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Abstract
We consider Boolean circuits over {∨,∧,¬} with negations applied only to input variables. To
measure the “amount of negation” in such circuits, we introduce the concept of their “negation
width.” In particular, a circuit computing a monotone Boolean function f(x1, . . . , xn) has negation
width w if no nonzero term produced (purely syntactically) by the circuit contains more than w
distinct negated variables. Circuits of negation width w = 0 are equivalent to monotone Boolean
circuits, while those of negation width w = n have no restrictions. Our motivation is that already
circuits of moderate negation width w = nε for an arbitrarily small constant ε > 0 can be even
exponentially stronger than monotone circuits.

We show that the size of any circuit of negation width w computing f is roughly at least the
minimum size of a monotone circuit computing f divided by K = min{wm,mw}, where m is the
maximum length of a prime implicant of f . We also show that the depth of any circuit of negation
width w computing f is roughly at least the minimum depth of a monotone circuit computing f
minus logK. Finally, we show that formulas of bounded negation width can be balanced to achieve
a logarithmic (in their size) depth without increasing their negation width.
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1 Introduction

Understanding the power of negations in computations is one of the most basic objectives
in computational complexity. While strong, even exponential, lower bounds for explicit
monotone Boolean functions are already known for monotone Boolean {∨,∧} circuits, we
can currently prove only depressingly small (linear) lower bounds on the size of {∨,∧,¬}
circuits when there are no restrictions on the number or the usage of negation gates.

In this paper, we concentrate on DeMorgan circuits, that is, on {∨,∧,¬} circuits with
fanin-2 OR and AND gates, and with negation applied only to input variables. In other
words, a DeMorgan circuit is a circuit with fanin-2 OR and AND gates, while inputs are
variables x1, . . . , xn and their negations x1, . . . , xn; to simplify notation, we will write xi
instead of ¬xi. DeMorgan circuits are sometimes called normalized circuits [17], standard
circuits [31, Section 6.13] or circuits with tight negations [25]. A circuit is a formula if its
underlying graph is a tree. A monotone circuit is a DeMorgan circuit with no negated input
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41:2 Circuits of Bounded Negation Width

variables at all. By just doubling the circuit size and using DeMorgan rules, any circuit over
{∨,∧,¬} of size s can be converted to a DeMorgan circuit computing the same function and
having size at most 2s (see, for example, [6, Theorem 3.1]).

The effect of negations on the size or depth of {∨,∧,¬} circuits was mainly considered
by either restricting the total number of used negation gates, or by restricting the usage
of negations. There is an extensive literature on the research in the first direction, when
the total number of NOT gates is bounded; here negations can be applied not only to input
variables. We refer to [13, Chapter 10] and the papers cited therein for this line of research;
see also [26, 3, 9] for more recent developments in this direction.

Another line of research (which attracted much less attention, and which we follow in
this paper) was to restrict the “amount of negation” in circuits. One of the first results
in this direction was proved by Raz and Wigderson [21, Theorem 4.1]: if w ≤ n2−ε for a
constant ε > 0, then any DeMorgan circuit with at most w negated input variables computing
the s-t connectivity function of n-vertex graphs must have depth Ω(log2 n). Guo et al. [9]
have proved that any DeMorgan circuit with at most w negated input variables computing
a monotone Boolean function f must have depth at least the monotone circuit depth of
f minus w. Koroth and Sarma [16] relax this restriction (on the total number of allowed
negated input variables), and say that a (not necessarily DeMorgan) circuit over {∨,∧,¬}
has orientation weight w if the function computed at each gate is monotone in all but at
most w variables. They prove that the depth of any circuit over {∨,∧,¬} of orientation
weight w computing a monotone function f is at least the minimum depth of a monotone
circuit computing f divided by 4w + 1.

In this paper, as the measure of the “amount of negation” in DeMorgan circuits, we
consider their “negation width” (see Definition 1.2 below). This measure (without calling it
the negation width) was already considered by Amano and Maruoka [2, Sect. 4]. They used
a modification of Razborov’s Method of Approximation [23, 24] to show that DeMorgan
circuits of small negation width for the Clique function must still be large (we recall their
result right before Corollary 6.2). Our main results (Theorems 1.6 and 1.8) give a general
reduction of DeMorgan circuits of bounded negation width to monotone circuits, from which
the bound of [2], as well as new lower bounds, follow (see Section 6).
I Notation. We use standard terminology regarding Boolean functions (see, for example, [31]).
In particular, a term is an AND of literals, each being a variable or its negation. The length
of a term is the number of distinct literals in it. A term is a zero term if it contains a variable
and its negation. An implicant of a Boolean function f(x1, . . . , xn) is a nonzero term p such
that p ≤ f holds, that is, p(a) ≤ f(a) holds for all a ∈ {0, 1}n. An implicant of f is a prime
implicant of f if after the removal of all occurrences of any single literal in p the resulting
term is not an implicant of f anymore. The set of all prime implicants of f will be denoted
by PI(f). A Boolean function f is monotone if a ≤ b implies f(a) ≤ f(b). Note that if f is
monotone, then all prime implicants of f are positive, that is, consist solely of not negated
variables.

1.1 Negation width of circuits
Our goal is to understand to what extent the usage of negated input variables can decrease
the size or the depth of DeMorgan circuits computing monotone Boolean functions. As a
measure of the “amount of negation” in DeMorgan circuits, we will use their “negation width.”
This measure is motivated by a trivial fact that every DeMorgan circuit not only computes a
particular Boolean function but also produces (purely syntactically) some set of terms in a
natural way.
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I Definition 1.1 (Terms produced by circuits). The set of terms produced at an input gate
holding a literal z is a singleton-set {z}. The set of terms produced at an OR gate is a union
of sets of terms produced at its two inputs, while the set produced at the AND gate is obtained
by taking the AND of every term produced at one of its inputs with every term produced at
the other input.

The set T (C) of terms produced by the entire circuit C is the set of terms produced at the
output gate of C. During the production of terms, we use the “shortening” axiom x ∧ x = x,
but do not use the “annihilation” axiom x ∧ x = 0. So, T (C) can contain also zero terms,
those having a variable and its negation.1 Easy induction on the circuit size shows that the
Boolean function f computed by a circuit C is the function computed by the OR of all terms
produced by C.

If the circuit C is monotone (has no negated inputs at all), then we clearly have PI(f) ⊆
T (C), that is, every prime implicant of f must then be produced by the circuit. But even
then, the equality T (C) = PI(f) does not need to hold: already in 1981, Okol’nishnikova [18]
exhibited an explicit monotone Boolean function f of n variables which can be computed by
a monotone circuit of size O(n), but any monotone circuit C satisfying T (C) = PI(f) must
have 2Ω(n1/4) gates.

The situation when the computed by the circuit C function f is monotone, but the
circuit C itself is not necessarily monotone, is even more subtle: then even the inclusion
PI(f) ⊆ T (C) does not need to hold. For example, the function f = x ∨ y is computed by a
circuit C = xy ∨ y, but T (C) = {xy, y} whereas PI(f) = {x, y}.

However, we have the following simple and well-known property of (not necessarily
monotone) DNFs computing monotone Boolean functions (see, for example, [5, Theorem 1.24
on p. 37]): if D is a (not necessarily monotone) DNF computing a monotone Boolean
function f , then the monotone DNF obtained from D by first removing all zero terms,
and then removing all occurrences of negated variables from the remaining terms, also
computes f . This, in particular, implies that the obtained monotone DNF must contain all
prime implicants of f .

If C is a DeMorgan circuit computing f , then the OR of terms in T (C) computes f . So,
by the aforementioned fact [5, Theorem 1.24 on p. 37], for every prime implicant p of f ,
the set T (C) must contain either p itself or at least one extension of p, that is, a nonzero
term of the form p · r, where the term r = xi1 · · ·xil consists solely of negated variables.
This motivates the following measure of DeMorgan circuits computing monotone Boolean
functions.

I Definition 1.2 (Negation width). A DeMorgan circuit computing a monotone Boolean
function f has negation width w if for every prime implicant p of f , the circuit produces
either p itself or some its extension containing at most w negated variables.

There are no other restrictions on the remaining produced terms, except the trivial one
that the function computed by the OR of all produced terms must coincide with f . Note
that the negation width w of any DeMorgan circuit computing f satisfies 0 ≤ w ≤ n−m,
where m is the minimum length of a prime implicant of f . Also, minimal circuits of negation
width w = 0 are monotone circuits: just replace each negated input gate xi by constant 0.

1 At a “functional” level, zero terms are redundant: they contribute nothing to the values of the computed
function. The only reason to keep them in T (C) is to ensure that “syntactical” changes of circuits
(replacements of some input gates by constants), which we will latter make, do not turn some previously
zero terms into nonzero terms.
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41:4 Circuits of Bounded Negation Width

Examples of sufficient conditions for a circuit to have negation width at most w are any of
the following.

The circuit has at most w negated input variables; such circuits were considered, for
example, by Raz and Wigderson [21], and Guo et al.[9].
No input-output path has more than2 logw AND gates; such circuits computing quadratic
forms (multi-output functions) were considered in [17].
No nonzero term produced by the circuit contains more than w distinct negated variables.
Note that this restriction is a relaxation of both two previous restrictions.

None of these sufficient conditions is necessary. In particular, the negation width puts no
restrictions on the length of produced zero terms. So, at intermediate gates, the circuit can
produce very long terms, and then cancel them (turn them into zero terms). At this point,
it is worth to mention that DeMorgan circuits computing monotone Boolean functions f
more efficiently than monotone circuits must use cancellations (must produce zero terms):
otherwise, we could just replace all negated input variables by constants 1, and the resulting
monotone circuit would still compute f .

We shall also consider DeMorgan circuits of bounded average negation width. Let C be a
DeMorgan circuit computing a monotone Boolean function f .

IDefinition 1.3 (Average negation width). The negation width of a prime implicant p ∈ PI(f)
in the circuit C is the minimum number w such that T (C) contains an extension of p with at
most w negated variables. The average negation width of the circuit C is the average, over
all prime implicants p ∈ PI(f), of the negation width of p in C.

Note that a circuit C computing f has negation width w if every prime implicant of f has
negation width at most w in C. Average negation width relaxes this “every” requirement.

1.2 Motivation
Our motivation to consider circuits of bounded negation width w is that allowance of
even moderately large negation width w = nε for an arbitrarily small constant ε > 0 can
substantially reduce the size of monotone circuits.

I Example 1.4. The triangle function CLIQUE(n, 3) has one variable for every edge of the
complete graph Kn on {1, . . . , n}, and accepts a subgraph G of Kn if and only if G contains
a triangle. It is known that this function requires monotone circuits of almost cubic size
n3−o(1) [23, 1]. According to Claim A.3 in Appendix A, the function can be computed in
already sub-cubic size n3−ε/4 if negation width w = nε is allowed.

I Example 1.5. The threshold-k function Thnk accepts a Boolean input of length n if and
only if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [15]). On the other hand, for k ≤ n1/3, the function Thnk can
be computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed
(see Claim A.5 in Appendix A.3).

Using monotone circuit lower bounds of Razborov [24] and Tardos [29], one can show that,
on some monotone Boolean functions, super-polynomial, and even exponential gaps between
the size of monotone circuits and circuits of moderate negation width can be achieved; see
Examples A.1 and A.2 in Appendix A. We are not aware of any similar separating examples
for restrictions on the use of negations considered in [21, 16, 9]: restricted number of allowed
negated input variables, or restricted orientation weight.

2 All logarithm in this paper are to the base 2.
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1.3 Our contributions
Our first general result relates (non-monotone) DeMorgan circuits and formulas of bounded
negation width to monotone circuits and formulas.

I Theorem 1.6. Let f be a monotone Boolean function with all prime implicants of length at
most m. Let s be the minimum size of a monotone circuit computing f , and d the minimum
depth of such a circuit. Then any DeMorgan circuit of negation width w computing f must
have size at least s/K−1 and depth at least d−logK, where K = 8 min{mw, wm}·log |PI(f)|.

This theorem allows to extend known lower bounds for monotone circuits to lower bounds
for (non-monotone) DeMorgan circuits of bounded negation width. We provide several such
extensions for specific monotone Boolean functions following from Theorem 1.6 in Section 6
(see Corollaries 6.1-6.5). In particular, Theorem 1.6 implies that any DeMorgan circuit of
negation with w ≤ nε computing the triangle function CLIQUE(n, 3) must have Ω(n3−4ε)
gates (see Corollary 6.1). This bound is not very far from the truth because for w = nε,
O(n3−ε/4) gates are also sufficient (Claim A.3 in Appendix A).

Our second general result concerns circuits of bounded average width. It complements the
general framework for converting lower bounds for monotone circuits to those for DeMorgan
circuits of bounded negation width given in Theorem 1.6.

I Definition 1.7. A monotone Boolean function h K-approximates a monotone Boolean
function f if there is an OR g of at least a 1/K portion of prime implicants of f such that
g ≤ h ≤ f holds.

I Theorem 1.8. Let f be a monotone Boolean function with all prime implicants of length
at most m. Let w ≥ 0 and K = 8 · min{m2w, (2w)m}. If every monotone circuit K-
approximating f requires at least t gates, then every DeMorgan circuit of average negation
width w computing f must also have at least t gates.

Let us note the difference between Theorems 1.6 and 1.8. The advantage of Theorem 1.6
is that one can directly use known lower bounds on the monotone circuit complexity of the
function f themselves. Theorem 1.8 is more general: it applies to circuits when only the
average negation width is bounded, and we do not have the additional log |PI(f)| factor in
the “blow down” parameter K. However, in order to apply Theorem 1.8, one has to show
that not only the function f itself but also any sufficiently close approximation of f requires
large monotone circuits. So, one has to analyze the monotone lower bound proofs to ensure
this latter property. We will demonstrate this by proving that every DeMorgan circuit of
average negation width w = o(

√
k/ log k) computing the clique function CLIQUE(n, k) must

have 2Ω(
√
k) gates (see Corollary 6.8 in Section 6).

Our third general result extends the well-known Spira’s depth reduction theorem [27]
to DeMorgan formulas of bounded negation width: it shows that such formulas can also be
balanced without increasing their negation width.

I Theorem 1.9. If a monotone Boolean function f can be computed by a DeMorgan formula
of size s and negation width w, then f can be also computed by a DeMorgan formula of depth
at most 3 · log s and the same negation width w.

The rest of the paper is organized as follows. In Section 2, a special type of “random
subcircuits” is introduced. Sections 3–5 are devoted to the proof of our main results
(Theorems 1.6–1.9). In Section 6, we give several applications of our general results to
specific Boolean functions. Appendix A contains proofs of the upper bounds claimed in our
motivating examples (Examples 1.4–A.1).

STACS 2019



41:6 Circuits of Bounded Negation Width

2 Random subcircuits

Let f(x1, . . . , xn) be a monotone Boolean function, and C be a DeMorgan circuit computing f .
For a subset Y = {xi : i ∈ I} of variables, the monotone Y -subcircuit of C is obtained as
follows.
1. First, set to 0 all variables in Y ; so, for every i ∈ I, the input gate xi is set to 0, while

the negated input gate xi is set to 1.
2. Then replace by constant 0 each of the remaining negated input gates xj for j 6∈ I.
3. Finally, eliminate constant input gates through repeated replacements of 0∧ u by 0, 1∨ u

by 1, and 0 ∨ u, 1 ∧ u by u.
Schematically:

C(x, y, x, y) Step 17→ C(x, 0, x, 1) Step 27→ C(x, 0, 0, 1) Step 37→ C+(x) .

I Example 2.1. Consider the DeMorgan formula C = (x1∨x2∨x3)(x1∨x2∨x5)(x3∨x4∨x5),
and Y = {x1, x4}. After the first step, we obtain the formula (0∨x2∨x3)(1∨x2∨x5)(x3∨0∨x5).
After the second step, we obtain the formula (0 ∨ x2 ∨ 0)(1 ∨ 0 ∨ x5)(x3 ∨ 0 ∨ 0) and, after
the elimination of constants, the resulting monotone sub-formula of C is x2x3.

The following lemma is just a simple observation.

I Lemma 2.2. If a DeMorgan circuit C computes a monotone Boolean function f , then the
monotone Boolean function h computed by any monotone subcircuit of C satisfies h ≤ f .

Proof. Take an arbitrary subset Y = {xi : i ∈ I} of variables, and let C+ be a monotone
Y -subcircuit of C. Let h be the monotone Boolean function computed by C+. We have to
show that h ≤ f holds.

Let g be a monotone Boolean function computed by the circuit C ′ obtained from C by
setting all variables in Y to 0. Since the function f is monotone, we have g ≤ f , and even
PI(g) ⊆ PI(f). Now, the circuit C+ is obtained from C ′ by replacing by zeroes all remaining
(not yet set to constant 1) negated input variables. So, the set T (C+) of terms produced
by C+ is obtained from T (C ′) by removing all terms with at least one negated variable
(including all zero terms). Since g is the OR of all terms in T (C ′), and h is the OR of all
terms in T (C+), the inclusion T (C+) ⊆ T (C ′) yields h ≤ g. So, h ≤ g ≤ f , as desired. J

Let m ≥ 3 and w ≥ 1 be integers. A random (m,w)-subcircuit C of C is a monotone
Y -subcircuit of C for Y ⊆ {x1, . . . , xn} being a random subset of variables with each variable
included in Y independently with probability 1− ε, where

ε :=
{

1
w if w ≥ m,
1− 1

m if w < m.

The next lemma is just a refinement of [17, Lemma 3].

I Lemma 2.3. Let C be a DeMorgan circuit computing a monotone Boolean function f ,
and C be a random (m,w)-subcircuit of C for m ≥ 3 and w ≥ 1. If a prime implicant p of f
has length at most m, and has negation width at most w in C, then p is produced by C with
probability at least 1/K, where K ≤ 4mw for w = 1, 2, and K ≤ 4 ·min{mw, wm} for w ≥ 3.

Proof. Since the negation width of the prime implicant p in the (deterministic) circuit C is
at most w, the set T (C) of terms produced by C must contain a nonzero term p · r, where
term r consists solely of l ≤ w negated variables. The probability that all these negated l
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variables are set to 0 (and hence, that the term r is set to 1) is at least (1− ε)l ≥ (1− ε)w.
The probability that none of the t ≤ m variables of p is set to 0 is εt ≥ εm. So, the prime
implicant p is produced by C with probability at least α := εm(1− ε)w. So, it remains to
show that α ≥ 1/K. When doing this, we will use two simple facts: (1− 1/t)t ≥ 1/4 holds
for all integers t ≥ 2, and ts ≥ st holds for all integers 3 ≤ t ≤ s.

Now, if w ≥ m, then ε = 1/w, and we obtain α = (1/w)m(1− 1/w)w ≥ 1
4w
−m ≥ 1

4m
−w,

where the last inequality holds because m ≥ 3. If w < m, then ε = 1− 1/m, and we obtain
α = (1− 1/m)m(1/m)w ≥ 1

4m
−w ≥ 1

4w
−m, where the last inequality holds, as long as w ≥ 3.

In both cases, we have that α is at least 1
4 ·max{m−w, w−m} ≥ 1/K, as desired. If w = 1 or

w = 2, then w < m, and we have α ≥ 1
4m
−w. J

3 Proof of Theorem 1.6

Theorem 1.6 is a direct consequence of the following lemma.

I Lemma 3.1 (Reduction lemma). Let f be a monotone Boolean function with all prime
implicants of length at most m. If C is a DeMorgan circuit of negation width w computing
f , then there exist at most K = 8 ·min{mw, wm} · log |PI(f)| monotone sub-circuits of C
whose OR also computes f .

In particular, if C has size s and depth d, then the resulting monotone circuit has size
s+ ≤ (s + 1)K and depth d+ ≤ d + logK. Hence, the lower bounds s ≥ s+/K − 1 and
d ≥ d+ − logK claimed in Theorem 1.6 follow.

Proof. Let C be a random (m,w)-subcircuit of C, and take K independent copies C1, . . . ,

CK of C. Since the circuit C has negation width w, every prime implicant of f must have
negation width at most w in C. By Lemma 2.3, we have Pr {p ∈ T (C)} ≥ 1/t for every
prime implicant p ∈ PI(f) of f , where t := 4 ·min{wm,mw}. Note that K/t = 2 · log |PI(f)|.
Hence, for every prime implicant p ∈ PI(f), we have

Pr {p 6∈ T (Ci) for all i = 1, . . . ,K} ≤ (1− 1/t)K ≤ e−K/t ≤ |PI(f)|−2 .

By the union bound, the probability that some prime implicant of f is produced by none of
the circuits C1, . . . ,CK is strictly smaller than 1. Consequently, there must be a sequence
C1, . . . , CK of realizations of these circuits such that every prime implicant of f is produced
by at least one of these circuits. Consider the monotone Boolean function h = h1 ∨ · · · ∨ hK ,
where hi is the (monotone) Boolean function computed by Ci. By Lemma 2.2, we have
h ≤ f . On the other hand, the inclusion PI(f) ⊆ T (C1) ∪ · · · ∪ T (CK) yields the converse
inequality f ≤ h. So, the OR of the circuits C1, . . . , CK computes h = f , as desired. J

4 Proof of Theorem 1.8

Let f be a monotone Boolean function with all prime implicants of length at most m. Let C
be a DeMorgan circuit of average negation width w computing f . Recall that a monotone
Boolean function h K-approximates a monotone Boolean function f if there is an OR g of at
least a 1/K portion of prime implicants of f such that g ≤ h ≤ f holds. Now suppose that
every monotone circuit K-approximating f for K = 8 ·min{m2w, (2w)m} requires t gates.
Our goal is to show that then the circuit C must have at least t gates.

STACS 2019



41:8 Circuits of Bounded Negation Width

Since the average negation width of C is w, some set P ⊆ PI(f) of |P | ≥ 1
2 |PI(f)| prime

implicants of f have negation width at most 2w in C. Let C be a random (m,w)-subcircuit
of C. By Lemma 2.3, we have Pr {p ∈ T (C)} ≥ 2/K for every prime implicant p ∈ P . So, the
expected number of prime implicants p ∈ P produced by C is at least 2|P |/K ≥ |PI(f)|/K.

There must therefore be a realization C+ of C such that the set P ′ = P ∩ T (C+) has
|P ′| ≥ |PI(f)|/K terms. Let g be the OR of the terms in P ′, and h be the monotone Boolean
function computed by C+. Since P ′ ⊆ T (C+), we have g ≤ h, while the second inequality
h ≤ f follows from Lemma 2.2. This means that the circuit C+ K-approximates f and, by
our assumption about the function f , the monotone circuit C+ and, hence, also the original
(non-monotone) circuit C must have at least t gates, as desired. J

5 Proof of Theorem 1.9

It is long known that DeMorgan formulas can be balanced: every DeMorgan formula of size
s can be simulated by a DeMorgan formula of depth at most c log s. This was first proved
by Spira [27] with c < 3.42, while the best currently known constant c < 1.73 is due to
Khrapchenko [14].

In our context (when the negation width of formulas is bounded), the following natural
question arises: can also DeMorgan formulas of bounded negation width be balanced without
increasing the negation width of the resulting (balanced) formulas? The question is nontrivial
because Spira’s argument, as well as subsequent ones introduce negation gates applied to
sub-formulas (not just to input variables), which may result in a much larger negation width.

We therefore will argue a bit differently: we first show that monotone formulas can be
turned into balanced formulas with an additional property that all terms produced by the
original formula are also produced by the balanced formula. As before, for a DeMorgan
circuit or formula F , T (F ) denotes the set of terms produced by F . Two formulas are
equivalent if they compute the same function.

I Lemma 5.1. For every monotone formula F of size s, there is an equivalent monotone
formula F ′ of depth at most 3 log s such that T (F ) ⊆ T (F ′).

Proof. Let F be a monotone formula of size s. Our goal is to show that there is an equivalent
monotone formula F ′ of depth at most 3 log s such that T (F ′) ⊇ T (F ). That is, the balanced
formula F ′ produces all terms produced by the original formula F .

We argue by induction on s. The claim is trivially true for s = 2 (just take F ′ = F ).
Now assume that the claim holds for all formulas with fewer than s leaves, and prove it for
formulas with s leaves. Take an arbitrary monotone formula F with s leaves. By walking
from the output-gate of F we can find a sub-formula H such that H has ≥ s/2 leaves but its
left and right sub-formulas each have < s/2 leaves. Now replace the sub-formula H of F by
constants 0 and 1, and let F0 and F1 be the resulting formulas. The key observation (already
made by Brent, Kuck and Maruyama [4], and Wegener [30]) is that, due to the monotonicity,
F1(x) = 0 implies F0(x) = 0. Thus the formula (H ∧ F1) ∨ F0 is equivalent to F .

The formulas F0 and F1 as well as the left and right sub-formulas of H each have at most
s/2 leaves. By the induction hypothesis, F0 and F1 can be replaced by formulas F ′0 and F ′1
of depth at most 3 log(s/2), and the formula H can be replaced by a formula H ′ of depth at
most 1 + 3 log(s/2) such that

T (F1) ⊆ T (F ′1) , T (F0) ⊆ T (F ′0) and T (H) ⊆ T (H ′) . (1)
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Thus, the resulting entire formula

F ′ = (H ′ ∧ F ′1) ∨ F ′0 (2)

is equivalent to F and has depth at most 2 + 1 + 3 log(s/2) = 3 log s.
It remains to show that the set T (F ′) of terms produced by the (balanced) formula

F ′ satisfies T (F ′) ⊇ T (F ). Let Fz be the formula obtained from F by replacing the sub-
formula H by a new variable z. Then the set of terms produced by Fz has the form
T (Fz) = ({z}∗Q)∪R, where Q is some set of terms, R consists of all terms in T (Fz) with no
occurrences of the variable z, and T1 ∗T2 stands for the set of terms {t1∧ t2 : t1 ∈ T1, t2 ∈ T2}.
This yields

T (F ) = [T (H) ∗Q] ∪R , T (F1) = Q ∪R and T (F0) = R . (3)

So,

T (F ′) (2)= [T (H ′) ∗ T (F ′1)] ∪ T (F ′0)
(1)
⊇ [T (H) ∗ T (F1)] ∪ T (F0)

(3)= [T (H) ∗ (Q ∪R)] ∪R ⊇ [T (H) ∗Q] ∪R (3)= T (F ) . J

Proof of Theorem 1.9. Let f be a monotone Boolean function, and w ≥ 0. Suppose that f
can be computed by a DeMorgan formula G = G(x, x) of size s and negation width w. Our
goal is to show that then f can be computed by a DeMorgan formula of negation width at
most w and depth at most 3 · log s.

Replace all negated input variables xi in G by new variables yi, and consider the monotone
formula F = G(x, y). Since the formula G has negation width w, we know that the monotone
formula F has the following property:

(a) for every prime implicant p =
∧
i∈S xi of f there is a term p · r ∈ T (F ) with r =

∧
j∈T yj ,

T ∩ S = ∅ and |T | ≤ w.

Apply Lemma 5.1 to the formula F (x, y). This gives us a monotone formula F ′(x, y) of
depth at most 3 log s whose set T (F ′) of produced terms contains all terms produced by the
formula F . This latter property implies that the (balanced) formula F ′ also has property (a).
So, if we replace back in F ′(x, y) the input variables yi by negated variables xi, the obtained
(also balanced) DeMorgan formula F ′′(x, x) computes our function f and has negation width
w, as desired. J

6 Explicit lower bounds

For a monotone Boolean function f(x1, . . . , xn), Cw(f) will denote the minimum size of a
DeMorgan circuit of negation width w computing f , while C+(f) will denote the minimum
size of a monotone circuit computing f . In the case of DeMorgan formulas, these measures
are denoted by Lw(f) and L+(f); in this case, the size of a formula is the number of leaves
of the underlying tree. Let also Dw(f) denote the minimum depth of a DeMorgan circuit of
negation width w computing f , and let D+(f) denote the minimum depth of a monotone
circuit computing f .

Theorem 1.6 directly yields the following lower bounds on the size and depth of DeMorgan
circuits of bounded negation width. Let f(x1, . . . , xn) be a monotone Boolean function with
M prime implicants, each of length at most m. Then for any w ≥ 0, we have

Cw(f) ≥ C+(f)
K

− 1 , Lw(f) ≥ L+(f)
K

− 1 and Dw(f) ≥ D+(f)− logK , (4)
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where

K = 8 ·min{mw, wm} · logM . (5)

The k-clique function CLIQUE(n, k) has
(
n
2
)
variables, one for each edge of the complete

graph Kn on [n] = {1, . . . , n}. Every assignment of Boolean values to these variables specifies
a subgraph of Kn, and the function accepts the assignment if and only if the specified graph
contains a complete graph on k or more vertices; note that we do not require k to be an
integer.

I Corollary 6.1 (Small cliques). There are absolute constants c1, c2 > 0 such that, if f =
CLIQUE(n, 3), and w ≤ nε for ε > 0, then

c1n
3−4ε ≤ Cw(f) ≤ c2n3−ε/4 .

Proof. Here we only show the lower bound; the proof of the upper bound Cw(f) = O(n3−ε/4)
is given in Appendix A.2 (see Claim A.4). As shown by Alon and Boppana [1, Lemma 3.14],
C+(f) = Ω

(
n3/ log3 n

)
holds. Since f has M =

(
n
3
)
≤ n3 prime implicants, each of length

m = 3, the parameter K in Equation (5) is at most a constant times wm · logM ≤ 3n3ε logn,
and Equation (4) yields the desired lower bound Cw(f) ≥ C+(f)/K − 1 = Ω(n3−4ε). J

Amano and Maruoka [2, Theorem 4.2] proved that, for any 3 ≤ k ≤ n2/3, DeMorgan
circuits of negation width w = o(

√
k) computing f = CLIQUE(n, k) require 2Ω(

√
k) gates.

(In their definition of the negation width [2, Definition 4.1], they use different terminology,
but it is not difficult to see that their measure coincides with that given in our Definition 1.2.)
Note, however, that here the allowed negation width w = o(

√
k) is much smaller than the

clique size k. When combined with the lower bound of Alon and Boppana [1] for cliques of
moderate (logarithmic) size, Equation (4) directly yields super-polynomial lower bounds also
when the allowed negation width is much larger, even exponential, in the cliques size.

I Corollary 6.2 (Moderate cliques). Let f = CLIQUE(n, k) with k = log1/3 n. Then Cw(f) =
nΩ(k) holds for w = 2k.

Proof. It is shown in [1, Theorem 3.16] that C+(f) ≥ nk/(8k2ek logn)k holds for any
3 ≤ k ≤ 1

4 logn. In particular, for k = log1/3 n, we have C+(f) = nΩ(k). On the other
hand, since f has |PI(f)| =

(
n
k

)
≤ nk prime implicants, each of length m =

(
k
2
)
≤ k2, the

parameter K in Equation (5) is at most a constant times wm · logM ≤ 2k3
k logn ≤ n log2 n,

and Equation (4) yields Cw(f) ≥ C+(f)/K − 1 = nΩ(k). J

I Corollary 6.3 (Large cliques). Let f = CLIQUE(n, n/2). If w ≤ εn/ logn for a sufficiently
small constant ε > 0, then Dw(f) = Ω(n).

Proof. Raz and Wigderson [22, Corollary 4.1] have proved that D+(f) = Ω(n). Since f has
M =

(
n
n/2
)
≤ 2n prime implicants, each of length m =

(
n/2
2
)
≤ n2, the logarithm of the

parameter K in Equation (5) is at most a constant times w logm+ log logM = O(w logn).
Equation (4) yields Dw(f) ≥ D+(f)− logK = D+(f)−O(w logn) = Ω(n), as desired. J

I Corollary 6.4. If f = CLIQUE(n, n/2), then Lw(f) = 2Ω(n) holds for DeMorgan formulas
of negation width w = o(n/ logn).

Proof. The desired lower bound follows directly from Corollary 6.3 and our refinement of
Spira’s depth-reduction given in Theorem 1.9. J
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I Corollary 6.5 (Tardos’ function). There is a monotone Boolean function Tn of n variables
such that Tn can be computed by a DeMorgan circuit of polynomial in n size, but Cw(Tn) =
2Ω(n1/7) holds when the allowed negation width is w ≤ n1/7.

Proof. Tardos [29] observed that an efficient algorithm for computing the Lovász theta
function, designed by Grötschel, Lovász and Schrijver [8], gives us a monotone Boolean
function Tn of n =

(
v
2
)
variables which is computable by DeMorgan circuits of polynomial

in n size, and shares common properties with Clique functions sufficient for Alon and
Boppana [1] to yield a lower bound C+(Tn) = 2Ω(v/ log v)1/3 = 2Ω(n/ logn)1/6 . On the other
hand, the parameter K in Equation (5) is exponential in at most a constant times w logn ≤
n1/7 logn � (n/ logn)1/6. So, Equation (4) immediately yields the claimed lower bound
Cw(Tn) ≥ C+(Tn)/K − 1 = 2Ω(n1/7) for circuits of negation width w = n1/7. J

I Remark 6.6. Note that the total numberN of variables in each clique function CLIQUE(n, k)
is N =

(
n
2
)

= Θ(n2). The highest known lower bound on the monotone circuit complexity
of an explicit Boolean function of N variables was proved by Harnik and Raz [10], and is
exponential in (N/ logN)1/3 Recently, Pitassi and Robere [19] gave an explicit monotone
Boolean function f of N variables such that D+(f) = Ω(N). The lower bound in Equation (4)
implies that any (non-monotone) DeMorgan circuit of negation width w = εN for a sufficiently
small constant ε > 0 must have linear depth Ω(N). Together with Theorem 1.9, this result
implies a truly exponential lower bound Lw(f) = 2Ω(N) on the size of DeMorgan formulas of
negation width w = εN . Note that the ultimate goal is to prove lower bounds for DeMorgan
circuits of negation width w = N (or only w = N −m, where m is the minimum length of a
prime implicant): these bounds then would hold for unrestricted circuits.

Finally, let us give an application of our Theorem 1.8 concerning DeMorgan circuits of
bounded average negation width. As we already mentioned in Section 1.3, in order to apply
this theorem, we need lower bounds on the size of monotone circuits that only approximate a
given monotone Boolean function (see Definition 1.7).

Fortunately, known lower bound arguments for monotone circuits (see, for example, [13,
Chapter 9] and the literature cited herein) work also when the monotone circuits are only
required to produce a large enough subset of prime implicants (not necessarily all prime
implicants). Just to give an example, let us show the following simple consequence of [12,
Theorem 3.4].

I Lemma 6.7. Let 3 ≤ k ≤
√
n, and let f be a monotone Boolean function which rejects all

graphs of chromatic number at most k− 1, and accepts a 1/K-fraction of all k-cliques. Then
C+(f) ≥ 2Ω(

√
k)/K.

Proof. Every q-coloring h : [n] → [q] of the vertices of Kn defines the graph Gh whose
edges are pairs of vertices receiving the same color. Note that the chromatic number of the
complement of every Gh does not exceed q; so, for q := k− 1, the complements of graphs Gh
must be rejected by f . An s-forest is a forest with s edges.

As shown in [12, Theorem 3.4], if f can be computed by a monotone circuit of size t,
then for any integer parameters 1 ≤ r, s ≤ n− 1 there exist a family of t · (2s)2r r-cliques, a
family of t · (2r)2s s-forests, and a set E of r2 edges such that at least one of the following
two assertions holds:
(1) every k-clique accepted by f contains at least one of the given r-cliques;
(2) for every q-coloring h, the graph Gh either intersects E or contains at least one of the

given s-forests.
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Every r-clique is contained in exactly
(
n−r
k−r
)
k-cliques. So, under the first alternative (1),

the size t of the circuit must be at least
(
n
k

)
/K divided by (2s)2r(n−r

k−r
)
, which is at least

(n/4ks2)r/K. On the other hand, out of all qn possible q-colorings h of the vertices of Kn,
at most qn−l of the graphs Gh can contain a fixed forest with l edges. This is directly shown
in the proof of Theorem 3.4 in [12], but also follows from the fact that random q-coloring
colors two vertices by the same color with probability 1/q, and these events are independent
for edges in a forest. So, under the second alternative (2), the size t of the circuit must be
at least qn − r2 · qn−1 = qn(1− r2/q) divided by (2r)2sqn−s which, for any r ≤

√
q/2, is at

least 1
2 (k/4r2)s.

By taking the parameters r := b
√
k/16b and s := b

√
n/8kc, the first alternative yields

a lower bound t ≥ 2r/K, while the second one yields t ≥ 1
24s ≥ 2s. Since our assumption

k ≤
√
n yields s ≥ r, the desired lower bound t ≥ 2r/K ≥ 2Ω(

√
k)/K follows. J

I Corollary 6.8. Let f = CLIQUE(n, k) for k ≤
√
n. Then every DeMorgan circuit of

average negation width w = o(
√
k/ log k) computing f must have 2Ω(

√
k) gates.

Proof. Lemma 6.7 implies that, for every K ≥ 1, every monotone circuit K-approximating
f requires at least t = 2Ω(

√
k)/K gates. The length of prime implicants of f is m =

(
k
2
)
. So,

by taking K := 8m2w = 2o(
√
k), Theorem 1.8 yields the desired lower bound on the size t of

any DeMorgan circuit of average negation width w computing f . J

The aforementioned result [12, Theorem 3.4] holds also for monotone circuits with
unbounded fanin AND and OR gates. The reduction lemma (Lemma 3.1) also holds for
DeMorgan circuits with unbounded fanin AND and OR gates. So, Corollary 6.8 holds for
DeMorgan circuits with unbounded fanin gates.

7 Final remarks

The measure of the orientation weight of a circuit over {∨,∧,¬}, considered by Koroth and
Sarma [16], is the minimum number w such that, for every gate u, the function fu computed
at u is monotone in at least n− w variables. In circuits of nonzero orientation w, negations
are allowed to be applied to inner gates (not only to input variables). On the other hand,
the (functional) use of such NOT gates is severely restricted: the function computed at each
NOT gate in such a circuit cannot depend on more than 2w variables.

To see this, let g = ¬h be the function computed at some NOT gate, and h the function
computed at its input. Let X be the set of variables on which g depends. We know that
neither g nor h can be non-monotone in more than w variables. If g is monotone in a
variable xi ∈ X, then h is non-monotone in xi. So, g cannot be monotone in more than w
variables of X. Since, due to the orientation width restriction, the function g itself cannot
be non-monotone in more than w variables, the desired upper bound |X| ≤ 2w follows.

Our relaxation (the negation width, see Definition 1.2) is of a more “syntactic” nature
than that of the orientation weight in Koroth and Sarma [16], but is also of a similar spirit.
Instead of requiring that the produced extensions of prime implicants can only use negated
variables from one fixed subset of ≤ w negated variables (as in [21, 9]), we now allow the
extensions to use different subsets of ≤ w negated variables for different prime implicants.
But, in contrast to [16], we have no restrictions on functions computed at intermediate gates:
only terms produced at the end do matter. And only nonzero terms do matter: produced
zero terms do not contribute to the negation width at all. The question of how (if at all) the
orientation width of DeMorgan circuits is related to their negation width remains open.
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Finally, let us note that our reduction to monotone circuits works also for switching-and-
rectifier networks. Recall that such a network (known also as a nondeterministic branching
program) is a directed acyclic graph with one distinguished source node s of zero indegree,
and one distinguished target node t of zero outdegree. Every edge is either labeled by a literal
or is unlabeled. Every s-t path defines a (not necessarily nonzero) term: just take the AND
of all labels of edges along this path. So, the set of terms produced by the network is now
just the set of terms defined by the s-t paths. The function f computed by the network is the
OR of terms defined by all s-t paths. A network is monotone if it has no negated variables
as labels. In a switching network (or contact scheme) the underlying graph is undirected.

The negation width of the network can be analogously defined as the minimal number
w such that for every prime implicant p of f there is an s-t path defining an extension
of p by at most w negated variables. This means that for every input a ∈ f−1(1) with a
minimal number of 1s, there must be an s-t path along which all 1-positions and at most w
0-positions of a are tested. It is easy to see that the reduction lemma (Lemma 3.1) can be
immediately adapted (by just replacing the term “sub-circuit” by “sub-network”) to hold
also for switching networks as well as for switching-and-rectifier networks with the same
blow-up parameter K.

Potechin [20] has proved an interesting tradeoff between monotone switching networks
and monotone switching-and-rectifier networks computing the s-t connectivity function
STCON(n) on directed n-vertex graphs: every monotone switching network computing this
function must have at least nΩ(logn) nodes. On the other hand, although this was not
mentioned in [20], the well-known dynamic programming algorithm of Bellman and Ford
gives a monotone switching-and-rectifier network for STCON(n) with only O(n2) nodes and
O(n3) edges. Lemma 3.1 (adapted to switching networks) extends Potechin’s lower bound to
non-monotone switching networks of negation width w = o(logn): the blow-up parameter K
is in this case at most no(logn).
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A Motivating examples

We want explicit examples of monotone Boolean functions f(X) of |X| = n variables such
that f requires large monotone circuits, but has small circuits when a moderate negation
width w = nε for an arbitrarily small constant ε > 0 is allowed. Such functions can be
constructed using the following two simple observations: (1) negation width is always at
most the total number of input variables, and (2) OR gates cannot increase the negation
width.

A.1 Super-polynomial gaps
I Example A.1 (Logical permanent). The logical permanent function Perm is a monotone
Boolean function of m2 variables which takes a Boolean m × m matrix Y as input, and
outputs 1 if and only if Y contains m 1-entries no two of which lie in the same row or the
same column. Let 0 < ε < 1/2 be an arbitrarily small constant, and assume for simplicity
that both m = nε and r = n1−ε are integers. Consider the monotone Boolean function
f(X) whose variables are arranged into an n× n matrix X. Split X into r2 disjoint m×m
submatrices. The function f accepts X if and only if Perm(Y ) = 1 holds for at least one of
these submatrices Y . The monotone circuit complexity of f is at least the monotone circuit
complexity of Perm which, as shown by Razborov [24], is mΩ(logm) = nΩ(logn).

On the other hand, it is well known that Perm can be computed by a DeMorgan circuit of
size polynomial in m; see, for example, Hopcroft and Karp [11]. The negation width of such
a circuit is clearly at most the number m2 of its input variables. So, since at OR gates the
negation width is not increased, we obtain a DeMorgan circuit for f of size r2 ·mO(1) = nO(1)

and negation width w ≤ m2 = n2ε.

I Example A.2 (Tardos’ function). Let 0 < ε < 1 be an arbitrarily small constant, and
assume for simplicity that both m = nε and r = n1−ε are integers. As we already mentioned
in the proof of Corollary 6.5, Tardos [29] exhibited a monotone Boolean function Tm of
m =

(
v
2
)
variables which can be computed by a DeMorgan circuit of polynomial in m size,

but the monotone circuit complexity of Tm is exponential in (v/ log v)1/3 = mΩ(1). Let fn
be a monotone Boolean function of n = r ·m variables defined as the OR of r copies of Tm
on disjoint m-element sets of variables. Then the monotone circuit complexity of fn is also
exponential in mΩ(1) = nΩ(1), but the function fn can be computed by a DeMorgan circuit
of size r · nO(1) = nO(1) if the negation width w = m (= nε) is allowed.

These two examples show that the size of monotone circuits (DeMorgan circuits of
negation width w = 0) can be substantially (even super-polynomially) reduced by allowing
moderate negation width w = nε. Our next two examples (of the triangle function and
threshold functions) show that non-trivial savings are also possible for monotone Boolean
functions that have small (polynomial) monotone circuits.

A.2 The triangle function
Our goal is to show that for every constant ε > 0, the triangle function CLIQUE(n, 3) can
be computed by a DeMorgan circuit of negation width w = nε using a sub-cubic number
O(n3−ε/4) of gates. The multi-output “cousin” of the triangle function is the Boolean matrix
multiplication operator BMM(n) : {0, 1}2n2 → {0, 1}n2 . This operator takes two n × n

Boolean matrices X = (xi,j) and Y = (yi,j) as inputs, and computes n2 monotone Boolean
functions fi,j =

∨n
k=1 xi,kyk,j . Note that now, instead of just one output gate, every circuit

computing BMM(n) has n2 output gates. The negation width of such a (multi-output)
circuit is just the maximum negation width of its sub-circuits computing the functions fi,j .
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Fast algebraic algorithms for arithmetic matrix multiplication [28, 7, 32] yield circuits
over {∨,∧,¬} for the n × n Boolean matrix product with O(nω) gates, where ω is the
so-called matrix multiplication exponent; after the Strassen [28] breakthrough algorithm
showed that ω < 2.807, this exponent was pushed down by Vassilevska Williams [32] and
Le Gall [7] to ω < 2.373. This can be used to show that the circuit complexity of BMM(n)
remains sub-cubic also when the negation width of circuits is lowered from the trivial w = 2n
(unrestricted circuits) to w = nε for an arbitrarily small constant ε > 0.

B Claim A.3. For every 0 < ε ≤ 1, the operator BMM(n) can be computed by a DeMorgan
circuit of negation width w = n2ε and size O(n3−ε/2).

Proof. We will use essentially the same argument as was used in [17, Proposition 12] to show
an upper bound O(n3−c) for an unspecified constant c = cε > 0.

Set m := 1
2n

ε, and assume (for the sake of simplicity) that both m and r := n/m are
integers. Partition each of the given n×nmatricesX and Y into r2 disjointm×m submatrices.
The product of each pair of such submatrices can be computed by a DeMorgan circuit of size
O(mω); the negation width of each of these circuits is trivially at most 2m2 = n2ε. So, it is
enough to compute r3 products of m×m submatrices, and to use additional rn2 OR gates to
compute all n2 entries of the product matrix X ·Y . Since the negation width can only increase
at AND gates, the negation width of the resulting circuit remains the same, that is, remains at
most w = n2ε. Since r = n/m with m = 1

2n
ε, and since 3− ω ≥ 1/2, the size of the resulting

circuit is at most a constant times r3mω + rn2 = n3/m3−ω + n3/m ≤ 2n3/
√
m ≤ 3n3−ε/2,

as desired. C

B Claim A.4. For every 0 < ε ≤ 1, the triangle function f = CLIQUE(n, 3) can be computed
by a DeMorgan circuit of negation width w = n2ε and size O(n3−ε/2).

Proof. By Claim A.3, all n2 entries Y = (yi,j) of the Boolean matrix product Y = X ·X of the
adjacency n× n matrix of a given graph G can be simultaneously computed by a DeMorgan
circuit of negation width w = n2ε and size O(n3−ε/2). So, the function f =

∨
i<j yi,j ∧ xi,j

can be computed by taking a componentwise AND of Y and X, and computing the OR of
all entries of the resulting matrix. C

A.3 Threshold functions
Recall that the threshold-k function Thnk accepts a Boolean input of length n if and only
if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [15]). On the other hand, we will now show that Thnk can be
computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed.

B Claim A.5. If w = k3, then Cw(Thnk ) = O(n).

Proof. For the sake of simplicity of argumentation, assume that the number of variables
n is divisible by the parameter s ≥ k (to be chosen latter). Divide the sequence X of
|X| = n Boolean variables into m := n/s consecutive segments X1, . . . , Xm of length s, and
let Qjl = Thsl (Xj) be the threshold-l function on the s variables in the jth segment.

It is well known (see, for example, [31, Sect. 3.4]) that all functions Thn1 ,Thn2 , . . . ,Thnn
can be simultaneously computed by a (non-monotone) DeMorgan circuit of size O(n). So,
for every j = 1, . . . ,m, all the functions Qj0, Q

j
1, . . . , Q

j
k can be simultaneously computed

by a DeMorgan circuit of size O(s). It follows that all functions Qjl for j = 1, . . . ,m and
l = 1, . . . , k can be simultaneously computed by a DeMorgan circuit of size at most a constant
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times s · (n/s) = n. We now use a simple dynamic program to compute all the Boolean
functions P jl such that P jl = 1 if and only if there are at least l ones in the first j segments.

As basis functions we take P j0 = Qj0 = 1 (constant 1 functions) for all j = 1, . . . ,m,
P 1
l = Q1

l for all l = 1, . . . , k, and construct a DeMorgan circuit C using the recurrences

P jl =
l∨

r=0
P j−1
l−r ∧Q

j
r . (6)

It is easy to see that the whole input sequence contains at least k ones iff Pmk = 1. For the jth
segment, we account O(k2) additional gates implementing the recurrences for P jl . Hence, the
size of the DeMorgan circuit C computing Pmk is at most a constant times mk2 = (n/s)k2.

To upper-bound the negation width of the resulting circuit, just expand the recursion (6).
We then see that Pmk is computed as the OR of ANDs Q1

r1
(X1) ∧Q2

r2
(X2) ∧ · · · ∧Qmrm

(Xm)
over all sequences r1, . . . , rm of nonnegative integers satisfying r1 + · · ·+ rm = k; recall that
Qj0 = 1 for all j. Since at most k of the rjs in each such sequence can be nonzero, at most
k of the functions Qjrj

can be not constant 1 functions. So, every term produced by the
circuit C is of the form q =

∧
j∈J qj for some subset J ⊆ [m] of size |J | ≤ k, where each qj is

a (not necessarily nonzero) term containing variables or their negations only from the jth
segment Xj . So, if q is a nonzero term, then it can have at most

∑
j∈J |Xj | ≤ ks distinct

literals and, hence also at most ks distinct negated variables. In particular, this means that
all nonzero terms produced by the circuit C including the extensions of prime implicants of
the computed by C function Pmk , have at most ks distinct negated variables.

So, the constructed circuit C for the threshold-k function Thnk has negation width w ≤ ks
and size of order (n/s)k2. It remains to take the segment-length s = k2. This gives us a
circuit of linear size O(n) and negation width at most k3, as desired. C
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