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Abstract

A property tester is a fast, randomized algorithm that reads only a few entries of the
input, and based on the values of these entries, it distinguishes whether the input has a
certain property or is “different” from any input having this property. Furthermore,
we say that a property tester has completeness c and soundness s if it accepts all
inputs having the property with probability at least c and accepts “different” inputs
with probability at most s+ o(1).

In this thesis we present two property testers for boolean functions on the boolean
cube {0, 1}n. We summarize our contribution as follows.

• We present a new dictatorship test that determines whether the function is a
dictator (of the form f(x) = xi for some coordinate i), or a function that is
an “anti-dictator.” Our test is “adaptive,” makes q queries, has completeness
1, and soundness O(q3) · 2−q. Previously, a dictatorship test that has sound-
ness (q + 1) · 2−q is achieved by Samorodnitsky and Trevisan, but their test
has completeness strictly less than 1. Furthermore, the previously best known
dictatorship test from the PCP literature with completeness 1 has soundness
2O(
√
q)−q. Our contribution lies in achieving perfect completeness and low sound-

ness simultaneously.

• We consider properties of functions that are invariant under linear transfor-
mations of the boolean cube. Previous works, such as linearity testing and
low-degree testing, have focused on linear properties. The one exception is a
test due to Green for “triangle freeness”: a function f satisfies this property if
f(x), f(y), f(x + y) do not all equal 1, for any pair x, y ∈ {0, 1}n. We extend
this test to a more systematic study and consider non-linear properties that
are described by a single forbidden pattern. Specifically, let M denote an r
by k matrix over {0, 1}. We say that a function f is M -free if there are no
~x = (x1, . . . , xk), where x1, . . . , xk ∈ {0, 1}n such that f(x1), . . . , f(xk) = 1 and
M~x = ~0. If M can be represented by an underlying graph, we can analyze a
test that determines whether a function is M -free or “far” from one. Our test
makes k queries, has completeness 1, and soundness bounded away from 1. The
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technique from our work leads to alternate proofs that some previously studied
linear properties are testable, albeit with worse parameters.

Our results, though quite different in terms of context, are connected by similar
techniques. Our analysis of the algorithms relies on the machinery of the Gowers
uniformity norm, a recent and powerful tool in additive combinatorics.

Thesis Supervisor: Madhu Sudan
Title: Fujitsu Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The subject of this thesis is concerned with the testing of boolean functions on the

boolean cube {0, 1}n. We present two property testing algorithms. The first is a new

dictatorship test, a useful gadget in the construction of probabilistic checkable proofs

(PCPs). The second is concerned with testing whether a function has a specific linear-

invariant pattern. While these two results come from two seemingly different contexts,

we analyze the behavior of these algorithms by applying similar tools from additive

combinatorics. Specifically, we utilize the Gowers uniformity norm of a function [15]

to analyze the acceptance probability of our algorithms.

We first describe the framework and motivation of property testing. Traditionally,

algorithms that run in polynomial time in the length of the input are considered

practical, and linear-time algorithms are the paradigm of efficiency. However, while

the computational power of computers has increased tremendously over the decades,

the growth of dataset, especially those arising from the internet, has accelerated

even more so. For such massive datasets, reading the input in its entirety is not

computationally feasible.

The field of property testing, initiated by Blum, Luby, and Rubinfeld [11] and

formally defined by Rubinfeld and Sudan [35], is concerned with “super-efficient”

algorithms that perform in time sublinear in the length of the input. Instead of

processing the input as a whole, such an algorithm examines the input at a few select

entries, and based on the values of these entries, the algorithm tests whether the
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input satisfies a certain property or “looks different” from any input that satisfies

this property.

In this thesis, we focus our attention on boolean functions of the form f : {0, 1}n →

{T,F}, where T represents the boolean True and F represents the boolean False.

The input is simply the truth table of f , the evaluation of f at every point in {0, 1}n

enumerated in some lexicographical ordering. A testing algorithm is said to have ora-

cle access to f if the algorithm can query the entry x for every x ∈ {0, 1}n and obtain

the value f(x). A testing algorithm, modeling the decision problems in complexity

theory, accepts with high confidence if the input satisfies some specified property and

rejects with high confidence if the input “looks different” from those satisfying the

property.

We measure the efficiency of a testing algorithm by the number of queries it makes.

Furthermore, we only consider local testing algorithms – those making a fixed number

of queries, independent of n, into the input. We make the following formal definition:

Definition 1.0.1. Let YESn,NOn be two disjoint subsets of the set of boolean

functions {f : {0, 1}n → {T,F}}, and let YES = ∪n>0 YESn and NO = ∪n>0NOn.

Let q be an integer, and 0 < s < c < 1. We say that T = {Tn}n is a property tester

for (YES,NO) (and we say (YES,NO) is testable) with q queries, completeness c,

and soundness s if for every n, Tn is a probabilistic algorithm that

• makes q oracle calls to a function f ,

• accepts with probability at least c if f ∈ YESn, and

• accepts with probability at most s+ o(1) if f ∈ NOn.

Remark. We say that a tester T is adaptive if the queries it selects may depend on

the values of the previous queries.

Semantically, YES denotes the set of boolean functions that satisfies a specified

property, and NO denotes the set of functions that looks very “different” from the set

YES. Specifically, let δn(f, g) denote 2−n |{x : f(x) 6= g(x)}|. we say that a function

f is ε-far from YESn if δn(f, g) ≥ ε for every g ∈ YESn. One can see that if
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(YESn,NOn) is testable and f is in NOn, then f is ε-far from YESn for any constant

ε > 0. To see this, suppose δn(f, g) = o(1). With q independent of n, any q-tester

with high probability will either accept both f and g or reject both. This cannot

happen if f ∈ YESn and g ∈ NOn, since a tester must behave differently on these

two functions.

We remark that in the property testing literature, the set of NO instances is often

taken to be maximal, where for every n, NOn is parametrized by a constant ε > 0

and consists of all functions that are ε-far from YESn. This is actually the strongest

requirement since by definition, provided YES ′n ⊆ YESn and NO′n ⊆ NOn, a tester

for the property (YESn,NOn) is also trivially a tester for the property (YES ′n,NO′n).

In this thesis we shall work with the less stringent definition where NOn is simply

some meaningful subset of all functions that are far from YESn. In addition, when

clear from the context, we may drop the subscript parameter n.

1.1 The results

We now describe the motivation and background for our results.

1.1.1 Dictatorship testing

We say a function f is linear if f(x) =
∑

i∈S xi for some subset S ⊆ [n]. A dictator

function is simply a linear function where |S| = 1, i.e., f(x) = xi for some i ∈ [n]. In

other words, a dictator function depends on exactly one variable, and we define the

set of YES instances to be simply YESn = {xi : i ∈ [n]}. Following [13, 27, 39], the

set of NO instances for dictatorship testing consists of functions with “low-degree

influences” o(1) for each variable. We defer a formal definition to Chapter 3 while

suppressing the technical details in our exposition.

The problems of both linearity and dictatorship testing have been intensely studied

in the past both for their combinatorial interest and connection to complexity theory.

In complexity theory, a dictator function is often called a long code, and it is first used

in [7] for the constructions of probabilistic checkable proofs (PCPs), see e.g., [5, 4] for

13



background on the PCP Theorems.

Since then, dictatorship testing has become a valuable tool in the construction

of PCPs. A PCP system is typically designed as the composition of two verifier, an

outer verifier and an inner verifier. A PCP system expects the proof to be written

in such a way so that the outer verifier, typically based on the verifier obtained from

Raz’s Parallel Repetition Theorem [34], selects some tables of the proof according to

some distribution and then passes the control to the inner verifier. The inner verifier,

with oracle access to these tables, makes queries into these tables and ensures that

the tables are the encoding of some error-correcting codes and satisfy some joint

constraint. The long code encoding is usually employed in these proof constructions,

and the inner verifier simply tests whether a collection of tables (functions) are long

codes satisfying some constraints. Following this paradigm, constructing a PCP with

certain parameters reduces to the problem of designing a dictatorship test with similar

parameters.

One question of interest is the tradeoff between the soundness and query complex-

ity of a tester. If a tester queries the functions at every single value, then trivially the

verifier can determine all the functions. One would like to construct a dictatorship

test that has the lowest possible soundness while making as few queries as possible.

One way to measure this tradeoff between the soundness s and the number of queries

q is amortized query complexity, defined as q
log s−1.

This investigation, initiated in [44],

has since spurred a long sequence of works [41, 38, 24, 14]. All the testers from these

works run many iterations of a single dictatorship test by reusing queries from pre-

vious iterations. The techniques used are Fourier analytic, and the best amortized

query complexity from this sequence of works has the form 1 +O
(

1√
q

)
.

The next breakthrough occurs when Samorodnitsky [37] introduces the notion of

a relaxed linearity test along with new ideas from additive combinatorics. The recent

paradigm in additive combinatorics is to find the right framework of structure and

pseudorandomness and analyze combinatorial objects by dividing them into struc-

tured and pseudorandom components, see e.g. [43] for a survey. One success is the

notion of Gowers norm [15], which has been fruitful in attacking many problems in
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additive combinatorics and computer science. In [37], the problem of linearity testing

is relaxed; instead of designating the set of NO instances to be functions that are far

from being linear, the author defines the set to be the set of functions with small low

degree Gowers norm. By doing so, an optimal tradeoff between soundness and query

complexity is obtained for the problem of relaxed linearity testing. (Here the tradeoff

is stronger than the tradeoff for the standard problem of linearity testing.)

Building on the analysis of the relaxed linearity test in [37], Samorodnitsky and

Trevisan [39] construct a dictatorship test with amortized query complexity 1 +

O
(

log q
q

)
. Furthermore, the test is used as the inner verifier in a conditional PCP

construction (based on unique games [26]) with the same parameters. However, their

dictatorship test suffers from an inherent loss of perfect completeness. Ideally one

would like testers with one-sided errors. One, for aesthetic reasons, testers should

always accept valid inputs. Two, for some hardness of approximation applications, in

particular coloring problems (see e.g. [23] or [12]), it is important to construct PCP

systems with one-sided errors.

We prove the following theorem in this thesis:

Theorem 1.1.1. For every q ≥ 3, there exists an (adaptive) dictatorship test that

makes q queries, has completeness 1, and soundness O(q3)
2q

; in particular it has amor-

tized query complexity 1 +O
(

log q
q

)
.

Our work relies on techniques developed in [24, 39, 23, 21]. Our tester is adaptive

in the sense that it makes its queries in two stages. It first makes roughly log q

nonadaptive queries into the function. Based on the values of these queries, the

tester then selects the rest of the query points nonadaptively.

1.1.2 Linear-invariant non-linear properties

We are interested in broad classes of properties that are testable. Specifically, we

examine properties that remain invariant under linear transformations of the domain.

Intuitively, it is reasonable that the symmetries of a property can lead to testability,

since this suggests that the value of a function at any one point of the domain is no
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more important than its value at any other point. Formally, we say that a property

YES is linear-invariant if for every f ∈ YES and linear map L : {0, 1}n → {0, 1}n,

we have that f ◦ L ∈ YES. Specific examples of linear-invariant properties that

were previously studied include that of linearity and low-degree polynomial [11, 6,

3]. While the tests in the above mentioned works potentially use all features of

the property being tested, Kaufman and Sudan [25] show that testability can be

attributed primarily to the linear-invariance of the property. However, their setting

only considers linear properties, i.e., YES itself is a vector space over {0, 1} and this

feature plays a key role in their result.

In this thesis we consider the following question: does linear-invariance lead to

testability even when the property is non-linear? The one previous work in the

literature that gives examples of non-linear linear-invariant properties is Green [17],

where a test for the property of being triangle-free is described. A function f :

{0, 1}n → {0, 1} is said to be triangle-free if for every x, y ∈ {0, 1}n it is the case

that at least one of f(x), f(y), f(x + y) does not equal 1. The property of being

triangle-free is easily seen to be linear-invariant and yet not linear. Green [17] shows

that the natural test for this property does indeed work correctly, though the analysis

is quite different from that of typical algebraic tests. In particular, Green develops an

algebraic regularity lemma to analyze this test. We remark that the above example

is not the principal objective in Green’s work, which is mainly focused on resolving

a conjecture raised by Bergelson, Host, and Kra [8] regarding the number of 3-term

arithmetic progressions of the same common difference.

Motivated by Green’s triangle–freeness example, we seek to understand broad

classes of properties that are linear-invariant and non-linear. Now consider the fol-

lowing definition.

Definition 1.1.1. Let f : {0, 1}n → {0, 1} and M be an r by k matrix over {0, 1}.

We say that f is M-free if there are no x1, . . . , xk ∈ {0, 1}n such that

• f(x1), . . . , f(xk) = 1, and

• M~x = ~0, where ~x = (x1, . . . , xk).
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One can easily see that this definition coincides with triangle-freeness when r =

1, k = 3, and M = (1, 1, 1). Formally, we define the property of M-free to be

(YESM ,NOε), where f ∈ YESM if f is M -free and f ∈ NOε if f is ε-far from

YESM . Formulated in our language of property testing, Green [17] in the same paper

conjectures the following:

Conjecture 1.1.2 (implicit in Green [17]). Let r ≥ 1, k ≥ 3 be integers and M be

any r by k matrix over {0, 1}. Then there exists a testing algorithm for the property

of M–free that makes k queries, has completeness 1, and soundness bounded away

from 1.

In fact, Green shows that this conjecture holds when r = 1, for which the same

analysis for his triangle-free test carries over. In this thesis, we make partial progress

toward this conjecture. Specifically, we prove the conjecture in the special case when

the matrix M can be represented by an underlying graph. We view this as a natural

generalization of identifying a triangle with a linear equation with 3 variables.

Definition 1.1.2. Let M be an r by k matrix over {0, 1}. We say that the matrix

M is graphic if there exists a graph on k edges, each edge associated with an integer

from {1, . . . , k}, such that any linear combination of the rows of M corresponds to a

cycle on the graph. More specifically, for each cycle in the graph, its indicator vector

(on the edge set) lies in the span of the rows of M .

We prove the following in this thesis:

Theorem 1.1.3. Let r ≥ 1, k ≥ 3 be integers, ε > 0, and M an r by k graphic

matrix M . Then there exist a function τ : R+ → R+ and a tester for the property

(YESM ,NOε) that makes k queries, has completeness 1 and soundness 1− τ(ε).

The bound we obtain for τ is quite weak. Let W (t) denote a tower of twos with

height dte. Our proof only guarantees that τ(ε) ≥ W (poly (1/ε))−1, a rather fast

vanishing function. We do not know if the tower bound is inherent in τ for any prop-

erty that we consider. However, we remark that in the literature, the tower behavior
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persists in all the testing algorithms that are based on some notion of regularity

lemmas.

Syntactically, Theorem 1.1.3 seems to indicate that infinitely many properties

are testable. However, this may not be true semantically as two different graphs

may actually lead to the same set of YES instances. Nevertheless, in our conference

paper [10] where Theorem 1.1.3 appears, the paper shows that an infinite sequence

of graphs exists such that the corresponding YES instances are distinct, and thus

verifying that Theorem 1.1.3 does indeed show that infinitely many properties are

testable.

Furthermore, based on the techniques from this work, we develop alternate proofs

for linearity testing [11, 6] and affine subspace testing [33]. However, because of

our reliance on Green’s regularity lemma, the soundness parameters that we can

guarantee are significantly worse than what were previously known in the literature.

More details will be provided in Chapter 4.

Parallel works: After we completed our work, we learned from Asaf Shapira

that independently of us, Conjecture 1.1.2 has been fully resolved in his paper [40].

Shapira’s work is built on the technique developed by Král’, Serra, and Vena in [28].

where they also establish Green’s conjecture in the special case when the matrix M is

graphic. However, their proof is different from ours. The three authors demonstrate a

reduction from functions to graphs so that the number of M -patterns in a function is

equal (up to scaling) to the number of copies of a certain subgraph in a graph. Then

they apply known “removal lemmas” for graphs in the literature to derive a “removal

lemma” for functions. In this manner, Král’, Serra, and Vena show that Theorem 1.1.3

holds as well. By extending this method and utilizing known removal lemmas for

hypergraphs, Shapira [40] and Král’, Serra, and Vena in a followup work [29] both

independently resolve Green’s conjecture for any arbitrary matrix M .
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1.2 Organization

In Chapter 2, we describe the background on Fourier analysis and the Gowers norm

that we need to obtain our results, and we also give an overview of our proofs.

The dictatorship test is presented and analyzed in Chapter 3, and we discuss linear-

invariant and non-linear properties in Chapter 4. Finally in Chapter 5, we describe

some open problems and possible new lines of research from this thesis.
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Chapter 2

The Gowers norm and technique

overview

In this chapter, we provide the necessary background needed for our results and give

an overview of how we use the Gowers norm in our proofs. First, let us fix some

notation. We let [n] denote the set {1, 2, . . . , n}. For a vector v ∈ {0, 1}n, we write

|v| =
∑

i∈[n] vi to be the Hamming weight of v. We let ∧ denote the boolean AND,

where a∧ b = 1 iff a = b = 1. For vectors v, w ∈ {0, 1}n, we write v∧w to denote the

vector obtained by applying AND to v and w component-wise. We abuse notation

and sometimes interpret a vector v ∈ {0, 1}n as a subset v ⊆ [n], where i ∈ v iff

vi = 1.

2.1 Fourier analysis

Throughout the rest of the thesis, we shall examine the Fourier transform of a func-

tion.

Definition 2.1.1 (Fourier transform). For a real-valued function f : {0, 1}n → R,

we define its Fourier transform f̂ : {0, 1}n → R to be

f̂(α) = E
x∈{0,1}n

f(x)χα(x),

21



where χα(x) = (−1)
∑
i∈[n] αixi . We say f̂(α) is the Fourier coefficient of f at α, and

the characters of {0, 1}n are the functions {χα}α∈{0,1}n .

It is easy to see that for α, β ∈ {0, 1}n, Eχα · χβ is 1 if α = β and 0 otherwise.

Since there are 2n characters, the characters form an orthonormal basis for functions

on {0, 1}n, and we have the Fourier inversion formula

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x)

and Parseval’s Identity

∑
α∈{0,1}n

f̂(α)2 = E
x

[
f(x)2

]
.

2.2 Gowers norm

In [15], Gowers uses analytic techniques to give a new proof of Szemerédi’s Theo-

rem [42] and in particular, initiates the study of a new measure of functions. Subse-

quently this measure is termed the Gowers uniformity norm and has been intensively

studied and applied in additive combinatorics.

Definition 2.2.1. Let f : {0, 1}n → R. For every d ∈ Z+, we define the d-th

dimension Gowers uniformity norm (the Ud norm) of f to be

‖f‖Ud =

 E
x, x1,...,xd∈{0,1}n

 ∏
S⊆[d]

f

(
x+

∑
i∈S

xi

) 1

2d

.

The definition can be easily extended to complex-valued functions, but since we

shall only work with real-valued functions, the above definition suffices for us. In

particular, when f is a boolean function, one can interpret ‖f‖2d

Ud
as simply the

expected number of “affine parallelepipeds” of dimension d in f .

As shown by Gowers [15], for every d ≥ 2, the expression ‖·‖Ud is indeed a norm for

functions f : {0, 1}n → R. (For d = 1, ‖f‖U1
= |E f | and is a semi-norm as ‖f‖U1

= 0
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does not necessarily imply that f = 0.) In addition, the norms are monotonically

increasing, i.e.,

‖·‖U1
≤ ‖·‖U2

≤ . . . ≤ ‖·‖Ud ≤ . . .

Furthermore, for every positive integer d, if f has positive d+ 1-th Gowers norm,

then f correlates with some degree d phase function, i.e., (−1)g for some polynomial

g of degree d.

Fact 2.2.1 ([15, 19]). Let d ∈ Z, ε > 0. Let P : {0, 1}n → {0, 1} be a polynomial

of degree at most d and f : {0, 1}n → R. Suppose
∣∣Ex f(x)(−1)P (x)

∣∣ ≥ ε. Then

‖f‖Ud+1
≥ ε.

It is conjectured that the inverse also holds – if a bounded function f has positive

Ud+1 Gowers norm, then f correlates with some degree d phase function. Such a

formulation is known as the Gowers Inverse Conjecture. For d = 1, the inverse holds

and has a short proof. Since we need this, we record the easy proof below by first

noting that the U2 norm is precisely the `4 norm of a function’s Fourier transform.

Proposition 2.2.2 ([15]). Let f : {0, 1}n → R. Then

‖f‖4
U2

=
∑

α∈{0,1}n
f̂ (α)4 .

Proof. The equality follows by a straightforward Fourier expansion.

‖f‖4
U2

= E
x,y,z

f(x)f(x+ y)f(x+ z)f(x+ y + z)

= E
x,y
f(x)f(x+ y)

∑
α,β

f̂(α)f̂(β)χβ(y) E
z
χα+β(x+ z)

=
∑
α

f̂(α)2 E
x,y
f(x)f(x+ y)χα(y)

=
∑
α

f̂(α)2
∑
β,γ

f̂(β)f̂(γ) E
x
χβ+γ(x) E

y
χα+γ(y)

=
∑
α

f̂(α)4.
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Note that the magnitude of the Fourier coefficient
∣∣∣f̂(α)

∣∣∣ measures the correlation

between f and the linear phase function χα. Thus, Proposition 2.2.3 implies that the

U2 norm of a bounded function measures its correlation with the set of linear phase

functions.

Proposition 2.2.3 (Inverse for U2). Let f : {0, 1}n → [−1, 1]. Then there exists

some α ∈ {0, 1}n such that ‖f‖U2
≤
∣∣∣f̂(α)

∣∣∣1/2.

Proof. By Proposition 2.2.2, it follows that

‖f‖4 =
∑
α

f̂(α)4

≤ max
α

f̂(α)2 ·
∑
α

f̂(α)2.

Since the magnitude of f is bounded by 1, By Parseval’s Identity,
∑

α f̂(α)2 =

Ex [f(x)2] ≤ 1, and thus the proposition follows.

For d = 2, showing the fact that if ‖f‖U3
is positive, then the function f correlates

with a quadratic becomes significantly more involved. An inverse theorem for U3 norm

is proved by Samorodnitsky [37] for finite fields of even characteristic and by Green

and Tao [19] for odd characteristic. For d = 3, the conjecture is shown to be false for

finite fields with low characteristic by Lovett, Meshulam, and Samorodnitsky [30] and

Green and Tao [18], though some version of the inverse conjecture has been shown

recently. We provide more detail on this conjecture in Section 5.3 where we describe

some open problems.

For us, we simply need to understand how to apply the Gowers norm. While the

expression may look cumbersome at first glance, the Gowers norm may be used to

control some other expressions, which may seem harder to analyze. For instance, to

count the number of (k + 1)-term progressions of the form (x, x + y, . . . , x + k ·
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y) in a subset, one may be interested in approximating expressions of the form

Ex,y [f0(x)f1(x+ y) · · · fk(x+ k · y)], which as shown by Gowers, can be bounded

above by the minimum (over i ∈ {0, 1, . . . , k}) of ‖fi‖Uk , where f0, . . . , fk are some

bounded functions over some appropriate domain. Thus, in a rough sense, questions

regarding progressions are then reduced to questions regarding the Gowers norms,

which are more amenable to analytic techniques.

The proof showing that the expectation Ex,y [f0(x)f1(x+ y) · · · fk(x+ k · y)] is

bounded above by the minimum Gowers norm of all the functions fi is not difficult; it

proceeds by repeated applications of the Cauchy-Schwarz inequality and substitution

of variables. Collectively, statements saying that certain expectations can be bounded

above by the Gowers norm are coined von-Neumann type theorems in the additive

combinatorics literature. The most general form of the statements appears in [20]

where Green and Tao show that a system of linear equations of low complexity can

be analyzed by a low dimension Gowers norm.

Definition 2.2.2. Suppose L1, . . . , Lk : {0, 1}n×m → {0, 1} are binary linear equa-

tions over m variables. We say that the system of linear equations (L1, . . . , Lk) has

complexity d if for each i ∈ [k], we can cover the set of linear equations {Lj}j∈[k]\{i}

by d+ 1 classes so that Li does not lie in the span of any of these classes.

Remark. As explain in [20], the definition of complexity remains unchanged if one

replace the word “cover” by “partition.”

The following statement is implicit in [20]. The version we state requires the

functions fi to be over {0, 1}n and possibly distinct; however as explained by Gowers

and Wolf [16], both conditions can be easily satisfied.

Proposition 2.2.4 (von Neumann-type theorem). Let f1, . . . , fk : {0, 1}n → [−1, 1]

and suppose the system of linear equations (L1, . . . , Lk) over m variables has com-

plexity d. Then

E
x1,...,xm∈{0,1}n

∏
i∈[k]

fi (Li (x1, . . . , xm))

 ≤ min
i∈[k]
‖fi‖Ud+1.
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We give some examples to help the readers become familiarized with Defini-

tion 2.2.2.

Example 2.2.1. Let x1, . . . , xm be a collection of m variables. Consider the following

m + 1 linear equations: for i ∈ [m], Li (x1, . . . , xm) = xi, and Lm+1 (x1, . . . , xm) =∑m
i=1 xi. It is easy to check that the system of linear equations (L1, . . . , Lm+1) has

complexity exactly 1.

Example 2.2.2. Let x, y, z be variables, and the linear equations are the following:

L1(x, y, z) = x, L2(x, y, z) = y, L3(x, y, z) = z, L4(x, y, z) = x+y, L5(x, y, z) = x+z,

L6(x, y, z) = y + z. It can also be checked that these six equations have complexity

exactly 1.

Example 2.2.3. Let x, y, z be variables, and the linear equations are the following:

L1(x, y, z) = x, L2(x, y, z) = y, L3(x, y, z) = z, L4(x, y, z) = x+y, L5(x, y, z) = x+z,

L6(x, y, z) = y + z, and L7(x, y, z) = x + y + z. This system of linear equations has

complexity exactly 2.

Example 2.2.4. In general, let x1, . . . , xd be variables, and the linear equations

are the 2d − 1 nontrivial linear combinations of these d variables. This system has

complexity d− 1.

We shall come across the following variant of Gowers norm in Chapter 3:

Definition 2.2.3. Let {fS}S⊆[d] be a collection of functions where fS : {0, 1}n →

[−1, 1]. We define the d-th dimension Gowers linear inner product of {fS} to be

〈{fS}〉LUd = E
x1,...,xd

∏
S⊆[d]

fS

(∑
i∈S

xi

) .
By the preceding example, 〈{fS}〉LUd ≤ minS 6=0⊆[d] ‖fS‖Ud . We won’t need this

explicitly as we rely simply on Lemma 3.1.3 from [39], where a form of the von-

Neumann type theorem was used.
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2.3 Technique overview

Having described the Gowers norm, we provide some intuition behind the design and

analysis of our two testers. In general, to design a testing algorithm, ideally one

would like the algorithm to have perfect completeness (c = 1) and its soundness s

to be as small as possible. To achieve this, whenever f ∈ NO, many sequences of

q queries into f must cause the tester to reject. So to design a tester with q queries

for a given property (YES,NO), we look for a distribution D on {0, 1}n×q, and a

predicate ψ : {0, 1}q → {0, 1}, such that

• if f ∈ YES, then Pr(v1,...,vq)∈D [ψ(f(v1), . . . f(vq)) = 1] = 1, and

• if f ∈ NO, then Pr(v1,...,vq)∈D [ψ(f(v1), . . . f(vq)) = 1] ≤ s+ o(1).

Once we have identified a distribution D along with a predicate ψ, it is easy to design

a tester:

Test T : with oracle access to f ,

1. Pick v = (v1, . . . , vq) according to the distribution D.

2. Query f at the points v1, . . . , vq.

3. Accept iff ψ (f(v1), . . . f(vq)) = 1.

In other words, the design of a tester boils down to finding a pair (D, ψ). For our

dictatorship test in Chapter 3, specifying a pair (D, ψ) requires some effort. On the

other hand, for our M -freeness test in Chapter 4, the matrix M already specifies an

inherent pair (D, ψ).

The analysis of a tester then reduces to estimating p, the acceptance probability

of tester T . The completeness is typically easy to analyze. Elements in YES have

an explicit description, and so showing that ψ (f(v1), . . . , f(vq)) = 1 for each v in the

support of D becomes an explicit computation. The soundness is harder and requires

a more delicate argument.
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Our proof strategy for analyzing the soundness is as follows. First consider the

case when f is random. Specifically, let 0 ≤ δ < 1 and choose a function f uniformly

at random among all boolean functions with density δ. It is easy to compute p when f

is random with density δ, as this can be done using standard probabilistic estimates.

However, we want to estimate p when f ∈ NO. To do this we need a notion of

“pseudorandomness” for functions. We will also define an appropriate “extension”

Φ(f) of f so that this probability,

Pr
v∈D

[ψ(Φ(f)(v1), . . . ,Φ(f)(vq))|Φ(f) is pseudorandom] ,

is easy to analyze and can help us in estimating p.

For the notion of pseudorandomness, we say that a function f is d-th pseudoran-

dom if ‖f − E f‖Ud+1
= o(1), and a function is pseudorandom if it is d-th pseudoran-

dom for every d ≥ 1. By Fact 2.2.1, a pseudorandom function has o(1) correlation

with any low-degree polynomial phase functions. The specification of a distribution

D, a predicate ψ, and an extension Φ depends on the underlying property. We shall

instantiate these concepts clearly when we present the analysis of our tests.
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Chapter 3

Dictatorship testing

We prove Theorem 1.1.1 in this chapter. To do so, we shall clearly specify the property

(YES,NO) for dictatorship testing. We will actually prove a stronger multifunction

version instead – the test has oracle access to multiple functions as opposed to just

one. Within this chapter only, we assume all boolean functions are of the form

f : {0, 1}n → {-1, 1}, following the standard notational change in the PCP literature,

and we identify the boolean True with −1 and False with 1.

3.1 Preliminaries

Definition 3.1.1. (dictatorship) For i ∈ [n], the i-th dictator is the function f(x) =

(−1)xi .

In the PCP literature, the i-th dictator is also known as the long code encoding

of i, 〈(−1)xi〉x∈{0,1}n , which is simply the evaluation of the i-th dictator function at

all points.

The set of YES instances consists of dictator functions. As discussed in Chap-

ter 1, defining NO to be functions that are far from YES is the strongest possible

requirement for a tester’s soundness. In this strictest sense, a tester must reject all

functions that are far from being a dictator. However, H̊astad [22] notices that one

can relax the soundness requirement for dictatorship testing and still construct PCPs.

Such a dictatorship test, however, must still reject functions that are “egalitarian,”
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such as linear phase function χS with |S| large and (−1)Maj, where Maj(x) is 1 if

|x| ≥ n/2 and 0 otherwise. Nonetheless, H̊astad’s test is not required to reject with

high probability the function (−1)xi+xj which is 1
2
-far from every dictator function.

H̊astad [22]: A dictatorship test must reject functions that are
(

1
2
− o(1)

)
-far

from every “junta,” functions that depend only on O(1) variables.

Clearly a dictator function is a junta, and so trivially a function that is
(

1
2
− o(1)

)
-

far from every junta is
(

1
2
− o(1)

)
-far from every dictator as well. Since the intro-

duction of Khot’s unique label cover [26], many papers, such as [13, 27, 39], re-

lax the soundness requirement further. Consider the following example, f(x) =

(−1)x1+Maj(x2,...,xn). By computing the Fourier transform of Maj, it can be shown

that f is
(

1
2
− o(1)

)
-far from every junta. On the other hand, f is “dominated” by

the variable x1. In fact, the variable x1 has positive “low-degree influence” in f .

The tests in [13, 27, 39] simply require that functions with no positive “low-degree

influence” be rejected.

Unique game based construction [13, 27, 39]: A dictatorship test must

reject functions that have no variable with positive “low-degree influence.”

Such a soundness condition is sufficient for (conditional) PCPs, and we define the

notion of influence in the next section.

3.1.1 Influence of variables

For a boolean function f : {0, 1}n → {-1, 1}, the influence of the i-variable, Ii(f), is

defined to be Prx∈{0,1}n [f(x) 6= f(x+ ei)], where ei is a vector in {0, 1}n with 1 on

the i-th coordinate and 0 everywhere else. This corresponds to our intuitive notion

of influence of the i-th variable: how likely the outcome of f changes when the i-th

variable on a random input is flipped. For us, it is actually more convenient to work

with the Fourier analytic definition of Ii(f) defined below.

Definition 3.1.2. Let f : {0, 1}n → R. For i ∈ [n], we define the influence of the

i-th variable of f to be

Ii(f) =
∑

α∈{0,1}n: αi=1

f̂(α)2.
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It is easy to verify that the two definitions coincide when f is a boolean function.

Though we do not need this fact, we include a short proof for completeness to help

the readers become familiarized with the definition.

Proposition 3.1.1. Let f : {0, 1}n → {-1, 1}. For i ∈ [n],

Pr
x∈{0,1}n

[f(x) 6= f(x+ ei)] =
∑

α∈{0,1}n:αi=1

f̂(α)2.

Proof.

Pr
x∈{0,1}n

[f(x) 6= f(x+ ei)] = E
x∈{0,1}n

[
1− f(x)f(x+ ei)

2

]
=

1

2

[
1−

∑
α

f̂(α)2χα(ei)

]

=
1

2

[
1 +

∑
α:αi=1

f̂(α)2 −
∑
α:αi=0

f̂(α)2

]
=

∑
α:αi=1

f̂(α)2,

where the last equality follows since
∑

α f̂(α)2 = Ex f(x)2 by Parseval’s Identity

and is equal to 1.

We now define the notion of low-degree influence.

Definition 3.1.3. Let w be an integer between 0 and n. We define the w-th degree

influence of the i-th variable of a function f : {0, 1}n → R to be

I≤wi (f) =
∑

α∈{0,1}n: αi=1, |α|≤w

f̂(α)2.

Clearly for every w, I≤wi (f) ≤ Ii(f) by definition. While the definition of influence

of a variable is very combinatorial (Proposition 3.1.1 can be generalized to non-

boolean functions), the definition of low-degree influence is less motivated. We give

a few examples.
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Example 3.1.1. Let f(x) = (−1)xi be the i-dictator. Then for every positive integer

w, I≤wi (f) = 1 but for every j 6= i, Ij(f) = 0.

Example 3.1.2. Let f(x) = χS(x) with |S| = ω(1). For each i ∈ S, Ii(f) = 1 but

I≤wi (f) = 0 if w is fixed.

Example 3.1.3. Let f(x) = (−1)Maj(x1,...,xn) and assume n is odd. By Proposi-

tion 3.1.1, Ii(f) is the probability that
∑

j 6=i xj = n−1
2

for a random x ∈ {0, 1}n. By

Stirling’s approximation, Ii(f) = O
(

1√
n

)
.

Example 3.1.4. Let f(x) = (−1)x1+Maj(x2,...,xn). Then I≤w1 (f) is the `2 norm of the

Fourier transform of the Majority function on n− 1 variables, up to weight w, which

is known to be positive.

As seen in these preceding examples, a linear phase function χS with |S| large

has many variables of influence 1 but no variable with positive low-degree influence.

Furthermore, one can indeed verify that for a fixed integer w, a bounded function

has only a finite number of variables with positive w-th degree influence. This easy

fact is the reason why a dictatorship test based on low-degree influence is sufficient

for PCPs.

We conclude this section by stating two lemmas from [39] that we shall need.

Lemma 3.1.2 ([39]). Let f1, . . . , fk : {0, 1}n → [−1, 1] be a collection of k bounded

real-valued functions, and define f(x) =
∏k

i=1 fi(x) to be the product of these k func-

tions. Then for each i ∈ [n],

Ii(f) ≤ k ·
k∑
j=1

Ii(fj).

When {fi} are boolean functions, it is easy to see that Ii(f) ≤
∑k

j=1 Ii(fj) by the

union bound. The next lemma implies that if a function has positive Ud norm for

some d, then it has some variable with positive influence.

Furthermore it is shown in [39] that if a collection of functions has large (linear)

Gowers inner product, then two functions must share an influential variable.
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Lemma 3.1.3 ([39]). Let {fS}S⊆[d] be a collection of bounded functions of the form

fS : {0, 1}n → [−1, 1]. Suppose
〈
{fS}S⊆[d]

〉
LUd
≥ ε and E f[d] = 0. Then there exists

some variable i ∈ [n], some subsets S 6= T ⊆ [d] such that the influences of the i-th

variable in both fS and fT are at least ε4

2O(d) .

3.1.2 Problem statement

Now we can define a t-function dictatorship test formally.

Definition 3.1.4. We say that a test T = T f1,...,ft is a t-function dictatorship test

with completeness c and soundness s if T is given oracle access to a family of t

functions f1, . . . , ft : {0, 1}n → {-1, 1}, such that

• if there exists some variable i ∈ [n] such that for all a ∈ [t], fa(x) = (−1)xi ,

then T accepts with probability at least c, and

• for every ε > 0, there exist a positive constant τ > 0 and a fixed positive

integer w such that if T accepts with probability at least s+ ε, then there exist

two functions fa, fb where a, b ∈ [t], a 6= b and some variable i ∈ [n] such that

I≤wi (fa), I
≤w
i (fb) ≥ τ .

Remark. Following our previous terminology, (f1, . . . , ft) ∈ YES if all functions are

the same dictator function, and (f1, . . . , ft) ∈ NO if for every a 6= b ∈ [t], i ∈ [n],

w ∈ Z+, at least one of I≤wi (fa) and I≤wi (fb) is o(1).

A q-function dictatorship test making q queries, with soundness q+1
2q

was proved

in [39], but the test suffers from imperfect completeness. We obtain a (q −O(log q))-

dictatorship test that makes q queries, has completeness 1, soundness O(q3)
2q

, and in

particular has amortized query complexity 1 +O
(

log q
q

)
, the same as the test in [39].

By a simple change of variable, we can more precisely state the following:

Theorem 3.1.4 (Theorem 1.1.1 restated). For infinitely many t, there exists an

adaptive t-function dictatorship test that makes t+log(t+1) queries, has completeness

1, and soundness (t+1)2

2t
.
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Our test is adaptive and selects queries in two passes. During the first pass, it

picks an arbitrary subset of log(t + 1) functions out of the t functions. For each

function selected, our test picks a random entry y and queries the function at entry y.

Then based on the values of these log(t+ 1) queries, during the second pass, the test

selects t positions nonadaptively, one from each function, then queries all t positions

at once. The adaptivity is necessary in our analysis, and it is unclear if one can prove

an analogous result with only one pass.

3.1.3 Folding

As introduced by Bellare, Goldreich, and Sudan [7], we shall assume that the functions

are “folded” as we only access half of the entries of a function. We require our

dictatorship test to make queries in a special manner. Suppose the test wants to

query f at the point x ∈ {0, 1}n. If x1 = 1, then the test queries f(x) as usual. If

x1 = 0, then the test queries f at the point ~1 +x = (1, 1 +x2, . . . , 1 +xn) and negates

the value it receives. It is instructive to note that folding ensures f(~1 + x) = −f(x)

and E f = 0.

3.2 Basic Test

For ease of exposition, we first consider the following simplistic scenario. Suppose we

have oracle access to just one boolean function. Furthermore we ignore the tradeoff

between soundness and query complexity. We simply want a dictatorship test that

has completeness 1 and soundness 1
2
. There are many such tests in the literature;

however, we need a suitable one to build a query efficient one later on. Our basic

test below is a close variant of the one proposed by Guruswami, Lewin, Sudan, and

Trevisan [21].

Basic Test T : with oracle access to f ,

1. Pick xi, xj, y, z uniformly at random from {0, 1}n.
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2. Query f(y).

3. Let v = 1−f(y)
2

. Accept iff

f(xi)f(xj) = f(xi + xj + (v~1 + y) ∧ z).

Proof heuristic: We now specify the distribution D, predicate ψ, extension Φ, and

the notion of pseudorandomness (from our discussion in Section 2.3) that we use to

analyze T . The distribution D and the predicate ψ should be clear from the test

T itself. D is a distribution on 3-tuples of the form (xi, xj, xi + xj + (v~1 + y) ∧ z),

where the four vectors xi, xj, y, z are generated uniformly at random from {0, 1}n.

ψ : {-1, 1}3 → {Accept, Reject} accepts iff the number of −1 in its input is even.

A function f is considered pseudorandom if its U2 norm is o(1). The extension Φ is

the noise operator Tδ with noise parameter δ set to 1
4
. In other words, Φ(f)(x) =

Ey f(x + y), where each bit of y is independently chosen to be 1 with probability 1
4

and 0 with probability 3
4
.

Our proof can be summarized as follows. We want to estimate p, the acceptance

probability of T . Note that when f is a random function (for each x, f(x) is a

uniformly random ±1 bit), then p is 1
2
± o(1). Proposition 3.2.2 essentially implies

that p can be bounded above by 1
2

+ ‖Φ(f)‖4
U2

. If p ≥ 1
2

+ ε, then ‖Φ(f)‖U2
must be

positive. By Fact 2.2.1, Φ(f) correlates with a linear phase function χα. Since Φ(f)

is balanced, α must be nonempty and contain some coordinate i. Thus Ii(Φ(f)) > 0.

By examining the Fourier transform of Φ(f), it follows that I≤wi (f) > 0 as well. We

now proceed with a formal proof.

Lemma 3.2.1. The test T is a dictatorship test with completeness 1.

Proof. Suppose f is the `-th dictator, i.e., f(x) = (−1)x` . First note that

v + y` =
1− (−1)y`

2
+ y`,
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which evaluates to 0. Thus by linearity of f

f(xi + xj + (v~1 + y) ∧ z) = f(xi)f(xj)f((v~1 + y) ∧ z)

= f(xi)f(xj)(−1)(v+y`)∧z`

= f(xi)f(xj)

and the test always accepts.

To analyze the soundness of the test T , we need to derive a Fourier analytic

expression for the acceptance probability of T .

Proposition 3.2.2. Let p be the acceptance probability of T . Then

p =
1

2
+

1

2

∑
α∈{0,1}n

f̂(α)3 2−|α|

(
1 +

∑
β⊆α

f̂(β)

)
.

For sanity check, let us interpret the expression for p. Suppose f = χα for some

α 6= ~0 ∈ {0, 1}n, i.e., f̂(α) = 1 and all other Fourier coefficients of f are 0. Then

clearly p = 1
2

+ 2−|α|, which equals 1 whenever f is a dictator function as we have

just shown. If |α| is large, then T accepts with probability close to 1
2
. We shall first

analyze the soundness and then derive this analytic expression for p.

Lemma 3.2.3. The test T is a dictatorship test with soundness 1
2
.

Proof. Suppose the test T passes with probability at least 1
2

+ ε, for some ε > 0. By

applying Proposition 3.2.2, Cauchy-Schwarz, and Parseval’s Identity, respectively, we

obtain

ε ≤ 1

2

∑
α∈{0,1}n

f̂(α)3 2−|α|

(
1 +

∑
β⊆α

f̂(β)

)

≤ 1

2

∑
α∈{0,1}n

f̂(α)3 2−|α|

1 +

(∑
β⊆α

f̂(β)2

) 1
2

· 2
|α|
2


≤

∑
α∈{0,1}n

f̂(α)3 2−
|α|
2 .
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Pick the least positive integer w such that 2−
w
2 ≤ ε

2
. Then by Parseval’s again,

ε

2
≤

∑
α∈{0,1}n:|α|≤w

f̂(α)3

≤ max
α∈{0,1}n:|α|≤w

∣∣∣f̂(α)
∣∣∣ .

So there exists some β ∈ {0, 1}n, |β| ≤ w such that ε
2
≤
∣∣∣f̂(β)

∣∣∣ . With f being folded,

β 6= ~0. Thus, there exists an i ∈ [n] such that βi = 1 and

ε2

4
≤ f̂(β)2 ≤

∑
α∈{0,1}n:αi=1,|α|≤w

f̂(α)2.

Now we give the straightforward Fourier analytic calculation for p.

Proof of Proposition 3.2.2. As usual, we first arithmetize p. We write

p = E
xi,xj ,y,z

(
1 + f(y)

2

)(
1 + Acc(xi, xj, y, z)

2

)
+

E
xi,xj ,y,z

(
1− f(y)

2

)(
1 + Acc(xi, xj,~1 + y, z)

2

)
,

where

Acc(xi, xj, y, z) = f(xi)f(xj)f(xi + xj + (y ∧ z)).

Since f is folded, f(~1+y) = −f(y). As y and ~1+y are both identically distributed

in {0, 1}n, we have

p = 2 E
xi,xj ,y,z

(
1 + f(y)

2

)(
1 + Acc(xi, xj, y, z)

2

)
.

Since E f = 0, we can further simplify the above expression to be

p =
1

2
+

1

2
E

xi,xj ,y,z
[(1 + f(y)) Acc(xi, xj, y, z)] .
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It suffices to expand out the terms

E
xi,xj ,y,z

[Acc(xi, xj, y, z)]

and

E
xi,xj ,y,z

[f(y) Acc(xi, xj, y, z)].

For the first term, it is not hard to show that

E
xi,xj ,y,z

[Acc(xi, xj, y, z)] =
∑

α∈{0,1}n
f̂(α)3 2−|α|,

by applying the Fourier inversion formula on f and averaging over xi and xj and then

averaging over y and z over the AND operator.

Now we compute the second term. Applying the Fourier inversion formula to the

last three occurrences of f and averaging over xi and xj, we obtain

E
xi,xj ,y,z

[f(y) Acc(xi, xj, y, z)] =
∑

α∈{0,1}n
f̂(α)3 E

y,z
[f(y)χα(y ∧ z)] .

It suffices to expand out Ey,z [f(y)χα(y ∧ z)]. By grouping the z’s according to

their intersection with different possible subsets β of α, we have

E
y,z

[f(y)χα(y ∧ z)]

=
∑
β⊆α

Pr
z∈{0,1}n

[z ∩ α = β] E
y

[
f(y)

∏
i:αi=1

(−1)yi∧zi

]

=
∑
β⊆α

2−|α| E
y

[
f(y)

∏
i:βi=1

(−1)yi

]
= 2−|α|

∑
β⊆α

f̂(β).

Putting everything together, it is easy to see that we have the Fourier analytic ex-

pression for p as stated in the lemma.
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3.3 Hypergraph Dictatorship Test

We prove Theorem 1.1.1 in this section. The basis of our hypergraph dictatorship

test will be very similar to the test in the previous section. We remark that we did

not choose to present the exact same basic test for hopefully a clearer exposition.

We now address the tradeoff between query complexity and soundness. If we

simply repeat the basic test a number of iterations independently, the error is reduced,

but the query complexity increases. In other words, the amortized query complexity

does not change if we simply run the basic test for many independent iterations.

Following Trevisan [44], all the dictatorship tests that save query complexity do so

by reusing queries made in previous iterations of the basic test. To illustrate this

idea, suppose test T queries f at the points x1 + h1, x2 + h2, x1 + x2 + h1,2 to make

a decision. For the second iteration, we let T query f at the points x3 + h3 and

x1 +x3 +h1,3 and reuse the value f(x1 +h1) queried during the first run of T . T then

uses the three values to make a second decision. In total T makes five queries to run

two iterations.

We may think of the first run of T as parametrized by the points x1 and x2 and

the second run of T by x1 and x3. In general, we may have k points x1, . . . , xk and a

graph on [k] vertices, such that each edge e of the graph corresponds to an iteration

of T parametrized by the points {xi}i∈e. We shall use a complete hypergraph on k

vertices to save on query complexity, and we will argue that the soundness of the

algorithm decreases exponentially with respect to the number of iterations.

Formally, consider a hypergraph H = ([k], E). Let {fa}a∈[k]∪E be a collection of

boolean functions of the form fa : {0, 1}n → {-1, 1}. We assume all the functions are

folded, and so in particular, E fa = 0. Consider the following test:

Hypergraph H-Test: with oracle access to {fa}a∈[k]∪E,

1. Pick x1, . . . , xk, y1, . . . , yk, and {za}a∈[k]∪E independently and uniformly at ran-

dom from {0, 1}n.
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2. For each i ∈ [k], query fi(yi).

3. Let vi = 1−fi(yi)
2

.

Accept iff for every e ∈ E,

∏
i∈e

[
fi(xi + (vi~1 + yi) ∧ zi)

]
= fe

(∑
i∈e

xi +
(

Σi∈e(vi~1 + yi)
)
∧ ze

)
.

Design heuristic: We make a few remarks regarding the design of H-Test. The

hypergraph test in [39] accepts iff for every e ∈ E,
∏

i∈e fi(xi+ηi) equals fe(
∑

i∈e xi+

ηe), where the bits in each vector ηa are chosen independently to be 1 with some small

constant, say 0.01. The noise vectors ηa rule out the possibility that linear functions

with large support can be accepted. To obtain a test with perfect completeness, we

use ideas from [21, 33, 23] to simulate the effect of the noise perturbation.

Note that for y, z chosen uniformly at random from {0, 1}n, the vector y ∧ z is

a 1
4
-noisy vector. As observed by Parnas, Ron, and Samorodnitsky [33], the test

f(y ∧ z) = f(y) ∧ f(z) distinguishes between dictators and linear functions with

large support. One can also combine linearity and dictatorship testing into a single

test of the form f(x1 + x2 + y ∧ z)(f(y) ∧ f(z)) = f(x1)f(x2) as Hstad and Khot

demonstrated [23]. However, iterating this test is too costly for us. In fact, Hstad and

Khot also consider an adaptive variant that reads k2 + 2k bits to obtain a soundness

of 2−k
2
, the same parameters as in [38], while achieving perfect completeness as well.

Without adaptivity, the test in [23] reads k2 + 4k bits. While both the nonadaptive

and adaptive tests in [23] have the same amortized query complexity, extending the

nonadaptive test by Hstad and Khot to the hypergraph setting does not work for us.

So to achieve the same amortized query complexity as the hypergraph test in [39], we

also exploit adaptivity in our test.

Proof heuristic: We now specify the distribution D, predicate ψ, the extension

Φ, and the notion of pseudorandomness that we use to analyze H. The distribution

D and the predicate ψ should be clear from the test H itself. D is a distribution
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on |E| + k points, generated from the uniformly random vectors {xi, yi}i∈[k] and

{za}z∈[k]∪E. The predicate ψ is the acceptance predicate of the test. A function f is

considered pseudorandom if its Uk norm is o(1). For a function f : {0, 1}n → {-1, 1},

define the function Φ(f) : {0, 1}2n → [−1, 1] on 2n variables to be Φ(f)(x; y) =

Ez∈{0,1}n f(x+ y ∧ z). The function Φ(f) can be thought of as the “extension” of f .

For simplicity, suppose all the functions fa are the same. Our proof can then

be summarized as follows. We want to estimate p, the acceptance probability of H-

Test. In the proof of Lemma 3.3.3, we first show that p can be bounded above by

2k−|E|+ ‖Φ(f)‖dUd , for some d ≤ k. If p ≥ 2k−|E|+ ε, then ‖Φ(f)‖Ud must be positive.

Since Φ(f) is balanced, by Lemma 3.1.3, there exists some variable i so that Ii (Φ(f))

is positive. Proposition 3.3.4 then relates the Fourier transform of Φ(f) with f ’s

Fourier transform, and it follows that I≤wi (f) > 0 for some fixed w. Taking H to be

the complete hypergraph then finishes the argument. We now proceed with a formal

proof.

Theorem 3.3.1 (Theorem 1.1.1 restated). For infinitely many t, there exists an

adaptive t-function dictatorship test with t + log(t + 1) queries, completeness 1, and

soundness (t+1)2

2t
.

Proof. Take a complete hypergraph on k vertices, where k = log(t+1). The statement

follows by applying Lemmas 3.3.2 and 3.3.3.

Lemma 3.3.2. The H-Test is a (k+|E|)-function dictatorship test that makes |E|+2k

queries and has completeness 1.

Proof. The test makes k queries fi(yi) in the first pass, and based on the answers

to these k queries, the test then makes one query into each function fa, for each

a ∈ [k] ∪ E. So the total number of queries is |E|+ 2k.

Now suppose all the functions are the `-th dictator for some ` ∈ [n], i.e., for all

a ∈ [k] ∪ E, fa = f, where f(x) = (−1)x` . Note that for each i ∈ [k],

vi + yi(`) =
1− (−1)yi(`)

2
+ yi(`),
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which evaluates to 0. Thus for each e ∈ E,

∏
i∈e

fi(xi + (vi~1 + yi) ∧ zi) = f

(∑
i∈e

xi

)
·
∏
i∈e

f((vi~1 + yi) ∧ zi)

= f

(∑
i∈e

xi

)
·
∏
i∈e

(−1)(vi+yi(`))∧zi(`)

= f

(∑
i∈e

xi

)
,

and similarly,

fe

(∑
i∈e

xi +
(

Σi∈e(vi~1 + yi)
)
∧ ze

)
= f

(∑
i∈e

xi

)
.

Hence the test always accepts.

Lemma 3.3.3. The H-Test has soundness 2k−|E|.

Before proving Lemma 3.3.3 we first prove a proposition relating the Fourier trans-

form of a function perturbed by noise to the function’s Fourier transform itself.

Proposition 3.3.4. Let f : {0, 1}n → {-1, 1} . Define g : {0, 1}2n → [−1, 1] such that

g(x; y) = E
z∈{0,1}n

f(c′ + x+ (c+ y) ∧ z),

where c, c′ are some fixed vectors in {0, 1}n . Then

ĝ(α; β)2 = f̂(α)2 1{β⊆α}4
−|α|.

Proof. This is a straightforward Fourier analytic calculation. By definition,

ĝ(α; β)2 =

(
E

x,y,z∈{0,1}n
f(c′ + x+ (c+ y) ∧ z)χα(x)χβ(y)

)2

.

By averaging over x it is easy to see that

ĝ(α; β)2 = f̂(α)2

(
E

y,z∈{0,1}n
χα((c+ y) ∧ z)χβ(y)

)2

.
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Since the bits of y are chosen independently and uniformly at random, if β\α is

nonempty, the above expression is zero. So we can write

ĝ(α; β)2 = f̂(α)2 1{β⊆α}

 ∏
i∈α\β

E
yi,zi

(−1)(ci+yi)∧zi ·
∏
i∈β

E
yi,zi

(−1)(ci+yi)∧zi+yi

2

.

It is easy to see that the term Eyi,zi(−1)(ci+yi)∧zi evaluates to 1
2

and the term

Eyi,zi(−1)(ci+yi)∧zi+yi evaluates to (−1)ci 1
2
. Thus

ĝ(α; β)2 = f̂(α)2 1{β⊆α} 4−|α|

as claimed.

Now we prove Lemma 3.3.3.

Proof of Lemma 3.3.3. Let p be the acceptance probability of H-test. Suppose that

2k−|E| + ε ≤ p. We want to show that there are two functions fa and fb such that for

some i ∈ [n], some fixed positive integer w, some constant ε′ > 0, it is the case that

I≤wi (fa), I
≤w
i (fb) ≥ ε′. As usual we first arithmetize p. We write

p =
∑

v∈{0,1}k
E

{xi},{yi},{za}

∏
i∈[k]

1 + (−1)vifi(yi)

2

∏
e∈E

1 + Acc({xi, yi, vi, zi}i∈e, ze)
2

,

where

Acc({xi, yi, vi, zi}i∈e, ze) =
∏
i∈e

[
fi(xi + (vi~1 + yi) ∧ zi)

]
· fe

(∑
i∈e

xi +
(

Σi∈e(vi~1 + yi)
)
∧ ze

)
.

For each i ∈ [k], fi is folded, so (−1)vifi(yi) = fi(vi~1 + yi). Since the vectors

{yi}i∈[k] are uniformly and independently chosen from {0, 1}n, for a fixed v ∈ {0, 1}k,

the vectors {vi~1 + yi}i∈[k] are also uniformly and independently chosen from {0, 1}n .
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So we can simplify the expression for p and write

p = E
{xi},{yi},{za}

∏
i∈[k]

(1 + fi(yi))
∏
e∈E

1 + (Acc{xi, yi,~0, zi}i∈e, ze)
2

 .
Instead of writing Acc({xi, yi,~0, zi}i∈e, ze), for convenience we shall write Acc(e) to

be a notational shorthand. Observe that since 1+fi(yi) is either 0 or 2, we may write

p ≤ 2k E
{xi},{yi},{za}

[∏
e∈E

1 + Acc(e)

2

]
.

Note that the product of sums
∏

e∈E
1+Acc(e)

2
expands into a sum of products of

the form

2−|E|

1 +
∑
∅6=E′⊆E

∏
e∈E′

Acc(e)

 ,

so we have

ε

2k
≤ E
{xi},{yi},{za}

 2−|E|
∑
∅6=E′⊆E

∏
e∈E′

Acc(e)

 .
By averaging, there must exist some nonempty subset E ′ ⊆ E such that

ε

2k
≤ E
{xi},{yi},{za}

[ ∏
e∈E′

Acc(e)

]
.

Let Odd consists of the vertices in [k] with odd degree in E ′. Expanding out the

definition of Acc(e), we can conclude

ε

2k
≤ E
{xi},{yi},{za}

[ ∏
i∈Odd

fi(xi + yi ∧ zi) ·
∏
e∈E′

fe

(∑
i∈e

xi +

(∑
i∈e

yi

)
∧ ze

)]
.

We now define a family of functions that represent the “noisy versions” of fa. For

a ∈ [k] ∪ E, define g′a : {0, 1}2n → [−1, 1] to be

g′a(x; y) = E
z∈{0,1}n

fa(x+ y ∧ z).
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Thus we have

ε

2k
≤ E
{xi},{yi}

[ ∏
i∈Odd

g′i(xi; yi) ·
∏
e∈E′

g′e

(∑
i∈e

xi;
∑
i∈e

yi

)]
.

Following the approach of [24, 39], we are going to reduce the analysis of the iterated

test to one hyperedge. Let d be the maximum size of an edge in E ′, and without loss

of generality, let (1, . . . , d) be a maximal edge in E ′. Now, fix the values of xd+1, . . . , xk

and yd+1, . . . , yk so that the following inequality holds:

ε

2k
≤ E

x1,y1,...,xd,yd

[ ∏
i∈Odd

g′i(xi; yi) ·
∏
e∈E′

g′e

(∑
i∈e

xi;
∑
i∈e

yi

)]
. (3.1)

We group the edges in E ′ based on their intersection with (1, . . . , d). We rewrite

Inequality 3.1 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

∏
S⊆[d]

∏
a∈Odd∪E′:a∩[d]=S

ga

(∑
i∈S

xi;
∑
i∈S

yi

) , (3.2)

where for each a ∈ [k]∪E, ga(x; y) = g′a(c
′
a + x; ca + y), with c′a =

∑
i∈a\[d] xi and

ca =
∑

i∈a\[d] yi fixed vectors in {0, 1}n .

By grouping the edges based on their intersection with [d], we can rewrite Inequal-

ity 3.2 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

∏
S⊆[d]

GS

(∑
i∈S

(xi; yi)

)
=

〈
{GS}S⊆[d]

〉
LUd

,

where GS is simply the product of all the functions ga such that a ∈ Odd∪E ′ and

a ∩ [d] = S.

Since (1, . . . , d) is maximal, all the other edges in E ′ do not contain (1, . . . , d) as

a subset. Thus G[d] = g[d] and EG[d] = 0. By Lemma 3.1.3, the linear Gowers inner

product of a family of functions {GS} being positive implies that two functions from
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the family must share a variable with positive influence. More precisely, there exist

S 6= T ⊆ [d], i ∈ [2n], τ > 0, such that Ii(GS), Ii(GT ) ≥ τ, where τ = ε4

2O(d) .

Note that G∅ is the product of all the functions g′a that are indexed by vertices

or edges outside of [d]. So G∅ is a constant function, and all of its variables clearly

have influence 0. Thus neither S nor T is empty. Since GS and GT are products of at

most 2k functions, by Lemma 3.1.2 there must exist some a 6= b ∈ [d] ∪ E ′ such that

Ii(ga), Ii(gb) ≥ τ
22k . Recall that we have defined ga(x; y) to be Ez fa(c

′
a+x+(ca+y)∧z).

Thus we can apply Proposition 3.3.4 to obtain

Ii(ga) =
∑

(α,β)∈{0,1}2n;i∈(α,β)

ĝa(α; β)2

=
∑

α∈{0,1}n;i∈α

∑
β⊆α

f̂a(α)2 4−|α|

=
∑

α∈{0,1}n;i∈α

f̂a(α)2 2−|α|.

Let w be the least positive integer such that 2−w ≤ τ
22k+1 . Then it is easy to see

that I≤wi (fa) ≥ τ
22k+1 . Similarly, I≤wi (fb) ≥ τ

22k+1 as well. Hence this completes the

proof.
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Chapter 4

Linear-invariant non-linear

properties

In this chapter, we consider boolean functions on boolean cube written in the form

f : {0, 1}n → {0, 1}, and at times, it may be helpful to view a function f as a subset

A ⊆ {0, 1}n, where A = {x : f(x) = 1}. If H is a subspace of {0, 1}n, for any

g ∈ {0, 1}n, we write fg+H : H → {0, 1} to denote fg+H(h) = f(g + h). In other

words, fg+H is the restriction of f to the affine subspace g +H.

4.1 Problem statement

We begin by giving a more general definition of freeness of a single forbidden pattern.

Definition 4.1.1. Let M be an r by k matrix over {0, 1} and σ ∈ {0, 1}k. We say

that a function f : {0, 1}n → {0, 1} is (M,σ)-free if there are no x1, . . . , xk ∈ {0, 1}n

such that 〈f(x1), . . . , f(xk)〉 = σ and M~x = ~0, where ~x = (x1, . . . , xk).

We define formally the property of freeness of a single forbidden pattern.

Definition 4.1.2. For ε > 0, we define the property of (M,σ)-free to be the pair

(YESM,σ,NOε), where YESM,σ consists of functions f : {0, 1}n → {0, 1} that are

(M,σ)-free, and NOε consists of functions that are ε-far from YESM.σ.
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To help the readers understand our exposition, we observe that the property of

freeness is linear-invariant.

Observation 4.1.1. Let M be an r by k matrix over {0, 1}, σ ∈ {0, 1}k, and L a

linear transformation on {0, 1}n. If f is (M,σ)-free, then f ◦ L is also (M,σ)-free.

Proof. Suppose not, and there exist some x1, . . . , xk ∈ {0, 1}n such that for each

i ∈ [k], f(L(xi)) = σi, and M~x = ~0, where ~x = (x1, . . . , xk). Let `1, . . . , `r be

linear functionals corresponding to the r rows of M . By definition, for each i ∈ [r],

`i(x1, . . . , xk) = 0. Since L is a linear transformation and L~0 = ~0, for each i ∈ [r], we

have ~0 = L(`i(x1, . . . , xk)) = `i(L(x1), . . . , L(xk)), thus contradicting the assumption

that f is (M,σ)-free.

We shall show that the property of being (M,~1)-free is testable when M is of a

special type of matrix as described below.

Definition 4.1.3. Let M be an r by k matrix over {0, 1}. We say that M is graphic if

there exists a graph on k edges, each edge associated with an integer from {1, . . . , k},

such that any nontrivial linear combination of the rows of M corresponds to a cycle

in the graph. More specifically, for each cycle in the graph, its indicator vector (on

the edge set) lies in the span of the rows of M .

Remark. We assume without loss of generality that the matrix M has full rank. We

can do this because if the nullspaces of M and another matrix M ′ are equal, then the

set of functions that are M -free is the same set of functions that are M ′-free. So we

can always replace a matrix M by another matrix M ′ that has the same nullspace as

of M and is full rank. This makes our definition of graphic matrix cleaner as we do

not worry about degenerate cycles.

We consider the definition of graphic matrix as a natural and simple generalization

of Green’s definition of triangle-freeness. Recall that a function f is triangle-free if f

has no x, y ∈ {0, 1}n such that f(x), f(y), and f(x+y) are all 1. Equivalently, triangle-

freeness can be re-stated as (M, 13)-freeness, where the matrix M is simply the vector
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(1, 1, 1), represented by a triangle (or a cycle of length 3). In our exposition, when

M is graphic, we may sometimes use the phrases M -free and G-free interchangeably

where G is the underlying graph representing M .

Example 4.1.1. k–cycle freeness: The matrix M is the 1× k vector (1, . . . , 1), and

the graph is a cycle on k edges, where each edge is labeled from 1 through k.

Example 4.1.2. K4 freeness: The matrix

M =


1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1


can be represented by K4, the complete graph on 4 vertices. Consider a spanning

tree of K4 and label its edges as {1, 2, 3}. Label the edge that completes a cycle with

edges 1 and 2 as edge 4, label the edge that completes a cycle with edges 1 and 3 as

edge 5, and label the edge that completes a cycle with edges 2 and 3 as edge 6. It

can be checked that every nontrivial linear combination of M corresponds to a cycle

in K4.

4.2 Green’s regularity lemma

Now we describe Green’s arithmetic regularity lemma, the crux of the analysis of our

testing algorithm. Green’s regularity lemma over {0, 1}n is a structural theorem for

boolean functions. It asserts that for every boolean function, there is some decom-

position of the boolean cube into cosets, such that the function restricted to most of

these cosets has small Fourier transform. An alternate and equivalent way is that no

matter where we cut the boolean cube by a hyperplane, the densities of f on the two

halves of the cube separated by the hyperplane does not differ greatly. Formally, we

say that a function is regular if all of its nonzero Fourier coefficients are small.

Definition 4.2.1 (regularity). For every 0 < ε < 1, we say that a function f :

{0, 1}n → {0, 1} is ε-regular if for every α 6= 0 ∈ {0, 1}n,
∣∣∣f̂(α)

∣∣∣ ≤ ε.
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Remark. Recall that by Proposition 2.2.3, if f is ε-regular, then ‖f − E f‖U2
≤
√
ε.

We note that W (t) indicates a tower of twos with height dte. To obtain a partition

of the boolean cube that satisfies the required regularity requirement, the number of

cosets in the partition may be rather large. More precisely,

Lemma 4.2.1 (Green’s regularity lemma). Let f : {0, 1}n → {0, 1}. For every

0 < ε < 1, there exists a subspace H of G = {0, 1}n of co-dimension at most W (ε−3),

such that Prg∈G [fg+H is ε-regular] ≥ 1− ε.

The proof of Green’s regularity lemma is not difficult, and we say a few words

about how the lemma is proved. Suppose a boolean function f is not ε-regular. Then

f must have an nonzero Fourier coefficient with magnitude at least ε, say
∣∣∣f̂(α)

∣∣∣ ≥ ε

for some α 6= 0. Consider the subspace H = {x : 〈x, α〉 = 0}. Then the difference

between the density of f on the subspace H and the density of f on {0, 1}n \H must

be at least 2ε. In other words, one can verify that the average of the densities of f

restricted to the two (affine) subspaces must be more than the density of f on {0, 1}n

by some constant depending on ε. Now repeat this argument on the two functions (f

restricted to the two subspaces) and see if they are ε-regular. The number of iteration

must be finite, since the average densities of a set of functions cannot be more than

1.

Example 4.2.1. By definition, the constant functions f = 0 and f = 1 are 0-regular.

Example 4.2.2. Consider f(x) =
∑

i∈S xi for some S ⊆ [n]. The function f is not

ε–regular for ε < 1
2
. Now take the subspace H = {x :

∑
i∈S xi = 0}. fH = 0 and

fH̄ = 1 are constant functions, and these two functions are 0-regular.

4.3 Our result

Our discussion of freeness of patterns suggests the following simple and natural test.

Test T : On inputs M , an r by k binary matrix, and a vector σ ∈ {0, 1}k, with

oracle access to f ,
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1. Pick ~x = (x1, . . . , xk) uniformly at random among all vectors such that M~x =

~0.

2. Reject iff 〈f(x1), . . . , f(xk)〉 = σ.

4.3.1 Non-linear properties

Consider the case when σ = 1k. The property YESM,1k is easily seen to be non-linear.

We show that when M is graphic, the property YESM,1k is testable.

Theorem 4.3.1 (Theorem 1.1.3 restated). Let r ≥ 1, k ≥ 3 be integers. Let M

be an r by k graphic matrix over {0, 1} and ε > 0. Then there exists a function

τ : R+ → R+ such that
(
YESM,1k ,NOε

)
is testable with k queries, completeness 1,

and soundness 1− τ(ε).

Proof Heuristic: We now specify the distribution D, predicate φ, extension Φ, and

the notion of pseudorandomness that we use to analyze T . The distribution D and

the predicate φ should be clear from the test T itself. D is the uniform distribution

on k-tuples ~x = (x1, . . . , xk) such that M~x = ~0. ψ : {0, 1}k → {0, 1} is simply

ψ(x) = 1 if x 6= 1k and 0 otherwise. A function f is considered pseudorandom

if ‖f − E f‖U2
= o(1), and a collection of functions is pseudorandom if most of the

functions in the collection are pseudorandom. The “extension” Φ is the decomposition

guaranteed by Green’s regularity lemma. In other words, Φ(f) sends f to a collection

of functions {fg+H}g∈{0,1}n .

If f is a random function with density δ, the test rejects with probability close

to δk. As shown in Lemma 4.3.2, a graphic matrix gives rise to a system of linear

equations of complexity 1. Thus if f is a pseudorandom function with density δ,

then the test also rejects with probability close to δk. The hard part is to analyze

the soundness of the test when f ∈ NOε. To this end, we apply Φ to f to obtain

a collection of functions, and by Green’s regularity lemma, Φ(f) is pseudorandom.

Since f ∈ NOε, we show that 1) k of the functions in Φ(f) are pseudorandom and

dense, and 2) the rejection probability of T on f can be bounded below (by a scaling
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factor) by the rejection probability of T on these k functions. Condition 1 and 2

together imply that the test T rejects with positive probability when f ∈ NOε. We

now begin with the formal proof.

Lemma 4.3.2. Let M be an r by k graphic matrix over {0, 1}. Let f1, . . . , fk :

{0, 1}n → [−1, 1]. Then

E
~x:M~x=~0

∏
i∈[k]

fi(xi)

 ≤ min
i∈[k]
‖fi‖U2

.

Proof. Since the set of vectors ~x = (x1, . . . , xk) such that M~x = ~0 forms a subspace

of Fk2n , for each i ∈ [k], we can view xi as a linear combination of xj, where j ∈ [k].

In other words, there exists some underlying set of variables, and each xi is a linear

combination of these variables. We argue that the system of linear forms (x1, . . . , xk)

has complexity at most 1. With M being graphic, consider its associated graph G

on k edges, each labeled with an integer from [k]. Fix i ∈ [k], and let (u, v) ∈ E(G)

be the edge labeled i. We partition the set of linear forms {xj}j 6=i into two disjoint

classes (C, C̄) as follows. We let xj ∈ C if the edge in G labeled j contains the vertex

u, and C̄ is simply the complement of C. The linear form xi does not lie in the span

of C since the set of edges incident to u cannot form a cycle with the edge (u, v).

Similarly, xi cannot lie in the span of C̄ as well. The lemma follows now by applying

Proposition 2.2.4.

We can now finish the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. Clearly the test T makes k queries and always accepts when-

ever f is (M, 1k)-free. Suppose f is ε-far from being (M, 1k)-free, and we want to show

that the test rejects with probability at least τ(ε) for some function τ . Let a(ε) and

b(ε) be two functions of ε that satisfy the constraint a(ε) + b(ε) < ε, and along with

τ , we shall specify these two functions at the end of the proof. Let G denote {0, 1}n.

We now apply Lemma 4.2.1 to f to obtain a subspace H of G of co-dimension at
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most W (a(ε)−3). Consequently, f restricted to all but at most a(ε) fraction of the

cosets of H are a(ε)-regular. We define a reduced function fR : {0, 1}n → {0, 1} as

follows.

For each g ∈ G, if f restricted to the coset g +H is a(ε)-regular, then define

fRg+H(x) =

0 if E fg+H ≤ b(ε)

fg+H otherwise.

Else, define fRg+H = 0.

Note that at most a(ε)+b(ε) fraction of modification has been made to f to obtain

fR. Since f is ε-far from being (M, 1k)-free, there exists ~x = (x1, . . . , xk) such that

M~x = 0 and fR(xi) = 1 for every i ∈ [k]. Now consider the k cosets xi +H. By our

construction of fR, we know that f restricted to each coset xi+H is a(ε)-regular and

at least b(ε)-dense. We will count the number of “M -patterns” across these k cosets.

Notice that the probability the test rejects is at least

2−k·W (a(ε)−3) · Pr
~z:M~z=~0,~z∈Hk

[∀i, fxi+H(zi) = 1] ,

where ~z ∈ Hk indicates that ~z = (z1, . . . , zk) and zi ∈ H for each i ∈ [k]. To

bound this rejection probability from below, it suffices to show that the probability

Pr
~z:M~z=~0,~z∈Hk

[∀i, fxi+H(zi) = 1] (4.1)

is bounded below by some constant depending only on ε. To this end, write fi = fxi+H .

We rewrite Equation 4.1 as

E
~z:M~z=~0,~z∈Hk

∏
i∈[k]

fi(zi)

 . (4.2)

By replacing each function fi by E fi+(fi−E fi), it is easy to see that Equation 4.2

can be expanded into a sum of 2k terms, one of which is
∏

i∈[k] E fi, which is at least
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b(ε)k. For the other 2k − 1 terms, since H is isomorphic to a boolean cube, we can

applying Proposition 2.2.4 and Proposition 2.2.3 to show that each of these terms can

be bounded above by a(ε)1/2. So Equation 4.2 is at least b(ε)k − (2k − 1)a(ε)1/2. To

finish the analysis, we need to specify a(ε), b(ε) such that b(ε)k − (2k − 1)a(ε)1/2 > 0

and a(ε) + b(ε) < ε. Both are satisfied by setting a(ε) = ( ε
4
)2k, b(ε) = ε

2
. Thus, the

rejection probability is at least τ(ε) ≥ 2−k(W ((4/ε)6k)+2) · εk, completing the proof.

4.3.2 Linear properties

In this section, we show that the analysis of forbidden patterns can be used to derive

alternate proofs for linearity testing [8, 6] and affinity testing [33]. To do so, we

consider “non-monotone” properties, the case when the pattern vector σ is not 1k

or 0k. The analysis is more difficult, and we employ a different “rounding” scheme

inspired by the testability of non-monotone graph properties in [2]. Unlike Szemerédi’s

regularity lemma, a “strong form” of Green’s regularity lemma is not known, so we

restrict our attention to the case when M is specified by a cycle and exploit the

additive structure of the pattern. Specifically, the matrix M is of the form (1, . . . , 1),

i.e., r = 1 and all entries of M are ones.

Theorem 4.3.3. Let r ≥ 1, k ≥ 3 be integers. Let M be the all ones k-dimensional

vector, and suppose σ ∈ {0, 1}k and σ 6= 1k, 0k. Then there exists some function

τ : R+ → R+ such that the property (YESM,σ,NOε) is testable with k queries,

completeness 1, and soundness 1− τ(ε).

Proof Heuristic: The notion of pseudorandomness and the extension Φ are the

same as in the discussion preceding the proof of Theorem 1.1.3. In the “rounding”

scheme to obtain fR in the proof of Theorem 1.1.3, if fg+H is not regular, fRg+H is

simply set to 0. Since fR is close to f , if f is far from being (M,~1)-free, then fR must

have a (M,~1) pattern. Thus, for some x1, . . . , xk, the k functions fxi+H are regular.

(We only need one regular function for the analysis to go through.)
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When the pattern vector σ is not all ones, we can no longer set fRg+H = 0 when

fg+H is not regular since fg+H might not be dense in the symbol 0. To remedy this,

we change the rounding scheme so that if none of the k functions fxi+H are regular,

the densities of fxi+H will ensure that the pattern vector σ appears frequently. We

now proceed with a formal proof.

Proof of Theorem 4.3.3. The test T makes k queries and is easily seen to have com-

pleteness 1. We proceed to analyze the soundness of the test. Suppose f is ε-far from

being (M,σ)-free. We need to show that the test rejects with probability at least τ(ε)

such that τ(ε) > 0 whenever ε > 0.

To this end, let 1
2
< η < 1 be any constant, and a(ε) and b(ε) be functions of

epsilons that satisfy the constraints a(ε) + b(ε) < ε and 1− η > b(ε). We shall specify

these two functions at the end of the proof.

Now let G denote {0, 1}n. We apply Lemma 4.2.1 to f to obtain a subspace H of

G of co-dimension at most W (a(ε)−3). We define a reduced function fR : {0, 1}n →

{0, 1} as follows. We assume that σ has at least two occurrences of 1. (Otherwise it

has at least two occurrences of 0, and in the construction of fR, we flip the roles of 1

and 0 when fg+H is non-regular. The rest of the proof will proceed analogously, and

we leave its verification to the readers.)

For each g ∈ G, if f restricted to the coset g +H is a(ε)-regular, then define

fRg+H =


0 if E fg+H < b(ε)

1 if E fg+H > 1− b(ε)

fg+H otherwise.

Else, define

fRg+H =

1 if E fg+H ≥ η

0 otherwise.

Note that at most a(ε) + b(ε) fraction of modification has been made to f to

obtain fR, so fR is ε-close to f . Since f is ε-far from being (M,σ)-free, there exist
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x1, . . . , xk ∈ {0, 1}n such that
∑

i∈[k] xi = ~0 and for each i ∈ [k], fR(xi) = σi. Consider

the cosets xi + H. By our choice of rounding, f restricted to each coset xi + H is

dense in the symbol σi. In other words, define µb(f) to be Prx[f(x) = b]. Then for

each i ∈ [k], µσi(fxi+H) ≥ b(ε), since 1 − η ≥ b(ε). We want to show that there are

many “cyclic” σ patterns across these k cosets. It is easy to see that the test rejects

with probability at least

2−(k−1)W (a(ε)−3) · Pr
z1,...,zk∈H;

∑
i zi=0

[∀i ∈ [k], fxi+H(zi) = σi] .

To lower bound this rejection probability, it suffices to show that the probability

Pr
z1,...,zk∈H;

∑
i zi=0

[∀i ∈ [k], fxi+H(zi) = σi] (4.3)

can be bounded below by some constant depending only on ε. To this end, we divide

our analysis into two cases, based on whether there is some j ∈ [k] such that fxj+H

is a(ε)-regular or not.

Case 1: There exists some j ∈ [k] such that fxj+H is a(ε)-regular.

For each i ∈ [k], define fi : H → {0, 1} to be fi = fxi+H + σi + 1. Note that by

definition, E fi ≥ b(ε). We begin by arithmetizing Equation 4.3 as

E
z1,...,zk∈H:

∑
i zi=0

∏
i∈[k]

fi(zi)

 .
By Fourier expansion, it is not hard to see that

E
z1,...,zk∈H:

∑
i zi=0

∏
i∈[k]

fi(zi)

 =
∑
α∈H

∏
i∈[k]

f̂i(α).

Using the facts that E fi ≥ b(ε), fj is a(ε)-regular, there exist two distinct indices

i1, i2 6= j ∈ [k] (since k ≥ 3), Cauchy-Schwarz, and Parseval’s Identity, respectively,

we have
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∑
α∈H

∏
i∈[k]

f̂i(α) ≥ b(ε)k −
∑

α 6=0∈H

∏
i∈[k]

∣∣∣f̂i(α)
∣∣∣

≥ b(ε)k − a(ε)
∑

α 6=0∈H

∏
i∈[k]\{j}

∣∣∣f̂i(α)
∣∣∣

≥ b(ε)k − a(ε)
∑

α 6=0∈H

∣∣∣f̂i1(α)
∣∣∣ ∣∣∣f̂i2(α)

∣∣∣ ,
≥ b(ε)k − a(ε)

( ∑
α 6=0∈H

f̂i1(α)2

)1/2( ∑
α 6=0∈H

f̂i2(α)2

)1/2

≥ b(ε)k − a(ε).

To finish the analysis, we need to specify a(ε), b(ε) such that the constraints a(ε)+

b(ε) < ε and 1−η > b(ε) are satisfied. To this end, we set b(ε) = (1−η) · ε and a(ε) =

1
2
(1−η)kεk, and the rejection probability is at least τ(ε) ≥ 2−(k−1)W (a(ε)−3) ·(ε−ηε)k/2.

Case 2: No j ∈ [k] exists such that fxj+H is a(ε)-regular.

Since σ contains at least two ones, we may assume without loss of generality that

σk−1, σk = 1. For each i ∈ [k− 2], since fxi+H is dense in σi, we may fix some zi ∈ H

such that fxi+H(zi) = σi. Now set Z =
∑k−2

i=1 zi. Since η > 1
2
, by union bound we

have

Pr
z∈H

[fxk−1+H(z), fxk+H(Z + z) = 1] = 1− Pr
z∈H

[fxk−1+H(z) = 0 or fxk+H(Z + z) = 0]

≥ 1− 2(1− η)

> 0.

Since for each i ∈ [k], fxi+H is not a(ε)-regular, by our choice of rounding,

Prz∈H [fxi+H(z) = σi] is at least 1 − η. By picking z1, . . . , zk−2 uniformly at random

from H, it is not hard to see that

Pr
z1,...,zk∈H;

∑
i zi=0

[∀i ∈ [k], fxi+H(zi) = σi] ≥ (1− η)k−2(2η − 1).
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Thus the rejection probability of the test is at least

τ(ε) ≥ 2−(k−1)W (a(ε)−3) · (1− η)k−2(2η − 1),

where a(ε) = 1
2
(1− η)kεk, completing the proof.

We now use Theorem 4.3.3 to derive alternate proofs that the properties of affinity

and linearity are testable. We say that f is an affine subspace function if f−1(1) is

some affine subspace of {0, 1}n. (We assume that the zero function f = 0 is also an

affine subspace function.) We say that a boolean function f : {0, 1}n → {0, 1} is

linear if f(x) =
∑

i∈S xi for some S ⊆ [n]. (We also consider the constant functions

f = 0 and f = 1 as linear.)

Corollary 4.3.4. Let ε > 0. There exists a test that determines if a function is an

affine subspace function or ε-far from being one, and the test makes 4 queries, has

completeness 1, and soundness 1− τ(ε), for some function τ : R+ → R+.

Proof. Recall the following well-known characterization of affine subspace: A is an

affine subspace if and only if for any triple x, y, z ∈ A, x+ y+ z ∈ A. So a function f

is (M, 1110)-free if and only if f−1(1) is an affine subspace. Now apply Theorem 4.3.3

by setting M = (1, 1, 1, 1) (a cycle of length of 4) and σ = (1, 1, 1, 0), and thus, the

property of being an affine subspace function is testable.

Corollary 4.3.5. Let ε > 0. There exists a test that determines if a function is

linear or ε-far from being linear, and the test makes 5 queries, has completeness 1,

and soundness 1− τ(ε), for some function τ : R+ → R+.

Proof. It suffices to show that a function is linear if and only if it is (M, 11100)-

free, where M = (1, 1, 1, 1, 1), corresponding to the cycle of length 5. The forward

direction is trivial. Suppose a function f is linear. For any x1, . . . , x4 ∈ {0, 1}n,∑
i f(xi) = f (

∑
i xi). Thus (f(x1), . . . , f(x4), f(

∑
i xi)) cannot equal (1, 1, 1, 0, 0).
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For the other containment, suppose f is (M, 11100)-free. Let S = f−1(0). If S = ∅

or S = {0, 1}n, then f is a constant function, and the proof is finished. So suppose

there exist x, y, z ∈ {0, 1}n (x, y not necessarily distinct) such that f(x), f(y) = 0

and f(z) = 1. Then f(x+ y) = 0, otherwise (f(z), f(z), f(x+ y), f(x), f(y)) forms a

(1, 1, 1, 0, 0) pattern. Thus S is a linear subspace of {0, 1}n. Suppose the dimension of

S is k with k ≥ 1. Then there are k linearly independent vectors a1, . . . , ak ∈ {0, 1}n

such that z ∈ S iff (〈a1, z〉 = 0)
∧
· · ·
∧

(〈ak, z〉 = 0). Therefore, by De Morgan’s law,

f(z) = 1 iff z ∈ S̄ iff (〈a1, z〉 = 1)
∨
· · ·
∨

(〈ak, z〉 = 1). If k > 1, since a1 and a2 are

linearly independent, there exist x, y ∈ {0, 1}n such that 〈a1, x〉 = 〈a2, y〉 = 1 while

〈a1, y〉 = 〈a2, x〉 = 0. However, this implies that (f(x), f(y), f(x + y), f(0), f(0))

forms a (1, 1, 1, 0, 0) pattern, a contradiction. Thus, k = 1, and f(z) = 〈a1, z〉 is a

linear function.
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Chapter 5

Open problems

We list several possible directions from the work in this thesis.

5.1 Dictatorship testing

One may view Theorem 1.1.1 as a self-contained result on property testing. However,

the ultimate goal is to use Theorem 1.1.1 to construct a PCP system with perfect

completeness and amortized query complexity 1+O
(

log q
q

)
. At present, our test does

not “lift” into a new PCP construction for a number of reasons. The first of which is

that a dictatorship test without “consistency checks” is most easily composed with

Khot’s unique label cover [26] (as opposed to the standard label cover [34]) as the

outer verifier in a PCP reduction. As the conjectured NP-hardness of the unique

label cover cannot have perfect completeness, the obvious approach in combining our

test with the unique games-based outer verifier does not imply a new PCP result.

However, there are variants of the unique label cover (e.g., Khot’s d to 1 Conjecture)

[26] that do have conjectured perfect completeness, and these variants are used to

derive hardness of coloring problems in [12]. In addition, O’Donnell and Wu [31] have

recently designed an optimal three bit dictatorship test with perfect completeness,

and in a followup work, the same authors [32] have constructed a conditional PCP

system using Khot’s d to 1 Conjecture. With these recent works, we believe that

using similar ideas one may establish some conditional evidence toward the following
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as well:

Conjecture 5.1.1. For every q ≥ 3, there exists a PCP system that makes q queries,

has completeness 1, and soundness poly(q)
2q

, and in particular has amortized query

complexity 1 +O
(

log q
q

)
.

It will also be interesting to remove the adaptivity in our dictatorship test since

the well-known correspondence between PCP constructions and hardness of approx-

imation needs a fully nonadaptive test. Nevertheless, the hardness of satisfying of a

constraint satisfaction problem (CSP) may differ depending on whether the perfect

completeness condition is imposed or not. For instance, when the constraints are lin-

ear equations, one may solve the system of linear equations by Gaussian elimination if

a solution exists (see e.g. [22]). Whether or not Conjecture 5.1.1 implies a conditional

hardness result for some CSP is another possible direction to explore.

5.2 Green’s Conjecture

Theorem 1.1.3 has now been subsumed by Král’, Serra, and Vena [29] and Shapira [40]

as they have independently proved Green’s Conjecture (Conjecture 1.1.2). However,

there are still several avenues to investigate. The first of which is to understand

the behavior of the soundness parameter τ(ε) in Theorem 1.1.3. When f ∈ NOε,

we can only guarantee that the tester rejects with probability at least τ(ε), where

τ(ε) = W (poly(1/ε))−1. It is possible that the rejection probability is higher, but

our proof only says that this is bounded away from 0. In fact, in both [29] and [40]

where Green’s Conjecture is proved, the bounds also depend on towers of 1
ε
. In fact

their bounds are even worse than ours. As we mentioned, the tower dependency is

inherent in the regularity lemma of Szemerédi and Green; proving that the tower

dependency is necessary for property testing seems very difficult. Still, it is tempting

to conjecture that in Green’s triangle-free test, τ(ε) cannot be some polynomial in ε.

Conjecture 5.2.1 (Green [17]). Let ε > 0. For every n, there exists a function

f : {0, 1}n → {0, 1} such that
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• f is ε-far from being triangle-free, and

• Prx,y∈{0,1}n [f(x), f(y), f(x+ y) = 1] = o
(
εd
)

for every positive integer d.

We remark that there is some evidence toward this conjecture. Alon [1] has

constructed a graph that is ε-far from being triangle-free but has only o
(
εd
)

triangles,

for any positive integer d. Using similar ideas, Green [17] remarks that for functions

over ZN for large N , Conjecture 5.2.1 holds.

Another direction is as follows. There is a close connection between the d-th

dimension Gowers uniformity norm of a function and quasirandomness of a d-uniform

hypergraph. The fact that Theorem 1.1.3 is also proved independently by Král’, Serra,

and Vena [28] is not so surprising. For each matrix M that has complexity 1, we apply

the U2 Gowers norm to count the number of copies of M in a function. Král’, Serra,

and Vena identify a graph H with M and give a reduction from a function f to a graph

G so that the number of copies of M in f is equal (up to scaling) to the number of

copies of the induced subgraph H in G. Then they use Szmerédi’s regularity lemma to

count the number of copies of H. In [29, 40], this method is extended to hypergraph,

and higher degrees of quasirandomness are used to analyze an arbitrary matrix M .

An alternate proof of Green’s Conjecture using the Gowers norm to count the number

of M without going through a reduction to hypergraph should also be of interest.

5.3 Gowers Inverse Conjecture

The inverse Gowers conjecture states that if a bounded function has positive d-th

dimension Gowers norm, then it correlates with a degree d−1 polynomial. Over finite

fields with low characteristic, the conjecture was refuted independently by Green and

Tao [18] and Lovett, Meshulam, and Samorodnitsky [30]. Specifically, over {0, 1}n,

the function (−1)S4 (where S4 is the symmetric function of degree 4), has positive

4-th dimension Gowers norm yet does not correlate with any cubic polynomial.

Recently, Bergelson, Tao, Ziegler [9] have established a form of the inverse Gowers

conjecture over low characteristic. However, over characteristic two, their work does
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not imply the distance property in the usual sense in property testing. So some form

of inverse for the Gowers norm is still lacking.

Formulating the Gowers Inverse Conjecture in the property testing language, the

conjecture states that the property of being a degree d polynomial is testable with 2d

queries, completeness 1, and soundness 1
2
, where the set of YES instances consists of

degree d polynomials, and the set of NO instances consists of functions that are at

least
(

1
2
− o(1)

)
-far from YES instances. The counterexample (−1)S4 is

(
1
2
− o(1)

)
-

far from cubic polynomials yet passes the cubic test with high probability (the test

simply estimates the U4 norm).

To circumvent the counterexample, one may relax the property testing criterion by

showing that a restricted subset of low-degree polynomials is testable with soundness

1
2
. In particular, it seems reasonable to conjecture the following.

Conjecture 5.3.1 (Samorodnitsky [36]). Let d ∈ Z+. YESd denotes “some non-

trivial” subset of polynomials degree at most d, and NO denotes the set of boolean

functions that are at least
(

1
2
− o(1)

)
-far from any functions in YESd. There exists

a constant 0 ≤ δ < 1
2

such that the property (YESd,NO) is testable with 2d queries,

completeness 1− δ, and soundness 1
2
.
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