68,448 research outputs found

    GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care

    Full text link
    The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model

    How Do You Feel, Developer? An Explanatory Theory of the Impact of Affects on Programming Performance

    Full text link
    Affects---emotions and moods---have an impact on cognitive activities and the working performance of individuals. Development tasks are undertaken through cognitive processes, yet software engineering research lacks theory on affects and their impact on software development activities. In this paper, we report on an interpretive study aimed at broadening our understanding of the psychology of programming in terms of the experience of affects while programming, and the impact of affects on programming performance. We conducted a qualitative interpretive study based on: face-to-face open-ended interviews, in-field observations, and e-mail exchanges. This enabled us to construct a novel explanatory theory of the impact of affects on development performance. The theory is explicated using an established taxonomy framework. The proposed theory builds upon the concepts of events, affects, attractors, focus, goals, and performance. Theoretical and practical implications are given.Comment: 24 pages, 2 figures. Postprin

    How long, O Bayesian network, will I sample thee? A program analysis perspective on expected sampling times

    Get PDF
    Bayesian networks (BNs) are probabilistic graphical models for describing complex joint probability distributions. The main problem for BNs is inference: Determine the probability of an event given observed evidence. Since exact inference is often infeasible for large BNs, popular approximate inference methods rely on sampling. We study the problem of determining the expected time to obtain a single valid sample from a BN. To this end, we translate the BN together with observations into a probabilistic program. We provide proof rules that yield the exact expected runtime of this program in a fully automated fashion. We implemented our approach and successfully analyzed various real-world BNs taken from the Bayesian network repository

    Happy software developers solve problems better: psychological measurements in empirical software engineering

    Full text link
    For more than 30 years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human aspects. Among the skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affects-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.Comment: 33 pages, 11 figures, published at Peer

    Happiness and the productivity of software engineers

    Full text link
    Software companies and startups often follow the idea of flourishing happiness among developers. Perks, playground rooms, free breakfast, remote office options, sports facilities near the companies, company retreats, you name it. The rationale is that happy developers should be more productive and also retained. But is it the case that happy software engineers are more productive? Moreover, are perks the way to go to make developers happy? Are developers happy at all? What are the consequences of unhappiness among software engineers? These questions are important to ask both from the perspective of productivity and from the perspective of sustainable software development and well-being in the workplace. Managers, team leaders, as well as team members should be interested in these concerns. This chapter provides an overview of our studies on the happiness of software developers. You will learn why it is important to make software developers happy, how happy they really are, what makes them unhappy, and what is expected regarding happiness and productivity while developing software.Comment: 12 pages, 2 figures. To appear in Rethinking Productivity in Software Engineering, edited by Caitlin Sadowski and Thomas Zimmermann. arXiv admin note: text overlap with arXiv:1707.0043
    • …
    corecore