6 research outputs found

    Recommender Systems based on Linked Data

    Get PDF
    Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data

    Representation and statistical properties of deep neural networks on structured data

    Get PDF
    Significant success of deep learning has brought unprecedented challenges to conventional wisdom in statistics, optimization, and applied mathematics. In many high-dimensional applications, e.g., image data of hundreds of thousands of pixels, deep learning is remarkably scalable and mysteriously generalizes well. Although such appealing behavior stimulates wide applications, a fundamental theoretical challenge -- curse of data dimensionality -- naturally arises. Roughly put, the sample complexity in practical applications is significantly smaller than that predicted by theory. It is a common belief that deep neural networks are good at learning various geometric structures hidden in data sets. However, little theory has been established to explain such a power. This thesis aims to bridge the gap between theory and practice by studying function approximation and statistical theories of deep neural networks in exploitation of geometric structures in data. -- Function Approximation Theories on Low-dimensional Manifolds using Deep Neural Networks. We first develop an efficient universal approximation theory functions on a low-dimensional Riemannian manifold. A feedforward network architecture is constructed for function approximation, where the size of the network grows depending on the manifold dimension. Furthermore, we prove efficient approximation theory for convolutional residual networks in approximating Besov functions. Lastly, we demonstrate the benefit of overparameterized neural networks in function approximation. Specifically, we show that large neural networks are capable of accurately approximating a target function, and the network itself enjoys Lipschitz continuity. -- Statistical Theories on Low-dimensional Data using Deep Neural Networks. Efficient approximation theories of neural networks provide valuable guidelines to properly choose network architectures, when data exhibit geometric structures. In combination with statistical tools, we prove that neural networks can circumvent the curse of data dimensionality and enjoy fast statistical convergence in various learning problems, including nonparametric regression/classification, generative distribution estimation, and doubly-robust policy learning.Ph.D

    Handbook on Social Protection Systems

    Get PDF
    This exciting and innovative Handbook provides readers with a comprehensive and globally relevant overview of the instruments, actors and design features of social protection systems, as well as their application and impacts in practice. It is the first book that centres around system building globally, a theme that has gained political importance yet has received relatively little attention in academia.illustrato
    corecore