862 research outputs found

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201

    Computing the Boolean product of two n\times n Boolean matrices using O(n^2) mechanical operation

    Full text link
    We study the problem of determining the Boolean product of two n\times n Boolean matrices in an unconventional computational model allowing for mechanical operations. We show that O(n^2) operations are sufficient to compute the product in this model.Comment: 11 pages, 7 figure

    Switching functions whose monotone complexity is nearly quadratic

    Get PDF
    AbstractA sequence of monotone switching functions hn:{0,1}n→ {0,1}n is constructed, such that the monotone complexity of hn grows faster than Ω(n2 log−2n). Previously the best lower bounds of this nature were several Ω(n32 bounds due to Pratt, Paterson, Mehlhorn and Galil and Savage

    Lower Bounds for DeMorgan Circuits of Bounded Negation Width

    Get PDF
    We consider Boolean circuits over {or, and, neg} with negations applied only to input variables. To measure the "amount of negation" in such circuits, we introduce the concept of their "negation width". In particular, a circuit computing a monotone Boolean function f(x_1,...,x_n) has negation width w if no nonzero term produced (purely syntactically) by the circuit contains more than w distinct negated variables. Circuits of negation width w=0 are equivalent to monotone Boolean circuits, while those of negation width w=n have no restrictions. Our motivation is that already circuits of moderate negation width w=n^{epsilon} for an arbitrarily small constant epsilon>0 can be even exponentially stronger than monotone circuits. We show that the size of any circuit of negation width w computing f is roughly at least the minimum size of a monotone circuit computing f divided by K=min{w^m,m^w}, where m is the maximum length of a prime implicant of f. We also show that the depth of any circuit of negation width w computing f is roughly at least the minimum depth of a monotone circuit computing f minus log K. Finally, we show that formulas of bounded negation width can be balanced to achieve a logarithmic (in their size) depth without increasing their negation width

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Karchmer-Wigderson Games for Hazard-Free Computation

    Get PDF
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 2 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity

    Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth

    Get PDF
    We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of and-gates on a directed path to an output gate). In particular, we show that any normalized Boolean circuit of at most epsilon log n conjunction-depth computing the n-dimensional Boolean vector convolution has Omega(n^{2-4 epsilon}) and-gates. Analogously, any normalized Boolean circuit of at most epsilon log n conjunction-depth computing the n x n Boolean matrix product has Omega(n^{3-4 epsilon}) and-gates. We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by the known fast algebraic algorithms

    Karchmer-Wigderson Games for Hazard-free Computation

    Full text link
    We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth 22 that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a significant step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity.Comment: 34 pages, To appear in ITCS 202

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    corecore