4 research outputs found

    A Characterization of Approximation Resistance for Even kk-Partite CSPs

    Full text link
    A constraint satisfaction problem (CSP) is said to be \emph{approximation resistant} if it is hard to approximate better than the trivial algorithm which picks a uniformly random assignment. Assuming the Unique Games Conjecture, we give a characterization of approximation resistance for kk-partite CSPs defined by an even predicate

    Near-Optimal UGC-hardness of Approximating Max k-CSP_R

    Get PDF
    In this paper, we prove an almost-optimal hardness for Max kk-CSPR_R based on Khot's Unique Games Conjecture (UGC). In Max kk-CSPR_R, we are given a set of predicates each of which depends on exactly kk variables. Each variable can take any value from 1,2,,R1, 2, \dots, R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max kk-CSPR_R to within factor 2O(klogk)(logR)k/2/Rk12^{O(k \log k)}(\log R)^{k/2}/R^{k - 1} for any k,Rk, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3k=o(logR/loglogR)3 \leq k = o(\log R/\log \log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/Rk2)O(k/R^{k-2}) by Chan. When k=2k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSPR_R by Kindler, Kolla and Trevisan, we provide an Ω(logR/Rk1)\Omega(\log R/R^{k - 1})-approximation algorithm for Max kk-CSPR_R. This algorithm implies that our inapproximability result is tight up to a factor of 2O(klogk)(logR)k/212^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3k3 \leq k is a constant, the previously known gap was O(R)O(R), which is significantly larger than our gap of O(polylog R)O(\text{polylog } R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's dd-to-1 Conjecture and still get asymptotically the same hardness of approximation

    The Gowers norm in the testing of Boolean functions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 65-68).A property tester is a fast, randomized algorithm that reads only a few entries of the input, and based on the values of these entries, it distinguishes whether the input has a certain property or is "different" from any input having this property. Furthermore, we say that a property tester has completeness c and soundness s if it accepts all inputs having the property with probability at least c and accepts "different" inputs with probability at most s + o(1). In this thesis we present two property testers for boolean functions on the boolean cube f0; 1gn. We summarize our contribution as follows. We present a new dictatorship test that determines whether the function is a dictator (of the form f(x) = xi for some coordinate i), or a function that is an "anti-dictator." Our test is "adaptive," makes q queries, has completeness 1, and soundness O(q3) 2??q. Previously, a dictatorship test that has soundness (q + 1) . 2-q is achieved by Samorodnitsky and Trevisan, but their test has completeness strictly less than 1. Furthermore, the previously best known dictatorship test from the PCP literature with completeness 1 has soundness ... . Our contribution lies in achieving perfect completeness and low sound- ness simultaneously. We consider properties of functions that are invariant under linear transformations of the boolean cube. Previous works, such as linearity testing and low-degree testing, have focused on linear properties.(cont.) The one exception is a test due to Green for "triangle freeness": a function f satisfies this property if f(x); f(y); f(x + y) do not all equal 1, for any pair x; y 2 f0; 1gn. We extend this test to a more systematic study and consider non-linear properties that are described by a single forbidden pattern. Specifically, let M denote an r by k matrix over f0; 1g. We say that a function f is M-free if there are no ~x = (x1,...,xk), where x1,...,xk 2 f0; 1gn such that f(x1),...,f(xk) = 1 and M~x = ~0. If M can be represented by an underlying graph, we can analyze a test that determines whether a function is M-free or \far" from one. Our test makes k queries, has completeness 1, and soundness bounded away from 1. The technique from our work leads to alternate proofs that some previously studied linear properties are testable, albeit with worse parameters. Our results, though quite different in terms of context, are connected by similar techniques. Our analysis of the algorithms relies on the machinery of the Gowers uniformity norm, a recent and powerful tool in additive combinatorics.by Victor Yen-Wen Chen.Ph.D
    corecore