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Abstract. A sequence of monotone switching functions h, : (0, 1)” + (0, 1)” is constructed, such that 
the monotone complexity of h, grows faster than R(n” log-* n). Previously the best lower bounds 
of this nature were several 0(n3’*) bounds due to Pratt, Paterson, Mehlhorn and Galil and Savage. 

1. Introduction and summary 

It iswell-known (Paterson [3], Mehlhorn and Galil[2]), that rr3 A-gates and n3 - n* 
v-gates are necessary and sufficient to compute the Boolean matrix product of two 
n x n matrices in monotone circuits, i.e. if only A- and v-gates are available. (For 
1 S i, j S n let Cij := Vlsl<nail A bti, then 

C = (Cij)lSiSn 
l=SjSn 

is the Boolean matrix product of the matrices 

A = (aij)l=i<n and B = (bij)lsi<n.) 
lSj<n 1SjSn 

In computing cij one looks at the ith row of A and at the jth column of B and 
examines, if these two vectors have a common 1. In order to define more complex 
monotone functions we generalize the Boolean matrix product of two matrices to a 
“direct product” of m matrices (m E N, m 2 2). 

Let m M x N matrices be given: 

We want to compute an output function for each choice of one row per matrix. If we 
have chosen the hlth row of the first matrix, the hzth row of the second matrix,. . . 

and the h&h row of the last matrix, we examine, if these rows all together have a 
common 1. 

Now we formalize these considerations: 
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I. Wegener 

Definition 1.1. Let m, Ad, IV E N and m 2 2. We want to define monotone functions 

fk:Wr 11 mMN *{O, l}Mm. Therefore we group the mMV variables to m M xN 

mat rices 

and we denote the Mm output functions by yhI.. . h, (1 s hl, . . . , h, s AJ). Finally 
we define 

By investigating these functions it is natural to make the following conjecture: An 

optimal monotone circuit t0 compute f &U first computes all products x :8,r l . . x ;:,I 
using only A -gates and then combines the results using only v -gates. This conjecture 
is true for the special case m = 2 (Paterson [3], Mehlhorn and Galil[2]), because f&, 
computes the Boolean matrix product of the matrix 

and the trawsposed matrix of 

In Section 3 we give upper bounds for the monotone complexity of & resulting 
from the above ideas. Then we give a rather surprising result: if we count only the 
number of v-gates we often can do much better. That circuit also shows, that it would 
be dificult to prove good lower bounds for the number of v-gates in each monotone 

circuit computing f ih 
In Section 4 we present a slight generalization of a replacement rule due to 

Mehlhorn and Galil[2] and show how this result can be used for monotone circuits 

computing f EN* 
-In Section 5 we prove a good lower bound for the number of A-gates in each 

monotone circuit computing f m MN- This lower bound is, for fixed m, optimal up to a 
constant. We follow the proof of Paterson [3] for the Boolean matrix product and we 
make use of the results we have derived in Section 4. Beyond that we introduce a new 
elimination rule and use the following assumption (which is very common in 

aQ&Lt 1SIC WS**Ys* l --+-~;~ OnmJaxity but was never used before in network complexity): we assume 
that certain functions (besides the variables and the constants) are given for free. 

We look at those gates in a mOtImme circuit computing f;E;N, where for the first 
time xii E l l l xrml is a prime implicant of the computed function. It is obviot:s, that 
these gates are A -gates. If at one gate not only xi, 1 l 9 l x;t”, 1 but also xii1 l l l xrkl is 
for the first time a prime implicant of the computed function ((hl, . . . , h,) # 

uz;, . . . , hk,)), then one can alter the circuit, such tha!t the new monotone circuit 
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again computes f” MN. By the assumption, that certain functions are given for free, the 
new circuit contains not more A-gates than the given circuit. By repeating this 
procedure we get a monotone circuit computingf;E;N with not more ~-gates than the 
given circuit and with the following additional property: if x:,1 l l - xrml is for the 
first time a prime implicant of the computed function, then this is not true for 
x:;1 l l . d?,,~ ((hl, . . .3 h,) # (hi, . . . , hk)). The last step is to fix all variables xi, 1 

(1 G i G y12,l s hi s M) in such a way, that the following two aims are fulfilled: (1) The 
remaining circuit computes f ‘n MN-lm (2) Many of the A -gates we have examined before 
(where some & . l l xrrnl is for the first time a prime implicant of the computed 
function) can be eliminated, because one of the input functions is changed to the 
constant function 1. This finishes the proof of the lower bound. 

In Section 6 we use this result to define a sequence of monotone switching 
functions h, : (0, 1)" + {0,1}1 whose monotone complexity grows faster than 
fl(n* log-* n). Thus the largest known lower bound for the monotone complexity of 
a series of explicitly defined monotone functions is considerably increased. 

Pratt [4] raised the following question: what is the greatest loss of economy z 
circuit designer may incur in implementing monotone functions using only A- and 
v-gates? He examined for the Boolean matrix product the quotient of the monotone 
complexity and the complexity over the complete basis {A, v , -}. We show in Section 
7, that for many other functions this quotient is at least as large as the lower bound for 
the Boolean matrix product proved by Pratt, which is the largest kn:2wn lower bound 
of this kind. 

Firstly we give in Section 2 some definitions and notations we shall use later. The 
reader who is familiar with the ideas, which are connected with the theory of 
monotone circuits, may omit the Definitions 2.1-2.9. 

2. Definitions and notations 

Definition 2.1. Let g be a monotone function. Ci,,,) (gj is the monotone complexity 
of g, i.e. the complexity of g over the basis {A, v}. C&.,1 (g)(C,“,,,, (g)j is the minimal 
number of A -gates (v-gates) in each monotone circuit computing g. 

In the following we denote the variables by x1, . . . , K,. 

Definition 2.2. A 
monom: 

t(x1, l l l 9 

function t, which is the product of some variables is called a 

. Kn)= A Xii (il,. . . y i, E(1,. . . , n}). 
lS_jSm 

The empty product is the constant function 1. 

Definition 2.3. The monom t is an implicant of the monotone function g, if t s g, i.e. 
for any a! E (0, l}‘?(a) = 1 implies g(a) = 1. Let I(g) be the set of all implicants of g. 



I. Wegerler 

De&&ion 2.4. The implicant t of the monotone function g is a prime implicant of g, 
if for all monoms t’ the following is true: t s t’ and t # t’ 3 t’ti I(g). Let PI(g) be the 
set of 41 prime implicants of g. 

Defidtian 2.5. For each monotone function g it is true, that 

gb1 ,.. .,xJ= v ?(Xl,..., x,). 
rePI 

This representation of g is called the monotone disjunctive normal form of g 
IMDNF(g)). 

We have defined yh, . . . h,,, in Definition 1.1. by its MDNF. 

Now we give similar definitions by interchanging the roles of A and v. 

Dufibition 2.6. A function u is called a sum of some variables, if 

U(X1 ,.‘.,X”)” V xii (il, . . . , im E. {I). . . , n}). 
lSJSt?l 

The empty sum is the constant function 0. 

n&&ion 2.7. The sum u is a clause of the monotone function g, if g G u, i.e. in 
order that g(a) = 1 it is necessary, that u(a) = 1 (cy E (0, 1)“). Let Cl(g) be the set of 
all clauses of g. 

Definition 2.8. The clause u of the monotone function g is a prime clause of g, if for 
all sums u’ the following is true: u’ G u and U’ f u + u’& Cl(g). Let PC(g) be the set 
of all prime clauses of g. 

Qeiidtion 2.9. For each monotone function g it is true, that 

&I ,.*.,x#J= A 
uEPc(g) 

U(Xl 9 ’ ’ l 9 GA* 

This representation of g is called the monotone conjunctive normal form of g 
(MCNF(gh 

For the proof of the main lemma in Section 5 we shall need the following 
definitions of the length of a monotone function and the length of a gate of a 
monotone circuit. 

Definition 2.10. The length of a rnonom 

a1 , . l . , x,) = /\ xi, (ir, . . . , im distinct) 
lsEj5-m 

is defined by L(t) = m. 
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Definition 2.11. The length of a monotone function g is defined by 

L(g) = c L(t), 
IEPI(g) 

the number of variables in its MDNF. 

Definition 2.12. Let G be a gate of the monotone circuit S, G1 and GZ the two direct 
predecessors of G in S (inputs of gates) and sr and s2 the functions, which are 
computed at G1 and G2. Then L(G) := L(sl) + L(Q) is the length of the gate G. 

The last definition is unusual, but it turns out to be useful. 

Notation. (1) Let t be the monom 

tb1 9.**9 Xn) = A Xii9 
l=sjsm 

then t will denote also the set {xi, 11 sj < m}. 
(2) Let f, g:N+R’. 

f=O(g):~3cER+,NoENVn~No f(n)scg(n). 

f=~(g):H~cER4,NgEN~n~No f(n)acg(n). 

3. 1Jpper bounds for the monotone complexity of f&N 

By examining the MDNF of yhl.. . h,,, we obtain the following monotone circuit 
computing f&,. Take M2N ~-gates to compute XEROX& (1 s ha, h+ M, 1 s 1 s N). 
Then take M3N ~-gates to compute x~,~x&~x’h,~ (1 s hi, h2, h3 s M, 1 s 2 s N) and 

so on. N C2<igm M’ A-gates are sufficient to compute /\l<i<m Xiii for &I,. . l , h,) E 

11 ,..., M}“andlE{l,. . . , N). Using these functions N - 1 v-gates are sufficient to 
‘m compute each function yhI . . . h,, therefore (N - 1)M ‘4 -gates are sufficient to 

compute the function f;N. 
Summarizing we proved 

Theorem 3.1. (i) C~~,v)(fL,v) SN C2sismMi +(N- l)““y 

(ii) CtA,,} (f&v) SN C2sisrn Mi, 
(iii) C&,,v) (fLd s (N - 1)M’“. 

This realization off EN is not the shortest one. The number of A -gates can be reduced 
by grouping the variables first to pairs (x~,~x~~~ and X~,IX& and x~~,Ix& and so on), 
then taking groups of 4,8, 16, . . . elements. But the largest term of the number of 
~-gates used remains NM? One can show that this improvement reduces the 
number of ~-gates for M > 1 at most by a factor of 2. Therefore we shall not discuss 
this improvement in detail. 
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We guess that the bounds of Theorem 3.1(i) and (ii) are essentially optimal. In the 
following we shall show, that for m > 2 the bound of Theorem 3.l(iii) is not optimal. 
we derive the monotone conjunctive normal form of the functions yhl.. . h,. If a 
prime clause has the value 0, the function itself has the value 0 (Definition 2.9). 
merefore each prime implicant must be equal to 0. That means that each prime 
clause contains at least one variable of each prime implicant. 

Now let us look at a sum, which arises if one shortens the prime clause. Such a sum 
is not a clause. Therefore we can conclude: A prime clause is a sum with the following 
two properties: 

(i) it contains at least one variable of each prime implicant. 
(ii) each shortening of it fulfils not property (i). 
Different prime implicants of yhl...k, contain only dicerent variables (Definition 

1.1 is the MDNF of yl,,... or,)* Therefore a sum is a prime clause of yh,..+,,, iff it 
contains exactly one variable of each prime implicant of y ~~,...h~, that means 
PCXy,~,...,~,,,) = {x2,,, v .I(+ v l l l v xkMv ] 1 G il, . . . , iN s m}. Therefore the MCNF 
b%l-sh,,,) is 

yh,4,,.. = A il bu 

(r~,...riN)E(l,.,.,,,~}N 
‘hi,1 V ’ l l VX~,JV* 

Take m2M2 v-gates to compute all ~j:,~ v&z (lsil, i+m, lG21, h2dl). 
Following up these ideas it is clear, that 

2--i_N mM-1 

v-gates are suflicient to compute all prime clauses of all y iI l...hm. 
Therefore ‘Jwe proved 

Lemma 3.2. 

Exactly as in the case of the number of necessary ~-gates we can easily improve 
this result by a small amount. Beyond that we have computed some redundant 
functions like X’ h,i v xiz2, if h, # h2, since no lengthening of this function is a prime 

clause of y+.fr,. In the interesting cases this possibility of improving Lemma 3.2 is 
unimportant. Therefore we again omit a detailed discussion of this improvement. 

The upper bound of Lemma 3.2 does better than the upper bound of Theorem 
3.l(iii) for fixed m, m > N and M sufficiently large. In the general case we can 
dt:compose yll,---h, in the following way: For k E (1, . . . , [N/(m - I)1 - l> we define 

y&-h, := V 
(A -lbn-l)+l~f~k(m--1) 
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then the functions yk,..hJl s hl, . . . , h m s M) together form the function f&,+ 
Finally we define for 

The functions 

Y:~...J,~ 
( 

lshl ,..., h,sM,k= 5 
1 1) 

form the function fcp where 

p :=N-(([m~,l--l)(m-l)). 

It is easy to see, that 

Yh*4,, = v Y &...h,* 
lSkS[N/(m-111 

For computing the functions ytI..+,, for each fixed k we make use of the upper bound 
of Lemma 3.2. Afterwards [N/(m - l)] - 1 v-gates are sufficient for computing each 
of the M” functions yj,, ../J,,,. 

Therefore we proved 

Theorem 3.3. Let 

p := N-(([---$&l>(m-1,) 

then 

For fixed m and large M we improved the upper bound of Theorem 3.ll(iii) from 
approximately NM” to about NM’“/(m - 1). (This is naturally no improvement if 
m = 2 (Paterson [3], Mehlhorn and Galil [2])). This circuit, which computes f’%V, 
shows some of the difficulties which arise if one tries to prove good lower bounds for 

c&.v} (f ;I;N)- 

In the following we shall consider only the number of A-gates. Our main result is 



I. Wegener 

4. Transformations of monotone circuits, which preserve the property of computing 

fi 

The following theorem is a slight generalization of a theorem, which was proved by 
Mehlhorn and Galil[2]. 

Theorem 4.1. Let S be a rrronotone circuit computing gi, . . . , go* Let G be a gate of S, 
where s is computed. Let t, tl and t2 be monoms satisfying the following properties: 

(i) 11; E I(s), 
(ii) It2 E I(s), 
(iii) V ~~~~~~~~~~~ /iit{, tit2 E I(gj) * fi E I(gj). 

Let S’ be produced from S by computing s v t at a new gate G’ and replacing some of the 
edges which leave G, by edges leaving G’. Then the monotone circuit S’ computes 

81 , . . . ‘; g1. 

Proof. Suppose, that the theorem is false. Then there exists j E (1, . . . , 1}, such that gj 
is not computed in S’. -Let G* be the gate of S, where gj is computed. Let g” be the 
monotone function, which is computed at G* as a gate of S’, g* # gi. By monotonicity 
and s s s v t we conclude gj s g*. Therefore we can choose cy E (0, 1}” : gi(a) = 0 and 
g*(a) == 1. Since the results of S and S’ are not the same if the input is CY, we conclude 
(by monotonicity) s(a) = 0 and t(a) = 1. Let t* E PI(g*) with the property: t*(cu) = 1. 

if t*cs E I(gi), we can conclude gj(a) = 1, which is a contradiction. Because of (iii) it 
remains to show: t*tti E I(gj) (i = 1,2). If for y E (0, l}‘*t*tti(y) = 1 (for i = 1 or i = 2), 
we deduce g*(y) = 1 (since t* E PI(g*)) and s(y) = 1 (since tti E I(s)) and therefore S 
and S’ compute the same if the input is y. That means gi( y) = g*( 7) = 1 and therefore 
t*fti E I(gj)e ‘ 

Now we use this general result for the special function f;N. In doing so we use the 
following notaGon: x& (1 s i s m, 1 s I s N) means the constant 1. 

Lemmra 4.2. L,et S be a monotone circuit computing f;;frhl. Let S be the monotone 
function, which is computed at the gate G of S and let s have the following properties : 
For some 1 E (1,. . . , N), il,. . . , i,,,, jli l l . . j,,, E (0, 1, . . . , M} 

s1 := A x& E X(s) and s2 := A lsk<m l=ksm 
xi”,, E I(s). 

Let s’ := l\ktA x:1, where A := (1 =S k 6 m 1 ik = jk). Finally let S’ be produced from S 
by computing s v s’ at a new gate G’ and replacing some of the edges, which leave G, by 
edges leaving G’. The monotone circuit S’ computes fzN. 

Proof. If we define 

t := s ‘, fl := A x$, f2 := A x$, 
k@A k@A 
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then ftl, tt2 E I(S), We observe that by definition of A tl and t2 do not have a common 
variable. If the lemma is false, there exist (Theorem 4.1) a monom r and an output 
function yhl...h,, for which tfttl, t’tt+ I(yh, ..+,) and t’t@ I(y~l...&. Since fill E 
I(yhl...h,), there exists an I’E (1, . . . , N): Alsism x&f c fitI. Since t’t& I(yh,...~,): 

Therefore A l<is:m X& c 6ll and similarly A l<i<m X& c t’tt2. Again since 

have the variable xii., in common. 
This contradiction proves the lemma. 

5. Lower bounds for the monotone complexity of fEN 

Definition 5.1. (i) For (hl, . . . , h,) E { 1, . . . , M}” we denote by Qh ,... h,,, the set of’ 
monotone functions, for which l\l<i~~~& is a prime implicant. 

(ii) Let S be a monotone circuit cgmputing f& and (hl, . . . , h,) E { 1, l . . 9 M)“. 

We denote by S(& *..+,) the set of gates of S with the property, that the function 
which is computed at G! is an element of Qkl..+,,,, but the functions which are 
computed at the two direct predecessors of G (gates or inputs) are not elements of 

Q+h,: 
As inahcated in the introduction we shall make the assumption that certain 

functions are given for free. In this chapter we shall consider only monotone circuits S 
with the property (*): 

Besides the variables X& (1 - I ~‘~~,l~~i~lM,l~I~N)alsOall~OnO~S 

of less than m variables are inputs of the circuit. 

Note: For m = 2 this assumption is empty. 

CE,+ C?%, and CcIvl are the complexity measures C{,,,}, C&.,1 and CL) 
restricted to circuits with the property (*). It is easy tc see that for all monotone 

functions s 

C,*,lv) (s) < C&.,1 (s) and C$h (4 = Ckv) Is). 

Let S be a monotone circuit with property (*) computing fEN. All inputs are not 
elements of any Qhl...h,. On the other side yhl...h, E Qh*...h,,,. Therefore for all 

(hl, . . . , h&(1,. . l , M}“‘: S(&.. h,,,) # a. The aim of the following considerations 
is fo give lower bounds to 

# U s(Qh,--h,) 
(ht .-h,k{1....,M)m 
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and to eliminate as many as possible of these gates by fixing the variables xii 1 (1 s i s 

m, I s hi s M). At the same time these variables should be fixed in such a way that 
the remaining circuit co rputes f;N- *. 

The following lemma s)hows that we need consider only ~-gates. 

Lemma 5.2. G E S(Qh ,... h,,,) 3 *G is an A -gate. 

Proof, Let s be the function computed at G and s1 and s2 the functions computed at 
’ the two direct predecessors of G. /\ l<i<m xi,1 is a prime implicant of s but not of s1 or 

~2. If G is an v-gate, s = sr v s2 and PI(s) c PI(sl) u PI(s2) yields a contradiction. 

Main lemma 5.3. There exists a monotone circuit S with property (*) and the following 
properties : 

(i) S compwes f ;I;N. 
(ii) The number of A -gates of S is Chive (f&d. 

(iii) VBwacr,,fa #{(hl, + l l , h,) E (1, . . . , Ml” 1 G E SKL,...IJ}~ 1. 

Roof, We start with a monotone circuit S with property (*), (i) and (ii). The 
existence of S is clear. If (iii) is fulfilled, the lemma is proved. Otherwise let 
G1 9-*-* Gq::y,Uz&u) be the A -gates of S. We assume that the A -gates are in their 
topological order, i.e. for i c k there is no directed path from Gk to Gi. We have 
shown (Lemma 5.2) U-6 rk DC~S bhese gates are the only gates, where (iii) may not hold. 

J := min{l s k < Cc*r”.,l (f&) I(“‘) 111 is not fulfilled for Gk}. Our aim is to build 
another monotone circuit S’ with property (*), (i) and (ii), such that either for 

G; , . . . t G; (the 1eading:J A-gatesof S’) property (iii) is fulfilled or for Gi, . . . , Gi-1 
property (iii) is fulfilled and L(G(r) < L(GJ) (see Definition 2.12). If this assertion is 
proved, we may proceed in the same way and shall obtain after a finite number of 
steps (since L(G) E NO) a monotone circuit with the desired properties. 

lUow we are going to prove the assertion: 

We conclude (from the definition of J) the existence of (hl, l . . , kd, 

uz;, . . ..h.,)c{l,..., M}“: (hl,.. ., h,)#(h;,..., h:,) and GJ E 
S(Qk,_._h,)nS(Qh;.~_h6). Let s denote the function computed at G., and let G’ and 
G’ be the two direct predecessors of GJ9 where s1 and s2 are computed Therefore 
s = siszb By Definition 5.1 it follows, that 
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Furthermore 

A ‘Xi19 /\ X&l E I(Sl) n I(sz). 
1siStn 1SiSm 

Proof. Suppose for example /\lsisrn xi,1 f! I(sl). Fix xLil = 1, all other variables fix 
to 0, sl computes 0, therefore s computes 0, which is a contradiction (A *<is* xii1 E 

PUS)). 
For monotone functions s” the following is true: m E I(Z) + 3 m’ c m rnk PI(g). 

Therefore there exist tl, ri E PI(sl) and f2, ti E PI&): 

We claim, that flt2 = A lCiStt0 ‘Lil’ “c” is obvious. “I>“: Suppose tlt2 = AicA xi*,1 for 
some As{l,...,m}. Let xLil=l for SEA, then tl=l and t2=l+st=l and 
s2 = 1 +s = 1 in contradiction to /jl<i<‘n xii1 EPI(s). Similarly tit; = l\#lci<‘n xi,:l. 
We again use the following notation: For 1 s i s m, 1 s I s N x& means 1. There 
exist ki.1, ki.2 E (0, hi} and ki.1, ki.2 E (0, hi}: 

t* = A ‘Zi,ll, t; -= A &l, t2 = A ‘;Ci,*19 
1SiCtn 1SiStn 1SiSm 

Case 1: tl#ti. Let A:={l~j~m~kj,~=kj,l}~Ac{l,...,m}. Therefore 
s t l - .- A jGA x&,l is an input of the circuit, because it is a monom of less than m 
variables. Let S’ be produced from S by computing with one additional v-gate G’ 
and no additional A-gate sl v s’ and by replacing the edge G’ + GJ by the edge 
G’+ GJ. We have shown (Lemma 4.2), that S’ computes fz~. Because of the 
construction of S’, S’ fulfils property (*), (i) and (ii). The A -gates of S’ will be labelled 

such that Gi corresponds to G: in a natural way. Property (iii) remains correct for 
G;, . . . , G;+ Perhaps property (iii) is fulfilled for Gi too. In any case we shall show: 

L(Glr) < L(GJ). 

L(G;) = L(sl v 5’) + L(s2) and L(GJ) = USI) + L&J. 

If PI(z1) = {tl, t’l, g1, . . . , g,}, then PI(sl v s’) G {s’, gl, . . . , g,), since s’ c tl and s’ c ri. 
Moreover tl # ti, so we can conclude 

L(sl v s’) < L(sl) * L(G;) < L(G.,). 

In this case the assertion is proved. 
Case 2: tl = ti. 

t* = t’l = A Xkil = A XL;1 forsomeA~{l,...,m). 
ieA iEA 
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Since (hl,. . . , h,,,) # (hi,. . . , hk), there exists j~{l, . . . , m}: hi f hi and j&A. 
Since tit2 = Ar ism xi,i, we conclude X’ hii E t2 and simikly & E f;. 

Therefore tz # t$ and we can prove the assertion in the same way as in Case 1. The 
proof of the ass&on completes the proof of the lemma. 

Now we consider a monotone circuit S with property (*), (i), (ii) and (iii). Since 

s(Qhl...h,) z: 0: # U S(Qh,...hm) 2 Mm. 
(hl..... h,k{l,...,M}m > 

We examine a gate G E S(Q ~l...~,). Similarly to the proof of Lemma 5.3 there exist 
tl G PI(sl) and t2 E PI&): 

Now we try to fix the variables xi, l (I s i s m, 1 s hi =S M) to fulfil the aims we have 
discussed at the beginning of this chapter. We distinguish m cases: 

Casek:(l~k~m)x~~ :=O(l~j~M)and& := l(l~j~M,l<i~m,i#k). 
The remaining circuit Sk computes, instead of yhr..+, 

and therefore the function f EN_*. G can be eliminated in &, if & I& tl or xi, I@ 12. In 
either case tl or t2 becomes 1, therefore s1 or s2 becomes 1 and one input of G 
becomes constant. 

We claim that tl and t2 contain at most m - 2 equal variables. This is easy to see. 
L( tt) s m - 1 and L(t2) G m - 1. If tl and t2 have more than m - 2 variables in 
common, we conclude tl = f2. So tlt2 = tl$ l\lsisrn &, which is a contradiction. 

(Note: If m = 2, tl and t2 have no common variable.) 
Therefore G is eliminated in at least two of the m cases above. We can conclude 

that there is a k~{l,..., m}, such that fixing the variables xi: := 0 and xi1 := 1 
ii # k) causes the elimination of at least [2m -‘Mm 1 A -gates. 

Summarizing we have proved C~~“)(~~~)~C~~v)(f;t;N_l)+ [2m-‘M”l. Thus 
we have proved 

T~HK~DI 5.4. For all m, MY N E N, where m 2 2, 

Let us consider the very special case of the Boolean matrix product of two 
M x M-matrices: m = 2 and M = N* Then N [2m-‘Mm1 = M3 and Corollary 5.5 is a 
direct consequence of Theorem 5.4 

COVOI~SUY 5.5. M3 A -gates are necessary to compute the Boolean matrix product of two 

M x Wmatrices. 
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This result was proved earlier by Paterson [3] and Mehlhorn and Galil[2]. Pratt [4] 
proved the necessity of iM3 A-gates. 

Remark. Savage [5] extended the results of Pratt, Paterson and Mehlhorn and Galil 
and examined the monotone complexity of disjoint monotone bilinear forms. One 
can easily extend the above considerations in order to evaluate the monotone 
complexity of disjoint monotone multilinear forms, whose definitioa is a natural 
generalization of the Savage definition of disjoint monotone bilinear forms. The 
functions yhl...h, (1 s kl, . . . , h, GM) form a set of disjoint monotone multilinear 
forms. (For details see Wegener [7].) 

6. Switching functions whose monotone complexity is nearly quadratic 

By using Theorem 5.4 it is easy to deduce our main result, which was indicated in 
the abstract. 

We shall introduce the following notation, which we shall use in Section 7 too. If 
g:{O, 1)” +{O, 1)” l IS defined, we also denote the following function g’: (0, l}k+“+ 
{o,l}m+m’ (n’, rn’~ No) with g: 

Definition 6.1. For n 2 4 let m(n) := Llog n], M(n) := 2, N(n) := [n/(2 log n)J and 

h l = fG$:Ntn) n l (hn : (0, 1)” + (0, 1)“). 

Theorem 6.2. The monotone functions hn are explicitly defined and L8( n* log-* n ) = 
C’I,,,) (hn) = O(n* log-’ n). 

Proof. The theorem is a direct consequence of Theorem 5.4 and Theorem 3.1. 

This is a considerable improvement of the previously largest known lower bounds 
for a series of explicitly defined monotone functions, which are n(n”‘) bounds for 
example for the Boolean matrix product. 

7. Monotone complexity - complexity over a complete basis 

Definition 7.1. Let m be even and fixed. For n E N let 

M(n) := max{k E Nl mk” s n} and gr := fjE;(n)M(n)m-l (gr : (0, 4. In 
+{O, 1)“). 
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We shall show the following theorem, which shows the importance of the negation. 
Pratt [4] proved this theorem for the special case m = 2. 

Theorem 7.2. For m even and fixed 

Cb.“, tgr WC A,v,--) (gr ) = f2(#‘*’ loga “’ log-* n). 

Proof‘ It is an easv consequence of Theorem 5.4, that Cj,,,) (g,“) = LI(n*-“-‘). So it e 

remains to show, that 

Gh.“. * j(g3 = Oh 
~1/2)log27+1/2-m -1 

log* n), 

ince 2-K’ -1/2log*7--1/2-+m- =3/2-1/2log27==1/2log28/7. Strassen 
[6] has shown, that O(n’og27 ) real additions, subtractions and multiplications are 
suftjcient to compute the matrix product of two n x n-matrices with elements in R. 
Fischer and Meyer [l] used this result and have shown, that 0(n’og27 log* n) gates of 
the basis {A, v, -} are sufficient to compute the Boolean matrix product of two 
n X n-matrices. 

Now we present a circuit over {A, v, -}, which fulfils the desired properties. First 
one realizes for all 1 ~hl,. . . , h,,+M(n) and 1 +GM(~)“-’ /\lsism/2 x& and 
for all 1 S h m/2+1,. . . , hm GM(n) and 1 G I GM(n)“-’ /\m/z<i<m x~,I. For this 
2(mj2 -.1)M(n)“‘*M(n)“- A-gates are sufficient. Now the task to compute g,” is 
the task to compute the Boolean matrix product of the M(n)“‘* x M(n)m-*-matrix 

and the M(n)” -’ X M(n)“‘*-matrix 

This is true, because the result of the matrix product is the M(n)““* X M(n)m’2- 
matrix 

’ = (Y~hl...-.hm,2)lh~,2+~.,....,h,) = V A xl,r) 
l=slsM(n) m-1 l<iSm 

(Ish Iv***, h,,zsM(n), l~hm/2+1,a..,hm~M(n)). 
For computing this matrix product we decompose each of the matrices 2’ and Z* 

to M(n)“‘*-‘M(n)“‘* x M(n)"/* -matrices, whereby for the jth partial matrix we 
take those variables, for which I E {(j - l)M(n)“/* + 1, . . . , jM(n)“‘*}. We multiply 
the jth partial matrix of 2’ with the jth partial matrix of 2* (using the results of 
Fischer and Meyer and Strassen) with O((M(n)“‘*)‘O@‘(log M(n)“‘*)*) gates of the 
basis {A, v, -1. All together 0(M(n)m’2-1M(n)‘m’2’10g27(10g M(n)“‘*)*) gates are 
sufficient. As result we get M(,)m’2-1M(n)m’2 X M(n)m’2-matrices 
Y l,a.*, Y,~(~)m/2-1. It is easy to see, that Y = Yl v l l l v YM(~JWI/~-~. (If A = (aij) and 
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B = (bij) we define A v B = (aij v bij).) Therefore another M(n)“(M(n)“‘2-’ - 1) 
v-gates are sufficient to compute Y. Combining the results we get 

C{A.V ,-I (g,“) = 0(2(m/2 - 1)M(n)m’2M(n)m-’ 
+ M(n)“‘2-1M(n)‘m’2’10g27(log M(n)m’2)2 

+M(n)“(M(n)“‘*-’ - 1)) 

= O(n (l/2) log, 7+1/2-m-l 
log2 d, 

since m is fixed and since M(n)” s nm-’ s n. 

Thus the complexity gap between monotone circuits and circuits over a complete 
basis is for the functions gr (m even and fixed) at least as large as the well-known gap 
for the Boolean matrix product. 
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