a general alphabet and an ordered alphabet. In some cases the problem
of finding repetitions in a text concerns a specified factor. The goal of this
work is to find a general way to find all these repetitions in the given text.
The main idea is based on the use of finite automata.

The very first attempt to solve the problem of finding repetitions in
a string is in a Master’s thesis [Ma79]. The first paper on this topic is [Cr86].
Some other papers on this topic are [CR94], [CCI+99] and [CCI+00]. An
approach used in this paper is based on the construction of deterministic
factor automata. This approach is based on some ideas from Master’s thesis
[Me02].

After the overview of basic definitions in Chapter 2, the attempt to
make a classification of repetition problems is shown in Chapter 3. Next
two Chapters are devoted to exact repetitions in one string and in a finite
set of strings. The proof of the correctness of our approach for finding exact
repetitions in one string is given in Chapter 4. Subsequent Chapters describe
the solution of the approximate repetition problem for six distances for both
general and ordered alphabets including the case of presence of don’t care
symbols.

1This research has been partially supported by the Ministry of Education, Youth, and
Sport of the Czech Republic under research program No. J04/98:212300014.
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2 Definitions

Basic notions from the theory of automata follow [AU71] and [HU79]. Basic
notions from stringology are from [CR94]. The notion of factor automaton
was introduced in [BBE+87].

Definition 2.1 (Set of factors)
The set Fact(x), x ∈ A∗, is the set of all substrings (factors) of the string x:

Fact(x) = {y : x = uyv, u, v ∈ A∗, x, y ∈ A∗}. 2

Definition 2.2 (d–subset)
Let M1 = (Q1, A, δ1, q01, F1) be a nondeterministic finite automaton. Let
M2 = (Q2, A, δ2, q02, F2) be the deterministic finite automaton equivalent
to automaton M1. Automaton M2 is constructed using the standard de-
terminization algorithm based on subset construction. Every state q ∈ Q2

corresponds to some subset d of Q1. This subset will be called d–subset
(deterministic subset). 2

Definition 2.3 (Exact repetition in one string)
Let T be a string, T = a1a2 . . . an and ai = aj , ai+1 = aj+1, . . . , ai+m =
aj+m, i < j, m ≥ 0. The string x2 = ajaj+1 . . . aj+m is an exact repetition
of the string x1 = aiai+1 . . . ai+m. x1 or x2 is called the repeating factor in
text T .

2

Definition 2.4 (Exact repetition in a set of strings)
Let S be a set of strings, S = {x1, x2, . . . , x|S|} and xpi = xqj , xpi+1 =
xqj+1, . . . , xpm = xqm, where i ∈ 〈1, xp〉, j ∈ 〈1, xq〉, m ≥ 0, p, q ∈ 〈1, |S|〉.
The string xqjxqj+1 . . . xqm is an exact repetition of the string xpixpi+1 . . . xpm.

2

Definition 2.5 (Approximate repetition in one string)
Let T = a1a2 . . . an be a string and D(aiai+1 . . . ai+m, ajaj+1 . . . aj+m′) ≤ k,
where m,m′ ≥ 0, D is a distance, 0 < k < n. The string ajaj+1 . . . aj+m′ is
an approximate repetition of the string aiai+1 . . . ai+m. 2

Approximate repetition in a set of strings can be defined in a similar way.

Definition 2.6 (Type of repetition)
Let x2 = ajaj+1 . . . aj+m′ be an exact or approximate repetition of x1 =
aiai+1 . . . ai+m, i < j, in one string.
Then if j − i < m then the repetition is with an overlapping (O),

if j − i = m then the repetition is a square (S),
if j − i > m then the repetition is with a gap (G). 2

Definition 2.7 (Distances of strings - general alphabets)
Three variants of the distances between two strings X and Y are defined as
the minimum number of editing operations:

2



1. replace (Hamming distance, R-distance),

2. delete, insert and replace (Levenshtein distance, DIR-distance),

3. delete, insert, replace and transpose of neighbour symbols (generalized
Levenshtein distance, DIRT -distance),

needed to convert string X to string Y . 2

The Hamming distance is a metrics on the set of strings of equal length.
The Levenshtein and the generalized Levenshtein distances are metrics on
the set of strings of not necessarily equal length.

Definition 2.8 (Distance of strings - ordered alphabets)
Let A = {a1, a2, . . . , ap} be an ordered alphabet and k > 0 an integer. Two
symbols ai, aj ∈ A, i, j ∈ 〈1, p〉, are said to be ∆k-approximate, if and only
if

∆k(ai, aj) = |i− j| ≤ k.

Next, three variants of distance are defined as follows:

1. ∆distance:

For a given integer k > 0 we say that two strings x, y are ∆k-approximate,
if and only if

|x| = |y|, and ∆k(xi, yi) ≤ k, ∀i ∈ {1, . . . , |x|}. (1)

2. Γdistance:

For a given integer k > 0 we say that two strings x, y are Γk-approximate,
if and only if

|x| = |y|, and
|x|∑

i=1

∆k(xi, yi) ≤ k. (2)

3. (∆, Γ)distance:

We say that two strings x, y are (∆k, Γl)-approximate, if and only if x
and y satisfy both conditions (1) and (2). 2

All three distances are metrics on the sets of strings of equal length.

Definition 2.9
The “don’t care” symbol is a special universal symbol ◦ that matches any
other symbol, including itself.

3



3 Classification of repetitions

Problems of repetitions of factors in a string over a finite size alphabet
can be classified according to various criteria. We will use four criteria
for classification of repetition problems leading to four-dimensional space
in which each point corresponds to the particular problem of repetition of
a factor in a string. Let us make a list of all dimensions including possible

“values” in each dimension:
1. Number of strings:

- one,
- finite number greater than one,
- infinite number.

2. Repetition of factors (see Definition 2.6):
- with overlapping,
- square,
- with gap.

3. Specification of the factor:
- repeated factor is given,
- repeated factor is not given,

- length l of the repeated factor is given exactly,
- length of the repeated factor is less than given l,
- length of the repeated factor is greater than given l,
- finding the longest repeated factor.

4. The way of finding repetitions:
- exact repetition,
- approximate repetition with Hamming distance (R-repetition),
- approximate repetition with Levenshtein distance (DIR-repeti-

tion),
- approximate repetition with generalized Levenshtein distance

(DIR T -repetition),
- ∆-approximate repetition,
- Γ-approximate repetition,
- (∆, Γ)-approximate repetition.

5. Importance of symbols in factor:
- take care of all symbols,
- don’t care of some symbols.

The above classification is visualized in Figure 3.1. If we count the
number of possible problems of finding repetitions in a string, we obtain
N = 3 ∗ 3 ∗ 2 ∗ 7 ∗ 2 = 272.

4



Figure 3.1: Classification of repetition problems

In order to facilitate references to a particular problem of repetition
in a string, we will use abbreviations for all problems. These abbreviations
are summarized in Table 3.1.

Using this method, we can, for example, refer to the overlapping exact
repetition of a given factor where all symbols are considered as the OFEC
problem.

Instead of the single repetition problem we will use the notion of a family
of repetitions in string problems. In this case we will use the symbol ? instead
of a particular symbol. For example S??? is the family of all problems
concerning square repetitions.

Dimension 1 2 3 4 5
O O F E C
F S N R D
I G D

T
∆
Γ

(∆, Γ)

Table 3.1: Abbreviations of repetition problems
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Each repetition problem can have several instances:

1. verify whether some factor is repeated in the text or not,

2. find the first repetition of some factor,

3. find the number of all repetitions of some factor,

4. find all repetitions of some factor and where they are.

If we take into account all possible instances, the number of repetitions
in string problems grows further.

4 Exact repetitions in one string

In this section we will introduce how to use a factor automaton for finding
exact repetitions in one string (O?NEC problem). The main idea is based on
the construction of the deterministic factor automaton. First, we construct
a nondeterministic factor automaton for a given string. The next step is
to construct the equivalent deterministic factor automaton. During this
construction, we memorize d-subsets. The repetitions that we are looking
for are obtained by analyzing these d-subsets. The next algorithm describes
the computation of d-subsets of a deterministic factor automaton.

Algorithm 4.1
Computation of repetitions in one string.
Input: String T = a1a2 . . . an.
Output: Deterministic factor automaton MD accepting Fact(T ) and
d–subsets for all states of M .
Method:

1. Construct nondeterministic factor automaton MN accepting Fact(T ):

(a) Construct finite automaton M accepting string T = a1a2 . . . an

and all its prefixes.
M = ({q0, q1, q2, . . . , qn}, A, δ, q0, {q0, q1, . . . , qn}),
where δ(qi, ai+1) = qi+1 for all i ∈ 〈0, n− 1〉.

(b) Construct finite automaton Mε from the automaton M by insert-
ing ε–transitions:
δ(q0, ε) = {q1, q2, . . . , qn−1}.

(c) Replace all ε–transitions by non–ε–transitions. The resulting au-
tomaton is MN .

2. Construct deterministic factor automaton MD equivalent to automa-
ton MN and memorize the d–subsets during this construction.

3. Analyze d–subsets to compute repetitions. 2
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Figure 4.1: Transition diagram of factor automaton Mε with ε–transitions
constructed in step 1.b of Algorithm 4.1

The factor automaton Mε constructed by Algorithm 4.1 has, after step 1.b,
the transition diagram depicted in Fig. 4.1. The factor automaton MN has,
after step 1.c of Algorithm 4.1, the transition diagram depicted in Fig. 4.2.

Figure 4.2: Transition diagram of factor automaton MN after the removal
of ε–transitions in step 1.c of Algorithm 4.1

The next example shows the construction of the deterministic factor
automaton and the analysis of the d–subsets.

Let us make a note concerning labelling: Labels used as the names of
states are selected in order to indicate positions in the string. This labelling
will be useful later.

Example 4.2
Let us use the text T = ababa. At first, we construct a nondeterminis-
tic factor automaton Mε(ababa) = (Qε, A, δε, 0, Qε) with ε-transitions. Its
transition diagram is depicted in Figure 4.3.

a b a b aSTART
0 1 2 3 4 5

e e e e

Figure 4.3: Transition diagram of factor automaton Mε(ababa) from Exam-
ple 4.2

Then we remove ε-transitions and the resulting nondeterministic factor
automaton MN (ababa) = (QN , A, δN , 0, QN ) is depicted in Figure 4.4 and
its transition table is Table 4.1. 2
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a b

b a b a

a b aSTART
0 1 2 3 4 5

Figure 4.4: Transition diagram of nondeterministic factor automaton
MN (ababa) from Example 4.2

State a b

0 1, 3, 5 2, 4
1 2
2 3
3 4
4 5
5

Table 4.1: Transition table of nondeterministic factor automaton MN (ababa)
from Example 4.2

As a next step, we construct the equivalent deterministic factor automa-
ton MD(ababa) = (QD, A, δD, 0, QD). During this operation we memorize
the created d-subsets. We suppose, taking into account the labelling of the
states of the nondeterministic factor automaton, that d-subsets are ordered
in the natural way. The extended transition table (with ordered d-subsets)
of the deterministic factor automaton MD(ababa) is shown in Table 4.2. The
transition diagram of MD is depicted in Figure 4.5.

State d-subset a b

D0 0 1, 3, 5 2, 4
D1 1, 3, 5 2, 4
D2 2, 4 3, 5
D3 3, 5 4
D4 4 5
D5 5

Table 4.2: Transition table of automaton MD(ababa) from Example 4.2

Now we start the analysis of the resulting d-subsets:
d-subset d(D1) = {1, 3, 5} shows that factor a repeats at positions 1, 3 and
5 of the given string, and its length is one. d-subset d(D2) = {2, 4} shows
that factor ab repeats, and its occurrence in the string ends at positions

8



a b

b

a b aSTART
0 1,3,5 2,4 3,5 4 5

Figure 4.5: Transition diagram of deterministic factor automaton
MD(ababa) from Example 4.2

2 and 4 and its length is two. Moreover, the suffix b of this factor also
repeats at the same positions as factor ab. d-subset d(D3) = {3, 5} shows
that factor aba repeats, and its occurrence in the string ends at positions
3 and 5 and its length is three. Moreover, its suffix ba also repeats at the
same positions. Suffix a of factor aba also repeats at positions 3 and 5, but
we have already obtained this information during analysis of the d-subset
d(D1) = {1, 3, 5}. Analysis of the d-subsets having only single states brings
no further information on repeating factors.

Let us make a summary of these observations in the repetition table
shown in Table 4.3.

d-subset Factor First occurrence Repetitions
1, 3, 5 a 1 (3, G), (5, G)
2, 4 ab 2 (4, S)
2, 4 b 2 (4, G)
3, 5 aba 3 (5, O)
3, 5 ba 3 (5, S)

Table 4.3: Repetition table of ababa

The last column of the repetition table with the header Repetitions con-
tains sequences of pairs (i, R) where i is the position where the repeated
factor ends (let us recall the note on labelling of states) and R is the type
of repetition (G, S,O). The other columns are selfexplaining. 2

The construction of the repetition table is based on the following obser-
vations illustrated in Figure 4.6 and Lemmata 4.3 and 4.4.

Lemma 4.3
Let T be a string and MD(T ) be the deterministic factor automaton for T
with states labelled by corresponding d-subsets. If factor u = a1a2 . . . am,
m ≥ 1, is repeats in string T and its occurrences start at positions x + 1
and y + 1, x 6= y then there exists a d-subset in MD(T ) containing the pair
{x + m, y + m}.
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a
1

a
1

a
1

a
1

a
2

a
2

a
m

a
m

a
2

a
2

a
m

a
m

S
T

A
R

T
0

x
+

1
y
+

1
x
+

2
y
+

2
x
+

m
y
+

m
x

y

Figure 4.6: Repeated factor u = a1a2 . . . am in MN (T )
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Proof
Let MN (T ) = (QN , A, δN , q0, QN ) be the nondeterministic factor automaton
for T and let u = a1a2 . . . am be the factor starting at positions x + 1 and
y + 1 in T , x 6= y. Then there are transitions in MN (T ) from state 0 to
states x + 1 and y + 1 for symbol a1, (δN (0, a1) contains x + 1 and y + 1).
It follows from the construction of MN (T ) that:

δN (x + 1, a2) = {x + 2}, δN (y + 1, a2) = {y + 2},
δN (x + 2, a3) = {x + 3}, δN (y + 2, a3) = {y + 3},
...

...
δN (x + m− 1, am) = {x + m}, δN (y + m− 1, am) = {y + m}.

Deterministic factor automaton MD(T ) = (QD, A, δD, D0, QD) then con-
tains states D0, D1, D2, . . . Dm having this property:

δD(D0, a1) = D1, {x + 1, y + 1} ⊂ D1,
δD(D1, a2) = D2, {x + 2, y + 2} ⊂ D2,
...

...
δD(Dm−1, am) = Dm, {x + m, y + m} ⊂ Dm.

We can conclude that the d-subset Dm contains the pair {x+m, y +m}.
2

Lemma 4.4
Let T be a string and let MD(T ) be the deterministic factor automaton for
T with states labelled by corresponding d-subsets. If a d-subset Dm contains
two elements x+m and y +m then there exists the factor u = a1a2 . . . am,
m ≥ 1, starting at both positions x + 1 and y + 1 in string T .

Proof
Let MN (T ) be the nondeterministic factor automaton for T . If a d-subset
Dm contains elements from {x + m, y + m} then it holds for δN of MN (T ):
{x + m, y + m} ⊂ δN (0, am), and
δN (x + m− 1, am) = {x + m},
δN (y + m− 1, am) = {y + m} for some am ∈ A.
Then the d-subset Dm−1 such that δD(Dm−1, am) = Dm must contain
x + m− 1, y + m− 1 such that {x + m− 1, y + m− 1} ⊂ δN (0, am−1),
δN (x + m− 2, am−1) = {x + m− 1},
δN (y + m− 2, am−1) = {y + m− 1}
and for the same reason the D-subset D1 must contain x+1, y +1 such that
{x + 1, y + 1} ⊂ δN (0, a1) and δN (x, a1) = {x + 1}, δN (y, a1) = {y + 1}.
Then there exists the sequence of transitions in MD(T ) :

11
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Figure 4.7: Repeated factor u = a1a2 . . . am in MD(T )

(D0, a1a2 . . . am) ` (D1, a2 . . . am)
` (D2, a3 . . . am)
...
` (Dm−1, am)
` (Dm, ε),

where
{x + 1, y + 1} ⊂ D1,
...
{x + m, y + m} ⊂ Dm.

This sequence of transitions corresponds to two different sequences of
transitions in MN (T ) going through state x + 1:

(0, a1a2 . . . am) ` (x + 1, a2 . . . am)
` (x + 2, a3 . . . am)
...
` (x + m− 1, am)
` (x + m, ε),

(x, a1a2 . . . am) ` (x + 1, a2 . . . am)
` (x + 2, a3 . . . am)
...
` (x + m− 1, am)
` (x + m, ε).

Similarly two sequences of transitions go through state y + 1:

(0, a1a2 . . . am) ` (y + 1, a2 . . . am)
` (y + 2, a3 . . . am)
...
` (y + m− 1, am)
` (y + m, ε),

(y, a1a2 . . . am) ` (y + 1, a2 . . . am)
` (y + 2, a3 . . . am)
...
` (y + m− 1, am)
` (y + m, ε).

12



It follows from this that the factor u = a1a2 . . . am is present twice in
string T in different positions x + 1, y + 1. 2

The following Lemma is a simple consequence of Lemma 4.4.

Lemma 4.5
Let u be a repeating factor in string T . Then all factors of u are also re-
peating factors in T . 2

Definition 4.6
If u is a repeating factor in text T and there is no longer factor of the form
vuw, v or w 6= ε but not both, which is also a repeating factor, then we will
call u the maximal repeating factor. 2

Definition 4.7
Let MD(T ) be a deterministic factor automaton. The depth of each state D
of MD is the length of the longest sequence of transitions leading from the
initial state to state D. 2

If there exists a sequence of transitions from the initial state to state
D which is shorter than the depth of D, it corresponds to the suffix of the
maximal repeating factor.

Lemma 4.8
Let u be a maximal repeating factor in string T . The length of this factor
is equal to the depth of the state in MD(T ) indicating the repetition of u.2

Proof
The path for the maximal repeating factor u = a1a2 . . . am stars in the initial
state, because the states x + 1 and y + 1 of the nondeterministic factor
automaton MN (T ) are direct successors of its initial state and therefore
δD(D0, a1) = D1 and {x + 1, y + 1} ⊂ D1. Therefore there exists a sequence
of transitions in the deterministic factor automaton MD(T ):

(D0, a1a2 . . . am) ` (D1, a2 . . . am)
` (D2, a3 . . . am)
...
` (Dm−1, am)
` (Dm, ε) 2

The remaining question is the decision on the type of repetition. Let
us suppose that the length of the repeating factor is m. If we have in the
d-subset in question two elements i, j, j > i, then:
If j − i < m then there is a repetition with overlapping.

13



If j − i = m then there is a square.
If j − i > m then there is a repetition with gap.

There follows one more observation from Example 4.2:

Lemma 4.9
If some state in MD(T ) has a corresponding d-subset containing one element
only, then its successor also has a corresponding d-subset containing one
element.

Proof
This follows from the construction of the deterministic factor automaton.
The transition table of nondeterministic factor automaton MN (T ) has more
than one state in the row for the initial state only. All other states have at
most one successor for a particular input symbol. Therefore in the equiv-
alent deterministic factor automaton MD(T ) the state corresponding to a
d-subset having one element may have only one successor for one symbol,
and this state has a corresponding d-subset containing just one element. 2

We can use this observation during the construction of deterministic
factor automaton MD(T ) in order to find some repetition. It is enough to
construct only the part of MD(T ) containing d-subsets with at least two
elements. The rest of MD(T ) gives no information on repetitions.

We summarize the result of the computation of repetitions in repetition
table R(T ). It contains the d–subset, the repeating factor, the ending posi-
tion of its first occurrence, the ending positions of all repetitions and the type
of each repetition. We will abbreviate this type as follows: O = repetition
with Overlapping, S =Square repetition, G= repetition with Gap.

Algorithm 4.10
Constructing a repetition table containing exact repetitions in a given string.
Input: String T = a1a2 . . . an.
Output: Repetition table R for string T .
Method:

1. Construct a deterministic factor automaton
MD(T ) = (QD, A, δD, 0, QD) for a given string T .
Memorize for each state q ∈ QD :
(a) d-subset D(q) = {r1, r2, . . . , rp},
(b) d = depth(q),
(c) maximal repeating factor for state q maxfactor(q) = x, |x| = d.

2. Create rows in the repetition table R for each state q having D(q) with
more than one element:

(a) the row for the maximal repeating factor x of state q has the
form:
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({r1, r2, . . . , rp}, x, r1, {(r2, X2), (r3, X3), . . . , (rp, Xp)},
where Xi, 2 ≤ i ≤ p, is equal to

i. O, if ri − ri−1 < d,
ii. S, if ri − ri−1 = d,
iii. G, if ri − ri−1 > d,

(b) for each suffix y of x (such that the row for y was not created
before) create the row of the form:
({r1, r2 . . . , rp}, y, r1, {(r2, X2), (r3, X3), . . . , (rp, Xp)},
where Xi, 2 ≤ i ≤ p, is deduced in the same manner. 2

An example of the repetition table is shown in Example 4.2 for the string
T = ababa.

5 Complexity of computation of exact repetitions

The time and space complexity of the computation of exact repetitions in
string is treated in this Chapter.

Definition 5.1
A d-subset is simple if it contains just one element. The corresponding state
to it we call simple state. A d-subset is multiple if it contains more than one
element. The corresponding state to it we will call multiple state.

2

The time complexity is composed of two parts:

1. The complexity of the construction of the deterministic factor automa-
ton. If we take the number of states and transitions of the resulting
factor automaton then the complexity is linear. More exactly the
number of its states is

NS ≤ 2n− 2,
and the number of transitions is

NT ≤ 3n− 4.

2. The second part of the overall complexity is the construction of repeti-
tion table. The number of rows of this table is the number of different
multiple d-subsets. The highest number of multiple d-subsets has the
factor automaton for text T = an. Repeating factors of this text are
a, a2, . . . , an−1.

There is necessary, for the computation of repetitions using factor automata
approach, to construct the part of deterministic factor containing only all
multiple states. It is the matter of fact, that a simple state has at most one
next state and it is simple one, too. Therefore, during the construction of
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deterministic factor automaton, we can stop construction of the next part
of this automaton as soon as we reach a simple state.

Example 5.2
Let us have text T = an, n > 0. Let us construct deterministic factor
automaton MD(an) for text T . Transition diagram of this automaton is
depicted in Fig. 5.1. Automaton MD(an) has n+1 states and n transitions.

Figure 5.1: Transition diagram of deterministic factor automaton MD(an)
for text T = an from Example 5.2

Number of multiple states is n− 1.
To construct this automaton in order to find all repetitions, we must

construct the whole automaton including the initial state and the state n
(terminal state). Repetition table R has the form shown in Table 5.1. 2

d-subset Factor List of repetitions
1, 2, . . . , n a (1, F ), (2, S), (3, S) . . . , (n, S)
2, . . . , n aa (2, F ), (3, 0), (4, 0) . . . , (n, 0)

...
n− 1, n an−1 (n− 1, F ), (n, 0)

Table 5.1: Repetition table R for text T = an from Example 5.2

The opposite case to the previous one is the text composed of symbols
which are all different. The length of such text is limited by the size of
alphabet.

Example 5.3
Let the alphabet be A = {a, b, c} and text T = abcd. Deterministic factor
automaton MD(abcd) for text T has transition diagram depicted in Fig. 5.2.
Automaton MD(abcd) has n+1 states and 2n−1 transitions. All respective
d-subsets are simple. To construct this automaton in order to find all repe-
titions, we must construct all next states of the initial state for all symbols
of the text. The number of these states is just n. The repetition table is
empty. 2

Now, after the presentation both limit cases, we will try to find some case
inbetween with the maximal complexity. We guess, that the next example
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Figure 5.2: Transition diagram of deterministic factor automaton MD(abcd)
for text T = abcd from Example 5.2

is showing it. The text selected in such way, that all proper suffixes of the
prefix of the text appear in it and therefore they are repeating.

Example 5.4
Let the text be T = abcdbcdcdd. Deterministic factor automaton MD(T ) has
the transition diagram depicted in Fig. 5.3. Automaton MD has 17 states

Figure 5.3: Transition diagram of deterministic factor automaton MD(T )
for text T = abcdbcdcdd from Example 5.4

and 25 transitions while text T has 10 symbols. The number of multiple
d-subsets is 6. To construct this automaton in order to find all repetitions,
we must construct all multiple states and moreover the states corresponding
to single d-subsets: 0, 1, 5, 8, A.

The results is, that we must construct 11 states from the total number
of 17 states. Repetition table R is shown in Table 5.2. 2

It is known, that the maximal state and transition complexity of the
factor automaton is reached for text T = abn−2c. Let us show such factor
automaton in this context.

Example 5.5
Let the text be T = ab4c. Deterministic factor automaton MD(T ) has tran-
sition diagram depicted in Fig. 5.4. Automaton MD(T ) has 10 (2 ∗ 6 − 2)
states and 14 (3 ∗ 6− 4) transitions while the text has 6 symbols. The num-
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d-subset Factor List of repetitions
25 b (2, F ), (5, G)
36 bc (3, F ), (6, G)
47 bcd (4, F ), (7, S)
368 c (3, F ), (6, G), (8, G)
479 cd (4, F ), (7, G), (9, G)

479A d (4, F ), (7, G), (9, G), (10, S)

Table 5.2: Repetition table R for text T = abcdbcdcdd from Example 5.4

Figure 5.4: Transition diagram of deterministic factor automaton MD(T )
for text T = ab4c from Example 5.5

ber of multiple states is 3 (6− 3). To construct this automaton in order to
find all repetitions, we must construct the 3 multiple states and moreover 3
simple states. Therefore we must construct 6 states from the total number
of 10 states. Repetition table R is shown in Table 5.3. 2

d-subset Factor List of repetitions
2345 b (2, F ), (3, S), (4, S), (5, S)
345 bb (3, F ), (4, O), (5, O)
45 bbb (4, F ), (5, O)

Table 5.3: Repetition table R for text T = ab4c from Example 5.5

We have used, in the previous examples, three measures of complexity:

1. The number of multiple states of the deterministic factor automaton.
This number is equal to the number of rows in the resulting repetition
table, because each row of the repetition table corresponds to one
multiple d-subset. Moreover, it corresponds to the number of repeating
factors.

2. The number of states which are necessary to construct in order to get
all information on repetitions. We must reach the simple state on all
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pathes starting in the initial state. We already know that there is
at most one successor of a simple state and it is a simple state, too
(Lema 4.9). The number of such states which is necessary to construct
is therefore greater than the number of multiple states.

3. The total number of repetitions (occurrences) of all repeating factors
in text. This number corresponds to the number of items in the last
column of the repetition table headed by ”List of repetitions”.

The results concerning this the measures of complexity from previous exam-
ples are summarised in the Table 5.4.

No. of No. of
Text multiple necessary No. of repetitions

states states
an n− 1 n + 1 (n2 + n− 2)/2

a1a2 . . . an 0 n + 1 0
(all symbols unique)

a1a2 . . . ama2 . . . am . . . (m2 −m)/2 (m2 + m)/2
∑m−1

i=1 i(m− i + 1)
am−1amam

abn−2c n− 3 n (n2 − 3n)/2

Table 5.4: Measures of complexity from Examples 5.2, 5.3, 5.4, 5.5

Let us show how the complexity measures from Table 5.4 have been
computed.

Example 5.6
Text T = an has been used in Example 5.2. The number of multiple states
is n− 1 which is the number of repeating factors. The number of necessary
states is n+1 because the initial and the terminal states must be constructed.
The number of repetitions is given by the sum:

n + (n− 1) + (n− 2) + . . . + 2 =
n2 + n− 2

2
.

2

Example 5.7
Text T = abcd has been used in Example 5.3. This automaton has no
multiple state. The number of necessary states is n + 1. It means, that in
order to recognize that no repetition exists in such text all states of this
automaton must be constructed. 2

Example 5.8
Text T = abcdbcdcdd used in Example 5.4 has very special form. It consists
of prefix abcd followed by all its proper suffixes. It is possible to construct
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such text only for some n. The length n of the text must satisfy the condi-
tion:

n =
m∑

i=1

i =
m2 + m

2
,

where m is the length of the prefix in question. It follows that

m =
−1±√1 + 8n

2

and therefore m = O(
√

n).
The number of multiple states is

(m− 1) + (m− 2) + . . . + 1 =
m2 −m

2
.

The number of necessary states we must increase by m which is the
number of simple states being next states of the multiple states and the
initial state. Therefore the number of necessary states is (m2 + m)/2. The
number of repetitions is

m + 2(m + 1) + 3(m− 2) + . . . + (m− 1)2 =
m−1∑

i=1

i(m− i + 1).

Therefore this number is O(m2) = O(n). 2

Example 5.9
Text T = abn−2c used in Example 5.5 leads to the factor automaton having
maximal number of states and transitions. The number of multiple states is
equal to n−3 and the number of necessary states is equal to n. The number
of repetitions is

(n− 2) + (n− 3) + . . . + 2 =
n2 − 3n

2
.

2

It follows from the described experiments that the complexity of determin-
istic factor automata and therefore the complexity of computation of repe-
titions for a text of length n has these results:

1. The number of multiple states is linear. It means that the repetition
table has O(n) rows. It is the space complexity of the computation all
repeated factors.

2. The number of necessary states is again linear. It means that time
complexity of the computation all repeated factors is O(n).

3. The number of repetitions is O(n2) which is the time and space com-
plexity of the computation of all occurrences of repeated factors.
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6 Exact repetitions in a finite set of strings

The idea of the use of a factor automaton for finding exact repetitions in
one string can also be used for finding exact repetitions in a finite set of
strings (F?NEC problem). We show in the next example the construction
of a factor automaton and the analysis of d–subsets created during this
construction.

Example 6.1
Let us construct the factor automaton for the set of strings S = {abab, abba}.
First, we construct factor automata M1 and M2 for both strings in S. Their
transition diagrams are depicted in Figs 6.1 and 6.2, respectively.

0 1 2 3 4
a b a bSTART

Figure 6.1: Transition diagram of factor automaton M1 accepting Fact(abab)
from Example 6.1

0 1 2 3 4
a b b aSTART

Figure 6.2: Transition diagram of factor automaton M2 accepting Fact(abba)
from Example 6.1

In the second step we construct automaton Mε accepting the language
L(Mε) = Fact(abab) ∪ Fact(abba). Its transition diagram is depicted in
Fig. 6.3.

In the third step we construct automaton MN by removing ε–transitions
from automaton Mε. Its transition diagram is depicted in Fig. 6.4.
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b

b

b

a

a

b

a

a

START
0

12 22 32 42

11 21 31 41

Figure 6.3: Transition diagram of factor automaton Mε accepting the set
Fact(abab) ∪ Fact(abba) from Example 6.1

b

b

b

b

b

a

a

b

a

b

b

a

a

a

START
0

12 22 32 42

11 21 31 41

Figure 6.4: Transition diagram of nondeterministic factor automaton MN

accepting the set Fact(abab) ∪ Fact(abba) from Example 6.1
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a b

0 11123142 21223241

11123142 212241

21223241 3142 32

212241 31 32

3142 41

31 41

32 42

41

42

Table 6.1: Transition table of deterministic factor automaton MD from Ex-
ample 6.1

The last step is to construct deterministic factor automaton MD. Its
transition table is shown in Table 6.1 The transition diagram of the resulting
deterministic factor automaton MD is depicted in Fig. 6.5. Now we do

b

b

ba

a

b

b

b

a

aSTART
0 11123142 212241

21223241 3142

32

31

42

41

Figure 6.5: Transition diagram of deterministic factor automaton MD ac-
cepting set Fact(abab) ∪ Fact(abba) from Example 6.1

the analysis of d–subsets of the resulting automaton MD. The result of
this analysis is the repetition table shown in Table 6.2 for the set S =
{abab, abba}. 2

Definition 6.2
Let S be a set of strings S = {x1, x2, . . . , x|S|}. The repetition table for S
contains the following items:

1. d–subset,

2. corresponding factor,

3. list of repetitions of the factor containing elements of the form (i, j, Xij),
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d–subset Factor List of repetitions
11123142 a (1, 1, F ), (2, 1, F ), (1, 3, G), (2, 4, G)
212241 ab (1, 2, F ), (2, 2, F ), (1, 4, G)

21223241 b (1, 2, F ), (2, 2, F ), (2, 3, S), (1, 4, G)
3142 ba (1, 3, F ), (2, 4, F )

Table 6.2: Repetition table for set S = {abab, abba} from Example 6.1

where i is the index of the string in S,
j is the position in string xi,
Xij is the type of repetition:

F - the first occurrence of the factor in string xi,
O - repetition of the factor in xi with overlapping,
S - repetition as a square in xi,
G - repetition with a gap in xi. 2

7 Approximate repetitions – Hamming distance

We have used the factor automaton for finding exact repetitions in either one
string or in a finite set of strings. A similar approach can be used for finding
approximate repetitions in a string (O?NRC problem). To find approximate
repetitions, we use approximate factor automata. In this Section, we show
how to find approximate repetitions using the Hamming distance.

Example 7.1
Let string x = abba. We construct an approximate factor automaton using
Hamming distance k = 1.

1. We construct a finite automaton accepting string x and all strings
with Hamming distance equal to 1. The set of these strings is denoted
H1(abba). The resulting finite automaton has the transition diagram
depicted in Fig. 7.1.

b

ba

b

b

a

a

b a a b

START

1’ 2’ 3’ 4’

10 2 3 4

Figure 7.1: Transition diagram of the ”Hamming” automaton accepting
H1(abba) with Hamming distance k = 1 from Example 7.1
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2. We use the principle of inserting the ε–transitions from state 0 to states
1, 2 and 3 and we fix all states as final states. The transition diagram
with inserted ε–transition and fixed final states is depicted in Fig. 7.2.

b

ba

b

b

a

a

b a a b

START

1’ 2’ 3’ 4’

10 2 3 4

Figure 7.2: Transition diagram of the ”Hamming” automaton with fixed
final states and inserted ε–transitions from Example 7.1

3. We replace ε–transitions by non–ε–transitions. The resulting automa-
ton has the transition diagram depicted in Fig. 7.3.

b

b

b

a

b

b

b

a

a

a

b a

a

a

a

b

b

START

1’ 2’ 3’ 4’

10 2 3 4

Figure 7.3: Transition diagram of the nondeterministic ”Hamming” factor
automaton after removal of ε–transitions from Example 7.1

4. The final operation is the construction of the equivalent deterministic
finite automaton. Its transition table is Table 7.1

The transition diagram of the resulting deterministic approximate factor
automaton is depicted in Fig. 7.4.
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a b

0 142′3′ 231′4′

142′3′ 2′4′ 23′

231′4′ 3′4 32′4′

2′4′ 3′

23′ 3′4′ 3
3′4 4′

32′4′ 4 3′4′

3′ 4′

3′4′ 4′

3 4 4′

4′

4

Table 7.1: Transition table of the deterministic ”Hamming” factor automa-
ton from Example 7.1

Figure 7.4: Transition diagram of the deterministic ”Hamming” factor au-
tomaton for x = abba, Hamming distance k = 1 from Example 7.1
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Now we construct the repetition table. We take into account the repe-
tition of factors which are longer than k. In this case k = 1 and therefore
we select repetitions of factors having length greater or equal to two. The
next table contains information on the approximate repetition of factors of
the string x = abba.

d–subset Factor Exact occurrence Approximate repetitions
23′ ab 2 (3, bb, O)

32′4′ bb 3 (2, ab, O), (4, ba, O)
3′4 ba 4 (3, bb, O) 2

8 Approximate repetitions – Levenshtein distance

Let us note that Levenshtein distance between strings x and y is defined
as the minimum number of editing operations delete, insert and replace
which are necessary to convert string x into string y. In this section we
show solution of O?NDC problem.

Example 8.1
Let string x = abba and Levenshtein distance k = 1. Find all approximate
repetitions in this string.
We construct an approximate factor automaton using Levenshtein distance
k = 1.

1. We construct a finite automaton accepting string x and all strings with
Levenshtein distance equal to 1. The set of these strings is denoted
L1(abba). The resulting finite automaton has the transition diagram
depicted in Fig. 8.1.

b

ba

b

b

aa

a

b

e e e e

b,a a,b a,b b,a a,ba a b

START

1'0' 2' 3' 4'

10 2 3 4

Figure 8.1: Transition diagram of the ”Levenshtein” automaton accepting
L1(abba), with Levenshtein distance k = 1 from Example 8.1

2. We use the principle of inserting the ε–transitions from state 0 to
states 1, 2 and 3 and we fix all states as final states. The transition
diagram with inserted ε–transitions and fixed final states is depicted
in Fig. 8.2.
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Figure 8.2: Transition diagram of the ”Levenshtein” automaton with final
states fixed and ε–transitions inserted from Example 8.1

3. We replace all ε–transitions by non–ε–transitions. The resulting au-
tomaton has the transition diagram depicted in Fig. 8.3. Its transition
table is shown in Tab. 8.1

Figure 8.3: Transition diagram of the nondeterministic ”Levenshtein” factor
automaton after removal of ε–transitions from Example 8.1

4. The final operation is to construct the equivalent deterministic finite
automaton. Its transition table is shown in Table 8.2.
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a b

0 140′1′2′3′4′ 230′1′2′3′4′

1 1′2′ 21′3′

2 2′3′4′ 32′

3 43′ 3′4′

4 4′ 4′

0′ 1′

1′ 2′

2′ 3′

3′ 4′

4′

Table 8.1: Transition table of the nondeterministic ”Levenshtein” factor
automaton from Example 8.1

0 140′1′2′3′4′ 230′1′2′3′4′

140′1′2′3′4′ 1′2′4′ 21′2′3′4′

230′1′2′3′4′ 41′2′3′4′ 32′3′4′

1′2′4′ 2′3′

21′2′3′4′ 2′3′4′ 32′3′

32′3′ 43′4′ 3′4′

41′2′3′4′ 4′2′3′4′

32′3′4′ 43′4′ 3′4′

43′4′ 4′ 4′

2′3′ 4′ 3′

2′3′4′ 4′ 3′

3′4′ 4′

3′ 4′

4′

Table 8.2: Transition table of the deterministic ”Levenshtein” factor au-
tomaton from Example 8.1
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The transition diagram of the resulting deterministic ”Levenshtein” fac-
tor automaton is depicted in Fig. 8.4.

Figure 8.4: Transition diagram of the deterministic ”Levenshtein” factor
automaton for the string x = abba from Example 8.1

Now we construct the repetition table. We take into account the repeti-
tion of factors longer than k (the number of allowed errors). Approximate
repetition table R is shown in Table 8.3.

d–subset Factor Exact Approximate repetitions
occurrence

21’2’3’4’ ab 2 (3, abb, O)
32’3’ abb 3 (2, ab, O), (3, bb, O)
43’4’ abba 4 (3, abb, O), (4, bba,O)

32’3’4’ bb 3 (2, ab,O), (3, abb, O), (4, ba,O), (4, bba, O)
41’2’3’4’ ba 4 (2, b, S), (3, bb, S)

Table 8.3: Approximate repetition table R for string x = abba with Leven-
shtein distance k = 1 from Example 8.1
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9 Approximate repetitions – ∆ distance

Let us note that the ∆ distance is defined by Def. 2.8. This distance is
defined as the local distance for each position of the string. The number
of errors is not cumulated as in the previous (and following) cases of find-
ing approximate repetitions. In this section we show solution of O?N∆C
problem.

Example 9.1
Let the string x = abbc over the ordered alphabet A = {a, b, c}. We construct
an approximate factor automaton using ∆ distance equal to one.

1. We construct a finite automaton accepting string x and all strings
having ∆ distance equal to one. The set of all these strings is denoted
∆1(abbc). This finite automaton has the transition diagram depicted
in Fig. 9.1.

a b

b a,c a,c b

a,b,c

b

a,b,c

c

b,c

START
0 1

1'

2

2'

3

3'

4

4'

Figure 9.1: Transition diagram of the ”∆” automaton accepting ∆1(abbc)
with ∆ distance k = 1 from Example 9.1

2. We use the principle of inserting ε–transitions from state 0 to states
1, 2 and 3 and making all states final states. The transition diagram
of the automaton with inserted ε–transitions and fixed final states is
depicted in Fig. 9.2.

3. We replace ε–transitions by non–ε–transitions. The resulting automa-
ton has the transition diagram depicted in Fig. 9.3.
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a

e e e

b

b a,c a,c b

a,b,c

b

a,b,c

c

b,c

START
0 1

1'

2

2'

3

3'

4

4'

Figure 9.2: Transition diagram of the ”∆” automaton with final states fixed
and ε–transitions inserted from Example 9.1

a

b b c

a,c a,c b

b

b a,c a,c b

a,b,c

b

a,b,c

c

b,c

START
0 1

1'

2

2'

3

3'

4

4'

Figure 9.3: Transition diagram of the nondeterministic ”∆” factor automa-
ton after the removal of ε–transitions from Example 9.1
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4. The final operation is to construct the equivalent deterministic factor
automaton. Table 9.1 is its transition table and its transition diagram
is depicted in Fig. 9.4.

ba b

b,c

b,c

a

a

a
b

b

c

c

a

b

a a

a

c

c

b,c

b,c b,c

b,c b

c

c

START
12 3'  '0 23'4'

2'3'4'

2'3'

231'4'

34'

3 4'  '

3'

3 42'  '

4

4'

43'

42'3'

Figure 9.4: Transition diagram of the deterministic ”∆” factor automaton
for x = abbc,∆ distance=1, from Example 9.1

Now we construct the repetition table. We take into account the repetitions
of factors longer than the allowed distance. In this case, the distance is equal
to 1 and therefore we select repetitions of factors having the length greater
or equal to two. Table 9.2 contains information on the ∆–approximate rep-
etitions of factors of the string x = abbc. This table is structured according
to Def. 6.2. 2
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a b c

0 12′3′ 231′4′ 42′3′

12′3′ 2′3′ 23′4′ 2′3′4′

23′4′ 3′ 34′ 3′4′

231′4′ 2′3′ 32′4′ 42′3′

32′4′ 3′ 3′4′ 43′

34′ 4′ 4
43′ 4′ 4′

4
42′3′ 3′ 3′4′ 3′4′

2′3′4′ 3′ 3′4′ 3′4′

2′3′ 3′ 3′4′ 3′4′

3′4′ 4′ 4′

3′ 4′ 4′

4′

Table 9.1: Transition table of the deterministic ”∆” factor automaton from
Example 9.1

d–subset Factor Exact occurrence Approximate repetitions
23’4’ ab 2 (3, bb, O), (4, bc, S)
34’ abb 3 (4, bbc, O)

32’4’ bb 3 (2, ab, O), (4, bc, O)
42’3’ bc 4 (2, ab, S), (3, bb, O)
43’ bbc 4 (3, abb, O)

Table 9.2: Approximate repetition table for string x = abbc from Exam-
ple 9.1
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10 Approximate repetitions – Γ distance

Γ distance is defined by Def. 2.8. This distance is defined as a global distance,
which means that the local errors are cumulated. In this section we show
solution of O?NΓC problem.

Example 10.1
Let the string x = abbc over the ordered alphabet A = {a, b, c}. We construct
an approximate factor automaton using Γ distance equal to two.

1. We construct a finite automaton accepting string x and all strings
having Γ distance equal to two. The set of all these strings is denoted
Γ2(abbc). This finite automaton has the transition diagram depicted
in Fig. 10.1.

a b

b

c

a,c

a,c

a,c

a,c

b

b

b

b

b

b

b

c

c

c

a

START
0 1

1'

1''

2

2'

2''

3

3'

3''

4

4'

4''

Figure 10.1: Transition diagram of the ”Γ” automaton accepting Γ2(abbc)
with Γ distance k = 1 from Example 10.1

2. Now we insert ε–transitions from state 0 to states 1, 2 and 3 and we
make all states final. The transition diagram of the automaton with
inserted ε–transitions and fixed final states is depicted in Fig. 10.2

3. We replace the ε–transition by non–ε–transitions. The resulting non-
deterministic factor automaton has the transition diagram depicted
in Fig. 10.3.

4. The final operation is to construct the equivalent deterministic finite
automaton.
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Figure 10.2: Transition diagram of the ”Γ” automaton with final states fixed
and ε–transitions inserted from Example 10.1
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Figure 10.3: Transition diagram of the nondeterministic ”Γ” factor automa-
ton after the removal of ε–transitions from Example 10.1
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a b c

0 12′3′4′′ 231′4′ 42′3′1′′

12′3′4′′ 2′3′′ 23′4′′ 2′4′3′′

231′4′ 3′2′′4′′ 32′4′ 43′2′′

23′4′′ 3′ 34′′ 3′4′

32′4′ 3′′4′′ 3′4′ 43′′

34′′ 4′′ 4′ 4
42′3′1′′ 3′′ 3′2′′4′′ 4′3′′

43′2′′ 3′′4′′ 4′

43′′ 4′′

4
2′4′3′′ 3′′ 3′ 3′′4′′

2′3′′ 3′′ 3′ 3′′4′′

3′2′′4′′ 3′′4′′ 4′

3′4′ 4′′ 4′

3′ 4′′ 4′

4′3′′ 4′′

4′

3′′4′′ 4′′

3′4′′ 4′′ 4′

3′′ 4′′

4′′

Table 10.1: Transition table of the deterministic ”Γ” factor automaton for
the string x = abbc from Example 10.1

Analyzing Table 10.1 we can recognize that the following sets are sets of
equivalent states:

{2′4′3′′, 2′3′′}, {3′4′, 3′}, {43′′4′3′′, 3′′4′′, 3′′}, {43′2′′, 3′2′′4′′}.
Only states 43′′ and 43′2′′ have an impact on the repetition table. Let us
replace all equivalent states by the respective sets. Then we obtain the tran-
sition diagram of the optimized deterministic factor ”Γ” automaton depicted
in Fig. 10.4. Now we construct the repetition table. We take into account
the repetitions of factors longer than two (allowed distance). The Table 10.2
contains information on approximate repetition of one factor. The repeti-
tion of factor bc indicated by d-subset 43’2” is not included in the repetition
table because the length of this factor is |bc| = 2 2
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Figure 10.4: Transition diagram of the optimized deterministic ”Γ” factor
automaton for string x = abbc from Example 10.1

d–subset Factor Exact occurrence Approximate repetitions
34” abb 3 (4, bbc, O)

Table 10.2: Approximate repetition table for string x = abbc, Γ distance
equal to two, from Example 10.1
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11 Approximate repetitions – (∆, Γ) distance

(∆,Γ) distance is defined by Def. 2.8. This distance is defined as a global
distance, which means that the local errors are cumulated. In this section
we show solution of O?N(∆,Γ)C problem.

Example 11.1
Let string x = abbc over ordered alphabet A = {a, b, c}. We construct an
approximate factor automaton using (∆,Γ) distance equal to (1,2).

1. We construct a finite automaton accepting string x and all strings
having (∆, Γ) distance equal to (1,2). The set of all these strings
is denoted (∆,Γ)1,2(abbc). This finite automaton has the transition
diagram depicted in Fig. 11.1.
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Figure 11.1: Transition diagram of the ”(∆, Γ)” automaton accepting
(∆,Γ)1,2(abbc) with (∆, Γ) distance (k, l) = (1, 2) from Example 11.1

2. Now we insert ε–transitions from state 0 to states 1, 2 and 3 and we
make all states final. The transition diagram of the automaton with
inserted ε–transitions and fixed final states is depicted in Fig. 11.2.

3. We replace ε–transitions by non–ε–transitions. The resulting nonde-
terministic factor automaton has the transition diagram depicted in
Fig. 11.3.
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Figure 11.2: Transition diagram of the ”(∆, Γ)” automaton with final states
fixed and ε–transitions inserted from Example 11.1
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Figure 11.3: Transition diagram of the nondeterministic ”(∆, Γ)” factor
automaton after the removal of ε–transitions from Example 11.1
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4. The final operation is to construct the equivalent deterministic finite
automaton. Table 11.1 is its transition table.

a b c

0 12′3′ 231′4′ 42′3′

12′3′ 2′3′′ 23′ 2′3′′

231′4′ 3′2′′ 32′4′ 43′2′′

23′ 3′ 34′′ 3′4′

32′4′ 3′′ 3′4′ 43′′

34′′ 4′ 4
42′3′ 3′′ 3′4′′ 4′3′′

43′2′′ 3′′4′′ 4′

43′′ 4′′

4
2′3′′ 3′′ 3′ 3′′4′′

3′2′′ 3′′4′′ 4′

3′4′ 4′′ 4′

3′4′′ 4′′ 4′

3′ 4′′ 4′

4′3′′ 4′′

4′

3′′4′′ 4′′

3′′ 4′′

4′′

Table 11.1: Transition table of the deterministic ”Γ, ∆” factor automaton
from Example 11.1

Analyzing Table 11.1 we can recognize that the following sets are sets of
equivalent states:

{3′4′, 3′, 3′4′′}, {3′′4′′, 3′′, 43′′, 4′3′′}, {43′2′′, 3′2′′}.
We replace all equivalent states by the respective sets. Then we obtain the
transition diagram of the optimized deterministic ”(∆, Γ)” factor automaton
depicted in Fig. 11.4.
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Figure 11.4: Transition diagram of the optimized deterministic ”(∆, Γ)”
factor automaton for the string x = abbc from Example 11.1

Now we construct the repetition table. We take into account the rep-
etitions of factors longer than two (allowed distance). Table 11.2 contains
information on approximate repetition of one factor. 2

d–subset Factor Exact occurrence Approximate repetitions
34” abb 3 (4, bbc, O)

Table 11.2: Approximate repetition table for string x = abbc, (Γ,∆) distance
equal to (1,2), from Example 11.1

12 Exact repetitions in one string with don’t care
symbols

The ”don’t care” symbol (◦) is defined by Def. 2.9. Next example shows
principle of finding repetitions in the case of presence don’t care symbols
(O?NED problem).

Example 12.1
Let string x = a◦aab over alphabet A = {a, b, c}. Symbol ◦ is the don’t care
symbol. We construct a don’t care factor automaton.

1. We construct a finite automaton accepting set of strings described by
string x with don’t care symbol. This set is DC(x) = {aaaab, abaab,
acaab}. This finite automaton has the transition diagram depicted in
Fig. 12.1.
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Figure 12.1: Transition diagram of the DC automaton accepting DC(x)
from Example 12.1

2. We insert ε-transitions from state 0 to states 1,2,3,4 and we make
all states final. Transition diagram of automaton DCε(a◦aab) with
inserted ε-transitions and fixed final states is depicted in Fig. 12.2.

Figure 12.2: Transition diagram of the DCε(a◦aab) automaton with inserted
ε-transitions and fixed final states from Example 12.1

3. We replace ε-transitions by non ε-transitions. Resulting nondeter-
ministic factor automaton DCN (a◦aab) has the transition diagram
depicted in Fig. 12.3.

Figure 12.3: Transition diagram of nondeterministic factor automaton
DCN (a◦aab) after the removal of ε-transitions from Example 12.1

4. The final operation is construction of equivalent deterministic factor
automaton DCD(a◦aab). Table 12.1 is transition table of the non-
deterministic factor automaton having transition diagram depicted in
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Fig. 12.3. Table 12.2 is transition table of deterministic factor automa-
ton DCD(a◦aab). Transition diagram of deterministic factor automa-
ton DCD(a◦aab) is depicted in Fig. 12.4.

a b c

0 1, 2, 3, 4 2, 5 2
1 2 2 2
2 3
3 4
4 5
5

Table 12.1: Transition table of nondeterministic factor automaton
DCN (a◦aab) from Example 12.1

a b c

0 1234 25 2
1234 234 25 2

2 3
25 3
234 34 5
3 4
34 4 5
4 5
5

Table 12.2: Transition table of deterministic factor automaton DCD(a◦aab)
from Example 12.1
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Figure 12.4: Transition diagram of deterministic factor automaton
DCD(a◦aab) from Example 12.1

The last step is the construction of the repetition table. It is shown in
Table 12.3.

d–subset Factor First occurrence Repetitions
1234 a 1 (2, S), (3, S), (4, S)
25 ab 2 (5, G)
234 aa 2 (3, O), (4, O)
34 aaa 3 (4, O)

Table 12.3: Repetition table for string x = a◦aab from Example 12.1

13 Conclusion

We have shown uniform and simple models for finding exact and approxi-
mate repetitions in a text. All models are based on the analysis of d-subsets
created during the determinization of different types of nondeterministic fac-
tor automata. This leads to a very simple and straightforward solution of
the repetition problems.

The time complexity is composed of two parts:

- construction of the deterministic factor automaton, which has linear
time complexity for exact repetitions, and

- construction of the repetition table having quadratic time complexity
for exact repetitions.

The time complexity of finding approximate repetitions is an open problem
and should be investigated in detail.

The second topic for further study is the search for a connection be-
tween the general models shown here and existing algorithms for particular
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repetition problems. This may lead to an understanding of the way how to
simulate general models in different cases.
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Abstract

In a recent paper, Carrasco and Forcada present an incremental al-
gorithm for adding words to a minimal deterministic cyclic automaton.
The algorithm is an extension of an incremental construction algorithm for
acyclic deterministic automata (ADFAs). We present similar extensions of
two other construction algorithms for ADFAs. Although the extensions
were published in May and June 2004, we expose similarities between
them, and we also provide a different, much simpler reformulation of one
of them.

1 Introduction

Minimal finite-state automata (FSAs) are an ideal choice for representation of
dictionaries in natural language processing (NLP). In addition to fast process-
ing of words, they take little space once they are constructed. However, tradi-
tional construction needs much space. Incremental and semi-incremental meth-
ods build automata word-by-word (or string-by-string), reducing the number of
states after each word is added to the language of the automaton. Incremental
methods keep the automaton minimal (possibly except for as many states as
the length of the longest word plus one) during construction, semi-incremental
methods are less strict.

As the size of available computer memories constantly and quickly increases,
and their prices fall, questions are raised whether memory-efficiency is still an
issue. However, new applications require much more memory than the existing
ones. They are developed precisely because more memory becomes available.
The technological progress also results in new devices with smaller memories,
like laptops, palmtops, etc.

Traditional methods for construction of acyclic automata construct a trie,
and then minimize it. Incremental and semi-incremental methods merge both
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processes so that they overlap. Traditional construction methods for cyclic
automata are more complicated. First, a non-deterministic automaton is con-
structed, then it is determinized, and finally minimized. It is harder to design
corresponding incremental and semi-incremental algorithms. An easier job is
to extend existing algorithms for acyclic automata to the case when individual
words are added to the language of a cyclic automaton. One such extension
has been proposed by Carrasco and Forcada in [2]. We have proposed similar
extensions of other algorithms [3], [4]. This paper exposes similarities between
them. It also offers a new formulation of one of them.

The rest of the paper is organized as follows. Section 2 introduces basic
definitions. The main points of an extension of an incremental construction
algorithm for unsorted data is sketched in Section 3. Short descriptions of al-
gorithms we extend, i.e. the incremental algorithm for sorted data, and the
Watson’s algorithm, can be found in Section 4 and Section 5 respectively. The
corresponding extensions are described in Section 6 and Section 7. The similar-
ities in both extensions are exposed in Section 8.

2 Mathematical Preliminaries

We define a deterministic finite-state automaton as M = (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is a finite set of symbols called the alphabet, q0 ∈ Q

is the start (or initial) state, and F ⊆ Q is a set of final (accepting) states.
We define the transition function δ : Q × Σ → Q as a partial mapping. If
δ(q, a) 6∈ Q for some q ∈ Q and a ∈ Σ, we write δ(q, a) = ⊥. The extended
transition function δ∗ : Q×Σ∗ → Q has a string (including the empty string ǫ)
as an argument, and is defined as:

δ∗(q, ǫ) = q

δ∗(q, ax) = δ∗(δ(q, a), x)

The right language of a state q is defined as:

→

L (q) = {x ∈ Σ∗ : δ∗(q, x) ∈ F}

The language of the automaton L(M) =
→

L (q0). The right language can be
defined recursively:

→

L (q) =
⋃

a∈Σ:δ(q,a) 6=⊥

a·
→

L (δ(q, a)) ∪

{

{ǫ} if q ∈ F

∅ otherwise

Equality of right languages is an equivalence relation that partitions the set
of states into abstraction classes (equivalence classes). The minimal automaton
is the unique automaton (up to isomorphisms) that has the minimal number of
states among automata recognizing the same language. It is also the automaton
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where all states are useful (i.e. reachable from the start state, and from which a
final state can be reached), and each equivalence class has exactly one member.

(q ≡ p) ⇐⇒ (
→

L (q) =
→

L (p))

The length of a string w ∈ Σ∗ is denoted |w|, and the i-th symbol (starting
from one) in the string w as wi. A substring of a string w being a concatenation
of wiwi+1 . . . wj−1wj is denoted as wi...j , 1 ≤ i ≤ j ≤ |w|.

The longest common prefix p (of the word w to be added to the language
of an automaton M and the language of the automaton L(M)) is the longest
string p ∈ Σ∗ : ∃s∈Σ∗ w = ps∧∃r∈Σ∗ pr ∈ L(M). We denote the longest common
prefix of strings w and v as w ∧ v, and the longest common prefix of a string w

and a language L as w ∧ L. The longest common prefix path is a set of states
{q ∈ Q : q = δ∗(q0, s), p = sr, r ∈ Σ∗} visited while recognizing the longest
common prefix p.

A confluence state is a state with more than one in-transition.

3 Extension by Carrasco and Forcada

Two incremental algorithms for construction of minimal, acyclic, deterministic
finite-state automata were presented in [6], and later in [5]. The first algorithm
takes input lexicographically sorted, hence the nickname “the sorted data algo-
rithm”. The second algorithm accepts data in any order – “the unsorted data
algorithm”.

In [2], Carrasco and Forcada extended the unsorted data algorithm so that
it adds strings to a cyclic automaton. They propose a two-stage construction
process for cyclic automata. First, the cyclic core is constructed. It contains all
cycles that are to be found in the target automaton. Then, strings are added
to the language of the automaton.

Carrasco and Forcada derive their algorithm from the union of an automaton
M = (Q,Σ, δ, q0, F ) with a single string automaton Mw = (Qw,Σ, δw, q0w, Fw),
L(Mw) = w. We will not go into details of that construction; the reader is
referred to [2] for more information on the subject. We want to highlight the
main points of their algorithm that make it different from the original algorithm
for acyclic automata:

1. Before the algorithm starts, there is already a minimal, deterministic,
cyclic automaton.

2. All states of the initial automaton are already in the Register (a set of
states that have a unique right language in the automaton, i.e. a set of
pairwise inequivalent states).

3. The start state is cloned (a copy of it with identical out-transitions is
created).

4. The longest common prefix path is cloned.
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4 Incremental Algorithm for Sorted Data

The incremental algorithm for sorted data is the first algorithm in [6] and [5].
The algorithm benefits from the fact that input strings are lexicographically
sorted.

1: function main;
2: R ← ∅; w′ ← ǫ;
3: while there is another word do

4: w ← next word;
5: p ← w ∧ w′; j ← |p|;
6: s ← δ∗(q0, p);
7: v ← wj+1...|w|; v′ ← w′

j+1...|w′|;

8: if v 6= ǫ then

9: replace or register(s, v′);
10: end if ;
11: add suffix(s, v); w′ ← w;
12: end while;
13: replace or register(q0, v

′);
14: end function;

15: function replace or register(q, w);
16: c ← δ(q, w1);
17: if w2...|w| 6= ǫ then

18: replace or register(c, w2...|w|);
19: end if ;
20: if ∃r∈R r ≡ q then

21: δ(q, w1) ← r;
22: delete c;
23: else

24: R ← R ∪ {c};
25: end if ;
26: end function;

27: function add suffix(q, w);
28: while w 6= ǫ do

29: δ(q, w1) ← new state;
30: q ← δ(q, w1);
31: w ← w2...|w|;
32: end while;
33: F ← F ∪ {q};
34: end function;

In contrast to the original formulation of the algorithm in [6] and [5], function
replace or register takes an additional argument: the part of the previously
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added string that is not included in the longest common prefix. Rather than
looking for the last transition of the state being the first argument, we are
now able to directly choose the transition based on its label. Both versions are
equivalent, but the one presented here is closer to the extension presented in
the paper.

In the listing, R represents the Register – a set of states that have a unique
right language in the automaton. Instead of traversing the whole automaton
in search for an equivalent state, it is sufficient to look for it in the Register.
The Register lookup can be implemented in constant time. The Register is used
in all algorithms mentioned in this paper. Lines 5 and 6 calculate the longest
common prefix and the last state of the longest common prefix path. Line 7
calculates the part v that follows the longest common prefix p in the string to
be added w, and the part v′ that follows p in the string w′ last added to the
language of the automaton.

It is worth noting that confluence states are never found in the longest
common prefix path, i.e. the path in the automaton traversed when adding
a new string. Additional in-transitions are created only by the function re-

place or register. They can lead only to states that are already in the Register
R. Such states are never in the longest common prefix path p. The input is
lexicographically sorted. The longest common prefix of two adjacent words in
the input is never shorter than the longest common prefix of the first of those
words and any word that comes later in the input stream. Therefore, states
representing v′ will never be again in the longest common prefix path, and v′

is an argument of the function replace or register. Functions replace or register

and add suffix are independent of each other; they can be called in any order.

5 Watson’s Algorithm

The Watson’s algorithm (see [9] for details) accepts strings in any order of
decreasing length. As in the sorted data algorithm, the longest common prefix
path is followed (lines 11–13), and then a chain of states and transitions is built
to recognize the suffix if there is one (lines 14–18). If there is no suffix (the state
returned by the function add word – the last state of the longest common prefix
path – has some out-transitions), the string is a prefix of another string already
in the language of the automaton. Since strings come in decreasing lengths,
all states reachable from the last state in the longest common prefix path will
never be in the longest common prefix path of any string to be added later.
Therefore, they can be considered for minimization. If an equivalent state is
found in the register R, it replaces the current state, and in-transitions of the
current state redirected to the equivalent one. That redirection of transitions
creates confluence states, but they can never appear in the longest common
prefix path, as that path cannot be longer than subsequent strings coming in
the order of decresing length. If no equivalent state is found, the current state
is added to the Register.

1: function main;
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2: R ← ∅;
3: while there is another word then

4: w ← next word;
5: minim(R,build stack(add word(w), []));
6: end while;
7: minim(R,build stack(q0, []));
8: end function;

9: function add word(w);
10: q = q0; i ← 0;
11: while i < |w| and δ(q, wi) 6= ⊥ do

12: q ← δ(q, wi); i ← i + 1;
13: end while;
14: while i < |w| do

15: δ(q, wi) ← new state;
16: q ← δ(q, wi); i ← i + 1;
17: end while;
18: F ← F ∪ {q};
19: return q;
20: end function;

21: function build stack(q,X);
22: push(X, q);
23: for a ∈ Σ : δ(q, a) 6= ⊥ do

24: if δ(q, a) 6∈ F then

25: X ← build stack(δ(q, a),X);
26: end if ;
27: end for;
28: return X;
29: end function;

30: function minim(R,S);
31: while S 6= [] do

32: q ← pop(S);
33: if ∃r∈R q ≡ r then

34: replace q with r;
35: else

36: R ← R ∪ {q};
37: end if ;
38: end while;
39: end function

Line 34 in function minim means that state q is deleted, and all transitions
leading to that state are redirected to state r. Note that such operation is
difficult to implement without storing in-transitions. In practice, the stack S

should contain transitions rather than states. Function build stack (lines 21–29)
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forms a team with function minim (30–39). It fulfills the same role as function
replace or register in the sorted data algorithm. Actually, those two functions
can be rewritten as replace or register2 :

21: function replace or register2(q);
22: for a ∈ Σ : δ(q, a) 6= ⊥ do

23: if δ(q, a) 6∈ F then

24: replace or register2(δ(q, a));
25: end if ;
26: end for;
27: if ∃r∈R q ≡ r then

28: replace q with r;
29: else

30: R ← R ∪ {q};
31: end if ;
32: end function;

6 Extension of the Sorted Data Algorithm

The extension of the sorted data algorithm is presented here differently than in
[3]. The present version is simpler.

1: function main;
2: R ← Q; r ← clone(q0); w′ ← ǫ;
3: while not eof do

4: w ← next word; i ← 1; q ← r;
5: p ← w ∧ w′; j ← |p|;
6: while i < |w| and δ(q, wi) 6= ⊥ and fanin(δ(q, wi)) < 2 do

7: q ← δ(q, wi); i ← i + 1;
8: end while;
9: while i < |w| and δ(q, wi) 6= ⊥ do

10: δ(q, wi) ← clone(δ(q, wi));
11: q ← δ(q, wi); i ← i + 1;
12: end while;
13: if |w′| ≥ j then

14: replace or register(δ(r, w1...j−1, w
′
j...|w′|);

15: end if ;
16: add suffix(q, wi...|w|); w′ ← w;
17: end while;
18: replace or register(r, w′);
19: if r 6= q0 then

20: delete branch(q0);
21: end if ;
22: end function;
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Functions replace or register and add suffix are the same as in the version
for acyclic automata. Function fanin returns the number of in-transitions of
its argument. Function delete branch deletes its argument state and all states
reachable from it without traversing confluence states. The main difference
between the original version and the extension is the presence of the loop in lines
9–12, and the additional condition for the loop in lines 6–8. Both loops traverse
the longest prefix path. The first loop (lines 6–8) processes only non-confluence
states. It is the corresponding loop from the original algorithm augmented with
the condition that makes sure that the states are not confluence. The second
loop handles confluence states. Each such state is cloned. When a state is
cloned – an exact copy of it is created, the object of cloning and its result
have an identical suite of out-transitions. Hence the targets of the transitions
become confluence states themselves. Once we find a confluence state in the
longest common prefix path, all states that follow it become confluence states
themselves.

Another two differences are in line 2. Since we add strings to the language of
an existing (cyclic) automaton, the Register cannot initially be empty. It is set
to the set of all states of the automaton. The second difference is that we clone
the start state, and the clone becomes the new start state of the automaton.
Thus initially, all state in the longest common prefix path are confluence states.
The loop in lines 9–12 creates their non-confluence clones.

Confluence states constitute a border between the pre-existing part of the
automaton, and the new part created by adding new strings. By cloning states
from the old part, we recreate conditions for the original algorithm that assumes
no confluence states.

7 Extension of Watson’s Algorithm

Because function minim is identical to the corresponding function in the original
algorithm, it is omitted here. Note that instead of using the pair of functions
build stack and minim, we could use a modified version of replace or register2.

1: function main;
2: R ← Q; r ← clone(q0);
3: while there is another word do

4: w ← next word;
5: minim(R,build stack(add word(w), []));
6: end while;
7: minim(R,build stack(q0, [])); q0 ← r;
8: end function;

9: function add word(w);
10: q = r; i ← 0;
11: while i < |w| and δ(q, wi) 6= ⊥ and fanin(δ(q, wi)) < 2 do

12: q ← δ(q, wi); i ← i + 1;
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13: end while;
14: while i < |w| and δ(q, wi) 6= ⊥ do

15: δ(q, wi) ← clone(δ(q, wi));
16: q ← δ(q, wi); i ← i + 1;
17: end while;
18: while i < |w| do

19: q ← build state(q, wi); i ← i + 1;
20: end while;
21: F ← F ∪ {q};
22: return q;
23: end function;

24: function build stack(q,X);
25: push(X, q);
26: for a ∈ Σ : δ(q, a) 6= ⊥ do

27: if δ(q, a) 6∈ F ∧ fanin(δ(q, a)) < 2 then

28: X ← build stack(δ(q, a),X);
29: end if ;
30: end for;
31: return X;
32: end function;

The extension is carried out in the same way as for the sorted data algorithm.
In line 2, the Register is set to the set of states of the initial automaton. The
start state is cloned. The loop in lines 11–13 has an additional condition that
makes sure that state are not confluence. The loop that follows in lines 14–17
processes confluence states by cloning them. It provides a non-confluence copy
of confluence states, so that the rest of the algorithm can behave very much
as in the original. The final difference is an additional condition in function
build stack. Confluence states are not put onto stack. As in the extension for
the sorted data algorithm, the confluence states form a boundary between the
old and the new part of the automaton under construction.

8 Conclusions

We have presented two algorithms for incremental addition of strings to a cyclic
automaton. They are extensions of the incremental algorithm for the construc-
tion of minimal, acyclic, deterministic, finite-state automata from sorted data
[6], [5], and semi-incremental Watson’s algorithm [9]. Both extensions have al-
ready been described in [3] and [4] respectively. They share a number of features
with the extension by Carrasco and Forcada [2] of the incremental algorithm for
the construction of minimal, acyclic, deterministic, finite-state automata from
unsorted data [6], [5], [1], [8], [7]. All extensions assume that there is an existing,
cyclic automaton, to the language of which we add new strings. All states of
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the automaton are already in the Register. In both extensions presented here
confluence states play a role of markers for the boundary between the old part of
the automaton – the one that existed before the start of the algorithm, and the
new part created as the result of the algorithm. Cloning those states restores
original conditions for the algorithms that form the base of the extensions. To
start the process of cloning, the start state is cloned, which makes target states
of all its out-transitions confluence states.

Modifications that lead to extensions that are described here are small. They
include cloning the start state, cloning the confluence states in the longest com-
mon prefix path, dividing one loop into two, and providing additional conditions
for testing. The worst-case complexity is the same as in the acyclic case.

Both extensions require the data to be sorted (differently for each algo-
rithm). They use this feature to perform the construction more efficiently than
the algorithm provided by Carrasco and Forcada. States created by adding new
strings to the language of the automaton are compared to states in the Reg-
ister only once. This makes both extensions faster than the one by Carrasco
and Forcada. Although the algorithms themselves are faster, sorting also takes
time. However, in case of the extension of the Watson’s algorithm, the data
can be kept in files that hold strings of the same length. Carrasco and Forcada
emphasize on-line maintenance of dictionaries; they also provide an algorithm
for deletion of strings. Their model is suitable for dictionary developers who
need to constantly update dictionaries. A different, off-line model is possible.
In that model, dictionaries are updated only from time to time. The result of
the construction process is not kept in memory directly afterwards. Automata
are first compressed to minimize memory use. In such a model, our exten-
sions do have an advantage over Carrasco and Foracada’s algorithm. In the
on-line model for dictionary developers, our algorithms can also prove useful.
The strings to be added may come in small sorted chunks. In such case, our
algorithms would update the automaton faster than the more general algorithm
presented by Carrasco and Forcada.
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Abstract

A finite-state machine withn tapes describes a rational (or regular) relation onn strings. It is
more expressive than a relational database table withn columns, which can only describe afinite
relation.

We describe some basic operations onn-ary rational relations and propose notation for them. (For
generality we give the semiring-weighted case in which eachtuple has a weight.) Unfortunately, the
join operation is problematic: if two rational relations are joined on more than one tape, it can lead
to non-rational relations with undecidable properties. Werecast join in terms of “auto-intersection”
and illustrate some cases in which difficulties arise. We close with the hope that partial or restricted
algorithms may be found that are still powerful enough to have practical use.

1 Introduction

Multi-tape finite-state machines(FSMs) (Rabin and Scott, 1959; Elgot and Mezei, 1965; Kay, 1987;
Kaplan and Kay, 1994) are a natural generalization of the familiar one- and two-tape cases, known
respectively as finite-state acceptors and transducers.

An n-tape FSM characterizesn-tuples of strings. The set of tuples that it accepts is called ann-ary
relation. If the FSM is weighted, it defines a weightedn-ary relation that assigns eachn-tuple a weight
(in some semiring), such as a probability.

The relations defined by FSMs are known asrational (or regular) relations. Our interest inn-
tuples stems from our view of these relations as relational databases. In thefamiliar casen = 2, a
finite-state transducer can be regarded as a kind of (weighted) database of string pairs—for example,
〈spelling, pronunciation〉, 〈French word, English word〉, or 〈parent concept, child concept〉. An acyclic
transducer can represent any finite database of this sort. Shared substrings can make the representation
particularly efficient: a hypothesis lattice for speech processing (Mohri,1997) represents exponentially
many pairs in linear space.



Unlike a classical database, a transducer may even define infinitely many pairs. For example, it
may characterize the pattern of the spelling-pronunciation relationship in such a way that it can map
even a novel word’s spelling to zero or more possible pronunciations (withvarious weights), and vice-
versa. Another transducer may attempt to map not just a word but a sentence of unbounded length to an
annotated, corrected, or translated version.

On this database view, it is natural to consider relations with more than 2 columns. In natural lan-
guage processing, multi-tape machines have recently been used to represent lattices of〈speech, gesture,
interpretation〉 triples for processing multimodal input (Bangalore and Johnston, 2000).They have also
been used in the morphological analysis of Semitic languages, using multiple tapes to synchronize the
vowels, consonants, and templatic pattern into a surface form (Kay, 1987; Kiraz, 2000). They may
be similarly useful for coordinating the multiple tiers of autosegmental phonology or articulator-based
speech recognition (Livescu, Glass, and Bilmes, 2003).

Unfortunately, one pays a price for allowing infinite multi-column databases. Finite-state methods
derive their power from arational algebra, which can combine simple FSMs using operations such as
union, closure, and composition. Databases similarly derive their power from arelationalalgebra. Cyclic
FSMs are closed under the rational operations, but not under the relational operations, as finite databases
are. For example, transducers are not closed under intersection (Rabin and Scott, 1959).

In this paper, we give a formal discussion of semiring-weightedn-ary relations (Section 2). We
define several useful operators (Section 3), offering useful notation and taking care to distinguish cases
that preserve the rationality of relations from those that do not.

The focus of the paper is a database join operator1 that generalizes intersection, composition, and
cross product (Section 3.3). Certain cases of join (single-tape or finite)are guaranteed to preserve ratio-
nality and appear practically useful.

In Section 3.4, we reduce the join problem to a somewhat simpler problem of “auto-intersection”
(Kempe, Guingne, and Nicart, 2004). In Section 4, we illustrate how auto-intersecting two tapes of
a rational relation may produce a variety of non-rational weighted or unweighted relations, including
context-sensitive languages whose emptiness is undecidable. We leave open the possibility that there
may exist a partial or approximate algorithm with enough coverage to have some practical use.

2 Definitions

After recalling the basic definitions of a monoid and a semiring, we definen-ary weighted relations
andn-tape weighted finite-state machines. Our definitions follow the usual definitions for multi-tape
finite-state automata (Elgot and Mezei, 1965; Eilenberg, 1974), with semiringweights added just as for
acceptors and transducers (Kuich and Salomaa, 1986; Mohri, Pereira, and Riley, 1998).

2.1 Semirings

A monoid is a structure〈M, ◦, 1̄〉 consisting of a setM , an associative binary operation◦ on M , and
a neutral element̄1 such that̄1 ◦ a = a ◦ 1̄ = a for all a ∈ M . A monoid is calledcommutativeiff
a ◦ b = b ◦ a for all a, b∈M .

A semiringis a structureK = 〈K,⊕,⊗, 0̄, 1̄〉 consisting of a setK, two binary operations,⊕ (col-
lection) and⊗ (extension), and two neutral elements,0̄ and1̄, that satisfies the following properties:

• 〈K,⊕, 0̄〉 is a commutative monoid

• 〈K,⊗, 1̄〉 is a monoid

• extension isleft- andright-distributiveover collection:
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) , (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) , ∀a, b, c∈K



• 0̄ is an annihilator for extension:̄0 ⊗ a = a ⊗ 0̄ = 0̄ , ∀a∈K

Examples of semirings are:

1. 〈{FALSE, TRUE},∨,∧, FALSE, TRUE〉 : the boolean semiring, which can be used to define un-
weighted relations and machines.

2. 〈N, +,×, 0, 1〉 : a non-negative integer semiring.

3. 〈R≥0, +,×, 0, 1〉 : a non-negative real semiring that can be used to model probabilities.

4. 〈R≥0 ∪ {∞}, min, +,∞, 0〉 : a “tropical” semiring, sometimes used to model negative logarithms
of probabilities.

5. 〈2Σ∗
,∪, ·, ∅, {ε}〉 : the semiring of unweighted languages over an alphabetΣ under union∪ and

pairwise concatenation·. Note that this has a subsemiring consisting of only the regular languages.
(Similar semirings exist whose elements are weighted languages and relations,but we do not define
them here.)

A semiring can have additional properties, and in this article we are interestedin the following two:

1. commutativity: a ⊗ b = b ⊗ a , ∀a, b∈K

2. idempotency:a ⊕ a = a , ∀a∈K

All examples above are commutative, except the last one, which is commutativeonly if |Σ| = 1. Exam-
ples 1, 4, and 5 are idempotent.

We will use the following notations for repeated collection and extension of a single valuek ∈ K:

ik = k ⊕ k ⊕ · · · ⊕ k (i times) (1)

ki = k ⊗ k ⊗ · · · ⊗ k (i times) (2)

Note thatik does not in general meani ⊗ k. Usually the latter is not even defined, as the integeri ∈ N

is usually not an element of the semiring.

2.2 Weightedn-ary Relations and Multi-Tape Weighted Finite-State Machines

A weightedn-ary relation is a function from(Σ∗)n to K, for a given finite alphabetΣ and a given weight
semiringK = 〈K,⊕,⊗, 0̄, 1̄〉. In other words, the relation assigns a weight to anyn-tuple of strings. A
weight of 0̄ can be interpreted as meaning that the tuple is not in the relation.

We are especially interested inrational (or regular) n-ary relations—that is, relations that can be
encoded byn-tape weighted finite-state machines, which we now define.

We adopt a convention that variable names referring ton-tuples of strings include a superscript(n).
Thus we writes(n) rather than~s for a tuple of strings〈s1, . . . , sn〉. We also use this convention for
the names of more complex objects that containn-tuples of strings, such asn-tape automata and their
transitions and paths.

An n-tape weighted finite-state machine(WFSM orn-WFSM),1 A(n), is defined by a six-tuple

A(n) = 〈Σ, Q,K, E(n), λ, ̺〉 (3)

with Σ being a finite alphabet,Q a finite set of states,K = 〈K,⊕,⊗, 0̄, 1̄〉 the semiring of weights,
E(n) ⊆ (Q × (Σ∗)n × K × Q) a finite set of weightedn-tape transitions,λ : Q → K a function that
assigns initial weights to states, and̺ : Q → K a function that assigns final weights to states.

1We follow some recent literature in using the term “machine” rather than “automaton.” The acronym to refer to the general
n-tape case is then FSM orn-FSM, which leaves the acronym FSA available to refer to the special caseof a finite-stateacceptor
(n = 1). FST refers to the special case of a finite-state transducer (n = 2).



Any transitione(n)∈E(n) has the form

e(n) =〈p, ℓ(n), w, n〉 (4)

We refer to these four components as the transition’s source statep(e(n))∈Q, its labelℓ(e(n))∈ (Σ∗)n,
its weightw(e(n))∈K, and its target staten(e(n))∈Q.

A pathγ(n) of lengthℓ ≥ 0 is a sequence of transitionse(n)
1 e

(n)
2 · · · e

(n)
ℓ such thatn(e

(n)
i )=p(e

(n)
i+1)

for eachi∈ [[1, ℓ−1]]. A path’s label is defined to be the elementwise concatenation of the labels of its
transitions:

ℓ(γ(n))
def
= ℓ(e

(n)
1 ) · ℓ(e

(n)
2 ) · · · · · ℓ(e

(n)
ℓ ) (5)

This is ann-tuple of strings having the forms(n) = 〈s1, s2, . . . , sn〉. The path’s weight is defined to be

w(γ(n))
def
= λ(p(e

(n)
1 )) ⊗




⊗

j∈[[1,ℓ]]

w
(

e
(n)
j

)



 ⊗ ̺(n
(

e
(n)
ℓ )

)

(6)

The path is said to besuccessful, and toacceptits label, ifw(γ(n)) 6= 0̄. We denote byΓA(n) the set of
all successful paths ofA(n), and byΓA(n)(s(n)) the set of successful paths (if any) that accepts(n) :

ΓA(n)(s(n)) = { γ(n)∈ΓA(n) | s(n) =ℓ(γ(n)) } (7)

Now, the machineA(n) defines a weightedn-ary relationR(A(n)) : (Σ∗)n → K that assigns to each
n-tuple,s(n), the total weight of all paths accepting it:

RA(n)(s(n))
def
=

⊕

γ(n)∈Γ
A(n) (s

(n))

w(γ(n)) (8)

It is convenient to define thesupportof an arbitrary weighted relationR(n), meaning the set of tuples
to which the relation gives non-0̄ weight:

support(R(n))
def
= { s(n) ∈ (Σ∗)n | R(n)(s(n)) 6= 0̄ } (9)

This support set can be regarded as an ordinary unweighted relation obtained fromR(n). A different
perspective on unweighted relations is that they are weighted relations over the boolean semiring, i.e.,
functions from(Σ∗)n → {FALSE, TRUE}.

2.3 Infinite Sums

In definingR(A(n)), we glossed over one point for simplicity’s sake. A sum over finitely many weights
can be computed by repeated application of⊕. But (8) may sometimes call for an infinite sum, whose
meaning has not been defined. This case arises ifRA(n) contains any cyclic paths with the label
〈ǫ, ǫ, . . . ǫ〉. Cyclic paths of this sort cannot simply be disallowed in a natural way, sincethey can be
re-introduced by the closure and projection operations discussed below.

Briefly, the solution is to pre-compute the geometric sumk∗ =
∞⊕

i=0
ki ∈ K for eachk ∈ K.2

In practice, one simply defines aclosureoperator∗ that satisfies certain axioms, obtaining a so-called
closed semiring.

This allows infinite sums over anyregular set of paths, as required by (8) and by section 3’s equa-
tions (11), (12), (13), and (21). One constructs a WFSM containing just those paths (e.g.,ΓA(n)(s(n))),
and then sums their weights with an algorithm that generalizes the Kleene-Floyd-Warshall technique to
closed semirings (Lehmann, 1977).

2Divergent sums can be represented byk∗ = ∞, where∞ ∈ K is a distinguished value.



3 Operations

We now describe some central operations onn-ary weighted relations and theirn-tape WFSMs, focusing
on operations that affect the number of tapes. (See (Kempe, Guingne, and Nicart, 2004).) In particular,
we introduce an “auto-intersection” operation that will simplify the discussionof multi-tape join.

Our notation is chosen throughout to highlight the connection to relational databases.

3.1 Simple Operations

The basic rational operations of union, concatenation, and closure canbe used to construct anyn-ary
weighted rational relation.3 Thus, the rational operations can be used to writeregular expressionsthat
specify particular relations. On the database perspective, such expressions are useful for specifying both
actual databases (typically finite relations) and particular queries (typicallyinfinite relations, i.e., the set
of all tuples with a given property). (Section 3.3 will discuss how to intersect a database with a query.)

The union and concatenation of two weightedn-ary relations,R(n)
1 andR(n)

2 , are the relationsR(n)
1 ∪

R
(n)
2 andR(n)

1 · R
(n)
2 defined by

(

R
(n)
1 ∪R

(n)
2

)

(s(n))
def
= R

(n)
1 (s(n)) ⊕R

(n)
2 (s(n)) (10)

(

R
(n)
1 · R

(n)
2

)

(s(n))
def
=

⊕

u(n),v(n):
(∀i∈[[1,n]])si=ui·vi

R
(n)
1 (u(n)) ⊗R

(n)
2 (v(n)) (11)

The closure ofR(n) is the relation

(R(n))∗
def
=

∞⋃

ℓ=0

R(n) · R(n) · · ·R(n)
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ℓ times

, implying that

(

(R(n))∗
)
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ℓ=0

⊕

u
(n)
1 ,...u

(n)
ℓ

:
(∀i∈[[1,n]])si=(u1)i·(u2)i···(uℓ)i

ℓ⊗

j=1

R(n)(u
(n)
j ) (12)

These operations can be implemented by simple constructions on the corresponding nondeterministic
n-tape WFSMs (Rosenberg, 1964). Thesen-tape constructions and their semiring-weighted versions are
exactly the same as for acceptors (n = 1) and transducers (n = 2), as they are indifferent to then-tuple
transition labels.

3.2 Projection and Complementary Projection

Projection keeps certain columns of a database relation and discards the others. In the case of a rational
relation implemented by an-WFSM, it can be implemented by discarding the corresponding tapes of the
n-WFSM, yielding anm-WFSM form < n.

Projection may map several distinctn-tuples onto the samem-tuple. In this case, we will define the
weight of them-tuple by summing the severaln-tuples’ weights using⊕. This resembles aggregation
in databases, but note that only weights can be aggregated acrossn-tuples, not the (string) data in the
n-tuples themselves.

3By combining the “atomic” weighted relations, namely, those whose support is a single tuple from the finite set
{(s1, s2, . . . sn) : |s1s2 · · · sn| ≤ 1}.



For anyj1, . . . , jm ∈ [[1, n]], we formally define aprojection operatorπ〈j1,...,jm〉 that mapsn-ary
relations tom-ary relations:

(

π〈j1,...,jm〉(R
(n)
1 )

)

(s(m))
def
=

⊕

u(n):
(∀i∈[[1,m]]) si=uji

R
(n)
1 (u(n)) (13)

It retains only those component strings (i.e. tapes) of each tuple that are specified by the indicesj1, . . . jm,
and places them in the specified order.

Notice that our definition allows projection indices to occur in any order, possibly with repeats. Thus
the tapes ofs(n) can be permuted or duplicated. For example,π〈2,1〉 will invert a 2-ary relation.

As a convenience, we also define thecomplementary projectionof a relation. For anyj1, . . . jm ∈
[[1, n]], we define an operatorπ{j1,...jm} that removes the tapesj1, . . . jm and preserves all other tapes
in their original order. Without loss of generality we may assume thatj1 < j2 < · · · < jm; then
we can defineπ{j1,...jm} as equivalent toπ〈1,...,j1−1,j1+1,...jm−1,jm+1,...n〉, which mapsn-ary relations to
(n − m)-ary relations.

3.3 Join and Generalized Composition

Applications: Our version of the join operation is quite powerful. It can be used to join two “databases”
(typically finite relations), to conjoin two “queries” (typically infinite relations),or to select those data-
base tuples that match a query, reweighting them if the query is weighted.

Another family of uses is inspired by natural language processing, where WFSTs (n = 2) are com-
monly used to construct noisy channel models (Knight and Graehl, 1998). Usingn > 2 tapes allows us to
generalize naturally to doing constraint programming or graphical modeling over string-valued variables.
Given variablesV1, . . . Vn with unknown values in theinfinite domainΣ∗, one can specify a (weighted)
m-ary relation to express a (soft) constraint over somem ≤ n of the variables. All known constraint
relations can be systematically joined together, along tapes that correspondto common variables. This
yields a (weighted)n-ary relation that evaluates whichn-tuples are appropriate as joint values of then

variables. If thisn-ary relation specifies a probability distribution overn-tuples, one can intersect it with
anothern-ary relation describing incomplete data, in order to compute the probability of the data for
purposes of parameter training or statistical inference.

As we will see, join istoopowerful: rational relations arenotclosed under arbitrary joins. Section 4
will explore this point in detail. Nonetheless, we can mathematically define the possibly non-rational
result of a join. The operation appears so useful that it would be helpful to have a partial or approximate
algorithm.

Definition: The reader may already be familiar with the notion of natural join on databases. Our
presentation differs from the standard database treatment in that our tapes are numbered, whereas the
columns of a database are typically named. So our join operators, unlike a database join, must explicitly
select tapes by number, and as a result are neither associative nor commutative.

A join of two relations is formed by finding “matching” pairs of tuples. For example, 〈abc, def, ǫ〉
and 〈def, ghi, ǫ, jkl〉 match on two of their tapes. We notate the matching of tapes in this case as
{2=1, 3=3}. They combine to yield a tuple〈abc, def, ǫ, ghi, jkl〉, whose weight in the joined relation
is the product (under⊗) of the two original tuples’ weights.

More precisely, for any distincti1, . . . ir ∈ [[1, n]] and any distinctj1, . . . jr ∈ [[1, m]], we define ajoin
operator1{i1=j1,...,ir=jr}. It combines ann-ary and anm-ary relation into an(n + m − r)-ary relation
defined as follows:



(

R
(n)
1 1{i1=j1,...,ir=jr} R

(m)
2

)

(〈u1, . . . , un, s1, . . . , sm−r〉)
def
= R

(n)
1 (u(n)) ⊗R

(m)
2 (v(m)) (14)

wherev(m) is the unique tuple such thatπ{j1,...jr}(v
(m)) = s(m−r) and(∀ℓ ∈ [[1, r]])vjℓ

= uiℓ .

Relation to Cross Product: Takingr = 0 gives an important special case. Thecross productoperator
×, equivalent to1∅, combines ann-ary and anm-ary relation into an(n + m)-ary relation:

R
(n)
1 ×R

(m)
2

def
= R

(n)
1 1∅ R

(m)
2 (15)

with the result that
(

R
(n)
1 ×R

(m)
2

)

(〈u1, . . . , un, v1, . . . , vm〉) = R
(n)
1 (u(n)) ⊗R

(m)
2 (v(m)) (16)

A WFSM forR(n)
1 ×R

(m)
2 can easily be constructed from WFSMs forR

(n)
1 andR(m)

2 , by concatenating
them after appropriately “padding” their transition labels into(n + m)-tuples via extra epsilons. Thus,
the cross product of weighted rational relations is always rational.

Relation to Intersection: Takingn = r = m gives another important special case. Theintersectionof
two n-ary relations is anothern-ary relation:

R
(n)
1 ∩R

(n)
2

def
= R

(n)
1 1{1=1,2=2,...n=n} R

(n)
2 (17)

with the result that (

R
(n)
1 ∩R

(n)
2

)

(s(n)) = R
(n)
1 (s(n)) ⊗R

(n)
2 (s(n)) (18)

It is known that the intersection of transducers (n = 2) is not necessarily rational (Rabin and Scott,
1959): {〈ajb∗, cj〉 | j ∈ N} ∩ {〈a∗bj , cj〉 | j ∈ N} = {〈ajbj , cj〉 | j ∈ N}. Nor, for that matter, is
intersection of acceptors (n = 1) if they are weighted by a non-commutative semiring. Thus rational
relations are not closed under the more general join operation, either.

Generalized Composition: For distincti1, . . . ir∈ [[1, n]] and distinctj1, . . . jr∈ [[1, m]], it is convenient
to define ageneralized compositionoperator⊠{i1=j1,...,ir=jr}. It carries out a join and then discards the
joined tapes:

R
(n)
1 ⊠{i1=j1,...,ir=jr} R

(m)
2

def
= π{i1,...ir}

(

R
(n)
1 1{i1=j1,...,ir=jr} R

(m)
2

)

(19)

Note that⊠ can result in aggregation because it usesπ̄. For example, the special case of ordinary
composition◦ of transducers

R
(2)
1 ◦ R

(2)
2

def
= R

(2)
1 ⊠{2=1} R

(2)
2 = π{2}(R

(2)
1 1{2=1} R

(2)
2 ) (20)

results in a summation over stringsv on the discarded tape that was joined:
(

R
(2)
1 ◦ R

(2)
2

)

(u, w) =
⊕

v

R
(2)
1 (u, v) ⊗R

(2)
2 (v, w) (21)

The generalized composition of rational relations is not necessarily rational.

Single-Tape Join: We speak aboutsingle-tape joinif only one tape is used in each relation (r=1). Two
well-known special cases are the join1{1=1} used to intersect two acceptors in (17) (wheren = 1), and
the join1{2=1} used during classical composition of two transducers in (20).



There are other uses of single-tape join. A composition cascade of several transducers,R(2) =

R
(2)
1 ◦R

(2)
2 ◦R

(2)
3 , could be replaced by a join cascade,R(4) = R

(2)
1 1{2=1}

(

R
(2)
2 1{2=1} R

(2)
3

)

. The

intermediate results are now preserved on tapes 2 and 3 for subsequentinspection or further transduction
(Kempe, 2004). In this way, single-tape join is adequate to combine severaltransducers into any tree

topology: R(4) =
(

R
(2)
1 1{2=1} R

(2)
2

)

1{2=1} R
(2)
3 . One can use this technique to implement a

tree-structured directed graphical model (sometimes called a dendroid distribution) by joining weighted
transducers that represent the conditional probability distributions of themodel.

Sometimes one wishes to join ann-ary relation with a cross product ofm languages. This operation
can be regarded asm single-tape joins. It can be used to train the parameters of the dendroid distribution
described above, as explained forn = m = 2 by (Eisner, 2002). The generalization to more tapes
is particularly useful for training a cascaded noisy channel model whenintermediate results along the
channel are partly observed.

The single-tape join of weighted multi-tape rational relations is rational as long as the weights fall in
a commutative weight semiring. One can construct a WFSM for the resulting relation, using a standard
“cross-product of states” construction.

The commutativity of the weights is crucial to this construction. (The constructed WFSM’s paths
interleave weights from paths in the two input WFSMs.) No such construction ispossible if the weight
semiringK is not commutative. For example, letk, k′ be weights that do not commute. LetR(1) be a
rational language such that∀j ∈ N,R(1)(aj) = kj⊗k′. Then (18) implies that∀j,

(
R(1) ∩R(1)

)
(aj) =

kj ⊗ k′ ⊗ kj ⊗ k′; this single-tape join cannot in general be computed by any WFSM.
Mohri, Pereira, and Riley (1998), writing about WFST composition, noted another subtlety in ex-

tending the “cross product of states” construction to weighted machines. Their observation and solution
apply generally to single-tape join of WFSMs (and would presumably be relevant to any partial algorithm
for multi-tape join). A pair of successful paths in the input machines are considered to “match” if they
both accept the same strings on the single tape being joined. A pair of matched input paths is supposed
to yield exactly one path in the composed machine. However, if both input pathsallow ǫ transitions on
the join tape at the same position ins, then a naive implementation of the construction may produce
i > 1 identically labeled and weighted paths, corresponding to different alignments of the input paths.
This “path multiplicity problem” will incorrectly contributei copies of the path weight to the sum in (8),
affecting the result unless the weight semiring is idempotent. The solution is to revise the construction
to allow only a canonical alignment of matched input paths.

3.4 Auto-Intersection

Our discussion of join will be simplified by reducing it to a simpler problem. For any distincti1, j1, . . .

ir, jr ∈ [[1, n]], we define anauto-intersectionoperatorσ{i1=j1,i2=j2,...,ir=jr} that maps a relationR(n)

to a “subset” of that relation, preserving tupless(n) whose elements are equal in pairs as specified, but
removing all other tuples from the support of the relation.4

(

σ{i1=j1,...,ir=jr}(R
(n))

)

(〈s1, . . . , sn〉)
def
=

{

R(n)(〈s1, . . . , sn〉) if (∀ℓ ∈ [[1, r]])siℓ = sjℓ

0̄ otherwise
(22)

Auto-intersection does not necessarily preserve the rationality ofR(n), as we will discuss in Sec-
tion 4.

4The requirement that the2r indices be distinct mirrors the similar requirement on join and is needed in (26).
But it can be evaded by duplicating tapes: an illegal auto-intersection suchas σ{1=2,2=3}(R) can be computed as
π{3}(σ{1=2,3=4}(π〈1,2,2,3〉(R))).



Note that auto-intersecting a relation is different from joining the relation with itsown projections.
For example,σ{1=2}(R

(2)) is supported by tuples of the form〈w, w〉 ∈ R(2). By contrast,R(2)
1{1=1}

(
π〈2〉(R

(2))
)

is supported by tuples〈w, x〉 ∈ R(2) such thatw can also appear on tape 2 ofR(2) (but not
necessarily paired with a copy ofw on tape 1).

An example of auto-intersection is shown in Figure 1. It encodes the relation

R
(3)
1 = 〈a, x, ε〉 〈b, y, a〉∗ 〈ε, z, b〉 = { 〈abj , xyjz, ajb〉 | j∈N } (23)

σ{1=3}(R
(3)
1 ) = { 〈ab1, xy1z, a1b〉 } (24)

(a)

b:y:a(3)
1Α

εa:x: :z:bε
20 1 (b)

b:y:a

(3)
Α

:z:bεεa:x:
1 2 30

Figure 1: (a) A WFSMA
(3)
1 and (b) its auto-intersectionA(3) = σ{1=3}(A

(3)
1 ). (Weights omitted)

It is possible to reduce join to auto-intersection using only rational operations (namely cross product
and complementary projection). An arbitrary join can be implemented as

R
(n)
1 1{i1=j1,...,ir=jr} R

(m)
2 = π{n+j1,...,n+jr}

(

σ{i1=n+j1,...,ir=n+jr}( R
(n)
1 ×R

(m)
2 )

)

(25)

Conversely, it is possible to reduce any auto-intersection to a single join with arational relation:

σ{i1=j1,...,ir=jr}(R
(n)) = R(n)

1{i1=1,j1=2,...,ir=2r−1,jr=2r}




(π〈1,1〉(Σ

∗)×· · ·×π〈1,1〉(Σ
∗)

︸ ︷︷ ︸

r times




 (26)

Thus, for any class of “difficult” join instances whose results are non-rational or have undecidable
emptiness (see section 4.4), there is a corresponding class of difficult auto-intersection instances, and
vice-versa. Conversely, a partial solution to one problem would yield a partial solution to the other. In
future work we hope to identify such a partial algorithm for auto-intersection.

The rest of this paper is therefore devoted to remarks on the auto-intersection problem only. Working
in terms of auto-intersection rather than join will simplify our discussion. First, only one machine is
involved. Second, in considering partial algorithms for auto-intersection,we do not have to worry about
the order in which non-commutative weights from two joined machines are multipliedtogether, or the
path multiplicity problem. Those issues have already been handled in the cross-product step of the join
construction (25), and are not of further concern to the auto-intersection step.

For simplicity, we will focus on auto-intersectionsσ{i=j} that involve only a single pair of tapes. That
is enough to expose the core difficulties. Indeed, the general case of auto-intersection can be defined in
terms of this simple case:

σ{i1=j1,...,ir=jr}( R
(n) )

def
= σ{ir=jr}( · · ·σ{i1=j1}( R

(n) ) · · · ) (27)

Nonetheless, we caution that the general case might benefit from a more direct treatment. It may be wise
to computeσ{i1=j1,...,ir=jr} “all at once” rather than one tape pair at a time. The reason is that even when
σ{i1=j1,...,ir=jr} is rational, a finite-state strategy for computing it via (27) could “fail” by encountering
non-rational intermediate results. For example, consider applyingσ{2=3,4=5} to the rational 5-ary rela-
tion {〈aibj , ci, cj , x, y〉 | i, j ∈ N}. The final result is rational (the empty relation), but the intermediate
result after applying justσ{2=3} would be the non-rational relation{〈aibi, ci, ci, x, y〉 | i ∈ N}.



4 Some Difficult Examples for Auto-Intersection

Some instances of auto-intersection are “easy.” In particular, considera finite relation (one with finite
support, representable by an acyclic WFSM). Its auto-intersection is computable and is itself finite, since
it just selects some tuples of the original relation. (Thus, by (25),R1 1 R2 is finite if R1 or R2 is.) On
such “easy” examples, the job of a good auto-intersection algorithm is merelyto keep the resulting FSM
small by preserving the sharing of substrings in the original FSM.

In this section, we will discuss some “difficult” classes of auto-intersection problems, where the result
is non-rational or has undecidable properties. Each such class has a matching class of join problems, as
discussed in section 3.4.

These difficulties imply that there is no general finite-state join algorithm. Nor is there an algorithm
that produces the join whenever it is rational and returns an error codeotherwise.

At the same time, the examples in this section may be instructive if one wishes to design a more
limited join or auto-intersection algorithm that can succeed (exactly or approximately) on some practical
cases. We leave such a task to future work.

4.1 Equal-Exponent Problem

Consider the unweighted binary relationR(2) = {〈aibj , ajbk〉 | i,j,k∈ N}, interpreted as a weighted
relation over the boolean semiring. The relation is rational because it can beencoded by a 2-FSM
(Figure 2a). Its auto-intersectionσ{1=2}(R

(2))={〈aibi, aibi〉 | i∈ N} is, however, non-rational. Notice
that the auto-intersection would in effect need to select just those paths in Figure 2a where all three cycles
are traversed the same number of times.

(a)

b:a

ε:εε:ε

:bεεa:

210 (b)

c:bb:a

ε:ε ε:εε:ε
1 2

:cε

3

εa:

0

Figure 2: Two FSMs whose auto-intersection leads to equal-exponent problems

We can extend this example to any number of equal exponents. Consider for example the binary
relationR(2) = {〈aibjck, ajbkcℓ〉 | i,j,k,ℓ∈ N}, which is rational (Figure 2b) but has a non-rational
auto-intersectionσ{1=2}(R

(2))={〈aibici, aibici〉 | i∈ N}.
We say that such examples suffer from theequal-exponent problem. The equal-exponent prob-

lem may also appear on tapes other than the ones being intersected. The unweighted 3-ary relation
{〈aia, aaj , xiyzj〉 | i, j ∈ N} is rational (Figure 3a); but its auto-intersection underσ{1=2} is equal to
{〈aia, aai, xiyzi〉 | i ∈ N}, which is not rational because its projection onto tape 3 is not a regular lan-
guage.

(a)
10a:ε:x ε:a:z

a:a:y

(b)
1
/ρ1

0a:ε
2/w/w0 ε:a

/wa:a 1

Figure 3: FSMs whose auto-intersection on tapes 1,2 requires equal exponents on tape 3 or in weights

Finally, the equal-exponent problem may appear in the weights assigned bythe relation, if the weight
semiring is not commutative. Figure 3b is a variant of Figure 3a that replacesthe third tape with weights.



Its auto-intersection underσ{1=2} is the weighted relationR defined by

R(〈aia, aai〉) = wi
0 ⊗ w1 ⊗ wi

2 ⊗ ̺1 (28)

R(s(2)) = 0̄ otherwise (29)

This relation has rational support, but is not in general a rational relation. It does become rational if the
weight semiring is commutative, in which casewi

0 ⊗ w1 ⊗ wi
2 ⊗ ̺1 can be computed as(w0 ⊗ w2)

i ⊗
w1 ⊗ ̺1. Notice that if the weights are rational languages over an alphabetΣ (see Section 2.1), so that
they effectively act like a third tape, then they are guaranteed to commute onlyif |Σ|=1.

4.2 Shuffle Problem

Theshuffle productof two stringsu ⊔⊔ v is defined, e.g., in (Sakarovitch, 2003) as:

u ⊔⊔ v
def
= { u1v1 . . . ujvj | u = u1 . . . uj , v = v1 . . . vj , (∀i∈ [[1, j]])ui, vi ∈ Σ∗ } (30)

This set contains all possible “interleavings” of the symbols fromu andv. The symbols ofu keep their
respective order, as do the symbols ofv, but any order is allowed between a symbol fromu and a symbol
from v. For example:

abc ⊔⊔ xy = {abcxy, abxcy, abxyc, axbcy, axbyc, axybc, xabcy, xabyc, xaybc, xyabc} (31)

aa ⊔⊔ xx = {aaxx, axax, axxa, xaax, xaxa, xxaa} (32)

aaa ⊔⊔ aaa = {aaaaaa} (33)

The size of the setu ⊔⊔ v grows exponentially in the lengths ofu andv.
Consider the unweighted relationR(3) = {〈ai, aj , xi ⊔⊔ yj〉 | i, j ∈ N}, interpreted as a weighted

relation over the boolean semiring. It is rational because it can be encoded by a 3-FSM (Figure 4a). Its
auto-intersectionσ{1=2}(R

(3)) = {〈ai, ai, xi ⊔⊔ yi〉 | i∈ N} is, however, non-rational, as its projection
onto tape 3 is the non-rational language of strings having equal numbers of x’s andy’s.

(a)
0

a:

a:ε:

ε :x

y

(b)

0

a:ε: ε:ε:ya:ε:ε:ε:x

ε:ε:ε:a:za:ε:ε:ε: y (c)

0

/ρ0

/w0

/w1

a:

ε:

ε

a

Figure 4: Three (W)FSMs whose auto-intersection leads to shuffle problems

Using additional tapes lets us extend this example to any number of equal exponents. For example,
the relationR(5) = {〈ai, aj , aj , ak, xi ⊔⊔ yj ⊔⊔ zk〉 | i, j, k ∈ N} is rational (Figure 2b) but has a non-
rational auto-intersectionσ{1=2,3=4}(R

(5))={〈ai, ai, ai, ai, xi ⊔⊔ yi ⊔⊔ zi〉 | i∈ N}.
This shuffle problemcan be regarded as the source of other failures of rationality. IfR(1) is any

rational language, then the single-tape join{〈ai, aj , (xi ⊔⊔ yj)〉 | i, j ∈ N} 1{3=1} R
(1) is also rational.

Auto-intersecting it using theσ{1=2} operator yields a relation whose tape 3 recognizes a “restricted
shuffle,” namely, the potentially non-rational language{xi ⊔⊔ yi | i ∈ N} ∩ R(1). For example, taking
R(1) to be the languagex∗y∗ creates the equal-exponent language{xiyi | i ∈ N} of section 4.1.

Beyond simply restricting the shuffle language, one can also transduce it toobtain further examples.
Consider the rational 3-relation{〈ai, aj , (xi ⊔⊔ yj)〉 | i, j ∈ N}⊠{3=1} R

(2), whereR(2) is any rational



2-ary relation. Applying theσ{1=2} operator yields a relation whose tape 3 recognizes the transduction
of {xi ⊔⊔ yi | i ∈ N} by R(2). The transduction can replacexi and yi by arbitrary languages while
restricting their shuffling.

The shuffle problem may also appear in the weights assigned by the relation,if the weight semiring is
not both commutative and idempotent. Figure 4c is a variant of Figure 4a that replaces the third tape with
weights.5 Applying theσ{1=2} operator yields a relationR such that∀i ∈ N, R(ai) = (wi

0 ⊔⊔wi
1)⊗ ̺0,

where the informal notationwi
0⊔⊔wi

1 denotes the “shuffle sum of two products of weights.” For example,
if k, l, p, q ∈ K, we would write

(k ⊗ l) ⊔⊔ (p ⊗ q) = (k ⊗ l ⊗ p ⊗ q) ⊕ (k ⊗ p ⊗ l ⊗ q) ⊕ (k ⊗ p ⊗ q ⊗ l) ⊕

(p ⊗ k ⊗ l ⊗ q) ⊕ (p ⊗ k ⊗ q ⊗ l) ⊕ (p ⊗ q ⊗ k ⊗ l) (34)

k2 ⊔⊔ p2 = (k ⊗ k ⊗ p ⊗ p) ⊕ (k ⊗ p ⊗ k ⊗ p) ⊕ (k ⊗ p ⊗ p ⊗ k) ⊕

(p ⊗ k ⊗ k ⊗ p) ⊕ (p ⊗ k ⊗ p ⊗ k) ⊕ (p ⊗ p ⊗ k ⊗ k) (35)

k2 ⊔⊔ k2 = 6 (k ⊗ k ⊗ k ⊗ k) = 6 ( k4 ) (36)

In general, the weighted relationR in our example is non-rational. However, it is rational if the semiring
is both commutative and idempotent. In that case,wi

0⊔⊔wi
1 = ji(w0⊗w1)

i = (w0⊗w1)
i, whereji ∈ N

is the number of summands in the shuffle sum and is irrelevant thanks to idempotency.

4.3 Presentation Problems

Our next example illustrates how a partial auto-intersection algorithm might be affected by the presenta-
tion of its input.

(a) 10
/w1a:a:x

a:ε:x /w0 ε:a:x/w2

(b)

10
/w1a:a:x

ε:a:x/w2

a:ε:x /w0 (c) 10
/w1a:a:x

0/w w2a:a:x

Figure 5: (a), (b) Different presentations of the same relationR(3); (c) the auto-intersection
σ{1,2}(R

(3))

Provided that the weight semiring is commutative, the WFSMs in Figures 4.3a and4.3b describe
the same relation, which for eachi ∈ N maps〈ai+1, ai+1, x2i+1〉 to wi

0 ⊗ w1 ⊗ wi
2. A naive algorithm

modeled on WFST determinization would fail to terminate on either machine, constructing a successful
path of length2i+1 for eachi ∈ N. For example, on Figure 4.3a, it would allow unrolling the first cycle
i times and then transitioning to the second cycle to allow the second tape to “catch up” with the first.

A partial algorithm for auto-intersection might attempt to detect and handle somesuch cases, allow-
ing it to compute the correct auto-intersection (Figure 4.3c). It seems potentially easier to detect the
Figure 4.3b case than the Figure 4.3a case.

5Again, this example can be derived by transducing the original shuffle example of Figure 4a. If all transitions in that
example are given weight̄1 in the semiring of interest, then its generalized composition⊠{3=1} with a simple weighted
machine will produce Figure 4c by replacing all instances ofx with w0, etc.



4.4 Post’s Correspondence Problem

Post’s Correspondence Problem or PCP (Post, 1946) is a classical undecidable problem that is some-
times used to prove the undecidability of other problems. Mark-Jan Nederhof (personal communication)
pointed out its relevance to auto-intersection.

Definition: Given an alphabetΣ, an instance of PCP is a list of pairs of strings inΣ∗: 〈u1, v1〉, . . .
〈up, vp〉. A solution is a strings such thats = ui1ui2 . . . uir = vi1vi2 . . . vir for some non-empty index
sequencei1, i2, . . . ir ∈ [[1, p]]. This sequence may contain duplicates.

Taking an example from (Zhao, 2002), the instance〈abb, a〉, 〈b, abb〉, 〈a, bb〉 has among its solu-
tions the stringabbaabbabbabb = u1u3u1u1u3u2u2 = v1v3v1v1v3v2v2, obtained from the index se-
quence1311322. For the sake of clarity, we show here both the instance and the solution in tabular form:

i 1 2 3
ui abb b a
vi a abb bb

i 1 3 1 1 3 2 2
ui abb a abb abb a b b
vi a bb a a bb abb abb

The language of solutions to a given instance is context-sensitive. That is, it is possible for a linear
bounded automaton to determine whether a given strings is a solution, simply by considering all index
sequences of length≤ 2|s|.6

What is not decidable, in general, is whether this context-sensitive language of solutions is non-
empty. To put this another way, the set of PCP instances with at least one solution is not recursive
(although it is recursively enumerable).

An instance of PCP can be represented as a 2-tape automaton,A(2), with a unique state, that is both
initial and final, andp transitions labeled with pairs of stringsui :vi, as illustrated in Figure 6a. The set of
all solutions to this instance equalsπ〈1〉(σ{1=2}(R(A(2)))). If one wishes instead to obtain the language
of index sequences of each solution, one can represent the instance as a 3-tape automatonA(3) with an
additional tape of indicesi∈ [[1, p]], as illustrated in Figure 6b, and constructπ〈1〉(σ{2=3}(R(A(3)))).

(a)

0

a:bb

b:abb
abb:a

(b)

0
2:b:abb

3:a:bb

1:abb:a

Figure 6: An instance of a PCP (a) without and (b) with an additional tape ofindices

This reduction from PCP to auto-intersection demonstrates that it is undecidable whether the result
of an unweighted 2-tape auto-intersection is empty.

Furthermore, this implies that there can be no partial auto-intersection algorithm that is “complete”
in that it always returns a correct FSM if the auto-intersection is rational, and always terminates with
an error code otherwise. If such an algorithm did exist, one could use it as follows to determine the
emptiness of an unweighted auto-intersection (and hence to determine the existence of a solution to a
PCP instance, which is impossible in general). If the algorithm returned an FSM, we would test it for
emptiness by determining whether there was at least one path from an initial to afinal state. If the
algorithm returned an error code, we would know that the result was non-rational and hence could not
be empty.

Despite this gloomy result, some recent work (Zhao, 2002) has explored heuristic tests that can
identify some PCP instances as empty, as well as heuristic search methods thattry to find a single solution

6We may assume without loss of generality that〈ε, ε〉 is not among the strings in the instance. Then ifs = ui1ui2 . . . uir
=

vi1vi2 . . . vir
is a solution, we haver ≤ |ui1ui2 . . . uir

vi1vi2 . . . vir
| = |ss| = 2|s|.



to a PCP quickly (although not the full language of solutions). These methods might provide a starting
point for constructing a useful partial algorithm for auto-intersection.

5 Conclusion

We have provided definitions and notation for the central operations on weightedn-ary relations and the
finite-state machines that describe the rational cases. Our notation is informed by regarding these objects
as weighted databases. This perspective is pedagogically useful and motivates potential applications.

We focused primarily on the important join operation1, and the related operations of generalized
composition⊠ and auto-intersectionσ{1=2}. In some cases, these operators preserve rationality. In
general, they do not, and we showed that the resulting relations, while individually decidable (at the level
of individual tuples), can have undecidable emptiness as a class.

Our question for future research is whether there exists a partial or approximate algorithm for auto-
intersection that can handle some practical cases of infinite relations. This would imply the existence of
a similar algorithm for join.

There is some precedent for such investigations. Regarding partial algorithms, we already noted the
work of (Zhao, 2002) on partial solutions to the generally undecidable Post’s Correspondence Problem,
which reduces to our problem. In the speech and language processing community, researchers manage
to make practical use of a WFSM determinization algorithm that is not guaranteed to terminate when
no answer exists (Mohri, 1997).7 As for approximations, context-free languages are not in general
rational, but they can be usefully approximated by FSMs that accept a close superset or subset (Nederhof,
2000). Approximation by pruning is an option for FSMs weighted by probabilities. Where a naive auto-
intersection algorithm would run forever, in an attempt to generate an infinite-state machine, it might be
possible to obtain a reasonable finite-state machine by pruning away work onlow-probability paths.
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Abstract. We present results of practical experiments with simulation of nondeterministic
finite automata (NFA) in approximate string matching. NFA cannot be directly used because
of its nondeterminism. Simulation of NFA run together with determinisation are the ways of
NFA usage. We present practical experiments with two simulation methods called bit paral-
lelism and dynamic programming. Furthermore, we introduce the resolution system which is
capable of deciding which method is the most beneficial (in the meaning of the time and space
requirements) for a given approximate string matching task. The decision is made according
to the experimental result obtained during the project development.

1 Introduction

In Computer Science there is a class of tasks solvable by finite automata. For a task from
this class we can construct deterministic finite automaton (DFA). Then we run the DFA
and get the solution for the task. However, in practice nondeterministic finite automaton
(NFA) for the given task is usually constructed much easier than DFA. That is why NFAs
are in use. We cannot run NFA directly because of its nondeterminism. Once we have NFA
we have two options what to do. We can either transform NFA to the corresponding DFA
(using the standard subset construction algorithm [12, 15]) or simulate a run of the NFA.

The transformation NFA to DFA can lead up to exponential blow up of states (up to
2|QNFA| DFA states where |QNFA| is number of states of NFA). Although the blow up is not
always as bad it may be a source of problems. The time complexity of preprocessing (the
transformation NFA to DFA) is dependent on the number of states of the resulting DFA.
However, once we have DFA we can run the DFA very quickly in time O(n) where n is a
given input text.

The simulation of NFA runs always slower but has no such huge requirements for
the memory and has very simple preprocessing. Basic simulation method [9] runs in time
O(n|QNFA|2) and space O(|Σ||QNFA|2). Implementation using bit vectors [9] then runs in
time O(n|QNFA|d |QNFA|

w e) and space O(|Σ||Q|d |Q|w e), where w is a length of used computer
word in bits.

Since the NFA simulation can be considered as a just-in-time transformation NFA to
DFA where only the deterministic state needed in the next step is constructed from the
current deterministic state, we can also consider third approach which is a combination of
the previous two.

Theoretical works on the topic were already introduced (see [9–11]). This paper presents
experimental results of NFA simulation in the area of the exact and approximate string
matching. At the end of the paper we present our resolution system which resulted from
our experiments. The resolution system decides which method is the most suitable for a
given string matching task. The considered methods are the transformation to DFA with
consequent DFA run or one of the NFA simulation methods. Input data for the decision
are length of string, length of input text, and type and level of edit distance.

The algorithms that use the bit parallelism were developed without the knowledge that
they simulate NFA solving the given problem. At first an algorithm using the bit parallelism
? This research has been partially supported by MŠMT research program No MSM 212300014.



was used for the exact string matching (Shift-And in [5]), the multiple exact string matching
(Shift-And in [18]), the approximate string matching using the Hamming distance (Shift-
Add in [2]), the approximate string matching using the Levenshtein distance (Shift-Or in
[2] and Shift-And in [21]) and for the generalized pattern matching (Shift-Or in [1]), where
the pattern consists not only from symbols but also from sets of symbols. Later [8, 9] it was
discovered they simulate the corresponding Σ-version of NFA.

The original dynamic programming algorithm [17, 19] was designed for the approximate
string matching using the Levenshtein distance also without the knowledge it simulates
the NFA. It was designed in order to directly compute the edit distance. Moreover, it was
used for construction of DFA with min(3m, (k + 1)!(k + 2)m−k) states. Later [8, 9] it was
shown that it simulates the corresponding Σ-version of NFA. The original algorithm was
improved in [6]. However, this improvement cannot be applied for other edit distances nor
for p̄-version of NFA.

At the beginning we present DFA and simulation methods on the exact string matching.
Then comparison of these methods for individual edit distances follows. At the end we
shortly describe our resolution system.

2 Preliminaries

Let Σ be a nonempty input alphabet, Σ∗ be the set of all strings over Σ, ε be the empty
string , and Σ+ = Σ∗ \ {ε}. If w ∈ Σ∗, then |w| denotes the length of w (|ε| = 0). If a ∈ Σ,
then ā = Σ \ {a} denotes a complement of a over Σ. If w = xyz, x, y, z ∈ Σ∗, then x, y, z
are factors (substrings) of w, moreover, x is a prefix of w and z is a suffix of w.

Deterministic finite automaton (DFA) is a quintuple (Q,Σ, δ, q0, F ), where Q is a set
of states, Σ is a set of input symbols, δ is a mapping (transition function) Q × Σ 7→ Q,
q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. We extend δ to a function δ̂
mapping Q×Σ+ 7→ Q.

Nondeterministic finite automaton (NFA) is a quintuple (Q,Σ, δ, q0, F ), where Q, Σ,
q0, F are the same like in DFA and δ is a mapping Q× (Σ ∪ {ε}) 7→ 2|Q|. We also extend
δ to δ̂ mapping Q × Σ∗ 7→ 2|Q|. DFA (resp. NFA) accepts a string w ∈ Σ∗ if and only if
δ̂(q0, w) ∈ F (resp. δ̂(q0, w) ∩ F 6= ∅).

An active state of NFA, when the last symbol of a prefix w of an input string is processed,
denotes each state q, q ∈ δ̂(q0, w). At the beginning, only q0 is active state.

An algorithm A simulates a run of an NFA, if ∀w, w ∈ Σ∗, it holds that A with given
w at the input reports all information associated with each final state qf , qf ∈ F , after
processing w, if and only if qf ∈ δ̂(q0, w).

Hamming distance [7] DH(v, w) between two strings v, w ∈ Σ∗, |v| = |w| is a minimum
number of edit operations replace needed to convert v to w. Levenshtein distance [16]
DL(v, w) between two strings v, w ∈ Σ∗, is a minimum number of edit operations replace,
insert , and delete needed to convert v to w. Damerau distance [4] (also called generalized
Levenshtein distance) DD(v, w) between two strings v, w ∈ Σ∗, is a minimum number of
edit operations replace, insert , delete, and transpose needed to convert v to w. Each symbol
of v can participate at most in one edit operation transpose.

The exact string matching is the task of searching for all occurrences of pattern P (of
length m = |P |) in text T (of length n = |T |). The approximate string matching is then
searching for all occurrences of string w ∈ Σ∗ in T so that D(w, P ) ≤ k for given k and D.
Given edit distance D can be one of DH , DL, and DD.

First, let us summarize theoretical results [9] for all the implemented methods. Table 1
holds a well-arranged characteristics of each algorithm. We present space and time complex-
ity of each method. w denotes length of computer word used. Reduced NFAs are described
later.



method space complexity time complexity

Exact string matching
Boyer-Moore O(m + |Σ|) preprocess O(m + |Σ|)

run O(n)
direct construction of DFA O(m|Σ|) preprocess O(m|Σ|)

run O(n)
Bit parallelism O(dm

w
e+ m|Σ|) preprocess O(m + dm

w
e|Σ|)

run O(dm
w
en)

Dynamic programming O(m) preprocess O(m)
run O(mn)

Approximate string matching
Finite automata

NFA, Hamming distance O((km− k2

2
+ 3k

2
)|Σ| O((km− k2

2
+ 3k

2
)|Σ|

+km) +km)
NFA, Levenshtein distances O(k2m|Σ| − 2

3
k3|Σ| O(k2m|Σ| − 2

3
k3|Σ|

+km|Σ|) +km|Σ|)
reduced NFA, Hamming d. O(mk|Σ| − k2 + k|Σ|) O(mk|Σ| − k2 + k|Σ|)

reduced NFA, Levenshtein d. O(k2m|Σ| − k3|Σ| O(k2m|Σ| − k3|Σ|
+km|Σ|) +km|Σ|)

DFA O(|Σ||QDFA|) run O(n)

Approximate string matching
Bit parallelism

non-reduced NFA O(kdm
w
e+ m|Σ|) preprocess O(m + dm

w
e|Σ|

+kdm
w
e)

run O(kndm
w
e)

reduced NFA O(kdm−k
w
e preprocess O(m + dm

w
e|Σ|

+k(m− k)|Σ|) +kdm−k
w
e|Σ|)

run O(kndm−k
w
e)

Approximate string matching
Dynamic programming

non-reduced NFA O(m) preprocess O(m)
run O(mn)

reduced NFA O((m− k) + m|Σ|) preprocess O((m− k)
+m|Σ|)

run O((m− k)n)
Table 1. Space and time complexities of the methods used for the exact and approximate string matching

We used six document classes for testing so that we can see the different behavior of
algorithms for various structures of strings and various alphabet sizes. For each class we
use one file from Canterbury and Calgary Corpora. The classes, their numeric identifiers
and the files are listed in Tab. 2.

id file name |Σ| description

1 search2 105 binary file—executable system program
2 bliss2.bmp 122 binary file—true color bitmap noised image
3 c.html 82 text file—c source converted to hypertext document
4 book1 63 text file—English text, book Madding Crowd by T.Hardy
5 pi.txt 10 text file—number π, sequences of ascii decimal numbers
6 E.coli 4 text file—DNA sequence of bacteria Escherichia coli

Table 2. Text classes used for testing of the string matching methods

For testing we used a computer with processor AMD Athlon XP 2000+, memory 256MB
RAM running GNU/Linux SUSE 8.2.



3 Exact String Matching

In the exact string matching we are interested in all occurrences of pattern P in text T .
Number of algorithms have been developed for this task (e.g. [14, 3, 13]). We focus only
on finite automata approach in this paper. For comparison we also consider Boyer-Moore
algorithm.

Σ

p1 p2 p3 p4
0 1 2 3 4

Fig. 1. NFA for the exact string matching (m = 4)

NFA for the exact string matching is shown in Fig. 1. The NFA can be transformed
to DFA which has the same number of states. Moreover, there is a direct construction
algorithm available working in O(m) time. For comparison of the transformation and the
direct construction algorithm see Fig. 2 and 3. Note that for short DNA patterns (id = 6),
the direct DFA construction is slower although it is linear.

Fig. 2. Example of dependence of the preprocessing time (t) on the length of pattern (m) for direct DFA
creation for different pattern classes (measured 100 cycles)

3.1 Bit Parallelism

In the bit parallel simulation for the exact string matching we use one bit vector R =
r1r2 · · · rm where each state except the initial state is represented by one bit. Ri represents
value of R in step i (after reading ith input symbol) and Ri−1 in the previous step. Formula 1
shows the simulation. Table D contains mask vectors for all alphabet symbols. shl and or
represent bitwise operations left shift and or respectively. For more details see [9, 10].

rj,0 ← 1, 0 < j ≤ m
Ri ← shl(Ri−1) or D[ti], 0 < i ≤ n (1)



Fig. 3. Example of dependence of the preprocessing time (t) in dependence on the length of pattern (m)
for transformation of NFA to the equivalent DFA for different pattern classes

3.2 Dynamic Programming

Dynamic programming simulation for the exact string matching uses integer vector D—one
integer for each state. Formula 2 shows the simulation. For more details see [9, 11].

dj,0 ← 1, 0 < j ≤ m
d0,i ← 0, 0 ≤ i ≤ n
dj,i ← if ti = pj then dj−1,i−1 else dj−1,i−1 + 1, 0 < i ≤ n, 0 < j ≤ m

(2)

While the bit parallelism for the exact string matching runs in time O(dm
w en) the dy-

namic programming runs in time O(mn).
Comparison of all above-mentioned methods is in Fig. 4. As one can expect, Boyer-

Moore algorithm is the winner. The simulation methods as well as the DFA applies in the
approximate string matching where the idea of Boyer-Moore algorithm is not efficient.

4 Approximate String Matching—Hamming Distance

Nondeterministic finite automaton for the approximate string matching using the Hamming
distance can be constructed by connecting k+1 copies of NFA for the exact string matching
by transitions representing edit operation replace and removing unreachable states. The
resulting NFA is shown in Fig. 5. Transition replace can be labeled either by complement
of matching symbol or by any symbol of alphabet. Thus we distinguish p̄-version and Σ-
version respectively. Both versions do correctly the approximate string matching and the
resulting DFAs are isomorphic [9].

We consider also reduced NFA where we omit states needed only to distinguish the
exact number of errors. These states are states 3, 4 and 8 in Fig. 5. The reduced NFA does
not tell what is the exact number of errors in the found string but ensures that the number
is not greater than k. See [9] for more details.

We compared time for transformation of NFA for the approximate string matching using
the Hamming distance to DFA for both versions. As you can see in Fig. 6, p̄-version needs
less time for transformation NFA to DFA for all document classes and thus it is more
suitable. Further in this section we consider p̄-version for DFA.

When we look at Fig. 7 we can see dependence of DFA size on pattern length m and
number k of errors allowed. It seems that while the dependence on k is exponential, the



Fig. 4. Comparison of the average character matching speed (c) for various exact string matching methods
in dependence on the length of pattern (m) for various pattern classes

dependence on m tends to be linear. As expected, there is a linear dependence of transfor-
mation time on DFA size.

The number of states of the resulting DFA strongly depends on the structure of pattern
P . Both the size of the input alphabet |Σ| and the sequences of the repeating characters
are the main factors that affect the resulting DFA. Unfortunately, we are not able to tell
how many states the DFA will have even if we know the structure of pattern P . Fig. 7 is
an example of the dependence of total number of DFA states |Q| on the number of errors
k and pattern length m for the approximate string matching using the Hamming distance.
The increase of states is still exponential but very far from the theoretical upper bound for
this type of DFA. The number of states for m = 19, k = 9 is about 6× 105 in this example
(a sequence of repeating characters of variable length has been used) while the upper bound
is 5.12 × 1017. Still, the exponential growth of the number of DFA states limits us to use
small m and k.

The structure of the pattern also applies as we can see on Fig. 8. We see that the binary
patterns and common English text produce a relatively small number of states. For the
pattern from C source html code, where the periodicity is increased already, we see an
increase in the number of DFA states. For the number π and the DNA sequence, where the
huge overlapping of the pattern occurs, the increase of the DFA size is even more significant.

A surprising result of the experiments was that the reduced approximate string matching
NFA using the Hamming distance produces sometimes even slightly larger DFA than than
non-reduced NFA. Significant decrease of DFA size is for k > m/2 which may not be too
useful in practice. See Fig. 9 and 10.

We may also try to minimize the resulting DFA. Since the matching speed is the same
for the both minimal and non-minimal automata, this makes sense only if the minimal
automata should have significantly less states. The amount of states removed during the
minimization is dependent primarily on the structure of the pattern. For patterns with
small alphabets, like a DNA sequences, the minimization is very efficient (see Fig. 11)—



Fig. 5. NFA for the approximate string matching using the Hamming distance (m = 4, k = 2, p̄-version)

Fig. 6. Comparison of the time (t) required for the transformation of NFA to equivalent DFA for different
pattern classes (c) and NFA versions using the Hamming distance

the experiments show that up to 70% of DFA states can be removed. For the common
text, there is about 25% of space saved. The minimization also depends on the number
of errors k. The automata with more levels should be relatively more minimized. This is
also illustrated in Fig. 11. We should also consider the time required for minimization.
Unfortunately, the increase of time is very significant and shows an exponential response
to the length of pattern m.

4.1 Bit Parallelism

When simulating a run of an approximate string matching NFA for the Hamming distance,
bit parallelism uses one bit vector for each error level of the NFA. The running phase time
is O(kndm

w e). The increase of the running time for increasing k is illustrated in Fig. 12. Our
experiments show that the simulation of Σ-version of NFA runs faster than p̄-version. We
confine ourselves to the statement here that the Σ version should be used in every case.



Fig. 7. Example of increase of the number of DFA states (|Q|) and the time (t) in dependence on the
length of pattern (m) and the number of errors (k) for the approximate string matching using the Hamming
distance

Fig. 8. Increase of the number of DFA states (|Q|) in dependence on the length of pattern (m) for various
pattern structures for the approximate string matching using the Hamming distance

rl
j,0 ← 1, 0 < j ≤ m, 0 ≤ l ≤ k

R0
i ← shl(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i ← (shl(Rl

i−1) or D[ti]) and shl(Rl−1
i−1), 0 < i ≤ n, 0 < l ≤ k

(3)

We expected that reduced version of NFA would run faster by approximately 20% due
to the omitted shl operation. However, this is not always true. The processing time of
the simulation differs very significantly for different pattern classes unexpectedly, while the
simulation of the non-reduced NFA remains the same. The situation is illustrated in Fig. 13
for k = 20.

It seems that the processing speed is dependent on the size of the pattern alphabet. The
reason is probably in the way the array of reduced vectors is accessed—for smaller range of
index j the code is running significantly faster.

As in the case of DFA, the use of reduced NFAs is efficient only when the number of
errors allowed is significant with respect to the length of the pattern.



Fig. 9. Comparison of the number of DFA states (|Q|) and the transformation time (t) resulting from
reduced and non-reduced approximate string matching NFA using the Hamming distance in dependence on
the length of pattern (m) (k = 6)

Fig. 10. Comparison of the number of DFA states (|Q|) and the transformation time (t) resulting from
reduced and non-reduced approximate string matching NFA using the Hamming distance in dependence on
the length of pattern (m) (k = 9)

4.2 Dynamic Programming

Using the dynamic programming for the approximate string matching is exactly the same
as for the exact string matching since the method is not sensitive to the number of errors
k. For different k the number of operations remains the same, only the condition testing
the string match is changed. This is especially useful for the large values of k as discussed
below.

dj,0 ← k + 1, 0 < j ≤ m
d0,i ← 0, 0 ≤ i ≤ n
dj,i ← if ti = pj then dj−1,i−1 else dj−1,i−1 + 1, 0 < i ≤ n, 0 < j ≤ m

(4)

The first aspect to consider when choosing the most efficient approximate matching
method is the number of errors k and the length of pattern m. It is obvious that, especially
for larger number of errors, we are not always able to transform approximate string matching
NFA to the equivalent DFA. To be more concrete, we were able to create a DFA for at most
11 errors using the non-reduced NFA. For the reduced NFA, the limit is raised to 14. Beyond
these limits, the DFA have too many states to fit in the memory of our testing system.

In such cases we should use one of the simulation methods. Even when the DFA is
“small” enough to fit in the memory, we should consider the length of the input text. Since



Fig. 11. Comparison of the number of DFA states (|Q|) for non-minimal and minimal DFA for various
pattern classes and different values of k in dependence on the length of pattern (m) for the approximate
string matching using the Hamming distance

Fig. 12. Example of increase of the run time (t) for bit parallelism simulation in dependence on number
of errors (k) and size of input text (n) for the approximate string matching using the Hamming distance
(m = 10 000)

the generation of the DFA takes a relatively long time, it does not make much sense to use
it for very short input texts where the simulation methods with almost no preprocessing
are very efficient.

The construction of the resolution system is based on the practical observation of the
behavior of each approximate string matching algorithm. Using the measured data for each
simulation method, we are able to tell what the resulting time will be for any input variable
combination since the simulation algorithms are—with some minor exceptions—strictly
linear to all the variables. For the finite automata, the situation is little more complicated.
However, we are still able to gather enough data to estimate the properties of the resulting
DFA.

Fig. 14 is an example of linear dependence of time with an increasing length of pattern
for the dynamic programming. However, we can see some minor abnormalities here. For
the m = 14 000 and m = 20 000 (approximately) the line changes its tangent for all classes
of patterns. The way the processor handles the memory probably changes a little at these
points. We can then approximate the run of the algorithm by three line segments, one for
each section (separated by dashed vertical line in Fig. 14).



Fig. 13. Example of dependence of the run time (t) for bit parallelism simulating reduced NFA using the
Hamming distance on the length of pattern (m) for various pattern classes (c)

Fig. 14. Dependence of the running time (t) on the length of pattern (m) using dynamic programming for
various pattern classes for the approximate string matching using the Hamming distance (n = 100 000)

Let us demonstrate the functionality of the resolution system on the example of bit
parallelism in comparison to dynamic programming. Suppose we have a pattern of length
m = 1000. The decision should be made according to the number of errors k. The method
of bit parallelism benefits from the fact that the number of computer words processed dur-
ing one step of the process is equal to kdm

w e. However, for the number of errors k = w,
the m words have to be processed, which is exactly the same number as for the dynamic
programming. For increasing k the situation becomes even worse. Since the dynamic pro-
gramming is not sensitive to the k, we should expect bit parallelism to be over-performed
by the dynamic programming for some value of the k. To find the limit value of k we can use
the resolution system. We can try to enter a different number of k for fixed m and length
of input text n. The system provides us with the results shown in Fig. 15. The limit value
of k, where the dynamic programming is becoming more efficient depends on the pattern
class. For example, for the matching pattern, being the DNA sequence, we read the value of
k should be greater than 12. This is verified by real measurements as shown also in Fig. 15.

For finite automata the situation is much more complicated. The time and space com-
plexity may change in a more complex way for the increasing length of pattern. Take a look
at Fig. 16 depicting the situation for DFA with k = 1, 2. We see that the increase of the
number of states is pretty linear and therefore can be described by a simple linear equation.
However, the time dependance is far from being linear.



Fig. 15. Comparison of bit parallelism and dynamic programming for various number of errors (k) for the
approximate string matching using the Hamming distance

The solution is to use the available experimental measurements and construct a curve
that fits the data. Curve fitting is a very advanced area of data analysis and is not the subject
of this paper. The package called SIMFIT1 has been used for the data analysis and curve
fitting. The method used for curve fitting is based on the process of unconstrained weighted
least squares regression using sum of sequence of increasing number of exponentials.

Fig. 16. Example of dependance of the number of DFA states (|Q|) and the construction time (t) on the
length of pattern (m) for different number of errors (k) for the approximate string matching using the
Hamming distance

As mentioned above the huge preprocessing time of DFA is compensated with the fast
matching phase. Therefore, we may ask how long the input text should be so the DFA
becomes efficient. The resolution system should be used to find the solution. Lets take a
look at the example of pattern of length m = 500 being an English text. Suppose we are
looking for the occurrences of the pattern in the input text with at most k = 4 mismatches.
The estimation is, that the construction of the DFA should take 26 seconds and the resulting
DFA should have 112 239 states. We can also estimate the running times for each simulation
method depending on the size of input text. This situation is illustrated in Fig. 17. We see
that for n > 18× 106 the resulting time is less than for any other simulation method. The
time for the DFA is displayed as a constant, since the change of the running time over a
given interval is hardly noticeable. We can verify this estimation with real measurement.

1 A Package for Simulation, Curve fitting, Graph plotting and Data Analysis, W. G.Bardsley.



The “real” DFA has been constructed in a time almost equal to the estimation and the
number of states has been 112987, which is less than 1% deviation.

Fig. 17. Comparison of the approximate string matching methods using the Hamming distance (m =
500, k = 4)

At this point, we also have to mention one important attribute of the deterministic
automata. The DFA can be precomputed in advance and stored on any data storage. At
the moment we actually need to perform the matching task, the DFA can be quickly loaded
into the memory and the matching should begin immediately. The advantages of such an
approach are obvious. For example, DFA should be created on one dedicated system and
the resulting DFA should be sent to other systems participating in the matching task.

5 Approximate String Matching—Levenshtein Distance

When using the approximate string matching which utilizes the Levenshtein distance, there
are two more edit operations delete and insert allowed. Fig. 18 shows the corresponding
NFA. Vertical transitions represent insert and diagonal ε-transitions represent delete. The
same procedures as with the Hamming distance are used, however, the processing times are
basically higher because of additional computing because of added edit operations.

The main difference between NFA for the Levenshtein distance and the Hamming dis-
tance automaton is the presence of ε-transitions. Since these transitions expand through all
levels of the NFA, the inner structure is totally different.

We should first consider using the Σ, or p̄ version of the NFA for the transformation.
Fig. 19 illustrates that the Σ version NFA produces DFA with fewer states and in less time.
We have experienced the difference about 10%. Because of the expanded ε-transitions, the
states are no longer so “isolated” as in the case of the Hamming distance NFA. For the Σ
version NFA, where there are even more transitions, a greater number of states are rendered
synonymous during the DFA construction.

The next thing we are interested in is a response to the different pattern classes. Fig. 20
shows that the behavior of DFA for the Levenshtein distance is just an opposite to DFA
for the Hamming distance. The patterns with the smaller alphabets, and large overlapping
results in DFA which have significantly fewer states. We should also notice that the increase
of states is non-linear as is the increase of the transformation time2.
2 Compare to the Hamming distance DFA, with the linear increase of the number of states.
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Fig. 18. NFA for the approximate string matching using the Levenshtein distance (m = 4, k = 2, p̄-version)

Fig. 19. Dependence of the number of DFA states (|Q|) and the transformation time (t) on the length of
pattern (m) for various versions of approximate string matching NFA using the Levenshtein distance (k = 5)

As for the Hamming distance, we can also use reduced NFA. If you remove states 3, 4,
and 8 from Fig. 18, you get the reduced NFA for the approximate string matching using
the Levenshtein distance. Using reduced NFA follows the same rules as for the Hamming
distance. The reduction is especially noticeable for the k = m−1. In such a case, where only
two diagonals remain, the resulting DFA has very small number of states being in O(k).
This is caused by the ε-transitions which render the diagonal states to behave similarly.

There is also a question of the minimal automata. Our experiments have proven that
the DFA which results from the NFA using the Levenshtein distance can be minimized to
approximately half its size. Fig. 21 illustrates the difference between the number of states
of minimal and non-minimal DFA being created for English text. For other pattern classes,
the situation is very similar—the variations are about 10%. The increase in the time is also
illustrated in Fig. 21.

The description of the DFA behavior for the resolution system, constructed from the
measured data, is then based on two estimated exponential curves—one for the states
expansion estimation and the second for the time estimation.



Fig. 20. Dependence of the number of DFA states (|Q|) and the transformation time (t) on the length of
pattern (m) for various pattern classes for the approximate string matching using the Levenshtein distance
(k = 6)

Fig. 21. Comparison of the number of DFA states (|Q|) and the creation time (t) for non-minimal and
minimal DFA in dependence on the length of pattern (m) for the approximate string matching using the
Levenshtein distance (k = 7)

5.1 Bit Parallelism

The implementation of the simulation using the Levenshtein distance differs only in the
number of bitwise operations performed in one step of the algorithm in comparison to
the Hamming distance NFA simulation. Both Σ and p̄ NFA versions of the simulation are
available. We use the Σ as long as it does not require any additional preprocessing, and the
running phase is much more efficient than for the p̄ version.

rl
j,0 ← 0, 0 < j ≤ l, 0 < l ≤ k

rl
j,0 ← 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i ← shl(R0

i−1) or D[ti], 0 < i ≤ n
Rl

i ← (shl(Rl
i−1) or D[ti])

and shl(Rl−1
i−1 and Rl−1

i ) and (Rl−1
i−1 or V ), 0 < i ≤ n, 0 < l ≤ k

(5)

The simulation of the non-reduced NFA shows a strict linearity to all variables as shown
in Fig. 22 and does not show any response to the pattern classes.

For the simulation of the reduced NFA using the bit parallelism, the same problem occurs
as in the case of the Hamming distance. The processing time differs for the different pattern
again—though not so drastically as for the Hamming distance. We must also understand
that the process running the simulation of the reduced automata can never run faster than
the non-reduced simulation for the case when the vectors are not “physically” shortened.



Fig. 22. Example dependence of the computing time (t) on the length of pattern (p) and the length of input
text (n) for various values of number of errors (k)

Fig. 23. Comparison of the processing time (t) required for the simulation of reduced NFA using bit par-
allelism for various pattern classes in dependence on the length of pattern (m) for the approximate string
matching using the Levenshtein distance (k = 20)

5.2 Dynamic Programming

We can apply the same principles as to the dynamic programming using the Hamming
distance. For dynamic programming using the Levenshtein distance we can choose from
either the implementation of Σ or p̄ version of the simulated NFA. Fig. 24 is comparison of
the running times for the various pattern structures as well as a comparison of the Σ and
p̄ version implementation.

dj,0 ← j, 0 ≤ j ≤ m
d0,i ← 0, 0 ≤ i ≤ n
dj,i ←min(if ti = pj then dj−1,i−1 else dj−1,i−1 + 1,

if j < m then dj,i−1 + 1,
dj−1,i + 1), 0 < i ≤ n, 0 < j ≤ m

(6)

One significant difference in comparison to the dynamic programming using the Ham-
ming distance is the availability of the reduced NFA simulation. However, even if we are
not interested in the exact number of errors, we should carefully consider using of the re-
duced NFA here. Two things ought to be considered. The preprocessing of the G matrix
in time O((m + 1)|Σ|) is not negligible, and the algorithm itself is running slower than
the algorithm simulating the non-reduced NFA. Fig. 25 is a comparison of a run of both



Fig. 24. Comparison of the running time (t) for the NFA simulation using dynamic programming for various
pattern classes (c) and different NFA versions in dependence on length of pattern (m) for the approximate
string matching using the Levenshtein distance

reduced and non-reduced simulations using the dynamic programming with the number
of differences k = 1. To benefit from the processing of the shortened vector di we should
increase the value of k. An example of such a process is also shown in Fig. 25. The pattern
of length m = 100 being a “acgt” DNA sequence has been used in this example. We see
that the lines representing the elapsed time in dependence on the value of k cross each
other for k

.= 21. So, if we are looking for the occurrences of the pattern in a text with less
than 21 differences, the simulation of non-reduced NFA should be used even if we do not
care about the exact number of errors. Let us note this example has been simulated using
our resolution system and has been verified with the real measurements afterwards.

Fig. 25. Comparison of the simulation of reduced and non-reduced NFA using dynamic programming for
the approximate string matching using the Levenshtein distance

5.3 Comparison

Here, we will only show the basic comparison of the simulation methods as we did in the
previous section. The situation is shown in Fig. 26. We see that the value of k, where the
simulation methods are almost equal in their performance, is shifted in the direction of
increasing k. For example, for the DNA sequence—the simulation using the bit parallelism
is faster than the dynamic programming for the number of errors k being up to 18 (was 12



for the Hamming distance). This increase is caused by the different ratio of performance
between the implementation of the Hamming and Levenshtein distance simulation for both
methods. In the next section, we present a visual comparison where all of the possible edit
distance simulation methods performances are matched together.

Fig. 26. Comparison of the processing time (t) for the simulation of NFA using dynamic programming for
various pattern classes in dependence on the number of errors (k) for the approximate string matching using
the Levenshtein distance

6 Approximate String Matching—Damerau Distance

The definition of the Damerau distance allows one more edit operation in addition to the
Levenshtein distance—transpose. Again, the complexity of the process is increased. For the
details see [9].

DFA size is increased by approximately 20% when compared with the Levenshtein dis-
tance. Otherwise the behaviour is the same. Σ-version produces smaller DFA. In Fig. 27
we can see DFA sizes for all three edit distances considered in this paper. One can see that
for shorter patterns the size of the DFA utilizing the Levenshtein distances may be smaller
than for the Hamming distance. However, due to the exponential increase of the number of
DFA states the situation is to be inverted for longer patterns.

Bit parallel simulation requires higher preprocessing time since we need precomputed
shr(D[ti]) vectors to speed up the processing. Again, the bit parallel simulation of reduced
NFAs cannot run faster than non-reduced ones unless the vectors are “physically shortened”.

Dynamic programming simulation for the Damerau distance behaves in the same way
as for the Levenshtein distance. The same sensitivity applies to pattern class. Simulation
for Σ-version runs faster than for p̄-version. Since the formula for computing matrix D is
more complex, the simulation of reduced NFA outperform non-reduced for higher k than
for the Levenshtein distance (see Fig. 28).

Fig. 29 shows the comparison of the simulation methods as we did for the Hamming
and Levenshtein distances. We can see, that the limit value of k when the dynamic pro-
gramming simulation outperforms bit parallelism is little higher again then for the case of
the Levenshtein distance3. For the DNA sequence pattern type the time line crosses at the
value of k

.= 26 (was 18 for the Levenshtein distance).

3 We are still taking about the non-reduced Σ version of the NFA.



Fig. 27. Comparison of the number of DFA states (|Q|) in dependence on the length of pattern (m) for
various classes of the DFA (k = 7)

Fig. 28. Comparison of the simulation of reduced and non-reduced NFA using dynamic programming for
the approximate string matching using the Damerau distance

The increase of processing time for all discussed edit distances is shown in Fig. 30. It fol-
lows the expectation that the more edit operation allowed the more complicated simulation
formula and the higher processing time.

7 Resolution system

The resolution system is a quite simple console application handling the method description
files. As mentioned above, each of the possible method is described in such a way, we can
estimate the behavior of the method for any combination of the input variables. Each such
description file resides in a directory named after the edit distance used in the approximate
string matching NFA, and its version. Together, there are six such directories (three edit
distances, each having two versions). Each directory contains number of the description files
identified by the method abbreviation string, pattern type and the reduction flag. For DFA
there ought to be also a set of files describing the minimized automata. The full complete set
should consist of 86 files for each edit distance. However, the size of the current set is much
smaller. Once we have determined which of the version (Σ or p̄) is more effective for each



Fig. 29. Comparison of the processing time (t) for the simulation of NFA using dynamic programming for
various pattern classes in dependence on the number of errors (k) for the approximate string matching using
the Damerau distance

Fig. 30. Comparison of the time consumption for different simulation method running the simulation of
various approximate string matching NFAs (Σ versions)

of the implemented method, the extensive measurements have been performed only for the
more profitable version. The essential set of the description files consists of 29 files at the
moment. However, it is not a problem to add the description files later at any moment. The
resolution system is designed is such a way, it searches for all possible description files—if
the one of the files is missing, it is skipped and treated as not currently available.

The application reads all the available description files and then produces output as
shown in Tab. 3. The time (and state for DFA) estimations are computed and the method
with the minimal estimated value is recommended. The “real” measurements can be per-
formed afterwards and the estimated and elapsed values are matched together. The process
of matching is performed by the program called simply search which encapsulates all of
the implemented approximate string matching algorithms.

Since the description of the methods behavior fits only to the system where the mea-
surement have been performed, we should match the speed of the actual system to our
reference system somehow. This should be done with the provided setup program, which
runs a synthetic benchmark procedure, widely know as Dhrystone [20]. Any actual system
is benchmarked and all the time estimations are being corrected according to the ratio of
performance of the actual system and the reference system.



Time estimations (after time adjustment)

=======================================================

[non-reduced NFA]

DFA,non-reduced NFA,p-version:not available

DP,non-reduced NFA,S/p-version:time=7.13397s

BP,non-reduced NFA,S-version:time=11.02s

Recommendations

=======================================================

DP,non-reduced NFA,S/p-version:time=7.13397s

Real test results

=======================================================

Elapsed time=7.34s

Estimated time=7.13397s

Deviation=2.80691%

Table 3. Sample output from the approximate string matching method resolution system

There may be a question of accuracy of the estimated results. The system is not intended
to provide a precise results. The purpose of this project is to determine the basic features
of each method used in the approximate string matching. The resolution system should be
treated as a guide for choosing the appropriate string matching method for any particular
matching task. No statistical evaluation of the results has been made to verify the system
accuracy.

The precision of the results depends mainly on the actually used pattern. For the pat-
terns and input files used for the reference measurements the result should be close enough
to the estimation. However, for pattern with different structures, the result may be also
different. We have specified the pattern classes in the beginning of this chapter. Any actual
pattern may differ in size of the alphabet and the characteristic structure. Unfortunately,
the performance of the alphabet sensitive methods is not affected only by the alphabet size.
Therefore, we cannot adapt the estimated results to the actual alphabet size.

For the approximate string matching methods utilizing the NFA simulation the situa-
tion is simplified with the mostly linear dependence of the method behavior on the input
variables. The estimated processing times are usually quite precise—we have experienced
deviations up to 10%. For the deterministic automata the situation is quite different. The
increase of the number of states as well as the increase of the construction time is mostly
exponential with increasing number of errors k, and the length of the pattern m. For the
range of input variables for which we have performed the measurements, and the data has
been recorded in the description files, the estimations ought to be right. However, in the
cases where there are not enough measured data available for precise estimation, the result
may be significantly different. In the direction of increasing m with fixed k this is not the
problem since we usually have a data set of good quality, so the estimation curve can be
constructed with high precision. However, for the direction of increasing k we were not
able to find suitable curve to fit the experimental results in most case. In such a case, the
estimation is being made from last two measured values using simple linear equation.

Fig. 31 shows an example of time required for creation of DFA for pattern being a DNA
sequence for number of errors k = 2 and an attempt to fit curve to these data. We can see a
very significant fluctuation of time in dependance on the length of pattern. Such a behavior
is nearly impossible to effectively describe. This especially happens for long patterns, where
huge periodicity of pattern take place.



Fig. 31. Example of time dependence (t) on the length pattern (m) for pattern being a DNA sequence
(k = 2)

Use of the deterministic automata, in general, is quite problematic. To fully understand
the behavior of DFA for any given pattern, more extensive research should be carried on
this subject. However, this research is beyond limits of this project.

8 Conclusions

We presented the results of our experiments with DFA and simulation of NFA for the exact
and approximate pattern matching. They verify expectations leading from our theoretical
work. However, there is one exception. We expected the use of reduced NFAs would be
efficient. In practice they are efficient only when the number of allowed errors k is big with
respect to the length of pattern m.

DFA size grows reasonable with increasing m and exponentially with increasing k. When
DFA cannot fit in memory or for short texts, simulation methods apply. Comparing the
simulation methods we see that dynamic programming is independent on k.

Based on the experimental results we designed a resolution system which for given con-
figuration of the approximate string matching task decides which of the presented method
would be most efficient. Since we found a sensitivity of the methods to the alphabet size
and class of the text, for a practical application would be advisable to do more detailed
classification of input texts appearing in the application and test these classes. Thus one
can improve precision of the resolution system.
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A Two-dimensional Online Tessellation Automata

Approach to Two-dimensional Pattern Matching ∗

Tomáš Polcar and Bořivoj Melichar

Abstract

A new general approach to exact and approximate two-dimesional pat-
tern matching is presented. This method, based on two-dimensional online
tessellation automata, is a generalization of a well known one-dimensional
pattern matching approach based on finite automata. It creates a nonde-
terministic two-dimensional online tessellation automaton and transforms
it, by newly presented method, to a deterministic one. Then this automa-
ton processes the input two-dimensional text and whenever it reaches a
final state it reports an occurrence of the pattern. Since the text process-
ing depends only on the size of the text, the searching phase of presented
algorithms requires only O(n2) time for the text of size (n, n). The only
disadvantage of this method is the possibility of the exponential (in the
size of the pattern) time of the preprocessing phase.

1 Introduction

Pattern matching in text is a well known theoretical problem in computer sci-
ence. The expansion of multimedia requires an appropriate generalization of
the pattern matching to higher dimensions. The first intuitive extension is
the seeking of rectangular patterns in rectangular text. This leads to the two-
dimensional pattern matching that can be also defined for non-rectangular pat-
terns.

Two-dimensional exact and approximate pattern matching has many appli-
cations, especially in image processing. It is used for content based information
retrieval from image databases, for image analysis, and for medical diagnos-
tics. It is also used by some methods of detecting edges, where a set of ’edge
detectors’ is matched against the picture, and by some OCR systems.

Let us suppose squared pattern P of size (m,m), squared text T of size
(n, n), and σ = min

(|A|,m2
)
, where |A| is the size of the alphabet A. The

first linear time two-dimensional exact pattern matching algorithm, which takes
O ((

m2 + n2
)
log σ

)
time, was introduced by Bird [Bir77] and, independently,

∗This research has been partially supported by FRVŠ grant No. 2060/04, by CTU grant
No. CTU0409213, and by the Ministry of Education, Youth, and Sports of the Czech Republic
under research program No. J04/98:212300014.
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by Baker [Bak78]. Using two-dimensional periodicity studied by Amir and Ben-
son [AB92], Galil and Park [GP92] proposed the truly alphabet independent
algorithm, which requires O (

m2 + n2
)

time. The best average case result is
due to Baeza-Yates and Régnier [BYR93], who obtained O (

n2/m
)

time on
average and O (

n2
)

time in the worst case. Two-dimensional online tessella-
tion automata were foresaid by Inoue and Nakamura [IN77]. They also proved
some basic properties of these acceptors. An algorithm for two-dimensional pat-
tern matching using these automata, which simulates the Bird-Baker algorithm
[Bir77, Bak78], was given by Toda, Inoue, Takanami [TIT83]. Slightly different
notation, adopted from [GR97], will be used for two-dimensional online tessel-
lation automata in this paper. The best result in the pattern matching with at
most k substitutions (in this paper called Hamming distance defined in Defini-
tion 8) gave Amir and Landau [AL91] achieving O (

(k + log σ)n2
)

using O (
n2

)
space. The same problem was solved by Ranka and Heywood [RH91] using less
space O (kn) but requiring O (

(k + m)n2
)

time.
New two-dimensional pattern matching method presented in this paper is

based on two-dimensional online tessellation automata. As these automata can
be comprehended as a generalization of finite automata (well known from one-
dimensional case), the presented method can be seen as a generalization of the
one-dimensional pattern matching algorithm based on finite automata. The
biggest advantage of this method is that the searching phase always requires
only time linear with the size of the text O (

n2
)
, and does not depend on the

size of the pattern or the number of allowed errors. Unfortunately, there is no
better than exponential estimation of the preprocessing phase time, which is
O(σ 23m2

) in case of exact 2D pattern matching and O(σ 23k2m2
) in case of 2D

pattern matching with at most k substitutions.
This paper is organized as follows. After the short introduction given in this

section, Section 2 introduces basic definitions and terminology. After that, Sec-
tion 3 presents new algorithm that transforms special type of two-dimensional
online tessellation automata into equivalent deterministic two-dimensional on-
line tessellation automata. Results from this section are then used in Section 4
that describes a new approach to the two-dimensional pattern matching using
two-dimensional online tessellation automata. Finally, conclusions and outlines
for future work are given in Section 5.

2 Basic notions and notations

Let A be a finite alphabet.

Definition 1 (picture) A picture (two-dimensional string) over A is a two-
dimensional rectangular array of elements of A. The set of all pictures over A
is denoted by A∗∗. Am,n denotes the set of all pictures of size (m,n). ¤

Given a picture u, the number of rows of u is denoted by row(u) and the
number of columns of u is denoted by col(u). Let 1 ≤ i ≤ i′ ≤ row(u),
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. . . qu . . .

. . . . . . a . . . . . .

... . . . . . . . . .
ql . . . . . . qr . . . . . .
... . . . . . . . . .

a)

qr

qu

ql

a

b)

Figure 1: An example of a part of the transition table (at part a)) and the
transition diagram (at part b)) describing δ (qu, ql, a) = qr

1 ≤ j ≤ j′ ≤ col(u). u(i, j) denotes the symbol in u with coordinates (i, j),
u[(i, j), (i′, j′)] denotes the subarray of u of size (i′ − i + 1, j′ − j + 1) starting
at position (i, j).

Definition 2 (subpicture, prefix, suffix) A picture v ∈ Am,n is said to be
a subpicture of a picture u ∈ Am′,n′ , m ≤ m′, n ≤ n′ if there exists (i, j) such
that v = u[(i, j), (i + m − 1, j + n − 1)]. It is a prefix if (i, j) = (1, 1) and a
suffix if (i, j) = (m′ −m + 1, n′ − n + 1). ¤

Since it will be necessary to identify the boundary of a picture u a picture û
is defined as a picture of size (row(u) + 2, col(u) + 2) obtained by surrounding
u with a special boundary symbol # /∈ A. As û is a special picture for a special
purpose, a different coordinate origin will be used for it. The coordinates of
upper left corner of u are (1, 1) but of û are (0, 0). It ensures that u(i, j) = û(i, j)
for all 1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u).

Definition 3 (2D Online Tessellation Automaton) A nondeterministic
(deterministic) two-dimensional online tessellation automaton, which is referred
as 2OTA (2DOTA), is a 5-tuple A = (A,Q, δ, q0, F ) where:

- A is the input alphabet,

- Q is the finite set of states,

- δ : Q×Q×A → P(Q) (δ : Q×Q×A → Q) is the transition function,

- q0 ∈ Q is the initial state,

- F ⊆ Q is the set of final states. ¤

As well as transition function of finite automata, transition function of 2OTA
can be described by several manners. The most common is a transition table
and the most intuitive is a transition diagram. Let us note that the transition
diagram can depict one state more than once. It helps to preserve clearness of
the diagram. An example of both (transition table and transition diagram) is
shown in Figure 1.
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Definition 4 (Run of 2OTA) A run of A on a picture u ∈ A∗∗ consists of
associating a state (from the set Q) with each position (i, j) of u. Such state is
given by the transition function δ and depends on the states already associated
with positions (i−1, j) and (i, j−1) and on the symbol u(i, j). Therefore, a run
of A is a picture rA(u) of size (row(u), col(u)) over the alphabet Q. The set of
all possible runs of A on u is denoted by RA(u).

In the beginning, the initial state q0 is associated with all positions of the
first row and of the first column of the picture û. After that, the run consists
of row(u) + col(u) − 1 steps. At each step l, one diagonal of picture rA(u),
which consists of such states that i + j − 1 = l, is computed. 2OTA A ac-
cepts (or recognizes) a picture u if there exists a run rA(u) ∈ RA(u) such that
rA(u)(row(u), col(u)) ∈ F . A set of all pictures accepted by 2OTA A (language
recognized by A) is denoted by L(RA). The transition function is not necessar-
ily a total function. In case it is a partial function, once the automaton cannot
continue, the run ends and the picture is not accepted. ¤

Definition 5 (2OTA equivalency) Two 2OTA A1 and A2 are equivalent if
and only if they accept the same language, i.e. L(RA1) = L(RA2) ¤

Definition 6 (2OTA simulation) Simulation of A = (A,Q, δ, q0, F ) on a
picture u ∈ A∗∗ is a picture sA(u) of size (row(u), col(u)) over the alphabet
P(Q). In the beginning, the initial set of states {q0} is associated with all posi-
tions of the first row and of the first column of û. After that, a set of states at
a position (i, j) is computed by the following expression:

sA(u)(i, j) =
⋃

p∈sA(u)(i−1,j)

⋃

q∈sA(u)(i,j−1)

δ(p, q, u(i, j)).

Simulation accepts the picture u if sA(u)(row(u), col(u)) ∩ F 6= ∅. A set of all
pictures accepted by simulation of 2OTA A is denoted by L(sA). ¤

Definition 7 (2OTA simulatability) If a given 2OTA A satisfies

L(RA) = L(sA), (1)

it is called simulatable two-dimensional online tesselation automaton. ¤

In order to use approximate pattern matching, it is necessary to define an
error distance.

Definition 8 (2D Hamming distance) A Two-dimensional Hamming dis-
tance between pictures u, v of the same size (m,n) is the number of coordinates
(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n such that u(i, j) 6= v(i, j). It will be denoted by
H(u, v). ¤
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3 2OTA to 2DOTA transformation

As was shown by Inoue and Nakamura in [IN77], 2OTA are more powerful
than 2DOTA, because there is at least one 2OTA accepting language that is
not recognizable by any 2DOTA. It means that it is not possible to create a
universal algorithm for 2OTA to 2DOTA transformation.

Fortunately, this algorithm can be constructed for simulatable 2OTA by gen-
eralization of the subset construction, which is well know from one-dimensional
case (presented e.g. in [Yu97] page 50).

Lemma 1 Let A = (A,Q, δ, q0, F ) be a simulatable 2OTA. Then a 2DOTA
A′ = (A,Q′, δ′, q′0, F

′) where:

- Q′ = P(Q),

- δ′(p, q, a) =
⋃

r∈p

⋃
s∈q δ(r, s, a) ∀p, q ∈ Q′, ∀a ∈ A,

- q′0 = {q0}
- F ′ = {q | q ∈ Q′, q ∩ F 6= ∅}.

is a deterministic 2D online tessellation automaton equivalent to A.

Proof 1 Let us show by induction on (i, j) that rA′(u)(i, j) = sA(u)(i, j). It
simply holds for (i, 0), 0 ≤ i ≤ row(u) and (0, j), 0 ≤ j ≤ col(u), because
rA′(u)(i, 0) = sA(u)(i, 0) = rA′(u)(0, j) = sA(u)(0, j) = {q0}.

Let us suppose that it also holds for coordinates (i − 1, j) and (i, j − 1),
1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u). From the definition of the 2OTA simulation and
δ′, sA(u)(i, j) =

⋃
p∈sA(u)(i−1,j)

⋃
q∈sA(u)(i,j−1) δ(p, q, u(i, j)) and rA′(u)(i, j) =⋃

p∈rA′ (u)(i−1,j)

⋃
q∈rA′ (u)(i,j−1) δ(p, q, u(i, j)). Thus rA′(u)(i, j) = sA(u)(i, j).

The 2OTA simulation accepts u if and only if sA(u)(row(u), col(u))∩F 6= ∅,
F ′ = {q | q ∈ Q′, q∩F 6= ∅}, and rA′(u)(row(u), col(u)) = sA(u)(row(u), col(u)).
Thus L(RA′) = L(sA).

Since L(sA) = L(RA) (A is the simulatable 2OTA), L(RA′) = L(RA). ¤

Well, how to show that a particular 2OTA is the simulatable one? It is
necessary to show, that it satisfies condition (1). Lemma 2 shows that one part
of this condition is fulfilled by all 2OTA.

Lemma 2 Given a 2OTA A, L(RA) ⊆ L(sA).

Proof 2 Consider a picture u ∈ L(RA). Let us show by induction on (i, j) that
for any run rA ∈ RA, rA(u)(i, j) ∈ sA(u)(i, j), 0 ≤ i ≤ row(u), 0 ≤ j ≤ col(u).
It simply holds for (i, 0), 0 ≤ i ≤ row(u) and (0, j), 0 ≤ j ≤ col(u) because
rA(u)(i, 0) = rA(u)(0, j) = q0 and sA(u)(i, 0) = sA(u)(0, j) = {q0}.

Let us suppose that it also holds for the coordinates (i − 1, j) and (i, j −
1), 1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u). Then rA(u)(i, j) ∈ sA(u)(i, j) because
sA(u)(i, j) =

⋃
p∈sA(u)(i−1,j)

⋃
q∈sA(u)(i,j−1) δ(p, q, u(i, j)).

Since rA(u)(row(u), col(u)) ∈ sA(u)(row(u), col(u)), u ∈ L(sA). ¤
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As it could be quite difficult to prove the remainder, following sufficient condi-
tion, which is easier to prove, was defined.

Lemma 3 Let A = (A,Q, δ, q0, F ) be a 2OTA that satisfies

∀u ∈ A∗∗, ∀(i, j), 1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u),
∀o ∈ sA(u)(i− 1, j), ∀p ∈ sA(u)(i, j − 1),
either ∃ rA(u) ∈ RA(u), o = rA(u)(i− 1, j), p = rA(u)(i, j − 1),
or δ(o, p, u(i, j)) = ∅.

(2)

Then A is the simulatable 2OTA.

Proof 3 It is enough to show that L(RA) ⊇ L(sA). First, let as show that if a
given 2OTA A satisfies

∀u ∈ A∗∗, ∀(i, j), 0 ≤ i ≤ row(u), 0 ≤ j ≤ col(u),
∀q ∈ sA(u)(i, j), ∃ rA(u) ∈ RA(u), q = rA(u)(i, j), (3)

L(RA) ⊇ L(sA). Since the condition is satisfied for all (i, j) it is also satisfied
for (row(u), col(u)). Thus when the picture u is accepted by the simulation of
A, it also exists an accepting run of A.

Now, it suffice to prove that condition (2) implies condition (3). Let us
suppose that A satisfies condition (2) but it does not satisfy condition (3). It
means there is a picture u, (i, j), 1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u), and q ∈
sA(u)(i, j), such that for all runs rA(u) ∈ RA(u), rA(u)(i, j) 6= q. It means that
q is not accessible by any run of A, but it is accessible by the simulation of A.
The only possibility how q can get into sA(u)(i, j) is that there are o ∈ sA(u)(i−
1, j), p ∈ sA(u)(i, j − 1), δ(o, p, u(i, j)) 6= ∅, q ∈ δ(o, p, u(i, j)). Since q at
position (i, j) is not accessible by any run of A, o and p were not accessible by the
same run of A (i.e. @ rA(u) ∈ RA(u), o = rA(u)(i− 1, j), p = rA(u)(i, j − 1)).
Otherwise q would be also accessible by this run because q ∈ δ(o, p, u(i, j)). This
is the contradiction with fact that A satisfies condition (2) and the proof is
complete. ¤

What is the space and time complexity of this generalized subset construc-
tion algorithm? Let AN = (A,QN , δN , qN

0 , FN ) be a simulatable 2OTA and
AD = (A,QD, δD, qD

0 , FD) be equivalent 2DOTA. Since states of AD are created
as the sets of states of AN , |QD| = O(2|QN |). The total number of transitions
is O(|A||QD|2) = O(|A|22|QN |), because δ function is defined on Q × Q × A.
Moreover, one state of AD is formed by at most |QN | states of AN . Thus the
total time required by AD construction is O(|A||QN ||QD|2) ≤ O(|A||QD|3) =
O(|A|23|QN |).

The space required by resulting automaton AD is equal to the number of its
states plus the number of its transitions. Thus it requires O(2|QN |+|A|22|QN |) =
O(|A|22|QN |) space.
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Algorithm 1 Two-dimensional pattern matching by 2OTA.
Input: Pattern P , text T , type of pattern matching problem type.
Output: Coordinates of lower rights corners of all occurrences of P .

1: Create simulatable 2OTA AN for pattern matching problem type and given
pattern P as described in Section 4.1 or 4.2.

2: Transform 2OTA AN to 2DOTA AD.

3: Run AD on T .

4: Output = all positions (i, j) associated with final state of AD.

4 Pattern matching by 2OTA

Now it is possible to generalize one-dimensional pattern matching algorithm,
which was described by Melichar and Holub in [MH97], into two dimensions as
it is described in Algorithm 1. This algorithm works in two independent phases.
Preprocessing phase creates deterministic two-dimensional pattern matching au-
tomaton, for given pattern and pattern matching problem. This phase depends
on the transformation of 2OTA to 2DOTA described in previous Section 3 and
on the pattern matching automata construction, which is described in Sec-
tion 4.1 and 4.2. Processing phase then runs the automaton created by pre-
processing phase on the input text.

What is the space and time complexity of this algorithm? Since it works
in two independent phases, it is possible to analyze them separately. As the
construction of nondeterministic automaton is quite faster than its transforma-
tion into deterministic one, the time of the preprocessing phase is given by the
time of the 2OTA to 2DOTA transformation, which was analyzed in Section 3.
Processing phase requires always linear time with the size of the input text.

The extra space required by this algorithm is given by the space required by
the pattern matching automaton (analyzed in Section 3), and by space required
for automaton run, which is O(n) for the input text of size (n, n).

4.1 Exact two-dimensional pattern matching

Let us create a 2OTA for exact two-dimensional pattern matching. In order to
do that, let us generalize the pattern matching automata from the one-dimen-
sional case. Therefore, a 2OTA for matching pattern P will be a 2OTA accepting
all pictures with P as its suffix. Such automaton is created by Algorithm 2.

Let us show the analogy to the one-dimensional case (described in [MH97]).
q0 ∈ δ(q0, q0, x) for all x ∈ A represents the self loop at the initial state. The
rest of δ function accepts exactly the picture P . The only nondeterminism of
the δ function is created in step 5 of Algorithm 2. The key question is, whether
this automaton is the simulatable one.
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Algorithm 2 Construction of 2OTA for two-dimensional exact pattern match-
ing.
Input: A pattern P .
Output: A 2OTA A accepting all pictures with P as its suffix.

1: m = row(P ), n = col(P ),

2: Q = {q0} ∪ {qi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
3: F = {qm,n},
4: δ(q0, q0, x) = {q0} for x ∈ A, x 6= P (1, 1)

5: δ(q0, q0, P (1, 1)) = {q0, q1,1},
6: δ(qi−1,1, q0, P (i, 1)) = {qi,1} for 2 ≤ i ≤ m,

7: δ(q0, q1,j−1, P (1, j)) = {q1,j} for 2 ≤ j ≤ n,

8: δ(qi−1,j , qi,j−1, P (i, j)) = {qi,j} for 2 ≤ i ≤ m, 2 ≤ j ≤ n,

9: A = (A, Q, δ, q0, F ).

Lemma 4 A 2OTA A = (A,Q, δ, q0, F ) for exact pattern matching of pattern
P created by Algorithm 2 is a simulatable 2OTA.

Proof 4 As was shown in Lemma 3 it is enough to show that it satisfies condi-
tion 2. In other words, it is necessary to show that for all pictures u ∈ A∗∗ and
for all o ∈ sA(u)(i− 1, j), p ∈ sA(u)(i, j − 1), 1 ≤ i ≤ row(u), 1 ≤ j ≤ col(u) it
is satisfied that o and p are either accessible by the same run of A (∃ rA(u) ∈
RA(u), o = rA(u)(i− 1, j), p = rA(u)(i, j − 1)) or δ(o, p, u(i, j)) = ∅.

Let o = qi′,j′ and p = qi′′,j′′ . From the definition of δ function in Algo-
rithm 2, δ(qi′,j′ , qi′′,j′′ , a) 6= ∅ only if i′′ = i′ + 1, j′ = j′′ + 1, and a = P (i′′, j′).
Since there is a run rA(u) ∈ RA(u) such that rA(u)(i − 1, j) = qi′,j′ only if
P [(1, 1), (i′, j′)] is the suffix of u[(1, 1), (i − 1, j)], rA(i, j − 1) = qi′′,j′′ only if
P [(1, 1), (i′′, j′′)] is the suffix of u[(1, 1), (i, j − 1)], and a = P (i′′, j′), it holds
that P [(1, 1), (i′′, j′)] is the suffix of u[(1, 1), (i, j)] and the condition holds. Since
q0 represents the empty prefix, the condition also holds for o = q0 or p = q0. ¤

And what is the number of states of 2OTA A created by Algorithm 2? It
creates one state for each prefix of the pattern, so the number of states of A
is linear with the size of the pattern – m2 for the pattern of size (m,m). An
example of the exact pattern matching is shown in Example 1.

Example 1 Let us create a deterministic two-dimensional online tessellation
automaton for the exact matching of a picture a b

b a
. At first, a nondetermin-

istic 2OTA is created using Algorithm 2. Its δ function of this automaton is
described in Figures 2 and 3. After that, this automaton is transformed by
the subset construction into a deterministic one (its transition table is shown in
Figure 4). Once the 2DOTA is created, it can be used for the pattern matching,
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0 1, 1 1, 2 2, 1 2, 2
a b x a b x a b x a b x a b x

0 0; 1, 1 0 0 2, 1
1, 1 1, 2
1, 2
2, 1 2, 2
2, 2

Figure 2: The δ function (described by the transition table) of 2OTA for exact
pattern matching from Example 1 (As the state names are in form qi,j , only
subscripts of the state names are shown in this table.)

a

a

b

b

A

0

0

0

0 0

1, 1 1, 2

2, 1 2, 2

Figure 3: The δ function (described by the transition diagram) of 2OTA for
exact pattern matching from Example 1 (As the state names are in form qi,j ,
only subscripts of the state names are shown in this diagram.)

e.g. in a picture shown in Figure 5 a). Run of the 2DOTA over this picture
and found occurrences are shown in Figure 5 b). ¤

4.2 Two-dimensional pattern matching using Hamming
distance

Basic principles presented in Section 4.1 can be used to create an online tessella-
tion automaton for two-dimensional pattern matching using Hamming distance.

Each state of the exact pattern matching automaton represents a particular
prefix of searched pattern. Hamming pattern matching automaton requires
an additional information about a number of errors occurred in certain prefix.
However, it is still not enough. The issue is in fact, that it is not possible to
compute the number of errors of prefix with coordinates (i, j) from the number of
errors of prefixes with coordinates (i−1, j) and (i, j−1), because it is necessary
to know the number of errors common for both prefixes. Thus, all states but
initial one of a pattern matching 2OTA using Hamming distance will be formed
by 4-tuple (i, j, α, β), where i and j represents the size of found prefix (as in
exact case), α is the number of errors in a current column of a prefix, and β is
the number of all errors in a prefix. Thus the transition function computes new
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0 0; 1, 1 0; 1, 1; 2, 2
a b x a b x a b x

0 0; 1, 1 0 0 0; 1, 1 0; 2, 1 0 0; 1, 1 0; 2, 1 0
0; 1, 1 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2; 2, 1 0 0; 1, 1 0; 1, 2; 2, 1 0

0; 1, 1; 2, 2 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2; 2, 1 0 0; 1, 1 0; 1, 2; 2, 1 0
0; 1, 2 0; 1, 1 0 0 0; 1, 1 0; 2, 1 0 0; 1, 1 0; 2, 1 0

0; 1, 2; 2, 1 0; 1, 1 0 0 0; 1, 1 0; 2, 1 0 0; 1, 1 0; 2, 1 0
0; 2, 1 0; 1, 1 0 0 0; 1, 1 0; 2, 1 0 0; 1, 1 0; 2, 1 0

0; 1, 2 0; 1, 2; 2, 1 0; 2, 1
a b x a b x a b x

0 0; 1, 1 0 0 0; 1, 1 0 0 0; 1, 1 0 0
0; 1, 1 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2 0

0; 1, 1; 2, 2 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 2 0
0; 1, 2 0; 1, 1 0 0 0; 1, 1 0 0 0; 1, 1 0 0

0; 1, 2; 2, 1 0; 1, 1; 2, 2 0 0 0; 1, 1; 2, 2 0 0 0; 1, 1 0 0
0; 2, 1 0; 1, 1; 2, 2 0 0 0; 1, 1; 2, 2 0 0 0; 1, 1 0 0

Figure 4: The δ function of 2DOTA for exact pattern matching from Example 1
(As the state names are in form qi,j , only subscripts of the state names are
shown in this table.)

a b x a a b b
a b a b x a b
x b b a b a x
b b x b a a b
a a b b a x a

a)

0; 1, 1 0; 1, 2 0 0; 1, 1 0; 1, 1 0; 1, 2 0
0; 1, 1 0; 1, 2 0; 1, 1 0; 1, 2; 2, 1 0 0; 1, 1 0; 1, 2

0 0 0; 2, 1 0; 1, 1; 2, 2 0; 1, 2 0; 1, 1 0
0 0 0 0; 2, 1 0; 1, 1; 2, 2 0; 1, 1 0; 1, 2

0; 1, 1 0; 1, 1 0; 1, 2 0 0; 1, 1 0 0; 1, 1

b)

Figure 5: a) Input picture for pattern matching from Example 1 (squares denotes
pattern occurrences) b) Run of the 2DOTA from Example 1 over the picture
from a) (As the state names are in form qi,j , only subscripts of the state names
are shown in this table. Squares denotes found pattern occurrences - the only
final state is 0; 1, 1; 2, 2.)

state as follows:

δ(qi−1,j,α,β , qi,j−1,α′,β′ , a) =
{

qi,j,α,β′+α when a = P (i, j),
qi,j,α+1,β′+α+1 otherwise.

Such 2OTA is created by Algorithm 3. It is possible to see, that the only
nondeterminism of the δ function, created by steps 4 and 5 of Algorithm 3, is
again caused by the self loop at the initial state.

Lemma 5 A 2OTA A = (A,Q, δ, q0, F ) for pattern matching using Hamming
distance of pattern P created by Algorithm 3 is a simulatable 2OTA.

Proof 5 This proof is nearly the same as the proof of Lemma 4. The only
difference is that the δ function is little bit more complicated than in the exact
case.
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Algorithm 3 Construction of 2OTA for two-dimensional pattern matching us-
ing Hamming distance.
Input: A pattern P , a number of allowed errors k.
Output: A 2OTAA accepting all pictures u that exists a picture v, H(u, v) ≤ k,
v is the suffix of P .

1: m = row(P ), n = col(P ),

2: Q = {q0} ∪ {qi,j,α,β | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ β ≤ min(i · j, k), 0 ≤ α ≤
min(i, β)},

3: F = {qm,n,α,β | 0 ≤ β ≤ k, 0 ≤ α ≤ min(m,β)},
4: δ(q0, q0, P (1, 1)) = {q0, q1,1,0,0},
5: δ(q0, q0, a) = {q0, q1,1,1,1} for a ∈ A, a 6= P (1, 1),

6: δ(qi−1,1,α,α, q0, P (i, 1)) = {qi,1,α,α} for 2 ≤ i ≤ m, 0 ≤ α ≤ min(i− 1, k),

7: δ(qi−1,1,α,α, q0, a) = {qi,1,α+1,α+1} for a ∈ A, a 6= P (i, 1), 2 ≤ i ≤ m,
0 ≤ α ≤ min(i− 1, k − 1),

8: δ(q0, q1,j−1,α,β , P (1, j)) = {q1,j,0,β} for 2 ≤ j ≤ n, 0 ≤ β ≤ min(j − 1, k),
0 ≤ α ≤ min(1, β),

9: δ(q0, q1,j−1,α,β , a) = {q1,j,1,β+1} for a ∈ A, a 6= P (1, j), 2 ≤ j ≤ n, 0 ≤ β ≤
min(j − 1, k − 1), 0 ≤ α ≤ min(1, β),

10: δ(qi−1,j,α,β , qi,j−1,α′,β′ , P (i, j)) = {qi,j,α,β′+α} for 2 ≤ i ≤ m, 2 ≤ j ≤ n,
0 ≤ β ≤ min((i−1)j, k), 0 ≤ α ≤ min(i−1, β), 0 ≤ β′ ≤ min(i(j−1), k−α),
0 ≤ α′ ≤ min(i, β′),

11: δ(qi−1,j,α,β , qi,j−1,α′,β′ , a) = {qi,j,α+1,β′+α+1} for a ∈ A, a 6= P (i, j), 2 ≤
i ≤ m, 2 ≤ j ≤ n, 0 ≤ β ≤ min((i − 1)j, k − 1), 0 ≤ α ≤ min(i − 1, β),
0 ≤ β′ ≤ min(i(j − 1), k − α− 1), 0 ≤ α′ ≤ min(i, β′),

12: A = (A, Q, δ, q0, F ).

Let o = qi′,j′,α′,β′ and p = qi′′,j′′,α′′,β′′ . From the definition of δ function in
Algorithm 3, δ(qi′,j′,α′,β′ , qi′′,j′′,α′′,β′′ , a) 6= ∅ only if i′′ = i′+1, j′ = j′′+1, and
either a = P (i′′, j′) and β′′+α′ ≤ k or β′′+α′+1 ≤ k. rA(u)(i−1, j) = qi′,j′,α′,β′

only if P [(1, 1), (i′, j′)] is the suffix of u[(1, 1), (i − 1, j)], with the number of
errors α′ in the j′-th column and β′ in total. rA(i, j − 1) = qi′′,j′′,α′′,β′′ only
if P [(1, 1), (i′′, j′′)] is the suffix of u[(1, 1), (i, j − 1)], with the number of errors
α′′ in the j′′-th column and β′′ in total. Thus it holds that P [(1, 1), (i′′, j′)]
is the suffix of u[(1, 1), (i, j)] with either β′′ + α′ ≤ k errors if a = P (i′′, j′)
or β′′ + α′ + 1 ≤ k errors if a 6= P (i′′, j′) and the condition holds. Since q0

represents the empty prefix, the condition also holds for o = q0 or p = q0. ¤

And what is the number of states of 2OTA A created by Algorithm 3? It
creates at most k2 states for each prefix of the pattern, where k is the number
of allowed errors. So, the number of states of A is O(k2m2) for the pattern of
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0 1, 1, 0, 0 1, 1, 1, 1
a b x a b x a b x

0
0

1, 1, 0, 0
0

1, 1, 1, 1
0

1, 1, 1, 1
2, 1, 1, 1 2, 1, 0, 0 2, 1, 1, 1 2, 1, 1, 1

1, 1, 0, 0 1, 2, 1, 1 1, 2, 0, 0 1, 2, 1, 1
1, 1, 1, 1 1, 2, 0, 1

1, 2, 0, 0 1, 2, 0, 1 1, 2, 1, 1
a b x a b x a b x

2, 1, 0, 0 2, 2, 0, 0 2, 2, 1, 1 2, 2, 1, 1 2, 2, 0, 0 2, 2, 1, 1
2, 1, 1, 1 2, 2, 0, 1 2, 2, 0, 1

Figure 6: The δ function (described by the transition table) of 2OTA for pattern
matching using Hamming distance from Example 2 (As the state names are
in form qi,j,α,β , only subscripts of the state names are shown in this table.
Moreover, only non-empty rows and columns are shown here.)

size (m,m). An example of the pattern matching using Hamming distance is
shown in Example 2.

Example 2 Let us create a deterministic two-dimensional online tessellation
automaton for the matching of the picture a b

b a
using Hamming distance with

at most one error allowed. At first, a nondeterministic 2OTA is created using
Algorithm 3. The δ function of this automaton is described in Figures 6 and 7.
After that, this automaton is transformed into a deterministic one. Once the

2DOTA is created, it can be used for the pattern matching, e.g. in a picture
shown in Figure 8 a) (it is the same picture as was used in Example 1). Run of
the 2DOTA over this picture and found occurrences are shown in Figure 8 b).

¤

5 Conclusion

A new algorithm that transforms some special types of nondeterministic two-
dimensional online tessellation automata to deterministic ones was presented
in this paper. This algorithm was built as a generalization of the subset con-
struction well known from the one-dimensional case [Yu97]. Moreover, this
algorithm was used to build a completely new algorithm for two-dimensional
pattern matching – especially for exact two-dimensional pattern matching and
two-dimensional pattern matching using Hamming distance. This new algo-
rithm is also a generalization of the one-dimensional case. It creates an appro-
priate nondeterministic two-dimensional online tessellation automaton for given
pattern and pattern matching problem, transforms it to a deterministic version
a performs the pattern matching.

The biggest advantage of this approach is the fact that the matching phase
time complexity is always linear with the size of the text – O(n2) for the text of
size (n, n). It means that the matching phase is always very fast and its speed
does not depend on the type of the pattern matching problem.
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1, 1, 0, 0

1, 1, 1, 1 1, 2, 0, 1

1, 2, 1, 1

1, 2, 0, 0

2, 2, 0, 1

2, 2, 1, 1

2, 2, 0, 02, 1, 0, 0

2, 1, 1, 1

0

0

0 0 0

a

a

a

a

a

a

a, x

a, x

b, x

b, x

b

b

b

b

A

Figure 7: The δ function (described by the transition diagram) of 2OTA for
pattern matching using Hamming distance from Example 2 (As the state names
are in form qi,j,α,β , only subscripts of the state names are shown in this diagram.)

Moreover, the time complexity of the preprocessing phase depends only on
the size of the pattern, size of the alphabet, the number of allowed errors, and
the type of used error distance. Disadvantage is that there is not better than
exponential (with the size of the pattern) estimation of the time complexity of
the preprocessing phase. For pattern of size (m,m) it is O(|A|23m2

) in case
of exact pattern matching and O(|A|23k2m2

) in case of pattern matching using
Hamming distance, where |A| is the size of the alphabet, and k is the number
of allowed errors. Thus this pattern matching algorithm is very useful in case
that the size of the text is much greater than the size of the pattern (m ¿ n),
or when the pattern is searched in many input texts.

The other advantage of this method is, that the input picture can be read
row by row or column by column. It means that it is not necessary to have
the whole input picture loaded in the memory. Thus, the space required by the
presented algorithm is O(|A|22m2

+ n) in case of exact pattern matching, and
O(|A|22k2m2

+ n) in case of pattern matching using Hamming distance.
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a b x a a b b
a b a b x a b
x b b a b a x
b b x b a a b
a a b b a x a
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0
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0
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1, 2, 0, 0
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0
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2, 1, 1, 1

0
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0
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0
1, 1, 0, 0
2, 2, 0, 0

0
1, 1, 0, 0
1, 2, 1, 1
2, 1, 1, 1

0
1, 1, 1, 1
1, 2, 0, 0
2, 1, 1, 1

0
1, 1, 0, 0

0
1, 1, 0, 0
1, 2, 1, 1

0
1, 1, 1, 1
1, 2, 0, 0
2, 1, 1, 1

0
1, 1, 1, 1
1, 2, 0, 1
2, 1, 1, 1

0
1, 1, 0, 0
2, 1, 1, 1

0
1, 1, 1, 1
1, 2, 1, 1
2, 1, 1, 1

0
1, 1, 0, 0
2, 2, 0, 1

b)

Figure 8: a) Input picture for pattern matching from Example 2 (squares denotes
pattern occurrences) b) Run of the 2DOTA from Example 2 over the picture
from a) (As the state names are in form qi,j,α,β , only subscripts of the state
names are shown in this table. Squares denotes found pattern occurrences.)

Future research should extend presented principle for other types of two-
dimensional pattern matching problems – e.g. two-dimensional approximate
pattern matching using KS [KS87], R, RC, and L [BY98] distances including
matching of a finite set of patterns. Moreover it might improve estimations
of the space and time complexities of the preprocessing phase of the presented
algorithm.
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Abstract

The paper discusses a language operation that we callcontext restriction.
This operation is closely associated withcontext restriction rules(Kosken-
niemi, 1983; Kiraz, 2000),right-arrow rulesor implication rules(Kosken-
niemi et al., 1992; Voutilainen, 1997) and therestriction operator(Beesley
and Karttunen, 2003). The operation has been used in finite-state phonology
and morphology in certain limited ways. A more general setting involves re-
stricting overlapping occurrences of a center language under context condi-
tions. Recently, star-free regular languages (and all regular languages) have
been shown to be closed under context restrictions with such“overlapping
centers” (Yli-Jyr̈a, 2003), but the construction involved is overly complex
and becomes impractical when the number of operands grows.

In this paper, we improve this recent result by presenting a more practi-
cal construction. This construction is not only simpler butit also leads to a
generalization where contexts and centers may appear as conditions at both
sides of the implication arrow (⇒): licensing conditions on the right-hand
side specify the restriction and triggering conditions on the left-hand side
regulate activation of the restriction. One application ofthe generalization
is to facilitate splitting certain context restriction rules in grammars into a
conjunction of separate rules.

1 Introduction

There are different definitions for context restriction operations and rules, but they
share a common idea that substrings that belong to a so-calledcenter languageX
are eitheracceptedor rejectedaccording to thecontextwhere they occur.1 A set

1In context restriction rules that are used in morphology, the alphabet ofthe strings consists of
same-length correspondences. However, we avoid this complication in the current paper.
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of licensing context conditions(C1, C2, · · · , Cn) is specified, and each of the con-
ditions is a pair of aleft-hand context languageand aright-hand context language.
The context of an occurrence of the centerX satisfiesa context conditionCi if its
left-hand and right-hand contexts belong, respectively, to the left-handand right-
hand context languages. An occurrence is accepted if its context satisfies at least
one of the context conditions.

The strings where different occurrences ofX overlap each other are problem-
atic. To treat such a string, the occurrences of the center are divided into those that
arefocused2 and those that areunfocused. The string is included to the language
described by context restriction operations and rules if and only if it all thefocused
occurrences are accepted. However, the existing definitions for context restrictions
choose the focused occurrences in different ways. Some definitions for context
restrictions focus all the occurrences (Yli-Jyrä, 2003). Some other definitions (re-
lated to Karttunen, 1997; Kempe and Karttunen, 1996; Karttunen, 1996) focus,
non-deterministically or deterministically, a set of non-overlapping occurrences in
such a way that the unfocused occurrences that remain in the string wouldover-
lap with the focused ones. There are further definitions that are partition-based
(Grimley-Evans et al., 1996; Kiraz, 2000) or do not really work for longoccur-
rences (Kaplan and Kay, 1994), which means that the occurrences cannot overlap
each other at all.

Context restriction is a widely useful operation, and it is closely connectedto
several formalisms:

• In the classical rule formalism for thetwo-level morphology, the centers of
context restriction rules are restricted to single character correspondences
(Koskenniemi, 1983). Two-level context restriction rules can be compiled
into finite-state transducers (FST) according to a suggestion by Ron Kaplan
who solved the problem of multiple contexts in 1980’s by means of context
markers (Karttunen et al., 1987; Kaplan and Kay, 1994).

• Alternative two-level and multi-tiered formalisms have also been proposed
(Ritchie et al., 1992; Grimley-Evans et al., 1996; Kiraz, 2000). In these
formalisms, the occurrences of the center cannot overlap at all.

• In the framework of Finite State Intersection Grammar (FSIG) (a flavor of
finite-state syntax) (Koskenniemi et al., 1992; Yli-Jyrä, 2003), overlapping
occurrences can be focused simultaneously because the centers are not nec-
essarily sets of unary strings as it is the case in the classical two-level mor-
phology. In the literature, there are also cases where context restrictions

2A focused occurrence corresponds – as a notion – to the occurrenceof X on a particularappli-
cationof the context restriction rule (Karttunen et al., 1987).
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could have been used as a shorthand notation for combinations of other op-
erations (Wrathall, 1977; Grimley-Evans, 1997) and to coverIf-Then func-
tions of (Kaplan and Kay, 1994, p.370), if the operation only had been avail-
able as a pre-defined primitive. In these cases, context restriction can be
viewed as a general purpose language operation whose arguments canbe
e.g. context-free languages (Wrathall, 1977; Yli-Jyrä, 2004 (in print)).

• The replace(ment) operators(e.g. (Karttunen, 1997; Kempe and Karttunen,
1996; Beesley and Karttunen, 2003) and thecontext-dependent rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) are also related to context
restrictions, but multiple applications of the replacement / rewriting rules
motivate defining restrictions in such a way that simultaneous foci do not
overlap each other.

Various flavors of context restrictions differ from each other mainly dueto different
conceptions on possible foci in the accepted strings. We will now restrict ourselves
to the definition where each string is associated with only one set of focusedoccur-
rences of the center substrings. In this set, all occurrences of the center language
are focused simultaneously and each occurrence must, thus, be accepted. Accord-
ing to this definition, each string of lengthn has in the worst caseO(n2) focused
occurrences, and it is, therefore, not immediately obvious that regular languages
are closed under the operation that has this property.

We will now give an exact definition for the flavor of context restriction (con-
text restriction with “overlapping centers”) we are concerned with. LetΣ to be
the alphabet for building strings. Acontext restriction of a centerX in contexts
C1, C2, · · · , Cn is a operation whereX is a subset ofΣ∗ and each contextCi,
1 ≤ i ≤ n, is of the formVi Yi, whereVi,Yi ⊆ Σ∗. The operation is ex-
pressed using a notation

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn (1)

and it defines the set of all stringsw ∈ Σ∗ such that, for every possiblev, y ∈ Σ∗

andx ∈ X for which w = vxy, there exists some contextVi Yi, 1 ≤ i ≤ n,
where bothv ∈ Σ∗Vi andy ∈ YiΣ

∗. If all these setsX , Vi andYi are regular
(or star-free regular) then the result will also be regular (resp. star-free regular)
(Yli-Jyrä, 2003).

The reader should note that, in the current paper, we define context languages
Vi andYi, 1 ≤ i ≤ n, directly astotal contexts. 3

3In the literature (e.g. in Beesley and Karttunen, 2003), it is most often assumed that left-hand
context languagesVi of the formΣ

∗
L and right-hand context languagesYi of the formLΣ

∗ can be
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In this paper, we present a previously unpublished construction for thelan-
guage denoted by context restrictions with “overlapping centers”. The construction
is based on a combination of usual regular operations that are easy to implement in
practice. In contrast to various previous compilation methods, our new construc-
tion restricts all overlapping occurrences (vs. Kaplan and Kay, 1994;Grimley-
Evans et al., 1996), and avoids exponential growth in the size of the expanded
formula (vs. Yli-Jyr̈a, 2003). Our construction resembles the compilation method
by Grimley-Evans et al. (1996) and Kiraz (2000). However, our methoddeals with
overlapping occurrences, while theirs assumes a partitioning where the occurrences
corresponds to disjoint blocks in the strings. The new method has been communi-
cated to the Xerox group and it has already been adopted – due to its generality and
speed – in XFST (Beesley and Karttunen, 2003)4, a proprietary finite-state com-
piler, since XFST version 8.3.3. The new construction also generalizes sothat it
involves triggering conditionsand licensing conditions. Thegeneralized restric-
tion has a lot of applications. A part of this paper is devoted to illustration of a
possible application that allows fordecomposed context restrictions.

The paper is structured as follows. The new construction is presented in Section
2 and generalized in Section 3. In Section 4, we describe a special problematic
setting where the context restriction has bad state complexity, and then show that
the generalized context restriction can be used to split context restrictionsinto sub-
constraints that are recognized with smaller automata. We list some areas of further
work in Section 5, and conclude in Section 6. The appendix presents a summary of
the previous solutions, being of interests only to a portion of the intended audience.

2 New Construction

2.1 Notation

We use the following usual language operations: concatenation (L1L2), exponenti-
ation (Ln), concatenation closure (L∗), union (L1∪L2), intersection (L1∩L2) and
asymmetric difference (L1 −L2). We use parenthesis(, ) for grouping. WhenL is
a regular language, we denote by|L| the size of a minimal deterministic automaton
that recognizesL – this is what we mean by thestate complexityof L.

The default alphabet for building strings isΣ. Let ⋄ /∈ Σ. We use⋄ as a
special marker symbol, called adiamond, that is not present in the final result. For

simplified by replacing them withL in the notation. This would require prepending and appending
Σ

∗ respectively toVi andYi when the meaning of the operation is concerned. We avoid such
expansions for the sake of clarity. By doing so, we do not sacrifice generality.

4The original XFST version attached to the book by Beesley and Karttunen (2003) would inter-
prete simple and multi-context restrictions under different, mutually inconsistent definitions.
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all alphabetsM such thatM ∩ Σ = ∅ we denote the unionΣ ∪ M by ΣM . By
hM : Σ∗

M → Σ∗ we denote a homomorphism w.r.t. string concatenation such that it
just deletes marker symbolsM from the strings. The inverse homomorphismh−1

M

obviously inserts symbolsM freely in any string position. Bysα/L : Σ∗
{α} → Σ∗

we denote the substitution that replaces in strings ofΣ∗
{α} the symbolα /∈ Σ with

the languageL ⊆ Σ∗.

2.2 Compiling Basic Restrictions

The semantics of a context restriction is formulated in four stages:
(I) We take all possible stringsw ∈ Σ∗ where there is some focused occurrence

of any substringx ⊆ X and insert a pair of diamonds⋄ into these strings in such a
way that the occurrence ofx is marked by a preceding diamond⋄ and a following
diamond⋄. The obtained set is obviously

Σ∗ ⋄ X ⋄ Σ∗. (2)

Now h{⋄}(Σ
∗ ⋄ X ⋄ Σ∗) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧x ∈ X}.

(II) We describe all stringsw = vxy where the string pairv y satisfies
some licensing contextVi Yi, and we insert a pair of diamonds⋄ into these
strings in such a way thatx is marked by a preceding and a following diamond.
The obtained set is obviously

∪n
i=1Vi ⋄ Σ∗ ⋄ Yi (3)

Now h{⋄}(∪
n
i=1

Vi ⋄ Σ∗ ⋄ Yi) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧∃ i :1≤ i≤n ∧v ∈ Vi∧y ∈ Yi}.

(III) A string w ∈ Σ∗ is obviously rejected by the context restriction if and
only if it contains some focused occurrence of anyx ∈ X such that the occurrence
does not have a licensing context. If we take all rejected string and add diamonds
around an arbitraryx that fails to have a licensing context, we obtain the set:

Σ∗ ⋄ X ⋄ Σ∗ − ∪n
i=1Vi ⋄ Σ∗ ⋄ Yi. (4)

Now h{⋄}(Σ
∗ ⋄ X ⋄ Σ∗ − ∪n

i=1
Vi ⋄ Σ∗ ⋄ Yi) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧x ∈ X∧¬∃ i :1≤ i≤ n ∧v ∈ Vi∧y ∈ Yi}.
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(IV) The set (4) consists of all possible rejected strings, with the extra dia-
monds included. The desired interpretation of the restriction is therefore achieved
by deleting the diamonds and taking the complement:

Σ∗− h{⋄}(Σ
∗⋄X ⋄Σ∗ − ∪n

i=1Vi⋄Σ∗⋄Yi). (5)

This can be interpreted as the set:

{w ∈ Σ∗ | ¬(∃vxy : w = vxy∧x ∈ X∧¬∃ i :1≤ i ≤n ∧v ∈ Vi∧y ∈ Yi)}

= {w ∈ Σ∗ | ∀vxy : w = vxy∧x ∈ X → ∃ i :1≤ i≤ n ∧v ∈ Vi∧y ∈ Yi)}.

The language defined by expression 5 is the language denoted by expression 1.
Given this equivalence, we are now able to construct a finite automaton corre-
sponding to expression 1 via usual algorithms on automata, if the argument lan-
guages (X , V1, Y1, V2, Y2, etc.) are regular and given as finite automata.

Those readers who are interested to relate our new construction with previous
solutions are directed to the appendix where some earlier solutions are discussed.

3 Generalized Restriction

3.1 Definition

Now we define a new operator
g⋄
⇒, called thegeneralized restriction operator, as

follows. Recall thatW is a Fraktur capital for ’w’ and that we used variable ’w’ for
complete strings. LetW1, . . . ,Wm, W′

1, . . . ,W
′
n be subsets ofΣ∗(⋄Σ∗)g, where

g ∈ N. The expression

W1, W2, . . . ,Wm
g⋄
⇒ W

′
1, W

′
2, . . . ,W

′
n,

denotes the language

Σ∗− h{⋄}(∪
m
i=1Wi − ∪n

i=1W
′
i). (6)

3.2 Basic Applications

The generalized restriction operation has a potential to express many different
kinds of restrictions in ways that are very similar to each other. This flexibility
is illustrated by the following examples.

Context restriction Context restriction defined in (1) can be expressed as a gen-
eralized restriction as follows:

Σ∗ ⋄ X ⋄ Σ∗ 2⋄
⇒ V1 ⋄ Σ∗ ⋄ Y1, V2 ⋄ Σ∗ ⋄ Y2, . . . , Vn ⋄ Σ∗ ⋄ Yn. (7)
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Coercion In analogy to the surface coercion rule in the two-level morphology
(Koskenniemi, 1983; Kaplan and Kay, 1994; Grimley-Evans et al., 1996), we can
define a coercion operation where satisfaction of anytriggering context condition
implies that the focused substrings are drawn from thelicensing center language.
This operation can be defined easily as follows. The expression

X ′ ⇐ V ′
1 Y ′

1,V
′
2 Y ′

2, . . . , V ′
m Y ′

m,

where the backward arrow indicates that the roles of the sides are exchanged, de-
notes the language

V ′
1 ⋄ Σ∗ ⋄ Y ′

1, V ′
2 ⋄ Σ∗ ⋄ Y ′

2, · · · , V ′
m ⋄ Σ∗ ⋄ Y ′

m
2⋄
⇒ Σ∗ ⋄ X ′ ⋄ Σ∗.

If-Then Kaplan and Kay (1994) defined the following functions:

If-P-then-S(L1, L2)
def
= Σ∗ − L1(Σ

∗ − L2)

If-S-then-P(L1, L2)
def
= Σ∗ − (Σ∗ − L1)L2.

These functions can also be defined very intuitively using generalized restrictions
with one diamond:

If-P-then-S(L1, L2)
def
= L1 ⋄ Σ∗ 1⋄

⇒ Σ∗ ⋄ L2

If-S-then-P(L1, L2)
def
= Σ∗ ⋄ L2

1⋄
⇒ L1 ⋄ Σ∗.

Nowhere Often we want to say that strings belonging toX do not occur any-
where in the accepted strings as substrings. This can be expressed as acontext

restrictionX ⇒ ∅ ∅ or as a generalized restrictionΣ∗XΣ∗ 0⋄
⇒ ∅.

More than Two Diamonds The numberg of diamonds involved in the general-
ized restriction operation

g⋄
⇒ can also be greater than two. Such extensions can be

used to express restrictions on discontinuous parts of the strings, but these possi-
bilities are not discussed in this paper.

3.3 Adding Preconditions

The most appealing property of generalized restrictions is that they containsimulta-
neously centers and contexts of two different kinds: (i) licensing and (ii)triggering.
This allows expressing more complicated rules in a simple and elegant manner:
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Context Restriction with Preconditions When we reduce context restrictions
into generalized restrictions, the left hand-hand side of the generalized restriction
is of the form

W = V ′ ⋄ X ⋄ Y ′ whereV ′,Y ′ = Σ∗.

The languagesV ′ andY ′ form a triggering context condition. If we makeV ′ or
Y ′ more restrictive, the context restriction focuses only those occurrences whose
contexts satisfy the triggering context condition. When the triggering context con-
dition V ′ Y ′ is not satisfied by the context of an occurrence, the occurrence is
not focused at all and the acceptance of the whole string does not depend on it.

Coercion with Preconditions When we reduce coercions to generalized restric-
tions, the left hand-hand side of the generalized restriction is of the form

V ′
1⋄X1⋄Y

′
1, V ′

2⋄X2⋄Y
′
2, · · · , V ′

m⋄Xm⋄Y ′
m, whereXi = Σ∗ for all 1 ≤ i ≤ m.

Now the setsXi, where1 ≤ i ≤ m, could also differ fromΣ∗. If we make aXi

more restrictive, an actual contextv y, wherev ∈ V ′
i andy ∈ Y ′

i, triggers the
coercion on the substring if only if it the focused substringx in the contextv y
belongs to setXi.

Bracketing Restriction Coercion with preconditions can be used to express the
meaning of constraints calledbracketing restrictions(Yli-Jyrä, 2003 (in print)). A
bracketing restriction constraint is expressed through the notation

#V ′ Y ′# ⇒ X ′,

whereV ′,Y ′,X ′ ⊆ Σ{∆} denote regular languages. The constraint denotes the
language

{w∈Σ∗ | w∈ ∆′ ∧ ∀vxy :w = vxy ∧ x∈ ∆′ ∧

v ∈(s∆/∆′(V ′)) ∧ y∈(s∆/∆′(Y ′)) −→ x∈(s∆/∆′(X ′))},

where∆′ ⊆ Σ∗ is a bracketedlanguagethat is substituted forsymbol∆. This
language can be expressed using a coercion with preconditions as follows:

∆′ ∩
(

(s∆/∆′(V ′)) ⋄ ∆′ ⋄ (s∆/∆′(Y ′))
2⋄
⇒ Σ∗ ⋄ (s∆/∆′(X ′)) ⋄ Σ∗

)

.

When the languageD is a regular language, such as∆d in Section 4.1, every brack-
eting restriction denotes a regular language. Yli-Jyrä (2003 (in print)) discusses its
state complexity and suggests decomposing each restriction into sub-constraints.
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Decomposed Context Restriction Context restrictions with preconditions allow
us to decompose a context restriction into a set of generalized restrictions whose
intersection represents the accepted language. The context restriction

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn,

can now be expressed as an intersection of generalized restrictions

V ′
1⋄X ⋄Y ′

1

2⋄
⇒ V1 ⋄Σ∗⋄Y1, . . . , Vn ⋄Σ∗⋄Yn
...

V ′
m⋄X ⋄Y ′

m
2⋄
⇒ V1 ⋄Σ∗⋄Y1, . . . , Vn ⋄Σ∗⋄Yn (8)

such that∪m
i=1

V ′
i⋄X ⋄Y ′

i = Σ∗⋄X ⋄Σ∗.

4 A Blow-Up Problem with Context Restrictions

In some practical applications, the languages described by context restrictions have
bad state complexity. In the sequel, we will present the background of this problem
and then show how it could be solved using decomposed context restrictions. The
solution represents each context restriction by means of an intersection ofsimpler
languages. Such an intersection corresponds to a direct product of small automata,
where the direct product can be computed lazily, on demand. The improvedrepre-
sentation is more compact and better organized, which facilitates efficient applica-
tion of context restrictions.

4.1 The Background

Bracketed Finite-State Intersection Grammars An approach for natural lan-
guage parsing and disambiguation based on regular languages as constraints was
proposed in (Koskenniemi et al., 1992). It formed the theoretical basis for a Finite-
State Intersection Grammar (FSIG) for English (Voutilainen, 1997). This particu-
lar FSIG has, however, suffered from parsing difficulties (Tapanainen, 1997). Re-
cently, the parsing approach has been developed into new kinds of FSIGgrammars
that could be called Bracketed FSIGs (Yli-Jyrä, 2003; 2003 (in print); 2004 (in
print); 2004a). In these FSIGs, a great deal of the state complexity of thegrammar
derives from balanced bracketing that is to be validated by means of finite-state
constraints.
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Marking the Sentence Structure In the FSIG approach, the parses for natural
language sentences are represented as annotated sentences. An annotated sentence
might be a sequence of multi-character symbols, including word tokens and cor-
rectly inserted part-of-speech tags and brackets, as in the following:

the DET man N [ who PRON walked V PAST on PREP the DET
street N ] was V happy A

or
this PRON is V the DET dog N [ that PRON chased V the
DET cat N ] [ that PRON killed V the DET mouse ] .

In these examples, the brackets are used to mark a part of the clause structure.
In some Bracketed FSIGs, the brackets mark very detailed constituency (Yli-Jyrä,
2003 (in print)) or dependency structures (Yli-Jyrä, 2004 (in print)). Nevertheless,
brackets can be used economically (cf. Koskenniemi et al., 1992; Yli-Jyrä, 2003
(in print), 2004a) so that the depth of nested brackets remains small in practice.

The Language with Balanced Brackets In all the annotated sentences of FSIG,
the brackets belonging to a class of left “super” brackets is balanced withthe brack-
ets belonging to the corresponding class of right “super” brackets. This property
can be expressed as follows: LetBL andBR be respectively a class of left and
right “super” brackets in the grammar. There may be other, non-”super” brackets
that are not balanced, but are closed (or opened) with a “super” bracket. The set
∆d ⊆ Σ∗ contains all bracketed strings whose “super” brackets are balanced w.r.t.
these bracket classes, and where the “super” brackets have at mostd nested levels
(level 0 = no brackets). This language is derived inductively as follows:

∆d =

{

(Σ − BL − BR)∗ if d = 0

(∆d−1 ∪ ( BL ∆d−1 BR ))∗ if d > 0

Voutilainen (1997) uses in his FSIG for English a special pre-defined language
dots ’ ...’ (equivalent to ··· d in Yli-Jyrä, 2003) to refer to arbitrary strings with
balanced bracketing, where the bracketing marks boundaries of centerembedded
clauses. It is obtained as the language∆1 − Σ∗ @@Σ∗ if we let BL = {@<} and
BR = {@>}.

Typical Context Restriction Rules Typical FSIG rules express contextual re-
strictions on features within clauses by requiring the presence of other syntactic
functions and structures to the left and/or to the right. Normally only features
within the same clause will be used as a context, but in case of relative pronouns
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and conjunctions the required features might be after or before the clause boundary
(cf. e.g. Voutilainen, 1997).

Most FSIG rules are written in such a way that they apply to deeper clauses
as well as to top-level clauses. This is made possible by means of a languageof
balanced bracketings – denoted by ’...’, ··· d, or ∆d – that is pre-defined in all
FSIG frameworks. For example, the rule

@SUBJ ⇒ Σ∗ VFIN ·· d Σ∗, Σ∗ ·· d VFIN Σ∗

requires that a subject feature (@SUBJ) is allowed only in clauses where one can
also find a feature indicating a finite verb (VFIN ). Thedotdot ·· d denotes the
set of strings that are in the same clause. It is defined by the formula·· d =
··· d − ·· d @/ ·· d, where@/ is a multi-character symbol that is used in

bracketed strings to separate adjacent clauses at the same bracketing level.

4.2 Large Compilation Results

The size of the automata obtained from context restriction rules has turned out to
be an obstacle for large-scale grammar development (Voutilainen, 1997).Usually
we are not able to combine many context restriction rules into a single automa-
ton. Therefore, the compiled grammar must be represented as a lazily evaluated
combination (intersection) of individual context restriction rules.

Unfortunately, even separate context restriction rules can be too complexto be
compiled into automata. When the centerX or a contextCi is defined using the
··· d or ∆d language, the automaton obtained from a context restriction seems

to grow in the worst case exponentially according to the parameterd. This effect
can be perhaps most easily understood as follows: If the automaton that enforces a
context restriction on unbracketed strings hask states, the automaton that enforces
the restriction on one-level bracketings needs, on one hand,O(k) states for keeping
track of the restriction on the top level and, on the other hand,O(k) states for
keeping track of the restriction inside bracketed embeddings at eachO(k) possible
states of the the top level automaton. In practice, this means that the worst-case
state complexity of this automaton is inO(k2). Furthermore, it seems that the state
complexity will grow exponentially according tod.

Due to these observations on the state complexity of context restriction rules,
the second author of this paper proposed that we should try to split the rules into
sub-rules each of which takes care of a different bracketing level5.

5The idea of splitting FSIG rules into separate levels is due to the second author(Koskenniemi)
who communicated it privately to the first author several years beforewe learned to do it construc-
tively.
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4.3 Decomposition w.r.t. Bracketing Level

We will now present a new compilation method that decomposes an arbitrary con-
text restriction involving∆d into a set of generalized restrictions. Each of these
generalized restrictions can then be compiled separately into finite automata.

One of the underlying assumptions in FSIGs is that the accepted strings belong
to the set∆d (or ··· d). For this reason, we can replace each context restriction

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn

with

∆d ∩ (X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn). (9)

Observe that the prefixes of balanced bracketings∆d belong to the languageP =
∪d

i=0
∆d(BL∆d)

i. All the other prefixes inΣ∗ are in the setΣ∗ − P , but they are
not possible prefixes for the strings in∆d. Accordingly, we can replace Formula
(9) with an intersection of generalized restrictions as follows:

∩d
i=0Li, (10)

where the languagesLi are defined by the formula

Li =∆d ∩ ((∆d(BL∆d)
i) ⋄ X ⋄ Σ∗ 2⋄

⇒ W
′), whereW

′ = ∪n
j (Vj ⋄ Σ∗ ⋄ Yj).

The languageLi, 0 ≤ i ≤ d, restricts occurrences ofX that start at the bracketing
level i. EachLi can be compiled into a separate constraint automaton and the
intersection of the languages of these automata will be computed lazily during
FSIG parsing.

Our hypothesis is that the obtained new lazy representation (sometimes such
representations are calledvirtual networks) for the decomposed context restriction
(10) will be substantially smaller than the single automaton that results from For-
mula (9). This hypothesis motivates the following experiment.

4.4 An Experiment

We carried out a small experiment with different representations of context restric-
tion rules in FSIG. In the experiment we investigated the following possibilities:

• each rule corresponds to a separate constraint languageR, S, . . .,

• the rules are combined into a single, big constraint languageR ∩ S ∩ · · · ,
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• each rule is decomposed intod + 1 separate languagesR0, R1, . . . , Rd as
proposed in Section 4.3,

• languagesRi, Si, . . . for each bracketing leveli, 0 ≤ i ≤ d, are combined
into a big constraint languageRi ∩ Si ∩ · · · .

The Set of Rules Interesting rules (Voutilainen, 1997) taken from a full-scale
grammar would have been too complicated to be investigated here. The following
context restriction rules, expressing simple generalizations about the presence of
syntactic categories, were used in the experiment:

∆d∩( IOBJ ⇒ Σ∗ OBJ ∆d Σ∗, Σ∗ ∆d OBJ Σ∗) (R)

∆d∩( OBJ ⇒ Σ∗ SUBJ ∆d Σ∗, Σ∗ ∆d SUBJ Σ∗) (S)

∆d∩( SUBJ ⇒ Σ∗ VFIN ∆d Σ∗, Σ∗ ∆d VFIN Σ∗) (T )

These rules correspond to automata that are similar to each other up to relabeling
of certain transitions. One should note, however, that rulesR andS (and rulesS
andT ) have more features in common than rulesR andT .

The Size of Automata The state complexity of the rulesR, S, andT grows
exponentially according tod, the bound for nested brackets. This is shown in Table
1. For comparison, the languageR′ is defined as (IOBJ ⇒ Σ∗ OBJ ∆d

Σ∗, Σ∗ ∆d OBJ Σ∗).

d |∆d| |R′| |R| 3|R| + 3 3d

0 1 3 3 12 9
1 2 9 12 39 36
2 3 27 39 120 108
3 4 81 120 363 324
4 5 243 363 1092 972

Table 1: The state complexity of languageR grows exponentially according tod.

Assuming thatd = 2, we constructed automata for each of the languagesR, S
andT and splitted them for each bracketing level in order to obtain languagesRi,
Si andTi for all i, 0 ≤ i ≤ d. These automata were then combined in different
ways in order to see how the sizes of automata differ in the four theoretical possi-
bilities. The results are shown in Table 2. It shows that combinations of full rules
grow substantially faster than combinations of rules decomposed with respect to
the bracketing level. When we decompose the languageR w.r.t. the bracketing
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L |L| |L0| |L1| |L2| sum

R 39 9 7 5 21
S 39 9 7 5 21
T 39 9 7 5 21

R ∩ S 258 18 13 8 39
R ∩ T 819 27 19 11 57

R ∩ S ∩ T 1884 36 25 14 75

Table 2: State complexity: the rules without decomposition compared to rules that
have been decomposed w.r.t. bracketing levels.

depth using the formula (10), we see in Table 3 that the state complexity of the
top-most component (R0) grows linearly tod and|∆d|.

d=0 d=1 d=2 d=3 d

|∆d| 1 2 3 4 (d + 1)
|R0| 3 6 9 12 3(d + 1)

Table 3: The state complexity ofR0 grows linearly to the parameterd.

Application Relevance For purposes of FSIG parsing, it would be nice if we
could compute a minimal deterministic automaton that recognizes the intersection
of all rules in the grammar. Because this cannot be done in practice, a parsing
algorithm based on backtracking search has been used earlier (Tapanainen, 1997)
in addition to automata construction algorithms. The search algorithm operated
mostly in a left-to-right fashion.

We observe thatRi ∩ Si ∩ Ti have substantially smaller state complexity than
R ∩ S ∩ T . This is an important finding, having applications in FSIG parsing. So
far, it has not been feasible to apply all the rule automata one by one with a kind of
word lattice called asentence automaton(Tapanainen, 1997) by computing succes-
sive direct products of automata and minimizing the results. This might become
feasible when rules have been decomposed with the current method. Decompo-
sition of constraint restrictions w.r.t. bracketing levels apparently facilitates new
techniques (Yli-Jyr̈a, 2004b) where the parsing proceeds partly in a bottom-up or
top-down fashion rather than only in a left-right fashion.
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5 Further Work

The definition of context restriction used in this paper is not the only possibility.
Further research in this area is still needed due to the following reasons:

• It is not obvious whether the current flavor for the context restriction isprac-
tical if we extend context restrictions by attaching weights to contexts and
centers.

• It is our experience that, for real context restrictions rules, different defini-
tions for the operation may result in equivalent languages. Understanding
when the results coincide might have practical relevance.

• It is an open question whether the proposed or the other definitions for con-
text restrictions have a more natural interpretation when they are not inter-
changeable but yield different results.

While the current results on decomposed context restrictions significantly improve
our possibilities to combine large portions of the original FSIG grammars into
singe automata, there is still place for further research that is related to methods
that organize the computation of the lazy intersection in an efficient manner.

Generalized restriction with multiple diamonds has many useful applications
that remain to be studied later.

6 Conclusion

This paper discussed the definition and the representation of the context restriction
operation. In particular, an alternative compilation method for generalized context
restriction operation was given, with immediate applications to arrangement of
constraint automata in finite-state parsers that apply multiple automata to the input.

The main result of this paper is that context restrictions can itself be restricted
to be applied only in certain contexts, which means that there are two kinds of
contexts that can occur in one rule: those that trigger the restriction and those that
license the restricted occurrences. This observation can be used, on one hand, in
defining different kinds of operations and, on the other hand, to split large context
restrictions into components that can be compiled separately.

The applicability of these results are not restricted to the formalisms where so-
called context restriction rules are used. The general context restriction is a useful
operation that is derived from the relative complement of languages, andit allows
expressing complex situations in an intuitive manner.
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Appendix: Some Previous Solutions

An Approach that Does not Use Transducers

A Well Known Special Case There is a well known formula (Koskenniemi,
1983, p.106; Kaplan and Kay, 1994, p.371)6 that compiles simple context restric-
tions with “overlapping centers”:

Σ∗ − ((Σ∗ − V1)XΣ∗ ∪ Σ∗X (Σ∗ − Y1)) . (11)

Compound Restriction Operations with Two Contexts The following compi-
lation method7 covers all 2-context cases:

Σ∗−( Σ∗X ((Σ∗ − Y1) ∩ (Σ∗ − Y2)) “at leastY1 andY2 fail”

∪ (Σ∗ − V1)X (Y1 − Y2) “at leastV1 andY2 fail”

∪ (Σ∗ − V2)X (Y2 − Y1) “at leastV2 andY1 fail”

∪ ((Σ∗ − V1) ∩ (Σ∗ − V2))X (Y1 ∩ Y2) ) “only V1 andV2 fail” (12)

It is possible to show that the last line of (12) can be simplified without changing
the meaning of the whole formula:

Σ∗−(. . . ∪ ((Σ∗ − V1) ∩ (Σ∗ − V2))XΣ∗ ) “at leastV1 andV2 fail” (13)

This modified formula is a special case of (14):

6Grimley-Evans et al., 1996, p.458, quote Kaplan and Kay imprecisely,suggesting that this for-
mula for simple context restrictions does not work when context language portions overlap with
portions of the center language.

7This formula is given in a slightly different form (withIf-Then functions) on the web
page “Operators in XFST, FSA Utilities and FSM – A synopsis. Explanation ofoper-
ators for FSA Utilities.”. This page has been available since year 2003 at the location
http://cs.haifa.ac.il/˜shuly/teaching/03/lab/fst.ht ml . In addition to Ja-
son Eisner who made the first version, many anonymous scholars have worked on this page and it is
not obvious who contributed the additional sections. In 2003, Yli-Jyrä discussed with Shuly Wintner
about the author of the context restriction section. That section can probably be attributed to Dale
Gerdemann in T̈ubingen.
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The General Case Yli-Jyrä (2003) generalized the latter formula (13) indepen-
dently to arbitrary number of contexts. The language denoted by the context re-
striction with “overlapping centers” is obtained with the formula8

Σ∗ −
⋃

t1

· · ·
⋃

tn

(

n
⋂

i=1

φ(ti,Vi)

)

X

(

n
⋂

i=1

φ(ti,Yi)

)

, (14)

wheret1, t2, . . . , tn are Boolean variables and the functionφ : {true, false} ×
2Σ∗

→ 2Σ∗

is defined in such a way thatφ(q, Q) returnsΣ∗− Q if q is true,
andΣ∗ otherwise. In practice, whenn is small, Formula (14) is very efficient.
However, whenn grows, the expansion of the formula results in an exponentially
growing regular expression.

To derive (14), consider the situation where a contextv y does not satisfy
any licensing context condition. It equals to

∧n
i=1

v /∈ Vi∨y /∈ Yi. The disjunction
v /∈ Vi ∨ y /∈ Yi is true if and only if the formulati → v /∈Vi ∧ ti → y /∈Yi is
satisfiable (i.e. true for some value ofti). Thus, the formula

∧n
i=1

v /∈ Vi ∨ y /∈ Yi

can rewritten as the following formula:

∃t1...tn :

(

n
∧

i=1

ti→v /∈Vi∧ ti→y /∈Yi

)

⇔
∨

t1

· · ·
∨

tn

(

n
∧

i=1

ti→v /∈Vi ∧ ti→y /∈Yi

)

⇔
∨

t1

· · ·
∨

tn

(

v ∈
n
⋂

i=1

φ(ti,Vi)

)

∧

(

y∈
n
⋂

i=1

φ( ti,Yi)

)

.

When the failure condition is in this form, it is easy to see how it has been used to
obtain Formula (14).

Kaplan and Kay’s Approach

In the two-level model of morphology (Koskenniemi, 1983, p.106), centers of con-
text restrictions are normally of length of one symbol (of a symbol pair alphabet).
Compilation of this special case with arbitrary number of contexts has been solved
with aid of marker symbols (Karttunen et al., 1987; Kaplan and Kay, 1994).This
solution was originally presented using a pair symbol alphabet and rationalrela-
tions and it defined such same-length relations that were used in two-level mor-
phology.

In the following, we will reformulate Kaplan and Kay’s method in the domain
of regular languages (rather than in the domain of same-length relations). The one-
context restrictionXΣM

⇒ΣM
VΣM

YΣM
for argumentsXΣM

,VΣM
,YΣM

⊆

8To make the current presentation more coherent, the original formula of Yli-Jyr ä (2003) is turned
here “up-side down” by an application of DeMorgan’s law.
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Σ∗
M is used as a primitive operation, which is interpreted as the languageΣ∗

M −
((Σ∗

M − VΣM
)XΣM

Σ∗
M ∪ Σ∗

MXΣM
(Σ∗

M − YΣM
)).

The Original Method Kaplan and Kay’s method allocates2 marker symbols for
each contextCi. These marker symbols form the setM = {〈i|1 ≤ i ≤ n} ∪
{〉i|1 ≤ i ≤ n}. A context restriction withn contexts is compiled as

hM ( (∪n
i=1 (X ⇒ΣM

Σ∗
M 〈i 〉iΣ

∗
M ))∗

∩ ∩n
i=1(〈i ⇒ΣM

h−1

M (Vi) Σ∗
M ) ∩ (〉i ⇒ΣM

Σ∗
M h−1

M (Yi))). (15)

This method works, indeed9, only if X ⊆ Σ. For example, ifX = {aa} ⊆ Σ∗,
the language described by the sub-formula(X ⇒ΣM

Σ∗
M 〈i 〉iΣ

∗
M ) contains all

unary stringsΣ, and thus (15) yields the universal languageΣ∗ regardless of the
licensing context conditions.10

An Improved Method A slightly more general solution, whereX has the limi-
tationX ⊆ Σ∗Σ, is

hM ((Σ∗ − Σ∗XΣ∗)((∪n
i=1 〈iX 〉i) (Σ∗ − Σ∗XΣ∗))∗

∩ ∩n
i=1(〈i ⇒ΣM

h−1

M (Vi) Σ∗
M ) ∩ (〉i ⇒ΣM

Σ∗
M h−1

M (Yi))). (16)

This improvement is closely related to the replace operator (Karttunen, 1997;
Kempe and Karttunen, 1996)11. It handles all context restrictions with “non-over-
lapping centers”, but works with “overlapping centers” in a way that differs from
our definition (1).

Crucial difference There are examples of context restrictions that can be used
to test different definitions and differentiate them from each other. For example,

aΣ∗b ⇒ Σ∗c Σ∗, Σ∗ dΣ∗

9From Kaplan and Kay, 1994, p.369, one might be able to read that the limitation X ⊆ Σ is
inessential.

10This resembles an XFST regular expression[[a => b c]|[a => d e]]* by Beesley and
Karttunen (2003, p. 65). That cannot be seen as a compilation approach for a context restriction
of the form[a => b c, d e] , because it is similarly defective ifa,b,c ,d ande are constants
denoting arbitrary regular languages.

11This method was also related although not precisely identifiable with the obso-
lete implementation of the restriction operator in some earlier XFST versions (before
v.8.3.0). According to Kempe (2004, priv.comm.), e.g. an XFSTregular expres-
sion [? - %@]* & [X => L1 R2, ...,Ln Rn] , where %@is a special symbol not occur-
ring in X,L1 ,R1,...,Ln ,Rn, would have been compiled in such a way that it corresponds to
[[? - %@]*.o.[X -> %@ || L1 R2, ...,Ln Rn].o. ˜[?* X ?*]].u . This is roughly the
method that was used in earlier XFST versions.
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demonstrates that the improved method is not equivalent to our definition (1):the
result of Formula (16) accepts e.g. stringscaab, abdb, abbd, acab while the result
of Formula (5) rejects them. Here, the improved method (16) produced a bigger
result (7 states) than our method (4 states). In the FSIG framework (Koskenniemi
et al., 1992), one can easily find more restrictions rules with “overlapping centers”.
Some of them would produce different results if compiled using these alternative
methods (cf. Yli-Jyr̈a, 2003).12

A Partition-Based Approach

The Original Method Grimley-Evans et al. (1996) implemented a morphologi-
cal grammar system that involved context restriction rules. This grammar system
is partition-based, which means that possible strings (or lexical/surface correspon-
dences) inside the system are sequences of element substringsE ⊆ Σ∗ (or lexi-
cal/surface correspondences) that are separated with a separatorσ /∈ Σ. The set
of all possible sequences that are filtered with context restriction rules is,thus,
σ(Eσ)∗. The center languageX is a subset ofE. Each context restriction fo-
cuses only occurrences that are complete elements substrings. When we restrict
ourselves to strings instead of correspondences, this compilation method can be
formulated as

σ(Eσ)∗ − s⋄/σXσ(h−1

{σ}(Σ
∗ ⋄ Σ∗ −

n
⋃

i=1

Vi ⋄ Yi)). (17)

A Non-Partition-Based Variant Formula (17) is closely related to our construc-
tion (5). However, sequences of element substrings in the partition-based system
is an unnecessary complication when the restriction operates with languagesrather
than regular relations. We can simplify Formula (17) by eliminating this feature.
The simplification is formulated as follows:

Σ∗ − s⋄/X (Σ∗ ⋄ Σ∗ −
n
⋃

i=1

Vi ⋄ Yi). (18)

Formula (18) captures the definition (1) and it can be seen, therefore, as an opti-
mization for Formula (5).

12The rule compiler used by Voutilainen (1997) was implemented by Pasi Tapanainen in Helsinki,
and it produced in 1998 results that seem to coincide with our definition (1).The method used in the
compiler has not been published, but according to Tapanainen (1992)he has used a transducer-based
method for compiling implication rules.
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Abstract

We give a motivation for the study of symmetric difference nondeter-

ministic finite automata, followed by an overview of current results first

on unary and then on binary symmetric difference nondeterministic finite

automata. The focus point of the overview is a comparison of the descrip-

tionl complexity of symmetric difference nondeterministic finite automata

as compared to that of traditional nondeterministic finite automata. We

conclude with a list of some open questions on symmetric difference non-

deterministic finite automata.

1 Introduction

Symmetric difference nondeterministic finite automata (⊕-NFAs) were first de-
fined by Van der Walt and Van Zijl [7] in the late 1990s. There is a close anal-
ogy between unary ⊕-NFAs and linear feedback shift registers (LFSRs) [3, 7]
and hence also between unary ⊕-NFAs and linear additive cellular automata
(LACAs) [2]. Accordingly, all the applications of LFSRs and LACAs can be
implemented using unary ⊕-NFAs. Such applications include random number
generation [8], cryptology, hashing, and others. These are different applications
for nondeterministic automata than those of the traditional NFAs. In addition,
the reader may note that the unary ⊕-NFAs are directly implementable in off
the shelf hardware as LFSRs.

The main interest of this author in ⊕-NFAs is in their ability to provide
succinct representations for regular languages which cannot be succinctly rep-
resented with traditional NFAs. Moreover, we are interested not only in the
question whether a certain representation has the ability to succinctly represent
a regular language, but rather for which and for how many languages it provides
a succinct description. In this aspect ⊕-NFAs show behaviour quite different to
that of traditional NFAs.

In addition, many interesting automata-theoretic questions about ⊕-NFAs
arise in the investigation of their succinctness properties, and these questions
had not been answered for LFSRs or LACAs either.

In the next section, we cover the definition of ⊕-NFAs.
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2 Definitions

⊕-NFAs are instances of so-called generalized NFAs (⋆-NFAs). We therefore
first define ⋆-NFAs [7]. We assume that the reader has a basic knowledge of
automata theory and formal languages, as for example in [5].

Note that we use symmetric difference here in the usual set theoretic sense;
that is, for any two sets A and B, the symmetric difference is defined as A⊕B =
(A ∪ B) \ (A ∩ B).

2.1 Definition of ⋆-NFAs

Definition 1 A ⋆-NFA M is a 6-tuple M = (Q,Σ, δ, q0, F, ⋆), where Q is the

finite non-empty set of states, Σ is the finite non-empty input alphabet, q0 ⊆ Q

is the set of start states and F ⊆ Q is the set of final states. δ is the transition

function such that δ : Q × Σ → 2Q. Here ⋆ is any associative commutative

binary operation on sets.

The transition function δ can be extended to δ : 2Q × Σ → 2Q by defining

δ(A, a) = ⋆
q∈A δ(q, a) (1)

for any a ∈ Σ and A ∈ 2Q.
δ can also be extended to δ : 2Q × Σ∗ → 2Q as follows:

δ(A, ǫ) = A

and

δ(A, aw) = δ(δ(A, a), w)

for any a ∈ Σ, w ∈ Σ∗ and A ∈ 2Q.
We use the terminology ⋆-DFA to indicate the DFA equivalent to a given

⋆-NFA, as obtained by using the subset construction. We shall also say that a
⋆-NFA needs m deterministic states iff the minimal DFA of the ⋆-DFA has m

states.

Definition 2 Let M be a ⋆-NFA M = (Q,Σ, δ, q0, F, ⋆), and let w be a word in

Σ∗. Then M accepts w iff F ∩ δ(q0, w) 6= ∅.

Other definitions of acceptance were investigated in [7].
To define a ⊕-NFA, simply replace ⋆ in the definitions above with ⊕.

Example 1 Let M be a ⊕-NFA defined by

M = ({q1, q2, q3}, {a}, δ, {q1}, {q3},⊕)

with δ given by
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q1 q2 q3
a aa

a

Figure 1: The ⊕-NFA for Ex. 1.

δ a

q1 {q2}
q2 {q3}
q3 {q1, q3}.

To find the ⊕-DFA M ′ equivalent to M , we apply the subset construction,

but using symmetric difference instead of union. The transition function δ′ of

M ′ is then given by:

δ′ a

[q1] [q2]
[q2] [q3]
[q3] [q1, q3]
[q1, q3] [q1, q2, q3]
[q1, q2, q3] [q1, q2]
[q1, q2] [q2, q3]
[q2, q3] [q1].

2

Any unary ⊕-NFA is clearly an autonomous linear machine (see [4, 6, 8]
for more detail). Therefore, the transition table of a unary ⊕-NFA M can be
encoded as a binary matrix A, and successive matrix multiplications in the
Galois field GF (2) reflect the subset construction on M . We assume that the
reader is familiar with the theory of linear fields and with Galois fields, as for
example in [3, 6]. Suffice it to say that GF (2) contains the numbers 0 and 1, and
addition is defined such that 1+1 = 0, but 1+0 = 0+1 = 1. This corresponds
to the parity characteristic of the symmetric difference operation on sets.

To encode a unary ⊕-NFA M as a binary matrix in GF (2), we use the
encoding rule

aji =

{

1 if qj ∈ δ(qi, a)
0 otherwise.

In other words, we encode every row of the transition table of M as a column
in A. The matrix A is called the characteristic matrix of M , and the polynomial
c(X) = det(A − IX) is known as its characteristic polynomial.
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Example 2 Consider the ⊕-NFA in Ex. 1 above. Then A is given by

A =





0 0 1
1 0 0
0 1 1



 .

Calculating c(X) using standard algebra leads to c(X) = X3 − X2 − 1. The

interested reader may note that c(X) is a primitive irreducible polynomial in

GF (2). If we encode the start state as a column vector y(0), and compute

Aky(0), we end up with the k-th entry in the on-the-fly subset construction on

M . For example, with the start state q1 encoded as y(0) = [1 0 0]
T
, we see that

A4 is given by

A4 =





1 1 0
1 1 1
1 0 1



 ,

and hence A4y(0) is given by [1 1 1]. This corresponds to the state [q1, q2, q3],
which is reached after four applications of the subset construction on M . Simi-

larly, A6y(0) is given by [0 1 1], which corresponds to {q2, q3}.

2

3 Unary ⊕-NFAs

Given any n-state unary ⊕-NFA M , one can immediately determine the size
and cycle structure of its equivalent ⊕-NFA M ′ by the properties of its char-
acteristic matrix A and characteristic polynomial c(X). In particular, we have
the following results from [3, 9]:

• If A is non-singular and c(X) is primitive and irreducible, then M ′ has
2n − 1 reachable states in a single cycle of length 2n − 1.

• If A is non-singular and c(X) is irreducible but not primitive, then M ′

has a cycle of length b, where b is a factor of 2n−1. No other cycle lengths
are possible.

• If A is singular, then M ′ has a cycle length of b, or b transient states which
ends in a cycle of length one. Here b is either less than 2n−1, or can be
constructed as lcm(2n1−1, 2n2−1, . . . , 2nj−1), where n = n1+n2+. . .+nj .

• If A is non-singular and c(X) is reducible, then M ′ has a number of states
already occuring in one of the above cases.

Note that the results above concern the number of reachable states of the
⊕-DFA, and not the size of the minimal ⊕-DFA. However, a careful choice of
final states can usually lead to examples where the ⊕-DFA in question is in fact
minimal. Such examples were given in [7, 9, 11, 10], and we note the following
results:
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• There is a family of unary languages Lk>0 such that each Lk can be
accepted by a ⊕-NFA with n states for which the smallest equivalent ⊕-
DFA has 2n − 1 states [7].

• The unary regular languages that have succinct representations with ⊕-
NFAs can be defined precisely, namely,

L =
⋃

k∈A

{ai(2n
−1)+k|i ≥ 0},

for some set A ⊆ {0, 1, . . . , 2n − 2}.

• There are at least

2n ×
1

n
ϕ(2n − 1)

distinct languages accepted by an n-state ⊕-NFA [11] such that the min-
imal ⊕-DFA has 2n − 1 states. Here ϕ(m) is the Euler function which
denotes the number of positive integers less than m which are relatively
prime to m.

• There are regular languages that have succinct representations with ⊕-
NFAs, but for which there are no succinct representations with traditional
NFAs [11].

• There are ‘magic’ numbers k between 2n−1 and 2n − 1 for which there
are no n-state unary ⊕-NFAs with equivalent minimal ⊕-DFAs with k

states [10].

• The probability that a ⊕-NFA may have a succinct representation is higher
than in the case of traditional NFAs [1].

Note that it is possible to exploit co-deterministic examples in constructive
existence proofs, as traditional NFAs and ⊕-NFAs accept the same language if
the NFA is co-deterministic.

We list some results not previously published in detail:

• Shortest word accepted by n-state unary ⊕-NFA: n − 1.

• k-entry ⊕-DFAs: Worse succinctness properties than traditional k-entry
DFAs. This is easy to see: The union operation can build up all sets
larger than the (deterministic) sets with cardinality one. However, the
symmetric difference operation can only build the sets up to the size of
the cardinality of the set of start states.

• Reversible ⊕-NFAs: As for LACAs; requires somewhat intricate construc-
tion for non-trivial cases. Note that Brzozowski’s result on the reverse of
DFAs for minimization purposes does not hold.

• Minimization of ⊕-NFAs: in progress (Daciuk, Mueller).
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• Homogeneous ⊕-NFAs: Again, reversibility leads to most results in tradi-
tional case. Not applicable in ⊕-NFA case.

Note that the known special cases where traditional NFAs perform well as
far as succinctness is concerned, appears not to behave well with ⊕-NFAs.

Some automata-theoretic properties of ⊕-NFAs that still need investigation
include:

• Are there families of regular languages that can be succinctly represented
by traditional NFAs, but for which there exists no succinct description
with ⊕-NFAs? The answer is most probably affirmative; no proof exists

yet.

• Is there a normal form for ⊕-NFAs, similar to Chrobak’s normal form for
unary traditional NFAs?

• Ambiguity in ⊕-NFAs, and the effect on succinctness.

• Forms of primitive words for ⊕-NFAs: This relates to the positions of final

states in a ⊕-DFA cycle, and has not been investigated either for LFSRs

or LACAs, to the author’s knowledge. Of special interest is the primitive

words that are formed by combining two primitive words from different

cycles.

• Graphical representation of ⊕-NFAs.

4 Binary ⊕-NFAs

Many results in the unary case translate readily into the binary case, but little
work has been done on binary ⊕-NFAs per se. We list only two results:

• There are no magic numbers for binary ⊕-NFAs [10].

• Binary ⊕-NFAs often generate all reachable states [1, 9].

5 Conclusion

We motivated the investigation into ⊕-NFAs, and gave an overview of the cur-
rent state of the art. We listed a number of open questions in this field, mostly
concerning the automata-theoretic properties of ⊕-NFAs.
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Abstract

J. Hromkovĩc etal. have given an elegant method to convert a regular expression of size
n into anε-free nondeterministic finite automaton havingO(n) states andO(n log2(n))
transitions. This method has been implemented efficiently in timeO(n log2(n)) by C.
Hagenah and A. Muscholl. In this paper we extend this method to weighted regular expres-
sions and we give anO(n log2(n)) implementation of this method.

1 Introduction

Weighted automata are efficient data structures for manipulating regular series. They are used
in a lot of practical and theoretical applications such as computer algebra, image encoding,
speech recognition or text processing. Regular series are also encoded by regular weighted
expressions. The equivalence between these two representations, weighted regular expressions
and finite automata has been proved in 1961 by Schützenberger [16]. For the conversion of
weighted regular expression into weighted automaton thereis principally three algorithms. The
first one due to P. Caron and F. Flouret [4]. Their algorithm works on a subset of weighted
regular expressions and produces the position automaton. Champarnaud etal. [5] given an
efficient algorithm that convert a weighted regular expression into its position automaton in
quadratic time on the size of the expression. Their algorithm is mainly based on the use of
theKZPC-structure for weighted expressions. The position automaton is a particular one (see
[6]) that has a quadratic number of transitions and(n + 1) states wheren is the alphabetic
width of the expression. S. Lombardy and J. Sakarovitch [14]algorithm constructs a weighted
automaton that turns out to be the generalization of Antimirov automaton for the Boolean case.
The Antimirov automaton [1] has less states than the positions automaton. As the position
automaton, Antimirov automaton has a quadratic number of transitions.

In the Boolean case many algorithms has been developed for theproblem of conversion
[8, 15, 2, 12, 17]. The best one in term of complexity is that proposed by J. Hromkovic̃ etal.
[11] and implemented by C. Hagenah and A. Muscholl [9]. This automaton called the Common
Follow Sets automaton has aO(n) of states andO(n log2(n)) transitions. C. Hagenah and
A. Muscholl proved that this automaton can be constructed from a regular expression of sizen
in timeO(n log2(n)) which constitutes the best algorithm for the conversion problem.
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In this paper, we extend J. Hromkovic̃ et al. algorithm to weighted regular expressions and
we present an efficient algorithm to convert a weighted regular expression of sizen into an
automaton havingO(n) states andO(n log2(n)) in O(n log2(n)) time.

In section 2, we first recall notions ofK-expressions and formal series. In section 3 we
present the position automaton construction. In section 4 we introduce the notion of Common
Follow Polynomials automaton which is the generalization of the notion of Common Follow
Sets automaton presented in [11]. In section 5 we recall theKZPC-structure in order to imple-
ment efficiently the algorithm introduced in section 4. Finally in Section 7 and 8 we describe
our algorithm.

2 Preliminaries

Let A be a finite alphabet, and(K,⊕,⊗, 0, 1) be a semiring (commutative or not). The operator
star ³ can be partially defined, the scalary³ ∈ K being a solution (if there exists) of the
equationsy ⊗ x ⊕ 1 = y andx ⊗ y ⊕ 1 = y [10, 13]. In the following definition, we introduce
the notion ofK-expression:

Definition 1 K-expressions over an alphabetA are inductively defined as follows:

• a ∈ A andk ∈ K areK-expressions,

• if F andG areK-expressions, then(F + G), (F · G), and(F ∗) areK-expressions.

When there is no ambiguity, theK-expression(F · G) will be denoted(FG). Let E be
a K-expression. We will denoteAE the alphabet ofE. The linearized versionE of E is
the K-expression deduced fromE by ranking every letter occurrence with its position inE.
Subscripted letters are called positions. The size ofE, denoted|E| is the size of the syntactical
tree ofE. For example, ifE = ( 1

2
·a∗+ 1

3
·b∗)∗ ·a∗, we getAE = {a, b}, E = ( 1

2
·a∗

1 + 1

3
·b∗2)

∗ ·a∗
3,

AE = {a1, b2, a3} and|E| = 13.

We define inductively thenull termof aK-expressionE, denotedc(E), by:

c(k) = k for all k ∈ K

c(a) = 0 for all a ∈ A

c(F + G) = c(F ) ⊕ c(G)

c(FG) = c(F ) ⊗ c(G)

c(F ∗) = c(F )³

The null term ofE = ( 1

2
a∗ + 1

3
b∗)∗a∗ is c(E) = 6.

In the following, we present a brief description of formal series and we define a subset of
the set ofK-expressions, usually called regularK-expressions, which are associated to regular
series [3].

Definition 2 A (non-commutative) formal series with coefficients inK and variables inA is
a map from the free monoidA∗ to K which associates with the wordw ∈ A∗ a coefficient
(S,w) ∈ K .
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A formal series is usually written as an infinite sum:S =
∑

u∈A∗(S, u)u. Thesupportof the
formal seriesS is the languagesupp(S) = {u ∈ A∗ | (S, u) 6= 0}. The set of formal series over
A with coefficients inK is denoted byK〈〈A〉〉. A structure of semiring is defined onK〈〈A〉〉 as
follows [3, 13]:

- (S + T, u) = (S, u) ⊕ (T, u),

- (ST, u) =
⊕

u1u2=u

(S, u1) ⊗ (T, u2), with S, T ∈ K〈〈A〉〉.

A polynomial is a formal series with finite support. The set ofpolynomials is denoted by
K〈A〉. It is a subsemiring ofK〈〈A〉〉. The star of series is defined by :S∗ =

∑

n≥0
Sn with

S0 = ε, Sn = Sn−1S if n > 0. Notice that the star of a formal series does not always exist:

Proposition 1 [13] The star of a formal seriesS ∈ K〈〈A〉〉 is defined if and only if(S, ε)³ is
defined inK. In this case:

S∗ = (S, ε)³(S0(S, ε)³)∗ (1)

where the formal seriesS0 is defined by(S0, ε) = 0 and(S0, u) = (S, u) for any wordu.

In the following, we will consider the previous construction of star of formal series.

Definition 3 The semiring of regular seriesKrat(A∗) ⊂ K〈〈A〉〉 is the smallest set ofK〈〈A〉〉
which contains the polynomials semiringK〈A〉, and which is stable by the operations of addi-
tion, product and star when this latter is defined.

The following definition introduces the notion of regularK-expression.

Definition 4 A regularK-expression is defined inductively by:

- a ∈ A, k ∈ K are regularK-expressions which respectively denote the regular series
Sa = a andSk = k,

- if F , G andH (s.t. c(H)³ exists) are regularK-expressions which respectively denote the
regular seriesSF , SG andSH , then(F + G), (FG), and(H∗) are regularK-expressions
respectively denote the regular seriesSF + SG, SFSG andSH

∗.

Definition 5 Let A be a finite alphabet, andK be a semiring (commutative or not). We define
an automaton with multiplicitiesA = (Q, q0, δ, F, µ) as follows:

• Q a finite set of states,

• q0 the initial state with1 as initial coefficient,

• δ : Q × K × A → 2Q the transition function,

• F ⊆ Q is the set of final states,

• µ : Q → K the final function, (we haveq ∈ F if and only ifµ(q) 6= 0).
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The definition of an automaton with multiplicities is more general but this one is sufficient
for our construction.

A recognized pathp in A is a sequence(q0, q1), (q1, q2), · · · , (qn−1, qn) of transitions inA.
It is written p = (q0, q1, q2, · · · , qn−1, qn). We denote bycoef(p) the cost of the pathp in A.
Formally, we getcoef(p) = αq1

⊗ αq2
⊗ · · · ⊗ αqn

⊗ µ(qn) with qi ∈ δ(qi−1, αqi
, aqi

), where
qi ∈ Q, aqi

∈ A andαqi
∈ K for all 1 ≤ i ≤ n. We denote byw(p) the word obtained inA by

going across the pathp, i.e. w(p) = aq1
aq2

· · · aqn
whereaqi

∈ A for all 1 ≤ i ≤ n. We denote
by CA the set of all recognized paths inA. From these functions, we can define the seriesSA

associated with the automatonA:

SA =
∑

u∈A∗

(SA, u)u

where:
(SA, u) =

⊕

p∈CA

w(p)=u

coef(p)

We say that the automatonA realizesthe seriesSA.

Definition 6 A formal seriesS ∈ K〈〈A〉〉 is called recognizable if there exists an automaton
that realizes it.

The following result due to Schützenberger [16] is classical:

Theorem 1 (Scḧutzenberger, 1961). A formal series is recognizable if and only if it is regular.

3 Position automaton

In this section, we recall some basic notions related to the construction of position automata
from regularK-expressions. LetE be a regularK-expression over an alphabetA. The position
automaton associated withE is computed from three functionsFirst, Last andFollow(·, E).
These functions are defined fromL(E) (L(E) is the language associated to the linearized ver-
sion ofE) [5]. They can be computed inductively according to the following rules:

First(k) = 0 for all k ∈ K (2)

First(a) = 1ai (ai is the position associated toa in AE) (3)

First(F + G) = First(F ) + First(G) (4)

First(FG) = First(F ) + c(F ) First(G) (5)

First(F ∗) = c(F )³ First(F ) (6)

We obtain the same rule forLast by substitutingLast for First and replacing the formula(4)
by:

Last(FG) = Last(G) + c(G) Last(F ) (7)
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Given a positionx ∈ AE, the functionFollow(x,E) is inductively computed as follows:

Follow(x, k) = 0 for all k ∈ K

Follow(x, a) = 0 for all a ∈ A

Follow(x, F + G) = Follow(x, F ) + Follow(x,G)

Follow(x, FG) = Follow(x, F ) + (Last(F ), x) First(G) + Follow(x,G)

Follow(x, F ∗) = Follow(x, F ) + (Last(F ∗), x) First(F )

Proposition 2 [5] Let E be a regularK-expression. The formal seriesFirst, Last andFollow
of E are polynomials.

Let h be the mapping fromAE to AE induced by the linearization ofE overAE. It maps
every position to its value inAE. For example, ifE = 2a1 + 3b2 + a3 thenh(a1) = h(a3) = a
andh(b2) = b. TheFirst, Last andFollow polynomials of a regularK-expressionE can be
used to define an automaton with multiplicities realizingSE. We define theposition automaton
for E, denotedAE, as the 5-tuple(Q, q0, F, δ, µ) where, for someq0 /∈ AE,

• Q = {q0} ∪ AE,

• δ(q0, α, h(q)) = q if (First(E), q) = α,

• δ(p, α, h(q)) = q if (Follow(p, E), q) = α for all p, q inAE,

• q ∈ F ⊆ Q if and only if µ(q) 6= 0 with µ(q) =

{
c(E) if q = q0,
(Last(E), q) otherwise.

Proposition 3 [5] Let E be a regularK-expression andAE its position automaton. ThenAE

realizes the regular seriesSE.

4 Common Follow Polynomials automaton

In this section, we introduce the notion of Common Follow Polynomials system which is the
generalization of the notion of the Common Follow Sets introduced by J. Hromkovic̃ etal. [11]
in order to compute an automaton having less transitions than the position automaton.

Next, we prove that the CFP automaton induced by the Common Follow Polynomials sys-
tem realizes the same series as the position automaton.

Finally, we recall theKZPC-structure in order to implement an efficient algorithm to con-
vert a regularK-expression into its CFP automaton.

From now, we will consider the expressionE ′ = (E · ♯) with ♯ /∈ AE and we will use the
operator× as follows:
If C = α1x1 + · · · + αnxn is a polynomials inK〈A〉 andk ∈ K thenk × C = (k ⊗ α1)x1 +
· · · + (k ⊗ αn)xn.
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Definition 7 (Commun Follow Polynomials System)Let E be a regularK-expression and
E ′ = E♯. A CFP system forE is given asS(E) = (dec(x))x∈AE

, where eachdec(x) ⊆
K〈AE ∪ {♯}〉 is a decomposition ofFollow(x,E ′), that is:

Follow(x,E ′) =
∑

k×C∈dec(x)

k × C

The family of common follow polynomialsFE associated with this system is defined by

FE = {First(E ′)} ∪
⋃

x∈AE

{C | ∃k ∈ K such thatk × C ∈ dec(x)}

Notice thatFE is not unique as we can see in the following example.

Example 1 LetE = ( 1

3
a + 1

6
b)( 1

2
a∗b). One has:

E ′ = (
1

3
a1 +

1

6
b2)(

1

2
a∗

3b4)♯

First(E ′) =
1

3
a1 +

1

6
b2

Follow(a1, E
′) = 1

2
× (a3 + b4) Follow(a1, E

′) = 1

2
× (a3) + 1

2
× (b4)

dec(a1) = { 1

2
× (a3 + b4)} dec(a1) = { 1

2
× (a3),

1

2
× (b4)}

Follow(b2, E
′) = 1

2
× (a3 + b4) Follow(b2, E

′) = 1

2
× (a3) + 1

2
× (b4)

dec(b2) = { 1

2
× (a3 + b4)} dec(b2) = { 1

2
× (a3),

1

2
× (b4)}

Follow(a3, E
′) = 1 × (a3 + b4) Follow(a3, E

′) = 1 × (a3 + b4)
dec(a3) = {1 × (a3 + b4)} dec(a3) = {1 × (a3 + b4)}
Follow(b4, E

′) = 1 × ♯ Follow(b4, E
′) = 1 × ♯

dec(b4) = {1 × ♯} dec(a1) = {1 × ♯}
FE = { 1

3
a1 + 1

6
b2, a3 + b4, ♯} FE = { 1

3
a1 + 1

6
b2, a3, b4, a3 + b4, ♯}

Definition 8 (CFP automaton) Let E a regular K-expression andS(E) its Common Follow
Polynomials system. The Common Follow Polynomials automaton associated toE is defined by
AS(E) = (Q,A, q0, δ1, F, µ1) where

• Q = FE,

• q0 = {First(E ′)},

• δ1 = {(C,αa, C ′)|α =
⊕

1≤i≤m

βi⊗kai
where

∑

1≤i≤m

βiai is a subpolynomials ofC s.t.h(ai) =

a andkai
× C ′ ∈ dec(ai) for 0 ≤ i ≤ m},

• C ∈ F if and only ifµ1(C) = (C, ♯) 6= 0.

Theorem 2 Let E be a regularK-expression andAS(E) its common follow polynomials au-
tomaton. ThenAS(E) realizes the regular seriesSE.
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To prove this theorem, we introduce the automatonAS(E) = (Q,AE, q0, δ2, F, µ1) defined as
follows:

• Q = FE,

• q0 = {First(E ′)},

• δ2 = {(C, kjβiai, C
′) | βiai a monomials ofC andkj × C ′ ∈ dec(ai)},

• C ∈ F if and only if µ1(C) = (C, ♯) 6= 0.

Lemma 1 LetE be a regularK-expression. The automatonAS(E) realizes the seriesSE.

Proof. Let E be a regularK-expression andAE the position automaton associated to its
linearized versionE and letS(E) = (dec(x))x∈AE

aCFP systemassociated withE.
Let w = a1a2 · · · an ∈ AE

∗, From Proposition 3,AE realizes the seriesSE, so to prove this
Lemma it suffices to show that for each pathp ∈ CAE

, such thatm(p) = w, there exists a unique
equivalent pathp′ ∈ CAS(E)

such thatm(p′) = w andcoef(p) = coef(p′), and conversely.
Let p be a path inCAE

such thatm(p) = w andcoef(p) = α1 ⊗ · · · ⊗ αn ⊗ µ1(an). From
the definition of aCFP system, one has, for each positionai ∈ AE there exists a family of
polynomials(Cj)l≤j≤il

, such thatdec(ai) = ∪1≤j≤il
kj ×Cj andFollow(E ′, ai) =

∑

k×C∈dec(ai)

k×

C. Thus, by a straightforward induction on the length ofw:

- In AE, one hasδ(q0, α1a1) = a1, then there exists a uniquek1 × C1 ∈ dec(a1) such that
β2 = (C1, a2) 6= 0. Thus, inAS(E), there exists a unique equivalent transition from the
stateFirst(E ′) to the stateC1 realizingδ2(First(E ′), γ1a1) = C1, whereγ1 = α1 ⊗ k1.

- Similarly, inAE, one hasδ(ai−1, αiai) = ai andδ(ai, αi+1ai+1) = ai+1, then there exists
a uniqueki × Ci ∈ dec(ai) such thatβi+1 = (Ci, ai+1) 6= 0 andαi = ki−1 ⊗ βi for all
2 ≤ i ≤ n. Thus, inAS(E), there exists a unique equivalent transition from the stateCi−1

to the stateCi realizingδ2(Ci−1, γiai) = Ci, whereγi = βi ⊗ ki andαi = ki−1 ⊗βi for all
2 ≤ i ≤ n. When we arriving at the statean in AE, in AS(E), one has an equivalent state
Cn, where there existskn × Cn ∈ dec(an) andβn+1 = (Cn, ♯) 6= 0.

Finally, there exists a unique pathc′ in AS(E) such thatm(p′) = w and
coef(p′) = ( α1

︸︷︷︸

α1

⊗ k1) ⊗ (β2
︸ ︷︷ ︸

α2

⊗ k2) ⊗ ·
︸ ︷︷ ︸

α3

· · · · ⊗ (βn
︸ ︷︷ ︸

αn

⊗ kn) ⊗ βn+1
︸ ︷︷ ︸

µ1(an)

= coef(p).

Conversely, letp′ be a path inAS(E) with m(p′) = w andcoef(p′) = γ1 ⊗ γ2 ⊗ · · · γn ⊗ βn+1.
From the definition of the CFP automaton, one hasγi = βi ⊗ ki with δ2(Ci−1, αiai) = Ci,
ki × Ci ∈ dec(ai) andβiai a term inCi−1, we haveβi+1 = (Ci, ai+1) 6= O then there exists a
unique equivalent transitionδ(ai−1, αiai) = ai in AE such thatαi = ki−1 ⊗ βi andγi = βi ⊗ ki

for all 2 ≤ i ≤ n, and forδ2(First(E ′), γ1a1) = C1, one has an equivalent transition inAE,
δ(q0, α1a1) = a1 such thatγ1 = α1 ⊗ k1. ¥
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Proof of theorem 2. Let E be a regularK-expression andw ∈ AE
∗. We must prove that

(SAS(E)
, w) = (SE, w). By Lemma 1, it’s suffices to prove that

⊕

p′∈CAS(E)

m(p′)=w

coef(p′) =
⊕

p∈CA
S(E)

h(m(p))=w

coef(p)

Let (pi)1≤i≤n the family of paths inAS(E) realizingh(m(pi)) = w, for all 1 ≤ i ≤ n. We sup-
pose without loss of generality thatm(pi) = a1a2 · · · ati

· · · al, coef(pi) = α1⊗α2⊗· · ·αti
· · ·⊗

αn andh(ati
) = a, for all 1 ≤ i ≤ n. Then, inAS(E) if there exists two statesC andC ′ such

that (C, ati
) 6= 0 andki × C ′ ∈ dec(ati

) , one has an unique equivalent pathp′ in AS(E) such
thatm(p′) = w and
⊕

1≤i≤n

(α1 ⊗ α2 ⊗ · · ·αti
· · · ⊗ αn) = α1 ⊗ α2 ⊗ · · · (

⊕

1≤i≤n

αti
)

︸ ︷︷ ︸

α

· · · ⊗ αn = coef(p′). ¥

Example 2 For E = ( 1

3
a + 1

6
b)( 1

2
a∗b). Consider the following family of Common Follow

Polynomials systemFE = { 1

3
a1 + 1

6
b2} ∪ {a3 + b4, ♯}.

q0
1

a1

b2

a3

b4
1

1

3
a

1

6
b

1

2
a

1

2
b

1

2
a

1

2
b

b

a

Figure 1: The position automaton forE =
( 1

3
a + 1

6
b)( 1

2
a∗b).

1

3
a1 + 1

6
b2

1
a3 + b4 ♯ 1

1

6
a, 1

12
b b

a

Figure 2: A CFP automaton forE = ( 1

3
a +

1

6
b)( 1

2
a∗b).

Note that for the previous example, the position automaton associated withE has5 states
and8 transitions (See Figure 1). However there exists a CFP automaton realizing the seriesSE

with only 3 states and4 transitions (See Figure 2).

The number of transitions and the number of states in a Common Follow Polynomials Au-
tomaton obviously depends on the choice of the Common Follow Polynomials System. The
next section deals with the problem of finding appropriate common follow polynomials.
A good choice can be found by resolving the following system

{
Minimize(f(E) =

∑

x∈AE

nxmx).

Wheremx denotes the number of polynomialsC ∈ FE such that(C, x) 6= 0 andnx denotes the
size ofdec(x).

From the definition of the automatonAS(E), the functionf represent the number of its
transitions.
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Unfortunately, In the practice this method is not efficient.In the Boolean case J. Hromkovic̃
etal. [11], presented an elegant method that computes a particular Common Follow Sets system
which yields to a Common Follow Sets automaton havingO(n) states andO(n log2(n)) tran-
sitions wheren denote the size of the regular expression. In [9] C. Hagenah and A. Muscholl
have shown that this particular automaton can be computed intime O(n log2(n)) which is the
best algorithm for the problem of conversion in the boolean case.

In the next sections, we prove that for a regularK-expression of sizen there exists a Com-
mon Follow Polynomials automaton withO(n log2(n)) transitions andO(n) states. This con-
stitutes the generalization of the result proved by J. Hromkovic̃ et al.[11]. Next we give an
efficient algorithm that computes this automaton in timeO(n log2(n)).

Our algorithm is based on theKZPC-structure . This structure has been introduce in [5], in
order to compute the position automaton. The following section gives a brief description of this
structure.

5 KZPC-structure

Let E be a regularK-expression. TheKZPC-structure ofE is based on two labeled trees
(TL(E) andTF(E)) deduced from its syntactical treeT(E). These trees encode respectively
the Last and the First polynomials associated to the subexpressions ofE. The edges of these
trees are labeled by elements ofK.
A node inT(E) will be notedν. If the arity ofν is two, we write respectivelyνl andνr its left
son and its right son. If its arity is1, its son will be notedνs. The relation of descendance over
the syntax tree is denoted¹. For a tree whose edges are labeled by elements of the semiring K,
we define the function of costπ as follows:

π(ϑ, ϑ′) =

{
the cost of the pathϑ Ã ϑ′ if ϑ ¹ ϑ′or ϑ′ ¹ ϑ,
0 otherwise.

By convention we setπ(ϑ, ϑ) = 1.
A subtreet of T(E) is a tree associated to a subexpression ofE ′, or a tree obtained from

T(E) by deleting a set of trees which represent some subexpressions ofE ′. This definition is
also applied tot. Let t1 be a subtree oft, we denote byt \ t1 the subtree oft resulting fromt by
deleting the subtreet1. We denote byPos(t) the set of positions of expressionsa ∈ AE being
leaves oft. As a measure oft we use the cardinality ofPos(t), we set| t | = |Pos(t)|. For a
nodeν in T(E), the regularK-expressionEν denotes the subexpression resulting from the node
ν andc(ν) its null term. TheLast treeTL(E) is a labeled copy ofT(E), where an edge going
from a nodeλ labeled “·” to its left sonλl is marked byc(λl) and for each edge going from a
nodeλ labeled “∗” to its sonλs is marked byc(λs)

³. The nodeλ represents the polynomials

e(λ) =
∑

x∈AE

π(x, λ)x

Thus we have

e(λ) = Last(Eλ)
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The First treeTF(E) is computed in a similar way, by marking an edge going from a nodeϕ
labeled “·” to its right sonϕr by c(ϕl) and a edge going from a nodeϕ to its sonϕs is marked
by c(ϕs)

³. The nodeϕ represents the polynomials

e(ϕ) =
∑

x∈AE

π(ϕ, x)x

Thus we have

e(ϕ) = First(Eϕ)

Any edge not marked will be marked by1 and the marking of these edges is implicit.
The two trees are connected as follows. if a nodeλ of TL(E) is labeled by “·”, its left sonλl is
linked to the right sonϕr of the corresponding nodeϕ in TF(E). If a node inTL(E) labeled
“∗” its son node is linked to its corresponding node inTF(E). Such links are calledfollow links.
The set of follow links is denoted by∆. We denote by∆x the set of follow links associated to
the positionx. That is: ∆x = {(λ, ϕ) ∈ ∆ | x ¹ λ}.

Proposition 4 LetE be a regularK-expression andx ∈ Pos(E). Then

Follow(x,E) =
∑

(λ,ϕ)∈∆x

π(x, λ)e(ϕ) (8)

TL(E)

∗

+

· ·

· · 1

2
∗

1

3
a1

1

4
∗

b2

b3

2

1

4

1

1

TF(E)

∗

+

· ·

· · 1

2
∗

1

3
a1

1

4
∗

b2

b3

2

0

1

3

1

2

1

4

1

1

Figure 3: TheKZPC-structure associated to the expressionE = ( 1

3
a 1

4
b∗ + 1

2
b∗)∗.

6 A CFP computation

Now we describe a procedure which allows us to produce a CFP system that yields to a CFP
automaton withO(n log2(n)) transitions andO(n) states. This procedure is a generalization of
J. Hromkovĩc etal. one.
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We introduce the functionf : TL(E ′) → TF(E ′) ∪ {⊥} defined by:

f(λ) =

{
ϕ if (λ, ϕ) ∈ ∆x,
⊥ otherwise.

where⊥ denotes an artificial node such thatπ(x,⊥) = 0.
In order to simplify the writings in the following parts, we extend the polynomialFollow to the
nodes of the treeTL(E ′) as follows:
Letsλ1 ¹ λ2 be two nodes from the treeTL(E ′), we denote by

Follow(λ1, λ2) =
∑

λ1¹λ≺λ2

π(λ1, λ)e(f(λ))

Notice that for a polynomialP (?) and a subtreet of T(E ′), the restriction ofP (?) to t, denoted
by Pt(?) is defined as

Pt(?) =
∑

x∈Pos(t)

(P (?), x)x

Consider a subtreet of T(E ′) and a positionx ∈ Pos(t) \ {♯}. We denote bytf (respec-
tively tl) the labeled copy oft in TF(E ′) (respectively inTL(E ′)). The procedure recursively
computes a particular CFP system. It is defined as
If | t | > 1:

Divide t into two subtreest1 andt2 according to the following rules:| t |
3

≤ | t1 | ≤
2| t |

3
and let

t2 = t \ t1 with λ1 be the root of the subtreetl1 andϕ1 its correspending node intf1. Let

k1(x) = π(x, λ1),

P1 = Followt2(λ1, E
′),

k2(x) =
∑

x¹λ≺E′

π(x, λ)π(f(λ), ϕ1)

P2 = e(ϕ1).

Let us suppose thatx ∈ Pos(t1). If π(x, λ1) = 0, that is in the treetl, one cannot reach the
follow links which are in above the root of the treetl1 i.e. From Formula 12, the positions of the
treet2 not occur in the polynomialFollowt(x,E ′). In this case, one hasdec(x, t) = dec(x, t1).
In the contrary case, we writeFollowt(x,E ′) as a sum of polynomials having disjoined supports.
We can writeFollowt(x,E ′) = Followt1(x,E ′)+Followt2(x,E ′) and we search to compute the
polynomialFollowt2(x,E ′). Let us show thatFollowt2(x,E ′) = k1(x) × P1 anddec(x, t) =
dec(x, t1) ∪ {k1(x) × P1}. From Formula 12, one has:

Followt2(x,E ′) =
∑

(λ,f(λ))∈∆x

λ≺E′

π(x, λ)et2(f(λ))

=
∑

x¹λ≺E′

π(x, λ)et2(f(λ))

= π(x, λ1) ×
∑

λ1¹λ≺E′

π(λ1, λ)et2(f(λ)).
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Notice that the polynomialP1 =
∑

λ1¹λ≺E′ π(λ1, λ)et2(f(λ)) is independent of the positions of
the treet1 and the polynomialsFollowt2(x,E ′) with x ∈ Pos(t1) are equal except a coefficient
k1(x) = π(x, λ1). Thus we get:

dec(x, t) =

{
dec(x, t1) if π(x, λ1) = 0,
dec(x, t1) ∪ {k1(x) × P1} otherwise.

Let us suppose thatx ∈ Pos(t2). Similarly, if Followt1(x,E ′) = 0, one hasdec(x, t) =
dec(x, t2). In the contrary case,dec(x, t) = dec(x, t2) ∪ {Followt1(x,E ′)}. Let us show that
Followt1(x,E ′) = k2(x) × P2. LetsF be the root node oft2 andϕ1 be the root node oftf1.
From Formula 12 one has:

Followt1(x,E ′) =
∑

(λ,f(λ))∈∆x

λ≺E′

π(x, λ)et1(f(λ))

=
∑

x¹λ≺E′

π(x, λ)et1(f(λ))

=
∑

x¹λ≺E′

π(x, λ)π(f(λ), ϕ1)et1(ϕ1)

=
∑

x¹λ≺E′

π(x, λ)π(f(λ), ϕ1) × e(ϕ1).

Let k2(x) =
∑

x¹λ≺E′

π(x, λ)π(f(λ), ϕ1) andP2 = e(ϕ1), we get

dec(x, t) =

{
dec(x, t2) if Followt1(x,E ′) = 0,
dec(x, t2) ∪ {k2(x) × P2} otherwise.

If | t | = 1: Using the same idea of the previous cases, we get

dec(x, t) = {(P0, x) × x}

With P0 =
∑

x¹λ≺E′

(π(x, λ)π(f(λ), x))x.

Proposition 5
Followt(x,E ′) =

∑

k×C∈dec(x,t)

k × C.

Proof. By induction on the size of the regularK-expressionE.
If | t | = 1, one hasFollowt(x,E ′) = P0 = (P0, x)x. We suppose that the property is true for
all subtreet′ such that1 < | t′ | < | t | and we prove that it is true fort. We have

Followt(x,E ′) = Followt1(x,E ′) + Followt2(x,E ′)
Ind.Hyp.

=
∑

k×C∈dec(x,t1)

k × C +
∑

k×C∈dec(x,t2)

k × C
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One has

dec(x, t) =







dec(x, t1) if x ∈ Pos(t1) andk1(x) = 0,
dec(x, t1) ∪ {k1(x) × P1} if x ∈ Pos(t1) andk1(x) 6= 0,
dec(x, t2) if x ∈ Pos(t2) andk2(x) = 0,
dec(x, t2) ∪ {k2(x) × P2} if x ∈ Pos(t2) andk2(x) 6= 0.

So, we can conclude thatFollowt(x,E ′) =
∑

k×C∈dec(x,t)

k × C. ¥

Thus, we get a CFP familyFt restricted tot

Ft =
⋃

x∈Pos(t)\{♯}

{C|∃k ∈ K such thatk × C ∈ dec(x, t)}

The following example illustrates the different stages of the recursive procedure.

Example 3 LetE = (((a + 1

3
) + (b + 1

6
))(b + 1))∗.

Step 1:
|T(E ′)| = 4. We divide the treet = T(E ′) into two subtreest1 and t2 such thatt1 be the
subtree representing the subexpression(a1 + 1

3
) + (b2 + 1

6
) andt2 = t \ t1. In this case one has

dec(a1, t) = dec(a1, t1) ∪ {1 × (2b3 + 2♯)},

dec(b2, t) = dec(b2, t1) ∪ {1 × (2b3 + 2♯)},

dec(b3, t) = dec(b3, t2) ∪ {1 × (2a1 + 2b2)}.

Step 2:
Recursively, we divide the subtreet1 into two subtreest11

(the subtree representing the subex-
pressiona1 + 1

3
andt12

= t1 \ t11
). Similarly, we divide the subtreet2 into two subtreest21

(the
subtree representing the subexpressionb3 + 1 andt22

= t2 \ t21
). Thus we get

dec(a1, t) = dec(a1, t11
) ∪ {2 × (b2)} ∪ {1 × (2b3 + 2♯)},

dec(b2, t) = dec(b2, t12
) ∪ {2 × (a1)} ∪ {1 × (2b3 + 2♯)},

dec(b3, t) = dec(b3, t21
) ∪ {2 × (♯)} ∪ {1 × (2a1 + 2b2)}.

Step 3:
One has| t11

| = | t12
| = | t21

| = 1, thus:

dec(a1, t) = {2 × (a1)} ∪ {2 × (b2)} ∪ {1 × (2b3 + 2♯)},

dec(b2, t) = {2 × (b2)} ∪ {2 × (a1)} ∪ {1 × (2b3 + 2♯)},

dec(b3, t) = {2 × (b3)} ∪ {2 × (♯)} ∪ {1 × (2a1 + 2b2)}.

Thus the resulting CFP familyFE associated withS(E) is

FE = {2a1 + 2b2 + b3 + 2♯} ∪ {(a1), (b2), (b3), (♯), (2b3 + 2♯)}

Using this procedure, we can prove in similar way as the Boolean case the following Lemma.
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Lemma 2 [11] For FE = {First(E ′)} ∪ FE′ the following holds:

1. |FE| = O(|E|),

2.
∑

C∈FE
|C| = O(|E| log |E|),

3. | dec(x,E ′)| = O(log |E|).

7 Efficient CFP system computation

Algorithm 1 summarizes the CFP system computation. It has a cubic time complexity. Indeed
the computation of polynomialsP0, P1, andP3 is quadratic on the size ofE independently of
the size of subtreet.

Algorithm 1 A CFP system computation.

CFP-system(t)
Begin
1. F :=root of(tl)
2. if (| t |=1)
3. then
4. Letx ∈ Pos(t) \ {#}
5. P0:=Followt(x, E′)
6. dec(x):={(P0, x) × x}
7. else
8. decomposet into t1 andt2 = t \ t1 such that| t |

3
≤ | t1 | ≤

2| t |
3

10. λ1:=root of(tl1)
11. ϕ1:=root of(tf1)
12. P1:=Followt2(λ1, E

′)
13. P2:=e(ϕ1)
14. P3:=Followt1(ϕ1, E

′)
15. for x ∈ Pos(t1) \ {#} do
16. dec(x):=dec(x) ∪ {π(x, λ1) × P1}
17. for x ∈ Pos(t2) \ {#} do
18. dec(x):=dec(x) ∪ {(P3, x) × P2}
19. endif
20. CFP-system(t1)
21. CFP-system(t2)
End

In the following section, we first show how these polynomialscan be computed in linear
time on the size ofE, next we present a refinement of Algorithm 1 in order to compute these
polynomials in linear time on the size of the subtreet.

14



7.1 Efficient Follow computation

Let t be a subtree deduced from a decomposition ofT(E ′). Let λ1 be the root oftl, and letλ2 a
node intl such thatλ1 4 λ2. We have

Follow(λ1, λ2) =
∑

λ14λ≺λ2

π(λ1, λ)e(f(λ))

The supports of polynomials(e(f(λ)))λ14λ≺λ2
are not disjoints. So the computation of

Followt(λ1, λ2) according to Formula(1) requires a quadratic time on the size of t.
Letλ′ andλ′′ be to nodes such thatλ1 4 λ′ ≺ λ′′ 4 λ2 andsupp(e(f(λ′))∩supp(e(f(λ)) 6=

∅.
In this case we have

e(f(λ′′)) = π(f(λ′′), f(λ′))e(f(λ′)) + e(f(λ′′) − f(λ′))

wheree(f(λ′′) − f(λ′)) denote the polynomials induced by the subtreetλ′′ \ tλ′. So the poly-
nomial

π(λ1, λ
′)e(f(λ′)) + π(λ1, λ

′′)e(f(λ′′))

can be written

[π(λ1, λ
′) + π(λ1, λ

′′)π(f(λ′′), f(λ′) ]e(f(λ′)) + π(λ1, λ
′′)e(f(λ′′) − f(λ′))

Here, supports of polynomialse(f(λ′)) ande(f(λ′′)−f(λ′)) are disjoints. Algorithm 2 is based
on this Formula. The call Follow(λ2,1,λ2), computes the polynomialFollow(λ1, λ2) in linear
time on the size oft. Indeed, each node intl2 is treated once.

Notice as polynomialsFollow are ordered onpositions, the restriction ofFollowt′(λ1, λ2)
to some subtreet′ of t needs a linear time on the size oft.

In a similar way, the polynomialFollow(ϕ1, ϕ) is computed in linear time of the size oft
whereϕ is the root oftf andϕ1 is a node intf.

Now polynomialsP0, P1, andP3 are computed in linear time on the size ofE. So Algo-
rithm 1 runs in quadratic time on the size ofE. However it do some redundant computations.
In the following section we give a refinement of Algorithm 1, in which theP0, P1, andP3 are
computed in linear time on the size of subtreet.

Lemma 3 Let E be a regularK-expression. Lett,t′ be subtrees ofT(E ′). Let λ1 be the root
of tl, and letλ2 a node intl such thatλ1 4 λ2. Then the polynomialsFollowt′(λ1, λ2) can be
computed inO(max(| t |, | t′ |).

7.2 Redundant computations

At each call of CFP-system procedure we compute the followingpolynomialsFollow(λ1, E
′),

Follow(ϕ1, E
′). We have

Follow(λ1, E
′) = Follow(λ1, λ) + π(λ1, λ) Follow(λ,E ′)
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Algorithm 2 Follow computation.

Follow(λ1,coef,λ2) : polynomials
// λ1 andλ2 are two nodes s.t.λ1 ¹ λ2

Begin
1. coef:=π(λ1, λ2) ⊕ coef ⊗π(father(f(λ2)), f(λ2))
2. case (arity(f(λ2)) of
3. 0 :
4. If ((coef 6= 0) and (f(λ2) is a position))
5. then
6. return (coef f(λ2))
7. else
8. return (0)
9. endif
10. 1 :
11. return (Follow(λ1,coef,son(f(λ2))))
12. 2 :
13. return (Follow(λ1,coef,leftson(f(λ2)))+Follow(λ1,coef,rightson(f(λ2))))
14. endcase
End

whereλ andϕ are respectively the root oftl andtf andλ1 andϕ1 are respectively the root
of tl1 andtf1.

As Follow(λ,E ′) is computed beforeFollow(λ1, E
′) we can store it in some variable and

use it when computingFollow(λ1, E
′). Denote byR(t) = Follow(λ,E ′). Then for the subtree

t1 of t we get

Follow(λ1, E
′) = Follow(λ1, λ) + π(λ1, λ)R(t)

ThusR(t) can be inductively computed as follows

R(t1) = π(λ1, λ)R(t)

and as the root oft is the same ast2 we get

R(t2) = R(t)

In a similar wayFollow(ϕ1, E
′) is computed. Denote byS(t) = Follow(ϕ,E ′). So we get

Follow(ϕ1, E
′) = Follow(ϕ1, ϕ) + π(ϕ1, ϕ)S(t)

where

S(t1) = π(ϕ1, ϕ)S(t)
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and

S(t2) = S(t)

It is obvious that ifRt2(t) andSt2(t) are computed thenFollowt2(λ2, E
′) andFollowt2(ϕ1, E

′)
can be computed in timeO(| t |). Finlay Algorithm 3 runs inO(|E| log |E|) time.

Algorithm 3 A CFP system computation.

CFP-system(t,R,S)
Begin
1. F :=root of(tl)
2. if (| t |=1)
3. then
4. Letx ∈ Pos(t) \ {#}
5. P0:=Followt(x, F ) + R

6. dec(x):={(P0, x) × x}
7. else
8. decomposet into t1 andt2 = t \ t1 such that| t |

3
≤ | t1 | ≤

2| t |
3

10. λ1:=root of(tl1)
11. ϕ1:=root of(tf1)
12. P1:=(Follow(λ1, F ) + R)t2
13. P2:=e(ϕ1)
14. P3:=(Follow(ϕ1, F ) + S)t1
15. for x ∈ Pos(t1) \ {#} do
16. dec(x):=dec(x) ∪ {π(x, λ1) × P1}
17. for x ∈ Pos(t2) \ {#} do
18. dec(x):=dec(x) ∪ {(P3, x) × P2}
19. endif
20. CFP-system(t1, (π(λ1, F )R + Follow(λ1, F ))t2 , (π(ϕ1, ϕ)S + Follow(ϕ1, F ))t2)
21. CFP-system(t2,R,S)
End

Lemma 4 LetE be a regularK-expression. The CFP system associated toE can be computed
in O(|E| log |E|) time.

8 CFP automaton computation

In the previous section, we have given an algorithm that compute the CFP system. So the set of
states of our automaton is computed. It remains to constructthe set of transitions. Algorithm 4
computes in a first stage the set of transitions overAE, and in the second stage deduces the set
of transitions over the alphabetAE.

Let us now describe this algorithm. LetC = β1x1 + β2x2 + . . . + βlxl be a state inFE.
Let βixi be a monomials inC. From the definition ofAS(E), if dec(xi, E

′) = {k1 × C1, k2 ×
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Algorithm 4 Transitions computation.

Transitions-from(C)
Begin
1. // Transitions overA

E

1. for C ∈ FE do
2. // C = β1x1 + . . . + βlxl

3. for x ∈ supp(C) do
4. // supp(C) = {x1, x2, . . . , xl}
5. for k × C ′ ∈ dec(x, E′) do
6. // dec(x, E′) = {k1 × C1, k2 × C2, . . . , km × Cm}
7. Create a transition labelled((C, x) ⊗ k)x from C to C ′

8. // Transition overAE

9. for C ∈ FE do
10. Letq+(C) = {α1x1C1, α2x2C2, . . . , αrxrCr}
11. //q+(C) are the set of transitions going from the stateC

12. for a ∈ AE do
13. for αxC ′ ∈ q+(C) do
14. p(a, C ′)=0
15. for αxC ′ ∈ q+(C) do
16. p(h(x), C ′):=p(h(x), C ′) + α

End

C2, · · · , km × Cm}, we must create a transition from stateC to eachCj 1 6 j 6 m, labelled
βikjxi.

Now transitions are labelled by letter inAE. So in the second stage of the algorithm, we
replace each symbolxi ∈ AE by h(xi). Next if there is two transitions from a stateC to a state
C ′ labelled respectivelykh(x) andk′h(x′) whereh(x) = h(x′), we merge these two transitions
into a unique one having(k + k′)h(x) as label.

Finlay, as
∑

C∈FE
|C| = O(|E| log |E|) and| dec(x,E ′)| = O(log |E|), lines1−7 and lines

9 − 16 of procedure transition() are achieved inO(|E| log |E|
2
) times.

Theorem 3 Let E be a regularK-expression. The CFP automatonAS(E) can be computed in
O(|E| log2(|E|)) time.
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Abstract

This paper introduces a new method for compact representation
associated with a set of finite string-classes, where here, for the sake of
clarity, each class is characterized by a non empty common maximal
suffix (CMS). The data structure for compact representation of our
method is based on q+1 automata and one m-ary decision tree (mdt),
where q stands for the number of CMSes. The last automaton (gq+1)
is for spelling out the reverse-CMSes, each CMS is pointed (by way of
the mdt) to its corresponding automaton which makes the process of
lookup for an input string easy and fast because the search is done in
an appropriate and learned subspace rather than in a complete space
which can be dramatically very large. Experiments done on several
datasets confirm the effectiveness of our method from the time and
space requirements of the computation.

1 Introduction

When turning to the literature on algorithms of stringogloy, formal language
and finite automata, as far as we know, one surprisingly realizes that there
is no work done on how to use advantageously the benefit of having a set of
string-classes both for compact representation of a finite set of strings and
fast lookup process.

Given an input language (L), if L has the characteristics of String-class,
the essential idea is to form q + 1 automata and one m–ary decision tree
(mdt), where q stands for the number of CMSes. The last automaton (gq+1)
is for spelling out the reverse-CMSes, each of which is pointed (by way of
the mdt) to its corresponding automaton which makes the process of lookup
for an input string easy and fast. In order to explain intuitively the benefit
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of our method, we give a very simple example.

Example 1: Although, the language L = {aabb, abab, abbb, bbab} can be
represented by a Deterministic Finite Automaton (DFA) of 8 states and
10 transitions (See Figure 1), because of the existence of CMSes, one can
also divide L into two sub-prefix-languages: P1 = {ab, bb} and P2 = {aa, ab}
along with CMS1 = “ab” and CMS2 = “bb”, respectively. By forming an addi-
tional automaton associated with reverse suffix-sub-language of L, namely,
{ba, bb} and learning a decision tree indicating that “ba” (resp. “bb”) is
the reverse-suffix of first (resp. second) sub-prefix-language, then one has
the ability to access directly to the right sub–space, namely, g1 (resp. g2)
allowing a fast retrieval for variable-length strings and quick unsuccessful
search determination.

The rest of paper argues in favor of our method and organized as follows.
In Section 2, we give the basic definitions and notation. How one can learn
the right sub-space is described in Section 3. Our algorithm for compact
representation is presented in Section 4 along with a step-by-step trace of
Example 1. How that representation can be used for fast lookup along with
on demand (i.e., just-in-time load the right sub-space in the main memory)
is described in Section 5. Then, Section 6 compares our method with other
techniques. The paper ends by giving the final words.

2 Preliminary

For more information on automata we refer the reader to e.g., [8]. For a
general reference on machine learning, the reader is referred to e.g., [5]. For
learning the values associated with a set of strings, we refer the reader to

2



our own method introduced in [3].

String-Class: A string (word) is a sequence of zero or more symbols from
an alphabet Σ. The set of all strings over Σ is denoted by Σ⋆. The length of
a string x is denoted by |x|. The empty string, the string of length zero is
denoted by ǫ. The ith symbol of a string x is denoted by x[i]. A string w

is a suffix of x if x = uyw, for w ∈ Σ⋆. Similarly, u and y is a prefix and a
factor of x, respectively. The concatenation of two strings x and y will be
shown by xy. We write x⊕ K (resp. K⊕ x) to denote the concatenation of
one string x (resp. a set of finite strings) and a set of finite strings K (resp.
one string).

The set of finite strings with a common maximal suffix (CMS) will be
called a string-class (SC) i.e., SC = {x = yiz|i = 1, . . . , n1}. The reveres
form of a CMS will be denoted by rcms.

Example 2: The set {aabb, abbb} is a string-class whereas the set {aabb,
abbb, abab} is not.

Separate States: A trie is essentially an ℓ–ary-tree whose nodes (states)
are ℓ–places vectors with components corresponding to digits or characters.
Each state on level h represents the set of all keys that begins with a certain
sequence of h characters; the state specifies an ℓ–way branch, depending
on the (h + 1)st character. To avoid confusion between keys like “by” and
“bye”, usually a special end marker symbol, ‘#’, is added to the end of all
keys, so no prefix of a key can be a key itself. We write g(r, a) = t to indicate
that a transition labeled with a ∈ Σ from r to t. The number of transitions
outgoing from state s is defined as OD(s) (i.e., out degree). A state s with
an OD(s) = 0 is called a terminal state. For g(s, a) = t such that OD(s) ≥ 2

and OD(t) = 1 , state t is called a separate state (sp) if and only if there is
no state k such that OD(k) ≤ 2 on the sequence of transitions from state t

to the corresponding terminal. A set of separate states is denoted by Sp.

Example 3: Figure 3 shows a trie with one separate state, namely, state 6.

Finite automaton: A trie is used to form an acyclic finite-state automaton:
a graph of the form g = (Q, Σ, δ, q0, F) where Q is a finite set of states, q0
is the start state, F ⊆ Q is the accepting states. δ is a partial mapping
δ : Q× Σ −→ Q denoting transition. If a ∈ Σ, the notation δ(q, a) = ⊥ is used
to mean that δ(q, a) is undefined. The extension of the partial δ mapping
with x ∈ Σ⋆ is a function δ⋆ : Q× Σ⋆ −→ Q and defined as follows:
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δ⋆(q, ε) = q

δ⋆(q, ax) =

{

δ⋆(δ(q, a), x) If δ(q, a) 6= ⊥
⊥ otherwise

The property δ⋆ allows fast retrieval for variable-length strings and quick
unsuccessful search determination. The pessimistic time complexity of δ⋆ is
O(|x|) w.r.t. a string x. A finite automaton is said to be (ns, nt)–automaton
if |Q| = ns and |E| = nt where E denotes the set of the edges (transitions) of
g. An example of such graph is shown by Figure 1.

3 Learning right sub-space

How one can learn the right sub-space for being used in search process of
user-inputs is the raison d’être of this section. The right sub-space means
the answer to the following question:

“Among q automata (e.g., g1 and g2 of Figure 1) which one
should be selected for being used in the lookup process?”

We answer to this question by learning the decision tree of the last au-
tomaton. That is to say, our idea is to form a reservoir of the following form:
fq+1 = {(rcms1, 1), · · · , (rcmsq, q)} and using that form for discrimination
purpose. More precisely, here, our task is selecting which character(s) of
the input language of fq+1 i.e., rcms1, · · · , rcmsq is(are) the best for such a
refinement.

Example 4: f3 = {(ba, 1), (bb, 2)} is a form w.r.t. Example 1 our which
can be refined as follows: (rcms[2] = ‘a′ ∧ v = 1) ∨ (rcms[2] = ‘b′ ∧ v = 2)
meaning that for an already recognized reverse-CMS (i.e., spelled out using
g3) select first or second automaton depending that the second character of
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Table 1: Left: The profit trend of 10 restaurants where CP, HB and CK
stand for competition, Hamburger and Chelo–Kabab (Iranian hum), respec-
tively. Right: Its compressed form.

Age CP Type Profit

old no CK down
midlife yes CK down
midlife no HB up
old no HB down
new no HB up
new no CK up
midlife no CK up
new yes CK up
midlife no HB down
old yes CK down

String Value

onC down
myC down
mnH up
onH down
nnH up
nnC up
mnC up
nyC up
mnH down
oyC down

rcms be ’a’ or ’b’.

Illustration: The framework for learning the output language of an input
language is described in [3]. In this section, we only illustrate that method
using an example. A decision tree (dt) is a direct acyclic graph of nodes and
arcs. At each node a simple test is made; at the leaves a decision is made
with respect to the class labels (values associated to a word in our case).

Example 5: The left part of Table 1 shows the data for 10 restaurants
using four attributes. One can find out the attribute age is the best to be
selected at first; this indicates that it is most likely that a decision can be
made quickly if one first asks for the age of a restaurant. If the answer to
this question is ‘new’ or ‘old’, then the profit can be predicted by ‘up’ or
‘down’, respectively. If the answer is ‘midlife’, then another question must
be posed, about the presence of competition. After this answer is known,
the profit trend can be determined.

Example 6: The right part of Table 1 is the compressed form of its coun-
terpart i.e., the strings of third first columns of each row of the left part of
Table 1 is compressed in one string using the first character of each string
(e.g., “old” is transformed into ’o’). So, the decision tree concerning the
selection of best characters for 10 strings can be built like the restaurant’s
example.

Data structure of m-ary decision tree: Usually, the decision tree is
a binary one. However, for a compact space purpose, our data structure
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Figure 5: Learned m-ary decision
tree of the right part of Table 1
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Figure 6: Node of m–ary decision tree.

is m-ary tree where m is the number of children i.e., the length of the best

string (the best learned characters of the learning process) at each node
of the tree, except in the leaf one containing the output value. Figure 6
shows the data structure of a node of m-ary decision. The first field contains
a nonnegative integer, say i for 0 ≤ i ≤ ℓ where ℓ denotes the length of the
longest word(s) of the input language. If i = 0 this means that the node is
a leaf one, otherwise the node is an internal one (including the root node).
The second filed represents either a best string or the output value. The
third filed is m-pointers to other nodes, each indicating which node has to
be followed in the tree when searching the output value.

Searching value: If a word has already been recognized key via an un-
labeled automation, then how to use a decision tree for determining its
value? This question is answered by the function SearchValue which works
as follows: Given x, starting at the rode of the node, a simple test, namely
x[i] = bs[i], is made, where i and bs stand for the value placed in the first
field and the best string of the second field, respectively. Depending on one
test-equality which for sure will hold (because the word exists and we have
already our best string for discrimination purpose.), ith pointer of the third
filed will tell us which branch has to be followed. This process continues
until we reach to a leaf node (asserted by 0 in the first field) providing the
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output value.

Example 7: Figures 4 and 5 show an unlabeled automaton and a decision
tree of ten keys mentioned in right part of Table 1. Given x, if it can
be spelled out by that automaton, the outpout of x will be determined as
follows: starting with the root-node of Figure 5, we have “1:omn” meaning
that: (1) If x[1] = ’o’ then gets the value (of x) by descending in the sub-
tree of first child. Since that sub-tree has only one node - a leaf (asserted by
zero) - then the value is “down”; (2) If x[1] = ’m’, this time the value has
to be selected using the sub-tree of the second child which itself depends on
the value of second character (“2:yn”) of x i.e., the value is either “down”
or “up”; and finally (3) If x[1] = ‘n’ the value is “up”.

Remark: We will use above search process for determining the right sub-
space called hereafter the function SerachSubSpace which will be used in
our refinement algorithm described in the next Section.

4 Algorithm

Algorithm 1 shows the main function of our new method. The input of our
algorithm is the user-reservoir (for short R) containing a collection of strings,
where, each string, may be associated with one string (value) or more strings
(alternative values).

func CompactRepresentation(R) // R = user-reservoir

f ← ReduceReservoir(R); {Step 1, f = L ∪ O}
TR ← FormTrie(L); Sp ← Separate States(TR); {Step 2}
if Sp = ∅ then

g ← CompactInputLanguage(TR); {Step 3: Form minimal DFA.}
if O 6= ∅ {i.e., R has the output language.} then

mdt ← LearnOutputLanguage(TR, O); {Step 4: Decision tree.}
end if

else

Refine(TR, Sp, O); { Step 5: Refinement.}
end if

cnuf

Algorithm 1: Compact Representation of String-Classes.

Step 1: If R contains alternative values, we assign to a word a unique
ambiguity value-class (e.g., ’Noun/Adj’), although a value-class represents
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a set of alternative values that a given word can occur with. So, we may
obtain a new reduced reservoir (noted by f).

Example 8: f = {(cabba, [xxxxx,xxyyx,xtzyx]), (cabca, [yzxxy,yzyyy])} is
a reduced reservoir of R. The latter may be composed of five entries of two
distinct words and five values.

Step 2: This stage will tell us whether the input language can be refined
into a set of q sub–languages. This question is answered by the existence
of the set of separate states in the trie associated with the input language.
Figure 3 shows a trie with one separate state, namely state 6. This state
will be used to refine the input language.

Step 3: If there is no a separate state in the trie, this means that the
input language cannot be divided into suffix–sub-languages. In this case,
we form a minimal DFA using (1) the trie of the second step and (2) our
own work: In [2] two elegant algorithms for the incremental construction
of minimal acyclic finite state automata and transducers from both sorted
and unsorted data is described. We adapted their former one such that the
length of the longest key be calculated for being used in the learning process
of the decision tree.

Step 4: If the reservoir has the output language (i.e., O 6= ∅) the deci-
sion tree associated with O will be performed by the function LearnOutput-
Language (Please refers to [3]).

Step 5: If the set of separate states is not empty, the function Refine will
be called to form q + 1 graphs (automata) and one or q + 1 decision trees
depending on O = ∅ or O 6= ∅, respectively. This work is done by the function
Refine described below.

4.1 Refinement

Refinement is our method for learning how to divide user-reservoir into q + 1

input sub–languages? The formal description of the refinement method is
shown in Algorithm 2.

Step 5-1: The first task of the refinement process is to collect the paths
representing one or more CMSes. A CMS (or path) is just the sequence
of transitions from state sp to a terminal state (t). For each iteration of
this step, the sequence from that current sp to its corresponding t will be
selected.

Example 9: State 6 of Figure 3 is a separate one. So the sequences from
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that state to the terminal states (i.e., 9 and 12) are selected as the CMSes.
So, we have CMS1 = “ab#” and CMS2 = “bb#”.

Step 5-2: The second stage of the refinement process is to determine the
set of prefix-sub-languages. This is done as follows: for each CMS obtained
in step 5-1, we use it to select other elements of the same prefix-sub-language.

Example 10: Given CMS1 = “ab#”, first we collect the current prefix into
a set, say P1. The first prefix w.r.t. CMS1 is calculated from the path “abab”.
So P1 = {ab}. Then, we look for other possible paths w.r.t. CMS1. If any,
then we update the current prefix–sub–language, namely P1. There is only
one path (i.e., “bbab”) having common CMS1 (i.e., from the state 14 to 17
of Figure 3). This means that the value of new prefix is “bb”. So, we have
P1 = {ab, bb}. Similarly, w.r.t. CMS2 = “bb#”, we obtain P2 = {aa, ab}.
Consequently, two sub-languages of L are:

L1 = P1⊕ ab P1 = {ab, bb}
L2 = P2⊕ bb P2 = {aa, ab}

func Refine(TR, Sp, O)

q ← 1; Pq ← ∅; Kr ← ∅;
for sp ∈ Sp do

T ← CollectTerminalStates(TR);
for t ∈ T do

CMSq ← SubPath(sp, t); {i.e., Sequence from sp to t.}
Pq ← CurrentPrefix(sp); { i.e., Sequence from 0 to sp.}
Pq ← Pq ∪ OtherPrefixes(CMSq); {i.e., Other possible sequences.}
TRq ← FormTrie(Pq);
gq ← CompactInputLanguage(TRq); {i.e., Minimal DFA.}
if O 6= ∅ {Dealing with output language.} then

Oq ← CollectOutputs(Pq);
mdtq ← LearnOutputLanguage(TRq, Oq); {i.e., Decision tree.}

end if

end for

Kr ← K⊕ rcmsq; {rcmsq = rev(CMSq)}
q ← q + 1;

end for

TRq ← FormTrie(Kr);
gq+1 ← CompactInputLanguage(TRq);
mdtrcms ← LearnOutputLanguage(TRq, {1, · · · , q});

9



cnuf

Algorithm 2: The refinement method.

Step 5-3: In this stage, we form q automata of the prefix–sub-languages
of the reservoir, where recall that q denotes the number of prefix–sub–
languages obtained in step 5-2. For each prefix-sub-language, like in Step 3,
we form a minimal DFA and possibly a learned m-ary decision tree.

Example 11: The two first automata of Figure 1 are the outputs of this
stage. There is no need to learn two decision trees because there is no output
language w.r.t. the reservoir at hand, namely, f = {aabb, abab, abbb, bbab}.

Step 5-4: This stage works as follows: (1) form the reservoir of reverse-
CMSes, namely, fq+1 = {(rcms1, 1),· · · ,(rcmsq, q)}; (2) Form an automaton
associated with Kr = {rcms1,· · · ,rcmsq}; and finally, (3) Learn the values
associated with the strings of Kr.

Example 12: The bootom automaton (third one) of Figure 2 represents
the minimal DFA, while the expression

(rcms[2] = ‘a′ ∧ v = 1) ∨ (rcms[2] = ‘b′ ∧ v = 2)
stands for its associated decision tree.

5 On demand fast lookup

The complete storage space of this work is composed of q + 1 graphs (au-
tomata) plus one or q + 1 m-ary decision trees: one if there is no output
language, q + 1 otherwise. However, loading that space, at the beginning
stage of the lookup process can be problematic for large datasets. Further-
more, given a user-input (x), we are interested in performing the lookup
process of x using only a small fragment-number of that complete space. In
our work, that number is ranged from 1 to 4: at least one automaton (the
last one: gq+1); at most two graphs, namely, gq+1 and gj plus two decision
trees, namely, mdtj, mdtrcms, where j = SearchSubSpace(rcms, mdtrcms).

Consequently, by on demand, we mean that, depending x, only, one, two,
three or four mentioned sub-storage(s) will be loaded in the main memory ,
not the complete storage which can be huge.

The formal description of the refinement method is shown in Algorithm 3
where by the function SpellOut(x, g) we mean δ⋆(q0, x) using the transitions
of the graph g.

func OnDemandLookUp() // Using our method
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α ← ⊥; {LoadTag of the last decision tree.}
for i = 1 to q {Step 1} do

AutomataTag[i] ← ⊥; LearningTag[i] ← ⊥;
end for

LoadInMainMemory(gq+1); {First ermenanet storage.}
while ∃ x {i.e., user-input string.} do

x′ ← rev(x); rcms ← SpellOut(x′, gq+1); {Step 2: δ⋆(q0, x
′)}

if rcms = nil {i.e., δ(q0, x
′[1]) = ⊥} then

return(⊥); {i.e., x is not a word of the input language.}
end if

if α = ⊥ {Now, on demande loading} then

LoadInMainMemory(mdtrcms); α = ⊤; {2th permenanet storage.}
end if

j ← SearchSubSpace(mdtrcms, rcms); {See Example 3.}
xp ← Substr(x, |x| − |rcms|);
if AutomataTag[j] = ⊥ {i.e., On demand loading.} then

LoadInMainMemory(gj); AutomataTag[j] ← ⊤;
end if

rp ← SpellOut(xp, gj);
if rp = nil {i.e., δ(q0, xp[1]) = ⊥} then

return(⊥); {x 6∈ L}
end if

if O = ∅ {Reservoir doesn’t contain the output language.} then

return(⊤); {x ∈ L}
end if

if LearningTag[j] = ⊥ then

LoadInMainMemory(mdtj); LearningTag[j] ← ⊤;
end if

v ← SearchSubSpace(xp, mdtj)
return(v); {Output value of x ∈ L.}

end while

cnuf

Algorithm 3: Fast lookup along with on demand main memory loading.

Step 1: One permanent storage is loaded in the main memory: The last
graph: gq+1. The second permanent storage may be mdtrcms: the decision
tree associated with gq+1 see Algorithm 3. We maintain two load-tags,
namely AutomataTag and LearningTag, each of which is one-dimension of
size q, with false initialization meaning that gi (for 1 ≤ i ≤ q) and mdti (if
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R has the output language) has not been loaded in the main memory. We
may use them only if user-input dictate (see Step 2).

Step 2: We write x′ to denote the reverse form of user input-string. This
stage starts to spell out x′ using gq+1. This is done by the extension of
the partial δ mapping defined in Section 2. Let (k > 0) ∧ (k ≤ |x|) be the
position where spelling fails or succeeds. Note that the case of k = |x| means
that the word x has an empty prefix (see Figure 8). If the transition from the
starting state (q0) is undefined i.e., δ(q0, x

′[1]) = ⊥ this means that x 6∈ L,
otherwise the third step will be called.

Example 13: The following input-string x = “aabc” is not an element of
the input language of Example 1, because using g3 of Figure 2 doesn’t allow
that the transition be defined i.e., δ(q0,

′ c′) = ⊥. Therefore, we save the
amount of spaces of g1 et g2 i.e., they are not loaded in the main memory.
As for x = “aabb” two deux graphs are loaded : one permanent, another on
demand, namely, g3, g2, respectively.

Step 3: In this stage, we determine which automaton has be to inspected.
This is done using the output of Step-2, namely rcms and mdtq+1. That is
to say, first the output of the function SearchSubspace(mdtq+1, rcms) which
is a positive integer (say j for 1 ≤ j ≤ q) will determine the right graph to
be used. Then, the prefix part of x, namely, xp is spelled out using gj.

Example 14: Let x′ = “bbaa”, in Step 2, the transitions of “bb” can be
done using g3 of Figure 2. It remains that the right sub–space to be learned
for inspection of the remained part: the prefix of x, namely xp = “aa”. Given
rcms = “bb” and the following learned decision tree: (rcms[2] = ‘a′ ∧ v = 1)
∨ (rcms[2] = ‘b′ ∧ v = 2). Now, we know that xp has to spelled out using
g2: the second graph of Figure 2.

Step 4: In this stage, xp is spelled out using its corresponding automaton.
If spelling fails this means that x ∈ L. If spelling succeeds, we look for the
value associated with x in case the reservoir contains the output language.

Example 15: Since xp can be spelled by g2 of Figure 2 and there is no
output language in Example 1, then only the value true asserting that x ∈ L

will be returned.

6 Related work

Sheng Yu et al. [1, 7] proposed an interesting method called FDCA (Finite
Deterministic Cover Automata) for reducing the size of the automaton as-
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sociated with input language L. A FDCA for L is a DFA that accepts all the
words in L and possibly additional words of length greater than the length
of the longest word(s) in L.

Example 16: ([7]) Figure 7 shows a (8,9)-automaton associated of L =
{abc, ababc, abababc} and its counterpart, respectively.

Although, w.r.t. this example, FDCA beats advantageously our alterna-
tive in terms of the size of the automaton, but not always. The reason is
that, unfortunately, there is no discussion on which kind of reservoir (read
input language - L) is appropriate for transforming a DFA into a FDCA.
Consequently, one doesn’t know in advance when FDCA is good for being
applied.

As mentioned above, if user-reservoir has no string-class, rather than
losing the formed trie (see Step 2 of Algorithm 1), our method use it for
forming a unique unlabeled DFA, possibly, along with the decision tree if
the reservoir has the output language [3].

The main feature of our method is that spelling out user-input strings
is done in a learned appropriate sub-space rather than in a complete one.
When one uses FDCA there is no way that the search be done in the right
sub-space. In addition that FDCA not having our feature mentioned above,
one also has to consider the cost of forming possibly several distinct FDCAs.

Example 17: The following language L = {a, ab, ba, aba, abb, baa, bab} has
two distinct FDCAs. Consequently, one has to decide which one is good for
being used.

It is worth mentioning that our method allows to determine the output
values of user-input with a “less price” from the time and space require-
ments of the computation. Either our method be applicable (read dealing
with string-classes) or not, if we are dealing with output language, then,
instead of using the transducer (e.g., Figure 9) we learn the decision tree
(e.g., Figure 10). The rasion of our policy is as follows: although, finite-state
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transducers (automata with outputs) can be used to map an input language
onto a set of values, our method uses an alternate representation method for
such a mapping, consisting of associating a finite-state automaton accepting
the input language with a decision tree representing the output values. The
advantages of this approach are that it leads to more compact representa-
tions than transducers, and that decision trees can easily be synthesized by
machine learning techniques. Combining automata with machine learning
has the following desired properties:

1. The number of the states (and hence the transitions) representing the
input language of our method is less than compared to the transducers.

2. In constructing transducers, we have to represent every transition by
a data structure of at least two fields: one for the symbol representing
the transition, another for the label-value (for short label) associated
with the symbol. So in order to properly calculate the outputs, the
labels set needs to have the algebraic structure e.g., semiring in the
case of weighted automata [6]. In our approach the transitions are not
labeled with outputs; the cost of exploring the automata is low.

3. In most applications (e.g., those of using part of speech tagging) there
may be (many) identical output values. When you use the transduc-
ers there is no way to save the amount of space for those identical
information, whereas in our approach such economy is allowed.

Example 18: Let us consider the following reduced user-reservoir taken
form [4]: f = {(cabba, [xxxxx,xxyyx,xtzyx]), (cabca, [yzxxy,yzyyy])}. Fig-
ure 9 shows that the size of the transducer (of f) is composed of 13 nodes
and 16 edges, whereas our method outputs a smaller size: a (7,7) unlabeled
automaton along with a decision tree built on the best character, namely the
second character from right to left of the words (of f), as Figure 10 asserts.

Double gain: Note that if user-reservoir has the output language and if it
can be refined into sub-languages, then, the “gain’ is double when searching
a value of a word of f: (1) we are allowed to access to the right sub-space;
(2) Rather than dealing with the transducers, the unlabeled automata along
with the decision trees are used.

Example 19: Let f be {(aabb,1),(abab,2),(abbb,3), (bbab, 4)}. This reser-
voir is exactly, the extended form of the input language of Example 1. Given
for instance, x = “aabb”, one can obtain 2 as the output value of x using
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g3, mdt3, g2 and mdt2, respectively.

Example 20: The reservoir Example 17 can be refined into two sub-
languages, but this time using the common maximal prefix (CMP), where
CMP= “cab” along with S1 = {ba,ca}, as the suffix-sub-language. The value
of a word of f can be obtained in a similar way of the previous exmaple.

7 Final words

There are many data of the real world with the properties of having non
empty common maximal suffixes, prefixes or both. Our method is designed
for such a data, under consideration of the following main feature: Spelling
out the user-input string is done in a learned appropriate subspace rather
than in a complete space i.e., a unique automaton which can be dramati-
cally very large. The reader may have noticed that if the data has not the
mentioned properties our current work based in part on our previous one [3]
outputs a smaller representation compared to the transducer.

The following is among future works to be investigated:

1. If user-reservoir (R) has both common maximal prefixes and suffixes
then, which one is good for compact representation and fast lookup?

2. Although, experiments done on several datasets confirm the effective-
ness of our method from the time and space requirements of the com-
putation, but the theoretical complexities and establishing the tight
upper bounds w.r.t. R is desired.

Note that, as far as we know, when using the transducers, the questions
of time and space complexities w.r.t. the size of R are still opens.
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Reward Variance in Markov Chains:

A Calculational Approach

Tom Verhoeff ∗

May 2004

Abstract

We consider the variance of the reward until absorption in a Markov
chain. This variance is usually calculated from the second moment (ex-
pectation of the square). We present a direct system of equations for
the variance, involving the first moment (expectation) but not the second
moment. This method is numerically superior to the calculation from the
second moment.

1 Introduction

Consider the following problem. A spider is located on the ceiling of a cubic
room. Each day it travels from one face to a neighboring face, crossing a single
edge. The spider randomly chooses among the four neighboring faces, with
uniform probability. Successive choices are independent. What is the expected
number of days for the spider to reach the floor? And, in particular, what is
the corresponding variance?

This problem can be modeled as a Markov chain, where each transition
contributes a fixed ‘reward’ of one day. The ceiling is the initial state, the walls
are other transient states, and the floor is an absorbing state. The problem can
then be reformulated as finding the expected reward until absorption, and its
variance.

We present, what we believe to be, a new method for calculating the vari-
ance in the reward until absorption. We came to this method when analyzing
strategies for playing a solitaire version of the dice game Yahtzee.

Markov chains are not only useful for analyzing puzzles and games of chance,
but also play a prominent role in economics and engineering. Attention is often
focused on the expected reward (or cost). However, in practice, the variance is
also important, because it relates to risk and buffer capacity needed for handling
the swings around the expected value. For instance, it can be more economical
to aim for a suboptimal expected value in favor of a lower variance, because this
improves the predictability of a budget. The Dutch government only recently
decided [1] that its goal in addressing the traffic jam problem would no longer be
a reduction of the expected travel time, but rather a reduction in the variability
of travel time to improve predictability even if that means longer travel times.

∗Technische Universiteit Eindhoven, Fac. of Math. & CS, P.O. Box 513, 5600 MB Eind-

hoven, The Netherlands
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In the remainder of this section, we explain some general concepts and results
from probability theory and our notations. In Section 2, we do the same for
Markov chains. Section 3 contains our new result. The spider in the cubic room
is a running example. Finally, Section 4 concludes the article.

1.1 Probability Theory

For an introduction to probability theory see for instance [2]. We summarize
the concepts needed for understanding this article.

A sample space is a set Ω of (mutually exclusive) sample points or outcomes.
To model a stochastic experiment, each outcome s ∈ Ω is assigned a probabil-
ity P.s, measuring the likelihood that s occurs. We have 0 ≤ P.s ≤ 1 and
∑

s∈Ω
P.s = 1. The pair (Ω, P ) is also called a probability space.

For example, the set of six faces (ceiling, four walls, and floor) of the cubic
room forms a sample space. Assuming the spider is on the ceiling, let P.s be
the probability that the spider will be on face s the next day. We then have
P.s = 1

4
if s is one of the four walls, and P.s = 0 if s is the ceiling or the floor.

Given a probability space (Ω, P ), a random variable X is a function Ω → R,
where X.s is the value of s ∈ Ω. The expectation (first moment) E [X] of this
random variable X is given by

E [X] =
∑

s∈Ω

P.s ∗ X.s . (1)

It is also called the mean, and it captures the central tendency of the random
variable. More generally, E

[

Xk
]

is the k-th moment of X. We will write
EΩ[X], EΩ,P [X], Es[X.s], or Es∈Ω[X.s] to make the relevant probability space
and random variable more explicit.

For example, a roll of a fair die can be modeled by

• the sample space Ω consisting of the six faces of a cube,

• the probability P.s = 1

6
for each face s to appear on top, and

• a function D associating a unique value in the range 1 through 6 with
each face.

For the expectation of D we have E [D] =
∑

s∈Ω

1

6
∗ D.s =

∑6

k=1

1

6
∗ k = 3.5.

An important property of the expectation is its linearity. For constants c
and d (whose value does not depend on the sample space) and random vari-
ables X and Y on the same probability space, X + cY + d is also a random
variable on that probability space, having expectation

E [X + cY + d] = E [X] + cE [Y ] + d . (2)

Note that, in general, E [X ∗ Y ] = E [X] ∗ E [Y ] does not hold, but it does hold if
X and Y are independent. In particular, E

[

X2
]

and E [X]2 are not necessarily

equal. For instance, for the fair die we have E
[

D2
]

=
∑6

k=1

1

6
∗ k2 = 15 1

6
,

whereas E [D]2 = 3.52 = 12 1

4
.

The amount of variability of a random variable X around its mean can be
measured by its variance V[X], defined by

V[X] = E
[

(X − E [X])2
]

. (3)
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The variance can be expressed in terms of the first and second moment, as the
following calculation1 shows:

V[X]

= { definition of V }
E

[

(X − E [X])2
]

= { algebra }
E

[

X2 − 2XE [X] + E [X]2
]

= { linearity of E , observing that E [X] is a constant }
E

[

X2
]

− 2E [X]E [X] + E [X]2

= { algebra }
E

[

X2
]

− E [X]2 (4)

Numerically, however, the expression E
[

X2
]

− E [X]2 is inferior to (3), because
of the risk of cancelation as illustrated by the following example. Consider a
random variable X which takes on one of two values a = 999 and b = 1001
with probabilities p = 0.1 and q = 0.9 respectively. We then have V[X] =
pq(a − b)2 = 0.36. When evaluating (3) and (4) using the IEEE-754 single
format for floating-point numbers, the following dramatic results are obtained

E
[

(X − E [X])2
]

= 0.36000 · · ·
E

[

X2
]

− E [X]2 = 0.50660 · · ·

The latter value is 40% too high!
Note that V[X] is expressed in the square of the units of X. If X is expressed

in m/s, then V[X] is expressed in m2/s2. The standard deviation σ measures
the variability in the same units as the random variable by taking the square
root of the variance:

σ[X] =
√

V[X] . (5)

In general, the variance does not satisfy a linearity property like (2), but we do
have:

V [ cX + d ]

= { definition of V }
E

[

(cX + d − E [cX + d])2
]

= { linearity of E }
E

[

(cX + d − (cE [X] + d))2
]

= { algebra }
E

[

c2(X − E [X])2
]

= { linearity of E , definition of V }
c2V [X] (6)

1This way of recording calculations is due to Feijen, see [3]. The hint in braces explains
why the relationship shown on the left holds between the expressions above and below it.
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2 Markov Chains

For an introduction to Markov chains see for instance [4, 5, 6]. We summarize
the concepts needed for understanding this article.

A Markov chain models a stochastic process, where an experiment with
outcomes in a sample space Ω is repeated and where the probability distribution
for the outcome of each experiment can depend on the outcome of the preceding
experiment.

It is often more convenient to view the sample space Ω of a Markov chain as
a state space. At each time step, the system is in a state s ∈ Ω. The transition
from state s to state t in the next time step occurs with probability p.s.t. For
all s ∈ Ω, the transition probabilities p.s.t satisfy

∑

t∈Ω

p.s.t = 1 . (7)

Let us define a Markov chain for the spider in the cubic room. The state
space consists of the six faces where the spider can be located. We abbreviate
them as C (Ceiling), Wi (Wall, 0 ≤ i < 4), and F (Floor). The initial state is C.
The transition probabilities are given by

p.s.t C W0 W1 W2 W3 F

C 0 1/4 1/4 1/4 1/4 0
W0 1/4 0 1/4 0 1/4 1/4
W1 1/4 1/4 0 1/4 0 1/4
W2 1/4 0 1/4 0 1/4 1/4
W3 1/4 1/4 0 1/4 0 1/4
F 0 1/4 1/4 1/4 1/4 0

(8)

Note that the matrix of transition probabilities is symmetric. However, this is
not generally the case.

We are interested only in the spider’s behavior until it reaches the floor.
Therefore, the transition probabilities from the floor, given in the last row of (8),
are irrelevant. We might as well make the spider stay on the floor: p.F.F = 1
and p.F.s = 0 for s 6= F.

Furthermore, the four states Wi are equivalent in view of what they offer
for the future. We can collapse them into a single state W. This yields the
following simplified Markov chain, which is also pictured in Fig. 1.

p.s.t C W F

C 0 1 0
W 1/4 1/2 1/4
F 0 0 1

(9)

2.1 Walks

We now turn to sequences of successive state transitions. A nonempty sequence
s0s1 · · · sn of n+1 states si ∈ Ω is called a walk of length n from s0 to sn. This
sequence represents n successive state transitions si−1 → si. The length of a
walk is the number of state transitions it involves. Note that for a walk w of
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Figure 1: Simplified Markov chain for spider in cubic room (transitions with
probability 0 not drawn)

length zero we have w = s0. We denote catenation of sequences by juxtaposi-
tion. Variables s and t range over states, whereas variables v and w range over
sequences of states.

The successive experiments in a Markov chain are independent and, hence,
the transition probabilities can be multiplied. Thus, the probability P.sw of a
walk sw, given that it starts in s, satisfies the recurrence:

P.s = 1 , (10)

P.stv = p.s.t ∗ P.tv . (11)

We are interested in the analysis of walks until their first arrival in some
nonempty subset A ⊆ Ω. In the example of the spider, our observation of
the walk ends when the spider arrives at the floor for the first time, that is,
A = {F }. In this article, we will use ‘first arrival in A’ and ‘absorption in A’
interchangeably.2

For nonempty A ⊆ Ω, let WA.s be the set of walks starting in s ∈ Ω until
first arrival in A. We will leave out the subscript A, because A will not vary.
If s ∈ A, then the walk ends immediately. If s 6∈ A, then such walks involve
at least one transition to some state t, from where the walk proceeds until first
arrival in A. Formally:

W.s = { s } if s ∈ A , (12)

W.s =
⊎

t∈Ω

{ stv | tv ∈ W.t } if s 6∈ A . (13)

For this article, we make one important assumption about A: starting in
state s, the probability that a walk eventually ends in A is 1. That is, for all s,
we have

∑

sw∈W.s

P.sw = 1 . (14)

Hence, W.s is a sample space, and P.sw for w ∈ W.s is a probability function
on it.

2.2 Rewards

In the example of the spider, we are interested in the expected length of a walk
until absorption. More generally, we associate with each transition s → t a

2Strictly speaking, the transition probabilities should be redefined to make states s ∈ A
truly absorbing: p.s.s = 1 and p.s.t = 0 for t 6= s.
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reward r.s.t. If we are only interested in the walk length, then we take r.s.t = 1.
The (total) reward R.sw of walk sw is defined inductively by

R.s = 0 , (15)

R.stv = r.s.t + R.tv . (16)

That is, successive rewards are independent and, hence, are simply added.
The reward R.sw obtained when starting in state s and walking until first

arrival in A is a random variable on the probability space (W.s, P.sw). In the
remainder of this section, we deal with the expectation EW.s[R.sw]. Even though
this is a well-known result, we have included it here in detail for two reasons:

• We have not seen it treated in this way elsewhere.

• The treatment of the variance follows the same pattern.

First, however, we derive a pair of convenient properties for the expectation
EW.s[X] of an arbitrary random variable X on walks from s until first arrival
in A.

Property For s ∈ A:

EW.s[X]

= { definition of E }
∑

w∈W.s

P.w ∗ X.w

= { W.s = { s }, because s ∈ A }
P.s ∗ X.s

= { by definition P.s = 1 }
X.s

Property (conditioning on the first step toward absorption) For s 6∈ A:

EW.s[X]

= { definition of E }
∑

w∈W.s

P.w ∗ X.w

= { write w = sv for v ∈ W.t, because s 6∈ A, cf. (13) }
∑

t∈Ω

∑

v∈W.t

P.sv ∗ X.sv

= { recurrence for walk probability: P.sv = p.s.t ∗ P.v for v ∈ W.t }
∑

t∈Ω

∑

v∈W.t

p.s.t ∗ P.v ∗ X.sv

= { distribute p.s.t ∗ outside
∑

v, using that p.s.t does not depend on v }
∑

t∈Ω

p.s.t ∗
∑

v∈W.t

P.v ∗ X.sv

= { definition of E }
∑

t∈Ω

p.s.t ∗ Ev∈W.t[X.sv]

= { definition of E }
Et∈Ω [ Ev∈W.t[X.sv] ]

6



Concerning the expected reward EW.s[R] on a walk from state s until ab-
sorption in A, we can now calculate the following (well-known) result.

For s ∈ A:

EW.s[R]

= { property above, using s ∈ A }
R.s

= { definition of R }
0

For s 6∈ A:

EW.s[R]

= { conditioning on first state t after state s, using s 6∈ A }
Et∈Ω [ Ev∈W.t[R.sv] ]

= { recurrence for walk reward: R.sv = r.s.t + R.v for v ∈ W.t }
Et∈Ω [ Ev∈W.t[ r.s.t + R.v ] ]

= { linearity of expectation, using that r.s.t is independent of v }
Et∈Ω [ r.s.t + Ev∈W.t[R.v] ]

= { simplify notation }
Et∈Ω [ r.s.t + EW.t[R] ]

This gives us a system of linear equations with as unknowns µs = EW.s[R] for
each s ∈ Ω:

µs =
∑

t∈Ω

p.s.t ∗ (r.s.t + µt) . (17)

If r.s.t = 1 (measuring the length of a walk), then this can be simplified to

µs = 1 +
∑

t∈Ω

p.s.t ∗ µt . (18)

Consider the three-state Markov chain (9) for the spider in the cubic room.
We take A = {F }. According to (18), the system of equations for the expected
walk lengths µs = EW.s[R] from face s to absorption on the floor is:

µC = 1 + µW

µW = 1 +

(

1

4
µC +

1

2
µW +

1

4
µF

)

µF = 0

This has as solution:

µC = 6

µW = 5

µF = 0

Thus, when starting on the ceiling, the expected duration for the spider to hit
the floor is exactly 6 days.
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3 Reward Variance

We now turn to the variance VW.s[R] in the reward on a walk from state s to
absorption in A. For s ∈ A, we calculate

VW.s[R]

= { definition of V }
EW.s

[

(R − EW.s[R])
2
]

= { EW.s[R] = 0, because s ∈ A and R.s = 0 }
EW.s

[

R2
]

= { property of EW.s, using s ∈ A and R.s = 0 }
0

Before tackling s 6∈ A, we observe that for constant c and random variable X:

V[X] = V[c + X] = E [(c + X)2] − E [c + X]2 = E [(c + X)2] − (c + E [X])2 .

And, hence,

E [(c + X)2] = (c + E [X])2 + V[X] . (19)

Finally, for s 6∈ A, we calculate

VW.s[R]

= { definition of V }
EW.s

[

(R − EW.s[R])
2
]

= { conditioning on first state t after state s, using s 6∈ A }
Et∈Ω

[

Ev∈W.t

[

(R.sv − EW.s[R])
2
] ]

= { recurrence for reward: R.sv = r.s.t + R.v for v ∈ W.t }
Et∈Ω

[

Ev∈W.t

[

(r.s.t + R.v − EW.s[R])
2
] ]

= { (19), using that r.s.t − EW.s[R] does not depend on v }
Et∈Ω

[

(r.s.t + EW.t[R] − EW.s[R])
2

+ VW.t[R]
]

This yields a system of linear equations with as unknowns σ2
s = VW.s[R] for

each s ∈ Ω, involving µs = EW.s[R] as parameters:

σ2

s =
∑

t∈Ω

p.s.t ∗
(

(r.s.t + µt − µs)
2 + σ2

t

)

. (20)

My earlier derivations of this result were quite messy. The derivation pre-
sented here is kept simple by using (19).

When applying (20) to the example of the spider, we obtain as system of
equations for the variance in walk length σ2

s = VW.s[R] from face s to absorption
on the floor:

σ2

C
=

(

1 + µW − µC

)2
+ σ2

W

σ2

W
=

1

4

(

(

1 + µC − µW

)2
+ σ2

C

)

+
1

2

(

(

1 + µW − µW

)2
+ σ2

W

)

+
1

4

(

(

1 + µF − µW

)2
+ σ2

F

)

σ2

F
= 0
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The first equation yields σ2

C
= σ2

W
, because µC = 1 + µW. This is understand-

able, since the probability for a transition from Ceiling to Wall equals 1 and,
hence, there is no variability on this part of the walk.

The solution to the equation system is:

σ2

C
= 22

σ2

W
= 22

σ2

F
= 0

Hence, the standard deviation in the walk length from the ceiling to the floor
is

√
22 ≈ 4.69. This is considerable compared to the expectation µC = 6.

It means3 that almost two million simulation runs are needed to estimate the
expectation with an accuracy of 0.01 and a confidence level within 3σ.

The equations (20) can be generalized for covariance. Given two random
variables X and Y on the same probability space, their covariance Cov.X.Y is
defined by

Cov.X.Y = E [ (X − E [X])(Y − E [Y ]) ] . (21)

Note that Cov.X.X = V[X]. Similar to (4), one can derive

Cov.X.Y = E [XY ] − E [X]E [Y ] (22)

Hence, we have (compare this to (2))

V[X + cY + d] = V[X] + c2V[Y ] + 2cCov.X.Y (23)

Now consider two reward functions r and q on the same Markov chain. These
induce the reward functions R and Q on walks. The covariances zs between R
and Q on walks starting in state s until absorption in A satisfy

zs =
∑

t∈Ω

p.s.t ∗ ((r.s.t + µt − µs)(q.s.t + νt − νs) + zt) . (24)

where µs = EW.s[R] and νs = EW.s[Q].

4 Conclusion

We have presented a new system of equations (20) for determining the variance
of the reward until absorption in a Markov chain. Compared to the standard
approach using the second moment, these equations have a lower risk of cance-
lation when solved numerically.

We applied this technique in our analysis of the dice game Yahtzee [7, 8].
The Markov chain for solitaire Yahtzee involves close to 109 states. Because
it has no cycles, the resulting equations for expectation and variance are re-
currence equations. These can be solved simply by backward substitution and
dynamic programming. The analysis yields the optimal expected final score and
its variance, also broken down by the individual scoring categories and their co-
variances. Cremers [9] extended the analysis to the beating of high scores.

I would like to acknowledge the helpful comments from Onno Boxma and
Ivo Adan on an earlier version of this article.

3The variance in the average taken over n simulation runs equals the variance in a single
run divided by n, and hence, the standard deviation in the average taken over n simulation

runs equals σ/
√

n. The number of runs needs to be at least
(

3
√

22/0.01
)

2

.
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Abstract

The theoretical complexity of a string recognizer is linear to the length

of the string being tested for acceptance. However, for some kind of strings

the processing time largely depends on the number of states visited by

the recognizer at run-time. Various experiments are conducted in order to

compare the time efficiency of both hardcoded and table-driven algorithms

when using such strings patterns. The results of the experiments are

cross-compared in order to show the efficiency of the hardcoded algorithm

over its table-driven counterpart. This help further the investigations on

the problem of the dynamic implementation of finite automata. It is

shown that we can rely on the history of the states previously visited

in the dynamic framework in order to predict the suitable algorithm for

acceptance testing.

1 Introduction

Previous work on Finite Automata (FAs) implementation revealed that the tra-
ditional table-driven (TD) algorithm may not be the sole approach for encoding
a string recognizer. Another implementation approach using a hardcoded (HC)
algorithm suggested by Knuth in [Kmp77] showed a time gain over the TD al-
gorithm up to some threshold. In further experiments conducted in [Kwk04],
it was shown that the processing time required to recognize a string largely de-
pends on the structure of the string being recognized in relation to the overall
structure of the automaton the recognizer is based upon. The possibility to
improve the processing time of string recognizers using a dynamic algorithm
called DIFAP1 that handles both TD and HC algorithms simultaneously was

1Dynamic Implementation of Finite Automata for Performance
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also suggested in [Kwk04]. However, the work only introduced the DIFAP algo-
rithm without a complete analysis of the algorithm in terms of complexity and
implementation. In this paper, we further the idea of DIFAP through analysis
of its critical parts. The history of strings already processed by the recognizer is
used to suggest the suitable algorithm to be used at run-time. Further improve-
ments of DIFAP are suggested such as the extension of the original threshold of
efficiency as well as a mixed-mode implementation of FAs using both HC and
TD algorithms.

The structure of the remaining of this paper is as follows. In section 2
below, the implementation of FAs using both TD and HC algorithms is revisited.
Section 3 reviews the experiments performed on string recognizers in order to
capture the break-even variations of both algorithms. Various string patterns
are investigated in this section showing the advantage of using HC over TD
above the threshold of efficiency. In section 4, DIFAP is revisited followed by
the analysis of its most critical section referred to as the knowledge table (KT).
Additional improvements of DIFAP are suggested in Section 5, and we conclude
and provide future directions to this work in Section 6.

2 Finite Automata Implementation

This section summarizes a review of automata implementation and the com-
plexity of string recognizers already discussed in [Ket03]. Finite automata can
be implemented using hardcode or softcode. The softcoded or TD algorithm re-
quires a driver program made of few instructions to access the transition table
during the entire recognition process. Algorithm 1 below depicts a TD algo-
rithm that tests whether the string str is part of the language of the automaton
represented by its transition matrix referred to as transition. The overall com-
plexity of the recognizer is in the order of O(len) where len is the length of
the string being tested for acceptance. A hardcoded algorithm depicted in Al-
gorithm 2 clearly shows that more instructions are required to represent the
overall recognizer. Again, the complexity of the recognizer still remains in the
order of O(len) as for the TD algorithm. Both algorithms are different in terms
of instructions and external data usage. The HC algorithm requires many in-
structions, which is not the case for the TD algorithm. The transition matrix
is loaded into memory for the TD algorithm whereas only simple instructions
are needed for its representation in the HC algorithm. Such observations clearly
show that practical experiments are necessary to evaluate up to what extend
the processing time of both algorithms differ. Section 3 below depicts various
experiments on strings recognizers using both approaches.

Algorithm 1. Table-driven string recognition
function recognize(str,transition):boolean

state := 0;
stringPos := 0;
while(stringPos < len) ∧(state ≥ 0) do

state := transition[state][str[stringPos]];

2



stringPos := stringPos+1;
end while

if state ≤ 0
return(false);

else

return(true);
end if

end function

Algorithm 2. Hardcoded string recognition

function recognize(str):boolean

state0 :
if str[0] 6∈ validsymbol0 return(false);
else if len = 1 return(true);
else goto nextStates1;
end if

state1 :
if str[1] 6∈ validsymbol1 return(false);
else if len = 2 return(true);
else goto nextStates2;
end if

...

...

...
statenumberOFStates−1 :
if str[numberOfStates − 1] 6∈ validsymbolnumberOfStates−1 return(false);
else return(true);
end if

end function

3 String Recognition Experiments

In this section, we present the experiments carried out on various kind of strings
using both HC and TD algorithms. The experiments where conducted on an
Intel Pentium IV at 1.8 GHz with 512MB of RAM and 20GB of hard drive.
The TD algorithm was implemented using the gnu C++ compiler, and NASM
(Netwide Assembler) was used for the HC implementation. The experiments
were conducted under the Linux operating system. Randomly generated strings
were investigated as well as various kind of strings that may offer some time gain
when the HC algorithm is considered as opposed to the TD algorithm. This
section summarizes experiments carried out in [Kwk04]. The subsection below
depicts experiments based on random strings.
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Figure 2: HC performance: 25 symbols

3.1 Experiments based on Random Strings

Experiments were based on alphabet size varying between 10 and 50 symbols
with an increment of 5. For each alphabet size under consideration, 100 random
automata of sizes ranging from 10 states to 1000 states with an increment of 10
were generated. For each case, a random accepting string of length n − 1 was
also generated for acceptance testing. Figures 1 and 2 depict the performance
for both TD and HC algorithms for automata based on 25 alphabet symbols. It
is observed that both graphs show a superlinear growth on the number of states.
However, the HC experiment shows a slow growth in the region between 10 states
and about 400 states. A plausible explanation to this may lies on the effect of
cache on automata of smaller sizes. For such automata, the entire code size can
fit into cache and reducing therefore the processing time since the probability of
cache misses is very low in that region. Above the 400 states, the HC processing
becomes inefficient due to the high probability of cache misses. A comparison
between the two algorithms is depicted in Figure 3. It is clearly observed that
the HC algorithm outperforms the TD algorithm up to the region between 300
and 400 states. As a result to this, FAs implementers should consider using the
HC algorithm when solving computational problems based on automata of size
less than about 360 states. However, above that threshold, the TD algorithm
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Figure 3: HC-TD performance aphabet size = 25

may be the suitable implementation approach. Since in practice, various strings
of same size may require different processing time, it is of importance to conduct
experiments in order to cross-compare the time efficiency for both algorithms.
The following subsections depict various such experiments.

3.2 The single jump experiments

In this subsection, experiments were performed on strings that keep the FA only
on a single state. The recognizer only jumps once on a single states and remains
there for the entire recognition process. Thus the title single jump experiment
suggested by the HC algorithm. The section summarizes experiments already
suggested in [Kwk04]. Let consider the automaton modelled in Figure 4 having
5 states with two accepting states 3 and 4. The strings abab and cdef of size
4 are both part of the language modelled by the automaton. In theory, the
total time required to accept or reject each string should be roughly the same.
However, we notice that for the string abab, once the device reads the first
symbol a, it jumps to the final state 3 and remains there until the entire string
is processed. On the other hand, the recognizer will transverse several different
states in order to accept the string cdef. This observation indicates that in
practice, the time required to accept strings of same size with different patterns
may differ considerably from one another. For the experiments, we randomly
generated various automata of sizes between 10 and 1000 states using alphabet
size varying between 10 and 50. Figure 5 depicts the difference in time between
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Figure 5: HC-TD performance for single jump

the table-driven and hardcoded implementation. It clearly shows that the HC
algorithm is superlinearly faster than its TD counterpart. The average time
efficiency per symbol is about 8 ccs. That is, for an automaton with n states,
the HC algorithm is 8n times faster than the TD algorithm. These results
illustrate that for strings following the pattern above described, the processor
has sufficient space in its cache to hold the code relating to a single state. Since
it always visits the same state over and over, there is a very low probability
of cache misses. The experiment is therefore the best case scenario for both
algorithms although the HC algorithm appears to be the most efficient. In
the next subsection we explore another variant of such strings whereby the
automaton visits only the starting state and the final state.
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3.3 The far jump experiments

The experiments was suggested by the HC algorithm in the sense that from
its initial state, the recognizer jumps to the final state and loops between the
two states during the entire recognition process. The state diagram in figure 6
depicts such strings. We consider two strings ab...ab and cd...ef of length n− 1
that are both accepting strings. The recognition process of the second string
requires that the recognizer visits several states in the automaton whereas the
first string only visits two states. Unlike the fact that far jumps are required to

0 1 2 n-2 n-1
c

a

d e f

b
Figure 6: A state diagram: accepts the strings ab...ab and cd...ef

move from the initial states to the final state for the first string, only limited
number of states are visited. Therefore, we expect that such strings are tested
at a very efficient time due to the very low probability of cache misses the
processor is subject to. As show in figure 7, experiments revealed that the HC
algorithm still outperforms its TD counterpart in such context. As a result to
this, although in an average case behaviour there is a threshold of efficiency of
HC over TD, there is still room for improvements above that threshold when
some string patterns are considered. In the next section, we use the original
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Figure 7: Performance HC-TD for strings that loop on two states
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threshold of efficiency to conduct a particular experiment whereby the string
remains on a single state after visiting some random states below the threshold.

3.4 A random string experiment followed by single jump

This section summarizes experiments already discussed in [Kwk04]. The random
string experiments suggested that the HC outperformed the TD algorithm up
to some threshold. In this section, we combine the threshold of efficiency with
the experiment conducted in subsection 3.2. Consider the automaton modelled
in figure 8. State t depicts some “sink state” in which the FA will remain
after some other arbitrary set of states within the automaton have been visited.
The state t is also assumed to be an accepting state. Based on the previous
experiment, we would expect that the longer the FA remained in state t, the
more the hardcoded implementation would enjoy an advantage over the table-
driven version.

To verify this observation, and as a sort of sanity check on our results up
to this point, hardcoded and table-driven implementations were set up to test
strings of length n-1 in FAs with n states. The experiment was designed so that
the behaviour in processing the first 300 states was random - in the same sense
as previously described. However, thereafter the FA remains in the same state
– i.e. the best case scenario prevails.

0 1 2 t n-1

Figure 8: A state diagram that accepts a string that visits arbitrary states and
remains on state t for some time

Figure 9 depicts the graphs obtained from the experiment. Unsurprisingly,
it shows that hardcoding generally outperforms the table-driven implementa-
tion. However, there is also a suggestion in the data that in the longer term,
the asymptotic improvement tends towards the 8ccs improvement observed in
figure 5.

Of course, many more experiments similar to those described above could
be run. An overall and general observation in regard to all these experiments
is that they enable us to identify various ways in which the hardcoded imple-
mentation of FAs may outperform the traditional table-driven implementation.
The next section considers how such information could be used to capitalize on
the advantages offered by both approaches.
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Figure 9: Comparison based on limited access on states

4 The Dynamic Implementation of FAs: DIFAP

The experiments depicted in the previous sections clearly show that the effi-
ciency of a string recognizer is highly dependent on the nature of the string
being recognized. This suggests that if likely patterns of strings to be input are
known in advance – at least in some probabilistic sense – then it may be possible
to put in place a time optimizing mechanism to carry out the string recognition.
Consequently, the idea of dynamically adapting the implementation strategy of
the FA according to the expected input (or partially inspected) string may be
considered. We use the acronym DIFAP to refer to this notion, designating Dy-
namic Implementation of FAs for Performance enhancement. Figure 10 depicts
the overall design of a DIFAP system. When it is first invoked, the implementer
provides the specification of the automaton to be used, regardless the type of
string to be recognized. DIFAP then analyzes the specification and choose the
appropriate way of implementing the automaton depending of the size of the
derived automaton. In terms of the currently available data, if the size is less
than 360 states, this means that hardcoding is likely to be the optimal approach
in representing the automaton irrespective of the kind of string to be tested. On
the other hand, if the size of the automaton is above 360 states, as suggested in
Section 2, a hardcode implementation might be indicated if long term behaviour
is likely to tend towards best case behaviour, a table-driven implementation will
be the appropriate choice in the absence of such information. However, in the
latter case, DIFAP relies on the kind of string received as input to adapt it-
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self progressively to an implementation approach that is optimal in some sense
(e.g. optimal in relation to the history of strings processed to date), resulting
in improved average processing speed.

The figure indicates that for bigger automata size, a knowledge table (KT)
is first checked. At this stage, we do not prescribe what information should
be kept in the KT. We merely observe that the current input string could, in
principle, undergo some preliminary scan to identify whether its overall structure
conforms to some set of general patterns that favour hardcode over table-driven.
If that is not the case, the table-driven version of the automaton specification
is generated and is used by the recognizer to check whether the string is part of
the language described by the FA or not. Otherwise, the hardcoded version of
the FA’s specification is generated and used for recognition.

Not indicated in the figure is the possibility of post-processing: after a string
has been tested, the string and the test outcome could be used to update in-
formation in the KT. As a very simple example, we might decide to concretely
implement the KT as a table of the FA’s states, in which a count is kept of
the number of times a state has been visited. This information could be used
to rearrange the order of rows (which represent states) in the transition matrix
used by the table-driven approach, in the hope of minimizing data cache misses
when this implementation strategy is used. Alternatively, the same information
could be used to dictate the blocks of hardcode that should preferentially be
loaded into cache, in circumstances in which hardcoding is indicated. However,
the foregoing should not be construed as the only way in which the KT can be
implemented. We conjecture that there are many creative possibilities within
this broad model that merit deeper investigation in the future.

One of the advantage of using such a dynamic algorithm is that the struc-
ture of the automaton does not always remains in the system after processing.
Each automaton is always regenerated into its executable when the system is
invoked. The only structure that permanently remains in the system is the al-
gebraic specification of the automaton. This results therefore in some degree of
minimization of memory load for automata of considerable size. However, there
is no need to always regenerate automata of size less than 360 states since they
will always be implemented in hardcode. That is the reason why in the figure
no deletion of the generated hardcode is indicated when the “size less than 360”
path is followed.

In an implementation of DIFAP, attention should be given to the following
parts of the algorithm to minimize latencies:

• Time to generate the recognizer: Unless directly implemented by hand,
any FA-related problem always requires a formal specification of the gram-
mar that describes the automaton before its corresponding automaton is
encoded. This is a general problem, and one specific to DIFAP. The DI-
FAP implementation could therefore use generator techniques similar to
those used in efficient code generator tools such as YACC2 which as been
proven to be amongst the best tool available to create directly executable

2Yet Another Compilers Compiler
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Figure 10: A Preliminary design of DIFAP
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parsers. Unlike parsers, DIFAP’s code generator will generate directly
executable string recognizers.

• Time taken to check the knowledge table: One should take care to ensure
that the matter of checking the KT does not degenerate into a time-
inefficient exercise that negates any benefit from using the optimal string
recognition strategy. Efficient algorithms should be devised that take min-
imal time to access the table and to chose the appropriate path to follow.
This part of DIFAP may constitute a bottleneck. Intensive investigations
will be made to provide an efficient approach to access the table and re-
trieve appropriate information.

• Time required to update the knowledge table: Although the precise nature
and scope of the KT have not been identified here, it is envisaged that it
will, itself, be a dynamic structure, changing over time in relation to the
history of strings analyzed to date. However, there does not appear to be
any reason for adapting the KT prior to processing the input string. Its
update is something that can happen at a post-processing stage, and does
not appear to be time-critical.

4.1 Structure of KT

The entire DIFAP algorithm relies on the KT in order to provide optimal in-
formation to the entire framework for efficient processing of a given recognizer.
Various strategies can be used for its representation. Of course the most impor-
tant notion to bear in mind must be efficiency. Since intensive investigations
have not yet been made in order to test any of the strategy we have in mind.
We have chosen to solve the problem in a step by step fashion so that each idea
is eliminated from our list of choice once its weakness is noticeable. Up to date,
we have identified three approaches by which the KT can be represented for
optimal processing:

• The KT is a single variable with recent nodes visited: Our DIFAP al-
gorithm heavily rely on the number of states visited by the automaton
in order to take relevant action on whether to use TD or KT algorithm.
In some applications, the kind of strings input might be predefined. We
chose therefore to use a single variable to represent the KT since it will
only contain the most recent number of states visited by the recognizer.
In other words, during the recognition process, the number of states vis-
ited is recorded and then saved in the KT variable at the update of the
KT. We then use this information for later processing. The Algorithm
checks the value in the KT and takes relevant decision. If the value is
zero, it means that no state have been visited and therefore the suitable
algorithm should be the TD. If the number of states is less than or equal
to the threshold of efficiency established above, then HC is the suitable
algorithm. Otherwise, we use the TD algorithm. This approach seems
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to be straightforward and very simple. However, one of its major draw-
back is that it is highly unpredictable as may result to a very inefficient
framework.

• The KT is a single variable with average nodes visited: This approach is an
alternative to the above. Using average node visited instead of most recent
nodes visited reduce the probability of unpredictability but does not solve
the entire problem. The approach is still therefore highly unpredictable.

• The KT is an history structure: This approach is still under investigation.
We envisage it to be a structure containing detailed information on the
history of each nodes of the automaton. The structure is aimed to be
dynamic in the sense that, not all states can have a history if they have
not yet been visited. The overall idea is to define a number of category
of nodes such as most likely to be visited, likely to be visited and unlikely
to be visited. The rate at which a state is visited is updated on a regular
basis during the recognition process whether TD or HC was chosen. For
each calculated rate of visits, the state can fall under each of the above
defined category at any stage of the recognition. The role of the check KT
routine will then be to probabilistically evaluate the number of states that
are likely to be visited and take relevant action. Of course, the routine
is still at a brainstorming stage and requires more though. However, this
might be a better way to overcome efficiency problem of DIFAP as defined
above.

5 Conclusion and Future Work

In this paper, we have made a review of the performance evaluation of both
HC and TD algorithms already present in the literature. The HC algorithm
outperforms the TD algorithm up to some threshold. Moreover, unlike the fact
that the theoretical complexity of a recognizer is linear to the length of the
input string. We have shown that the way the states of the automaton are
visited at run-time plays a major role on the overall processing time. The more
a state is visited the less he cache misses and the less the processing time. This
observation helped us to have an idea on the way the KT of DIFAP can be
implemented. We use a probabilistic concept to calculate the overall rate at
which states are visited. This therefore yield to the actual implementation of
DIFAP. However, many other challenges are still under investigation in order to
make DIFAP a very flexible and efficient framework. The most important is the
problem of mixed mode implementation of FAs whereby TD and HC are use
simultaneously in order to provide a balance execution environment that uses
small tables and small code.
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Stretching and Jamming of Finite Automata

Noud de Beijer∗ Derrick G. Kourie† Bruce W. Watson∗†

Abstract

In this paper we present two transformations on automata, called
stretching and jamming. These transformations will, under certain condi-
tions, reduce the size of the transition table, and under other conditions re-
duce the string processing time. Given a finite automaton, we can stretch
it by transforming each single transition into two or more sequential tran-
sitions, thereby introducing additional intermediate states. Jamming is
the inverse transformation, in which two or more successive transitions are
transformed into a single transition, thereby removing redundant interme-
diate states. We will present formal definitions of stretching and jamming
and we will calculate theoretical bounds, when stretching/jamming is ef-
fective in terms of memory consumption.

1 Introduction

In this paper we present two new transformations on automata. A classical
application area of automata theory is compiler construction.

In a compiler, a lexical analyzer is used to read input characters and to
produce as output a sequence of tokens that the parser uses for syntax analysis
[ASU86, p. 84]. Since the process of lexical analysis occupies a reasonable
portion of the compiler’s time, the lexical analyzer should minimize the number
of operations it performs per input character [ASU86, p. 144]. The lexical
analyzer uses finite automata to recognize languages. This finite automaton
uses a transition function to process strings but there are different ways to
implement this transition function.

The easiest and fastest way is to use a transition table in which there is a
row for each state and a column for each input symbol. Unfortunately, this
representation can take up a lot of space [ASU86, p. 114]. Of course, next
to compilers there are numerous other applications in computing science where
automata are used.

Thus, transformations on automata that increase their performance in terms
of memory consumption or string processing time are potentially useful (see for
example [Wat95]). We propose two transformations on automata: stretching
and jamming. Under certain conditions, these transformations will produce
more efficient automata in terms of memory consumption and string processing
time.

∗Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
†Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa
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Given a deterministic finite automaton (DFA), we can stretch it by trans-
forming each single transition into two or more sequential transitions, thereby
introducing additional intermediate states. For example, an ASCII DFA can
be stretched by transforming each single ASCII (8-bit) character transition into
two transitions, each of 4-bit characters.

Jamming is the inverse transformation, in which two successive transitions
(based on, for example, input characters represented in 8-bits) are transformed
into a single transition. This single transition will then be based on an input
character represented by 16-bits. The same transformations can be used on a
nondeterministic finite automaton (NFA).

2 Preliminaries

In this section we present the basic notions and notations used in this paper.
Most of the notations used are standard (see for example [HMU01]) but a few
new notations are introduced.

A deterministic finite automaton, DFA, is a 5-tuple M = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is the alphabet, δ : Q×Σ 9 Q is the (partial)
transition function, q0 is the initial state and F is a subset of Q whose elements
are final states. |Q| is the number of states and |Σ| is the number of elements
in the alphabet, or alphabet size.

The n-closure of an alphabet is the set of all symbols that consist of con-
catenating n symbols from Σ. Σ+ is the plus-closure of the alphabet, the set of
symbols obtained by concatenating one or more symbols from Σ.

|Q||Σ| is the theoretical transition table size. Note that since cells represent
states, the minimum cell size is determined by the minimum space requirements
to represent a state, which is in turn determined by the total number of states.
Although stretching and jamming will change the number of states in an au-
tomaton we will assume that the transition table cell size does not change in
either transformation. We expect that in most cases the practical effects of this
assumption are unlikely to be significant. Preliminary benchmarking results
indicate that our theoretical transition table size is indeed a good estimate for
the real transition table size.

A transition in a DFA M from p to q with label a will be denoted by (p, a, q)
where (p, a, q) ∈ Q × Σ × Q and q = δ(p, a). We will also use the notation
((p, a), q) ∈ δ.

A path of length k in a DFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk

)〉, where (ri, ai, ri+1) ∈ Q × Σ × Q and ri+1 = δ(ri, ai) for 0 ≤ i < k. The
string, or word a0a1 · · · ak−1 ∈ Σk is the label of the path.

The extended transition function of a DFA M , δ̂ : Q × Σ+
9 Q, is defined

so that δ̂(ri, w) = rj iff there is a path from ri to rj , labeled w.
A nondeterministic finite automaton, NFA, is a 5-tuple M = (Q,Σ, δ, q0, F ),

defined in the same way as a DFA, with the following exception: δ : Q × Σ 9

P(Q) is the transition function. Note that P(Q) is the powerset of Q. For
present purposes, ǫ-transitions can be ignored without loss of generality.

A transition in an NFA M from p to q with label a will also be denoted by
(p, a, q) where (p, a, q) ∈ Q × Σ × Q and q ∈ δ(p, a).

A path of length k in an NFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk

)〉, where (ri, ai, ri+1) ∈ Q × Σ × Q and ri+1 ∈ δ(ri, ai) for 0 ≤ i < k.
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In an NFA M , the extended transition function, δ̂ : Q×Σ+
9 P(Q), is also

defined so that rj ∈ δ̂(ri, w) iff there is a path from ri to rj , labeled w.
To stretch a transition we need to split up a single symbol in 2 or more sub-

symbols. Therefore, we conceive of alphabet elements as strings of subelements

(typically bit substrings). If alphabet element a ∈ Σ has length |a| then we
number the subelements a.0, . . . , a.(|a| − 1). Thus, if a = 0111 then a.0 = 0,
a.1 = 1, a.2 = 1 and a.3 = 1.

By definition, a word is a string of symbols over an alphabet. We use the
same notation to number the individual symbols of a word. So, for the word
w ∈ Σk, we number the individual symbols w.0 · · ·w.(k − 1).

Because in our paper it will always be clear whether w is a word or a single
symbol, no conflicts will rise because of this definition.

3 Formal Definitions

3.1 General Definitions

In this section we give formal definitions of the stretching and jamming opera-
tions. One way in which we can stretch an automaton is by transforming each
transition into k sequential transitions. This stretching operation on a single
transition is pictured in figure 1.

p qa

p i0 i1 ik−2 q
a0 a1 ak−1

Figure 1: Stretching transition (p, a, q) into k sequential transitions.

In this example we see that transition (p, a, q) is stretched into k sequential
transitions and k − 1 new states are introduced. In this sequence of transitions
we call p and q the original states, and i0, . . . , ik−2 the additional intermediate

states.
Jamming is the inverse transformation, in which k sequential transitions are

transformed into a single transition. In figure 1 this can be seen as performing
a transformation in the opposite direction to the stretching operation.

This means that the intermediate states are removed. In the case of jamming
we call these states redundant intermediate states.

We can stretch NFAs as well as DFAs. We will define the stretching trans-
formation on NFAs, and the result of a transformation will also be an NFA.
Because DFAs are a subset of NFAs, the stretching of DFAs is automatically
defined. If we stretch a DFA, in some cases the resulting automaton may have
more than one transition with the same label from a given state and therefore

3



the result of stretching a DFA might be an NFA. In section 3.2 we will present
an example that will clarify this.

If NFA FA0 can be stretched into NFA FA1, we call FA1 a stretch of FA0.
The set of states of FA1 consists of a subset S1 of original states and a subset
I of newly introduced additional intermediate states. Definition 3.1 formally
describes a general stretching transformation.

Firstly, there is an injection τ from the alphabet of FA0, Σ0 to Σ+
1 , the

plus-closure of the alphabet of FA1 (property 1). Secondly, there is a one-to-one
relation ϕ between the original states of FA0 and the original states of FA1.

This bijection connects the start states of FA0 and FA1 (property 2). It
also defines a one-to-one relationship between the final states of both automata
(property 3). Property 4 states that for every transition from state p to q with
label a in FA0 there exists a path from ϕ(p) to ϕ(q) with label τ(a) in FA1,
which travels from a state in S1 via a number of intermediate states to another
state in S1. The inverse of this property is also true, therefore property 5 also
holds.

Definition 3.1. Let FA0 = (S0, Σ0, δ0, q0, F0) be an NFA, and let FA1 =

(S1 ∪ I, Σ1, δ1, q1, F1) be an NFA. FA1 is a stretch of FA0 iff:

• There is an injection τ : Σ0 → Σ+
1 , thus:

− (∀a0, a1 : a0, a1 ∈ Σ0 : τ(a0) = τ(a1) ⇒ a0 = a1) (1)

• There is a bijection ϕ : S0 ↔ S1, with the following properties:

− ϕ(q0) = q1 (2)

− (∀f0 ∈ F0 : (∃f1 ∈ F1 : ϕ(f0) = f1)) ∧ |F0| = |F1| (3)

− (∀p, a, q : q ∈ δ0(p, a) : (∃k, r0, . . . , rk, w : rk ∈ δ̂1(r0, w) :

ϕ(p) = r0 ∧ ϕ(q) = rk ∧ τ(a) = w)) (4)

− (∀k, r0, . . . , rk, w : rk ∈ δ̂1(r0, w) : ϕ(rk) ∈ δ0(ϕ(r0), τ
−1(w))) (5)

where p, q ∈ S0, a ∈ Σ0, r0, rk ∈ S1, r1, . . . , rk−1 ∈ I, and w ∈ Σk
1 for

k ≥ 1. Furthermore, δ1(ri, w.i) = ri+1, for 0 ≤ i < k.

We define jamming as the inverse transformation of stretching. Because of
symmetry, if we jam certain NFAs the result will be a DFA.

If NFA FA0 is jammed into NFA FA1 (FA1 is a jam of FA0) then FA0 is a
stretch of FA1. The set of states of FA0 consists of a subset S0 of original states
and a subset R of redundant intermediate states. These redundant intermediate
states will be removed by the jamming transformation.

Definition 3.2. Let FA0 = (S0 ∪R, Σ0, δ0, q0, F0) be an NFA, and let FA1 =

(S1, Σ1, δ1, q1, F1) be an NFA. FA1 is a jam of FA0 iff FA0 is a stretch of FA1,

with R being the set of additional intermediate states, resulting from stretching.

3.2 Stretching and Jamming by a Factor f

In the previous section we presented definition 3.1. This definition is very gen-
eral: every single transition can be stretched into a different number of sequential
transitions, according to properties 4 and 5.

4



In the next section our major application of stretching and jamming will be
introduced. To be able to use the definitions in that application, we need to
make a restriction on the previous definition. In the definition below we only
allow all transitions to be stretched into a fixed number of sequential transitions.

Therefore, we introduce the factor f in stretching and jamming. If NFA FA0

is stretched by a factor f into NFA FA1, we call FA1 an f-stretch of FA0. This
means that the relation τ specializes to a one-to-one relationship between the
alphabet of FA0 and the f-closure of the alphabet of FA1. Furthermore, for each
transition in FA0 there are exactly f sequential transitions in FA1.

The formal differences between the new definition and the previous definition
are expressed in properties 7, 10 and 11. In this definition, the relation τ is not
only an injection, but because of property 7 also a surjection, and therefore
a bijection. Also, because of property 10, for every transition (p, a, q) in the
original NFA, there is a path of length f from ϕ(p) to ϕ(q) with label τ(a).
Property 11 states that the inverse is also true.

Definition 3.3. Let FA0 = (S0, Σ0, δ0, q0, F0) be an NFA, and let FA1 =

(S1 ∪ I, Σ1, δ1, q1, F1) be an NFA. FA1 is an f-stretch of FA0 iff:

• FA1 is a stretch of FA0, such that the injection τ specializes to a bijection

τ : Σ0 ↔ Σf
1 , thus:

− (∀a0, a1 : a0, a1 ∈ Σ0 : τ(a0) = τ(a1) ⇒ a0 = a1) (6)

− (∀w ∈ Σf
1 : (∃a ∈ Σ0 : τ(a) = w)) (7)

• The bijection ϕ : S0 ↔ S1, is characterized by:

− ϕ(q0) = q1 (8)

− (∀f0 ∈ F0 : (∃f1 ∈ F1 : ϕ(f0) = f1)) ∧ |F0| = |F1| (9)

− (∀p, a, q : q ∈ δ0(p, a) : (∃r0, . . . , rf , w : rf ∈ δ1(r0, w) :

ϕ(r0) = p ∧ ϕ(rf ) = q ∧ τ(a) = w)) (10)

− (∀r0, . . . , rf , w : rf ∈ δ1(r0, w) : ϕ(rf ) ∈ δ0(ϕ(r0), τ
−1(w))) (11)

where p, q ∈ S0, a ∈ Σ0, r0, rf ∈ S1, r1, . . . , rf−1 ∈ I, and w ∈ Σf
1 for

f ≥ 2.
Furthermore, δ1(ri, w.i) = ri+1, for 0 ≤ i < f .

Jamming by a factor f is defined analogously to stretching by a factor f . Note
that, by definition, jamming by a factor f is not always possible. NFA FA0 can
only be jammed if there exists an NFA FA0 which can be stretched into FA0.

Definition 3.4. Let FA0 = (S0 ∪R, Σ0, δ0, q0, F0) be an NFA, and let FA1 =

(S1, Σ1, δ1, q1, F1) be an NFA. FA1 is an f-jam of FA0 iff FA0 is an f-stretch

of FA1. The set R of FA0 is the set of additional intermediate states, resulting

from stretching.

To illustrate these definitions we give an example:

Example 3.5. The graph in figure 2 represents the DFA

FA0 = ({q, r, s}, {a, b, c, d}, δ1, q, {s}). DFA FA0 can be stretched by a factor 2

into NFA FA1 of figure 3. NFA FA1 = (S2 ∪ I, {e, f, g, h, i, j, k}, δ2, t, {y}), with
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Figure 3: NFA FA1, a 2-stretch of DFA FA0

τ(a) = ef
τ(b) = gh
τ(c) = gi
τ(d) = jk

Figure 4: Injection τ

ϕ(q) = t
ϕ(r) = w
ϕ(s) = y

Figure 5: Bijection ϕ

S2 = {t, w, y} and I, the set of additional intermediate states, is {u, v, x, z}.
Injection τ and bijection ϕ are shown in figures 4 and 5 respectively.

In this example we can see why stretching a DFA can result in an NFA.

Because we chose τ(b) = gh and τ(c) = gi, there are two outgoing transitions

with label g from state w. Therefore FA1 is an NFA.

4 Bit-level Stretching and Jamming

4.1 Overview

In order to highlight how stretching and jamming can improve performance,
we present an application of both transformations in this section. We look at
stretching and jamming on a bit-level. We will only consider automata in which
each element of the alphabet is a bit string. An n-bit automaton is an automaton
whose alphabet consists of all the 2n bit strings of length n.

Proposition 4.1. Let f be a factor of n. Then we can f-stretch the n-bit DFA

FA0 into NFA FA1 in the following way:

• FA1 is an n
f
− bit NFA.

• There is a bijection between Σ0 and Σf
1 ie. for every bit string of length n

in Σ0 there is a sequence of f bit strings of length n
f

in Σf
1 and vice versa.

• For every transition in FA0 there are f sequential transitions in FA1, obey-

ing the above bijection between Σ0 and Σf
1 for the labels of the transitions.
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Of course, this specialization of stretching is only allowed if n is divisible by
f . In that case we call the DFA f-stretchable. Again, jamming is the inverse
transformation: if an n-bit NFA is f-jammable, the resulting automaton is an
nf − bit DFA.

a

b

c

d

e

00

01

10

11

Figure 6: DFA FA0

00 01 10 11
a {b} {c} - -
b - - {d} {e}
c - - - -
d - - - -
e - - - -

Figure 7: Transition table of DFA FA0

a
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d

e
i0

i1

i2

i3
0

0

0
1

1
0

1
1

Figure 8: NFA FA1, a 2-stretch of DFA
FA0

0 1
a {i0,i1} -
i0 {b} -
i1 - {c}
b - {i2,i3}
i2 {d} -
i3 - {e}
c - -
d - -
e - -

Figure 9: Transition table of NFA FA1

a

b

c

d

ei0

i1
0

0

1

1
0

1

Figure 10: DFA FA2, determinized NFA
FA1

0 1
a {i0} -
i0 {b} {c}
b - {i1}
i1 {d} {e}
c - -
d - -
e - -

Figure 11: Transition table of DFA FA2

Example 4.2. To illustrate the stretching of n-bit automata we give an example.

The 2-bit DFA FA0 of figure 6 can be stretched by a factor 2 into the 1-bit NFA

FA1 of figure 8. Also, the 1-bit NFA FA1 can be jammed into the 2-bit DFA

FA0. Furthermore, NFA FA1 can be determinized into DFA FA2 of figure 10.

Note that in the previous example, we stretched a transition by using the
most significant bit first. For example, we stretched transition (a, 01, c) into
(a, 0, i1) and (i1, 1, c), taking the 0 first and then the 1. In practice, we will
usually use the least significant bit first, because that is the most natural way
to process a bit string. It can be done as presented here in practice too, however.
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4.2 Theoretical Results

In this section we will prove a number of propositions about stretching and jam-
ming. From these propositions we can draw conclusions about when stretching
or jamming will be useful in terms of memory consumption and string process-
ing time. The first four propositions will deal with bit-level stretching. The
following propositions hold:

Proposition 4.3. |Σ1| = f
√

|Σ0|

Proof. If FA0 is an n-bit NFA, then the alphabet size, |Σ|, is 2n. If FA0 is
stretched by a factor f into FA1, FA1 is an n

f
-bit NFA, so the alphabet size,

|Σ1|, is 2
n
f = f

√
2n = f

√

|Σ0|.

Proposition 4.4. |Q1| = |δ0|(f − 1) + |Q0|

Proof. Stretching by a factor f introduces f − 1 additional intermediate states,
for each single transition in the original DFA. Therefore |Q1| is equal to the
additional intermediate states, |δ0|(f − 1), plus the number of states in the
original DFA, |Q|.

Proposition 4.5. |Q0| ≤ |Q1| ≤ |Q0||Σ1|(f − 1) + |Q0|

Proof. From proposition 4.4 we know that if DFA FA0, with |δ0| transitions,
is stretched by a factor f into FA1, |Q1| = |δ0|(f − 1) + |Q0|. The number
of transitions is at least 0 and at most |Q0||Σ0|. Therefore, |Q0| ≤ |Q1| ≤
|Q0||Σ1|(f − 1) + |Q0|.

Proposition 4.6. Let z =
|Q0|(|Σ0|−

f
√

|Σ0|)

f
√

|Σ0|(f−1)
.

|δ0| < z ⇔ |Q1||Σ1| < |Q0||Σ0|
|δ0| = z ⇔ |Q1||Σ1| = |Q0||Σ0|
|δ0| > z ⇔ |Q1||Σ1| > |Q0||Σ0|

Proof. From proposition 4.3 we know that if DFA FA0 is stretched by a factor f
into FA1, |Σ1| = f

√

|Σ0|. From proposition 4.4 we know that if DFA FA0, with
|δ0| transitions, is stretched by a factor f to into FA1, |Q1| = |δ0|(f − 1) + |Q0|.
Thus, |Q1||Σ1| = (|δ0|(f − 1) + |Q0|) f

√

|Σ0|.
Therefore, if |δ0| = z = |Q0|(|Σ0| − f

√

|Σ0|)/ f
√

|Σ0|(f − 1) then:

|Q1||Σ1| = ((|Q0|(|Σ0| − f
√

|Σ0|)/ f
√

|Σ0|(f − 1))(f − 1) + |Q0|) f
√

|Σ0|
= |Q0||Σ0|

The inequalities follow directly by similar reasoning.

From proposition 4.6 we can conclude that bit-stretching a DFA reduces
the transition table size when |δ0| < z. Therefore it can reduce the amount of
memory needed for a transition table representation.

The transition density of an automaton is the number of transitions divided
by the transition table size (the maximum number of possible transitions). For
our DFA FA0 this is |δ0|/|Q0||Σ0|. In the last proposition we saw that if the
number of transitions |δ0| is equal to z, the transition table size is the same before
and after stretching. This means that the density in that case is z/|Q0||Σ0| =
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( 1
|Σ0|

− |Σ0|−
1

f )/(1 − f). This value is not dependent on the number of states,

|Q0|. In figure 12, z/|Q0||Σ0| is set out against the alphabet size |Σ0| for different
values of f . From these graphs we can conclude how low the transition density
has to be to obtain a smaller transition table size by stretching. For example, if
we stretch an 8-bit DFA (256 alphabet symbols) by a factor 2 (f=2), we reduce
the transition table size if the transition density is lower than 6%.

45 6 7 8 9 10
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f=2

Break-even graphs for stretching with factors f = 2, 4, 8
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Figure 12: Break-even graphs for stretching

The next three propositions will deal with bit-level jamming.

Proposition 4.7. |Σ1| = |Σ0|f

Proof. If FA0 is an n-bit DFA, then the alphabet size, |Σ0|, is 2n. If FA0 is
jammed by a factor f into FA1, FA1 is an nf -bit DFA, so the alphabet size, Σ1,
is 2nf = (2n)f = |Σ0|f .

Proposition 4.8. 0 ≤ |Q1| ≤ |Q0|

Proof. Every automaton has at least 0 states, thus |Q1| ≥ 0.
Jamming removes all redundant intermediate states so |Q1| ≤ |Q0|.

We could include a proposition here that states in which cases jamming
results in a smaller transition table. Unfortunately, in almost all cases jamming
results in a larger transition table. However, one of the reasons for investigating
the jamming operation is that it might reduce the string processing time because
multiple symbols are processed at once.

This concludes our overview of bit-level stretching and jamming. We end
this section with a few notes.

Of course, at this point the question rises how stretching and jamming per-
form in practice. We have implemented the stretching and jamming operations
as algorithms and performed benchmarking studies under different conditions.
These benchmarking studies confirm our theoretical results. Furthermore, these
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studies show that jamming indeed reduces the string processing time in most
cases. The algorithms as well as the results of the benchmarking studies can be
found in [dB04].

In this paper, we will only consider stretching or jamming the complete
transition table. As we saw in this section, stretching is useful if the transition
density is low. Therefore, it might be interesting to stretch only certain parts
of the transition table where the transition density is low. For jamming we can
argue that if a certain part of the transition table contains many redundant
states, jamming this part only might be interesting. We call this approach local
stretching and jamming but leave its details as future work.

Furthermore, we will only consider transition tables that can be implemented
with a regular matrix that has a row for each state and a column for each input
symbol. Of course, there are cases where this does not apply. For example,
sometimes character classes or sparse matrices are used for implementing the
transition table. We will not discuss these situations in this paper.

As a general guideline however, if a certain transition table implementa-
tion leads to a smaller transition table density it will have a positive effect on
stretching. If it leads to a higher transition density it will have a negative effect.

5 Conclusions and Future Work

We have defined the notions of stretching and jamming and shown the theoreti-
cal conditions under which they influence performance. In the case of stretching,
performance can be improved by reducing the memory usage. Jamming on the
other hand, increases memory usage.

During the theoretical discussion of jamming we hinted that it might reduce
the string processing time but we did not present a theoretical model for that.
However, preliminary benchmarking studies in [dB04] confirm our theoretical
results and show that jamming indeed reduces the string processing time.

There are a number of interesting problems that can still be investigated
further. We only considered stretching or jamming the complete transition
table. Transforming only a small part of the transition table, in other words
local stretching and jamming, is an interesting problem for further research.

Of course, any method that is used to change the transition table, for ex-
ample character classes and sparse matrices, influences stretching and jamming.
Therefore, these situations can be investigated further.

Lastly, we only looked into transforming automata and not regular expres-
sions. The stretching and jamming of regular expressions is also a candidate for
further research.
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