
REPRESENTATION AND STATISTICAL PROPERTIES OF DEEP NEURAL
NETWORKS ON STRUCTURED DATA

A Dissertation
Presented to

The Academic Faculty

By

Minshuo Chen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Engineering

H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2022

© Minshuo Chen 2022

REPRESENTATION AND STATISTICAL PROPERTIES OF DEEP NEURAL
NETWORKS ON STRUCTURED DATA

Thesis committee:

Dr. Tuo Zhao, Advisor
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Wenjing Liao, Co-advisor
Department of Mathematics
Georgia Institute of Technology

Dr. Alexander Shapiro
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Yajun Mei
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Hongyuan Zha
School of Data Science
Chinese University of Hong Kong, Shen
Zhen

Date approved: June 22nd, 2022

To my family.

ACKNOWLEDGMENTS

First and foremost I would like to express deep gratitude to my advisors, Dr. Tuo

Zhao and Dr. Wenjing Liao. They not only gave me guidelines for acquiring advanced

knowledge in interdisciplinary areas, but encouraged me to continuously learn and practice.

Their research vision, patience, and enthusiasm are indispensable enzyme to my growth

during the five-year study. I am extraordinarily grateful for the opportunity they have given

to me as a part of their group over the past exciting years.

I would like to extend my gratitude to each and every member in my thesis committee.

I am sincerely appreciating Dr. Alexander Shapiro for his willingness to serve on my thesis

committee. I still remembered the encourage from Dr. Yajun Mei, when I first came to

Georgia Tech for a campus visit five years ago. I have benefited a lot from collaborating

with Dr. Hongyuan Zha, absorbing his insightful advice.

Special thanks are due to faculty outside my dissertation committee over the years – Dr.

Jason Lee, Dr. Molei Tao, Dr. Hua Wang, Dr. Mengdi Wang, Dr. Zhaoran Wang, Dr. Yao

Xie, Dr. Lin F. Yang, Dr. Zhuoran Yang, Dr. Haomin Zhou – I have learned much from all

of you, and I look forward with anticipation to our future interactions. I am also indebted to

my supervisors, Yu Bai and Pengcheng He, during my internships at Salesforces research

and Microsoft. They exposed me to the broader area of machine learning and deep learning.

In my graduate study, I am fortunate to interact with a number of talented gradu-

ate/undergraduate students, within or outside my research group. I would like to thank

Zhehui Chen, Siawpeng Er, Xiang Ji, Haoming Jiang, Yan Li, Hao Liu, Tianyi Liu, Yuqing

Wang, and Yujia Xie for interesting and fruitful collaborations. I am more than eager to see

our paths crossing in the near future. In addition, I extend my thanks to Zaiwei Chen, Chen

Liang, Guanyi Wang, Liyan Xie, and Shixiang Zhu for many joint activities in Atlanta, e.g.,

hiking and badminton. These are enjoyable diversions from intensive days.

The author gratefully acknowledges the support from H. Milton Steward School of

iv

Industrial and Systems Engineering and Machine Learning program at Georgia Tech. Last

but not the least, my deep thanks go to my family, without whom I could not complete any

endeavor.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Summary . xiii

Chapter 1: Introduction . 1

1.1 List of Notations . 3

Chapter 2: Preliminary . 5

2.1 Riemannian Manifold . 5

2.2 Function Space . 8

2.2.1 Regularity in Euclidean Space . 8

2.2.2 Regularity on Riemannian Manifold 11

2.3 Neural Network Architecture . 13

2.3.1 Feedforward Neural Network . 13

2.3.2 Convolutional Residual Network 14

Chapter 3: Representation Theory of Neural Networks 17

3.1 Efficient Approximation of Feedforward Neural Networks 19

vi

3.1.1 Proof – Construction of Network Approximator 21

3.2 Efficient Approximation of ConvResNets 30

3.3 Approximation with Smoothness Constraints 32

3.3.1 Benefits of Overparameterized Neural Networks 32

3.3.2 W s,p-approximation in Euclidean Space 33

3.3.3 W s,p-approximation on Manifold 35

3.4 Conclusion and Discussion . 36

Chapter 4: Nonparametric Regression/classification using Neural Networks . . . 38

4.1 Nonparametric Regression . 38

4.1.1 Statistical Estimation Guarantee 41

4.1.2 Proof – Bias-variance Tradeoff . 42

4.2 Nonparametric Classification . 50

4.2.1 Excess Risk Bound . 51

4.3 Conclusion . 53

Chapter 5: Distribution Estimation of Generative Adversarial Networks 54

5.1 Results in A Nutshell . 56

5.2 IPM and Optimal Transport . 58

5.3 Distribution Estimation in Euclidean Space 60

5.4 Distribution Estimation in Low-dimensional Linear Subspace 63

5.5 Comparison with Existing Literature . 68

5.6 Proof Outline . 72

5.6.1 Proof of Distribution Approximation Theory 73

vii

5.6.2 Proof of Statistical Estimation Theory 73

5.6.3 Proof of Statistical Theory in Low-dimensional Space 78

5.7 Conclusion and Discussion . 85

Chapter 6: Offline Doubly-robust Policy Learning using Neural Networks 87

6.1 Personalized Offline Policy Learning . 87

6.1.1 Related Work . 89

6.2 Doubly-robust Learning Framework . 91

6.2.1 Policy Learning with Discrete Action 91

6.2.2 Policy Learning with Continuous Action 94

6.3 Policy Regret Bound . 96

6.3.1 Regret with Discrete Action . 97

6.3.2 Regret with Continuous Action . 106

6.4 Conclusion and Discussion . 114

Chapter 7: Concluding Remarks . 116

7.1 Future Directions . 116

Appendices . 119

Appendix A: Omitted Proofs in Chapter 3 . 120

Appendix B: Omitted Proofs in Chapter 4 . 140

Appendix C: Omitted Proofs in Chapter 5 . 153

Appendix D: Omitted Proofs in Chapter 6 . 198

References . 244

viii

Vita . 263

ix

LIST OF TABLES

1.1 List of notations. 4

5.1 A comparison to closely related works in problem setups and statistical re-
sults. NN stands for neural networks and ‘—’ indicates no specific choice is
given. Weak metric refers to “neural net distance” in [110] and strong met-
ric refers to IPMs with nonparametric discriminative function classes, e.g.,
using 1-Lipschitz discriminative functions corresponds to the Wasserstein-
1 distance. 69

x

LIST OF FIGURES

2.1 Manifolds with large and small reaches. 8

2.2 (a) Convolution of W ∗ Z, where the input is Z ∈ RD×C , and the output is
W ∗ Z ∈ RD×C′ . Here W = {Wj,k,l} ∈ RC′×K×C is a filter where C ′ is
the output channel size, K is the filter size and C is the input channel size.
Wj,:,: is a D × C matrix for the j-th output channel. (b) A convolutional
residual block. 14

3.1 The ReLU network identified by Theorem 3.1. 20

3.2 Curvature decides the number of charts: smaller reach requires more chart. . 23

3.3 Projecting xj using a matched chart (blue) (Uj, ϕj), and an unmatched chart
(green) (Ui, ϕi). 23

3.4 Chart determination utilizes the composition of approximated distance func-
tion d̂2i and the indicator function 1̂∆. 24

3.5 Locally approximate f in each chart (Ui, ϕi) using Taylor polynomials. . . . 26

3.6 The ConvResNet in Theorem 3.4 contains a padding layer, M residual
blocks, and a fully connected (FC) layer. 31

5.1 The architecture of GANs. 54

5.2 Low-dimensional linear structures in X . 64

5.3 Learning data distribution µwith unknown linear structures using generator
in (Eq. 5.9) and discriminator in (Eq. 5.10). 65

6.1 Learned policy π̂DR competes with best in-class policy π∗
NN and best ora-

cle policy π∗
β . [193] analyzed the regret between π̂DR and π∗

NN, while our
analysis applies to π̂DR compared to π∗

β . 101

xi

6.2 The unconstrained policy class is the whole probability simplex with ver-
tices being deterministic polices. The inclusion relation of the neural net-
work policy class and the Hölder policy class indicates that for any Hölder
continuous policy, there is an approximation given by a neural network pol-
icy. 103

6.3 Noise condition in a binary-action scenario. “Large” noise corresponds to
high densities when |µA1(x)− µA2(x)| is small; “Small” noise corresponds
to low densities near the origin. 104

A.1 Illustration of the construction of ζm on the k-th coordinate. 127

A.2 Illustration of ℓ and θ along a parametric curve γ. 133

C.1 Trapezoid function in one dimension. 162

C.2 Illustration of (Base case 1) and (Base case 2). 176

C.3 Demonstration of (Situation 1) with kx = ky +2. We can decompose such
an situation into a serial of alternating (Base case 1) (green) and (Base
case 2) (red). The function value difference can be obtained by aggregating
differences in each base case. 181

xii

SUMMARY

Significant success of deep learning has brought unprecedented challenges to con-

ventional wisdom in statistics, optimization, and applied mathematics. In many high-

dimensional applications, e.g., image data of hundreds of thousands of pixels, deep learning

is remarkably scalable and mysteriously generalizes well. Although such appealing behav-

ior stimulates wide applications, a fundamental theoretical challenge – curse of data dimen-

sionality – naturally arises. Roughly put, the sample complexity in practical applications is

significantly smaller than that predicted by theory. It is a common belief that deep neural

networks are good at learning various geometric structures hidden in data sets. However,

little theory has been established to explain such a power. This thesis aims to bridge the gap

between theory and practice by studying function approximation and statistical theories of

deep neural networks in exploitation of geometric structures in data.

⋆ Function Approximation Theories on Low-dimensional Manifolds using Deep

Neural Networks. Function approximation by neural networks in Euclidean spaces has

been extensively studied in literature; the obtained rate of approximation, however, is ex-

tremely slow in high dimensions.

In Chapter 3, we first develop an efficient universal approximation theory for α-Hölder

functions on a d-dimensional Riemannian manifold isometrically embedded in RD (d ≪

D). A feedforward network architecture is constructed for function approximation, where

the size of the network grows like ϵ−d/α with ϵ being the approximation error.

Furthermore, we prove efficient approximation theory for convolutional residual net-

works in approximating Besov functions. We highlight two important contributions: 1)

Besov functions generalize Hölder functions by allowing inhomogeneous spatially varying

regularity; 2) Convolutional residual networks share the universal approximation ability,

while are free of cardinality constraints on weight parameters. As a consequence, convo-

lutional residual networks are shown to enjoy adaptability to both data intrinsic structures

xiii

and function non-uniform regularity.

The aforementioned theories focus on function approximation in terms of function

value (function L∞-norm). Nonetheless, the constructed neural network approximator can

be highly nonsmooth. In this regard, we demonstrate the benefit of overparameterized neu-

ral networks in function approximation. Specifically, we show that large neural networks

are capable of accurately approximating a target function, and the network itself enjoys

benign Lipschitz continuity. This theory partially justifies the appealing performance and

robustness of deep and wide networks in practice.

⋆ Statistical Theories on Low-dimensional Data Structures using Deep Neural Net-

works. Efficient approximation theories of neural networks provide valuable guidelines to

properly choose network architectures, when data exhibit geometric structures. In combi-

nation with statistical tools, we prove that neural networks can circumvent the curse of data

dimensionality and enjoy fast statistical convergence in various learning problems.

In Chapter 4, we consider nonparametric regression/classification problems. Suppose

for example, the ground truth regression function is α-Hölder continuous and the response

is contaminated by sub-Gaussian noise. By minimizing the empirical squared loss over a

proper neural network class, the obtained empirical risk minimizer converges to the ground

truth at a rate Õ
(
n− α

2α+d

)
, where n is the sample size. Similar results are extended to

binary classification problems.

In Chapter 5, we study distribution estimation using Generative Adversarial Networks

(GANs). The target data distribution has either a nonparametric density function or intrin-

sic low-dimensional structures. In both cases, we show that the data distribution can be

represented as a pushforward distribution by the generator network. We in addition estab-

lish sample complexity bounds of GANs in estimating these distributions under the strong

Wasserstein distance. In particular, we show that GANs are adaptive to intrinsic structures

in data.

In Chapter 6, we consider doubly-robust policy learning using neural networks, when

xiv

the covariate has low-dimensional structures. We show nonasymptotic regret bounds of

the learned policy competing with optimal oracle policies in both discrete action and con-

tinuous action scenarios. This result amplifies the adaptability and flexibility of neural

networks.

xv

CHAPTER 1

INTRODUCTION

Deep learning has made astonishing breakthroughs in various real-world applications, such

as computer vision [1, 2, 3], natural language processing [4, 5, 6], healthcare [7, 8], robotics

[9], etc. For example, in image classification, the winner of the 2017 ImageNet challenge

retained a top-5 error rate of 2.25% [10], while the data set consists of about 1.2 million

labeled high resolution images in 1000 categories. In speech recognition, [11] reported

that deep neural networks outperformed humans with a 5.15% word error rate on the Lib-

riSpeech corpus constructed from audio books [12]. Such a data set consists of approxi-

mately 1000 hours of 16kHz read English speech from 8000 audio books.

The empirical success of deep learning brings new challenges to the conventional wis-

dom of machine learning. Data sets in these applications are in high-dimensional spaces. In

existing literature, a minimax lower bound has been established for the optimal algorithm of

learning Cs functions in RD [13, 14]. Denote the underlying function by f0. The minimax

lower bound suggests a pessimistic sample complexity: To obtain an estimator f̂ for each

Cs function f0 with an ϵ-error, uniformly for all Cs functions (i.e., supf0∈Cs ∥f̂−f0∥L2 ≤ ϵ

with ∥ · ∥L2 denoting the function L2 norm), the optimal algorithm requires the sample size

n ≳ ϵ−
2s+D

s in the worst scenario (i.e., when f0 is the most difficult for the algorithm to

estimate). We instantiate such a sample complexity bound to the ImageNet data set, which

consists of RGB images with a resolution of 224× 224. The theory above suggests that, to

achieve an ϵ-error, the number of samples has to scale as ϵ−224×224×3/s, where the smooth-

ness parameter s is significantly smaller than 224× 224× 3. Setting ϵ = 0.1 already gives

rise to a huge number of samples far beyond practical applications, which well exceeds 1.2

million labeled images in ImageNet. This is known as the curse of data dimensionality.

To bridge the aforementioned huge gap between theory and practice, we take the low

1

dimensional geometric structures in data sets into consideration. This is motivated by the

fact that real-world data sets often exhibit low dimensional structures. Many images con-

sist of projections of a three-dimensional object followed by some transformations, such

as rotation, translation, and skeleton. This generating mechanism induces a small num-

ber of intrinsic parameters [15, 16]. Speech data are composed of words and sentences

following the grammar, and therefore have small degrees of freedom [17]. More broadly,

visual, acoustic, textual, and many other types of data often have low dimensional geo-

metric structures due to rich local regularities, global symmetries, repetitive patterns, or

redundant sampling [18, 19, 20, 21]. It is therefore reasonable to assume that data lie on a

manifold M of dimension d≪ D.

This thesis shows that deep neural networks are adaptive to data intrinsic structures

in function approximation and statistical learning problems, and partially explains why

deep learning is free of the curse of data ambient dimensionality. We summarize the main

contributions as follows.

Function Approximation Theories on Low-dimensional Manifolds using Deep Neural

Networks. In Chapter 3, we first develop an efficient universal approximation theory for α-

Hölder functions on a d-dimensional Riemannian manifold isometrically embedded in RD

(d ≪ D). A feedforward network architecture is constructed for function approximation,

where the size of the network grows like ϵ−d/α with ϵ being the approximation error.

Furthermore, we prove efficient approximation theory for convolutional residual net-

works in approximating Besov functions. We highlight two important contributions: 1)

Besov functions generalize Hölder functions by allowing inhomogeneous spatially varying

regularity; 2) Convolutional residual networks share the universal approximation ability,

while are free of cardinality constraints on weight parameters. As a consequence, convo-

lutional residual networks are shown to enjoy adaptability to both data intrinsic structures

and function non-uniform regularity.

The last result goes beyond function value approximation, and ensures the obtained ap-

2

proximator having good continuity. Specifically, we demonstrate the benefit of overparam-

eterized neural networks in function approximation. We show that large neural networks

are capable of accurately approximating a target function in L∞ norm, and the network

itself enjoys desired Lipschitz continuity. This theory partially justifies the appealing per-

formance and robustness of deep and wide networks in practice.

Statistical Theories on Low-dimensional Data Structures using Deep Neural Networks.

In Chapter 4, we consider nonparametric regression/classification problems. Suppose for

example, the ground truth regression function is α-Hölder continuous and the response is

contaminated by sub-Gaussian noise. By minimizing the empirical squared loss over a

proper neural network class, the obtained empirical risk minimizer converges to the ground

truth at a rate Õ
(
n− α

2α+d

)
, where n is the sample size. Similar results are extended to

binary classification problems.

In Chapter 5, we study distribution estimation using Generative Adversarial Networks

(GANs). The target data distribution has either a nonparametric density function or intrin-

sic low dimensional structures. In both cases, we show that the data distribution can be

represented as a pushforward distribution by the generator network. We in addition estab-

lish sample complexity bounds of GANs in estimating these distributions under the strong

Wasserstein distance. In particular, we show GANs are adaptive to intrinsic structures in

data.

In Chapter 6, we consider doubly-robust policy learning using neural networks, when

the covariate has low-dimensional structures. We show nonasymptotic regret bounds of

the learned policy competing with optimal oracle policies in both discrete action and con-

tinuous action scenarios. This result amplifies the adaptability and flexibility of neural

networks.

1.1 List of Notations

Frequently used notations are listed in the following table.

3

Table 1.1: List of notations.

RD D-dimensional Euclidean space

M Low-dimensional Riemannian manifold

x,y, z Multi-dimensional vectors

s Multi-index of positive integers

∥·∥L2 Function L2 norm

∥·∥2 Vector Euclidean norm or matrix operator norm

∥·∥∞ Function L∞ norm or vector/matrix/tensor ℓ∞ norm

⌊a⌋ The largest integer smaller than a

⌈a⌉ The smallest integer no smaller than a

Ck k-th order continuously differentiable functions

Lp(X) p-th order integrable functions on domain X
Hα(X) Hölder functions on domain X
Wα,p(X) Sobolev functions on domain X
Bα

p,q(X) Besov functions on domain X
a ∨ b The smaller one of a and b

a ∧ b The larger one of a and b

W1(µ, ν) Wasserstein-1 distance between µ and ν

dHβ(µ, ν) β-Hölder IPM between µ and ν

T♯ρ Pushforward distribution of ρ under T

4

CHAPTER 2

PRELIMINARY

This chapter divides into three parts: 1) an introduction to manifolds; 2) definitions of

function spaces in Euclidean spaces and manifolds; 3) neural network architectures. These

preliminaries appear constantly in later chapters.

2.1 Riemannian Manifold

We briefly review manifolds and partition of unity defined on smooth manifolds. Details

can be found in [22] and [23]. Let M be a d-dimensional Riemannian manifold isometri-

cally embedded in RD.

Definition 2.1 (Chart). A chart for M is a pair (U, ϕ) such that U ⊂ M is open and

ϕ : U 7→ Rd, where ϕ is a homeomorphism (i.e., bijective, ϕ and ϕ−1 are both continuous).

The open set U is called a coordinate neighborhood, and ϕ is called a coordinate system

on U . A chart essentially defines a local coordinate system on M. Given a suitable coordi-

nate neighborhood U around a point c on the manifold M, we denote Pc as the orthogonal

projection onto the tangent space at c, which gives a particular coordinate system on U .

Example 2.1 (Projection to Tangent Space). Let Tc(M) be the tangent space of M at

the point c ∈ M (see a formal definition in [22, Section 8.1]). We denote v1, . . . ,vd as

an orthonormal basis of Tc(M). Then the orthogonal projection onto the tangent space

Tc(M) is defined as Pc(x) = V ⊤(x− c) for x ∈ U with V = [v1, . . . ,vd] ∈ RD×d.

We say two charts (U, ϕ) and (V, ψ) on M areCk compatible if and only if the transition

functions,

ϕ ◦ ψ−1 : ψ(U ∩ V) 7→ ϕ(U ∩ V) and ψ ◦ ϕ−1 : ϕ(U ∩ V) 7→ ψ(U ∩ V)

5

are both Ck.

Definition 2.2 (Ck Atlas). A Ck atlas for M is a collection of pairwise Ck compatible

charts {(Ui, ϕi)}i∈A such that
⋃

i∈A Ui = M.

Definition 2.3 (Smooth Manifold). A smooth manifold is a manifold together with a C∞

atlas.

Classical examples of smooth manifolds are the Euclidean space RD, the torus, and

the unit sphere. We further define a Riemannian manifold as a pair (M, g), where M

is a smooth manifold and g is a Riemannian metric [24, Chapter 2]. To better interpret

Definition 2.2 and 2.3, we give an example of a C∞ atlas on the unit sphere in R3.

Example 2.2. We denote S2 as the unit sphere in R3, i.e., x2 + y2 + z2 = 1. The fol-

lowing atlas of S2 consists of 6 overlapping charts (U1,P1), . . . , (U6,P6) corresponding to

hemispheres:

U1 = {(x, y, z) | x > 0}, P1(x, y, z) = (y, z),

U2 = {(x, y, z) | x < 0}, P2(x, y, z) = (y, z),

U3 = {(x, y, z) | y > 0}, P3(x, y, z) = (x, z),

U4 = {(x, y, z) | y < 0}, P4(x, y, z) = (x, z),

U5 = {(x, y, z) | z > 0}, P5(x, y, z) = (x, y),

U6 = {(x, y, z) | z < 0}, P6(x, y, z) = (x, y).

Here Pi is the orthogonal projection onto the tangent space at the pole of each hemisphere.

Moreover, all the six charts are C∞ compatible, and therefore, (U1,P1), . . . , (U6,P6) form

an atlas of S2.

For a general compact smooth manifold M, we can construct an atlas using orthog-

onal projections to tangent spaces as local coordinate systems. Let Pc be the orthogonal

6

projection to the tangent space Tc(M) for c ∈ M. Let Uc be an open coordinate neigh-

borhood containing c such that Pc is a homeomorphism. Since M is compact, there exist

a finite number of points {ci} such that the charts {(Uci ,Pci)} form an atlas of M.

We next introduce the partition of unity, which plays a crucial role in our construction

of neural network function approximators.

Definition 2.4 (Partition of Unity, Definition 13.4 in [22]). A C∞ partition of unity on a

manifold M is a collection of nonnegative C∞ functions ρi : M 7→ R+ for i ∈ A such

that

1. the collection of supports, {supp(ρi)}i∈A is locally finite, i.e., every point on M has

a neighborhood that meets only finitely many of supp(ρi)’s;

2.
∑

ρi = 1.

For a smooth manifold, a C∞ partition of unity always exists.

Proposition 2.1 (Existence of a C∞ partition of unity, Theorem 13.7 in [22]). Let {Ui}i∈A
be an open cover of a compact smooth manifold M. Then there is a C∞ partition of unity

{ρi}i∈A where every ρi has a compact support such that supp(ρi) ⊂ Ui.

Proposition 2.1 gives rise to the decomposition f =
∑∞

i=1 fi with fi = fρi. Note that

the fi’s have the same regularity as f , since

fi ◦ ϕ−1
i = (f ◦ ϕ−1

i)× (ρi ◦ ϕ−1
i)

for a chart (Ui, ϕi). This decomposition implies that we can express f as a sum of the fi’s,

where every fi is only supported in a single chart.

To characterize the curvature of a manifold, we adopt the following geometric concept.

Definition 2.5 (Reach [25], Definition 2.1 in [26]). Denote

C(M) =

{
x ∈ RD : ∃ p ̸= q ∈ M, ∥p− x∥2 = ∥q− x∥2 = inf

y∈M
∥y − x∥2

}

7

as the set of points that have at least two nearest neighbors on M. The reach τ > 0 is

defined as

τ = inf
x∈M,y∈C(M)

∥x− y∥2 .

Large ⌧
<latexit sha1_base64="fKNHLI5C5ExbR/gZzZNpO6xHyvs=">AAACB3icbVDLSsNAFL2pr1pfVZduBlvBVUnqwi4Lbly4qGAf0IQymUzaoZNJmJkIJfQD/AG3+gfuxK2f4Q/4HU7aLLT1wIXDOffF8RPOlLbtL6u0sbm1vVPereztHxweVY9PeipOJaFdEvNYDnysKGeCdjXTnA4SSXHkc9r3pze533+kUrFYPOhZQr0IjwULGcHaSO4dlmOK6q7GaX1UrdkNewG0TpyC1KBAZ1T9doOYpBEVmnCs1NCxE+1lWGpGOJ1X3FTRBJMpHtOhoQJHVHnZ4uc5ujBKgMJYmhIaLdTfExmOlJpFvumMsJ6oVS8X//UClS9cua7DlpcxkaSaCrI8HqYc6RjloaCASUo0nxmCiWTmf0QmWGKiTXQVE4yzGsM66TUbzlWjed+stVtFRGU4g3O4BAeuoQ230IEuEEjgGV7g1Xqy3qx362PZWrKKmVP4A+vzB2KXmWA=</latexit>

Small ⌧
<latexit sha1_base64="vBdcAHOfpTIU6FPoZZYSLqeYSbM=">AAACB3icbVDLSsNAFL2pr1pfVZduBlvBVUnqwi4LblxWtA9oQplMJu3QySTMTIQS+gH+gFv9A3fi1s/wB/wOJ20W2nrgwuGc++L4CWdK2/aXVdrY3NreKe9W9vYPDo+qxyc9FaeS0C6JeSwHPlaUM0G7mmlOB4mkOPI57fvTm9zvP1KpWCwe9CyhXoTHgoWMYG0k9z7CnKO6q3FaH1VrdsNeAK0TpyA1KNAZVb/dICZpRIUmHCs1dOxEexmWmhFO5xU3VTTBZIrHdGiowBFVXrb4eY4ujBKgMJamhEYL9fdEhiOlZpFvOiOsJ2rVy8V/vUDlC1eu67DlZUwkqaaCLI+HKUc6RnkoKGCSEs1nhmAimfkfkQmWmGgTXcUE46zGsE56zYZz1WjeNWvtVhFRGc7gHC7BgWtowy10oAsEEniGF3i1nqw36936WLaWrGLmFP7A+vwBeWyZbg==</latexit>

Rapid Change
<latexit sha1_base64="mXjvclsmbbGt3EGkxmEEuCvFg6k=">AAACB3icbVDLSsNAFJ34rPVVdelmsAiuSlIXdlnoxmUV+4A2lMnkph06mQwzE6GEfoA/4Fb/wJ249TP8Ab/DSZuFth64cDjnvjiB5Ewb1/1yNja3tnd2S3vl/YPDo+PKyWlXJ6mi0KEJT1Q/IBo4E9AxzHDoSwUkDjj0gmkr93uPoDRLxIOZSfBjMhYsYpQYKw3viWQhbk2IGMOoUnVr7gJ4nXgFqaIC7VHlexgmNI1BGMqJ1gPPlcbPiDKMcpiXh6kGSeiUjGFgqSAxaD9b/DzHl1YJcZQoW8Lghfp7IiOx1rM4sJ0xMRO96uXiv16o84Ur103U8DMmZGpA0OXxKOXYJDgPBYdMATV8Zgmhitn/MZ0QRaix0ZVtMN5qDOukW69517X6Xb3abBQRldA5ukBXyEM3qIluURt1EEUSPaMX9Oo8OW/Ou/OxbN1wipkz9AfO5w/3ppm9</latexit>

Slow Change
<latexit sha1_base64="i1c8ZnWMheX2Fx9Xq/Ai3mUCXLc=">AAACBnicbVC7TgJBFJ3FF+ILtbSZSEysyC4WUpLQWGKURwIbMjt7gQmzM5uZWQ3Z0PsDtvoHdsbW3/AH/A5nYQsFT3KTk3PuKyeIOdPGdb+cwsbm1vZOcbe0t39weFQ+PulomSgKbSq5VL2AaOBMQNsww6EXKyBRwKEbTJuZ330ApZkU92YWgx+RsWAjRomxUv+Oy0fcnBAxhmG54lbdBfA68XJSQTlaw/L3IJQ0iUAYyonWfc+NjZ8SZRjlMC8NEg0xoVMyhr6lgkSg/XTx8hxfWCXEI6lsCYMX6u+JlERaz6LAdkbETPSql4n/eqHOFq5cN6O6nzIRJwYEXR4fJRwbibNMcMgUUMNnlhCqmP0f0wlRhBqbXMkG463GsE46tap3Va3d1iqNeh5REZ2hc3SJPHSNGugGtVAbUSTRM3pBr86T8+a8Ox/L1oKTz5yiP3A+fwBXkZlo</latexit>

Figure 2.1: Manifolds with large and small reaches.

Reach has a straightforward geometrical interpretation: At each point x ∈ M, the

radius of the osculating circle is greater or equal to τ . Intuitively, a large reach for M

requires the manifold M not to change “rapidly” as shown in Figure 2.1.

In our proof for the universal approximation theory, reach determines a proper choice

of an atlas for M. Specifically, we choose each chart Ui to be contained in a ball of radius

no larger than τ/4. For smooth manifolds with a small τ , we need a large number of charts.

Therefore, reach of a smooth manifold reflects the complexity of the neural network for

function approximation on M.

2.2 Function Space

We provide definitions of Hölder, Sobolev, and Besov functions in both Euclidean spaces

and low dimensional Riemannian manifolds.

2.2.1 Regularity in Euclidean Space

We begin with Hölder functions.

Definition 2.6 (Hölder Function). Given a Hölder index α > 0, a function f : X 7→ R

belongs to the Hölder class Hα(X), if and only if, for any multi-index s ∈ Nd with |s| =
∑d

i=1 si ≤ ⌊α⌋, the derivative ∂sf = ∂|s|f

∂x
s1
1 ...∂x

sd
d

exists, and for any s satisfying |s| = ⌊α⌋,

8

we have

sup
x ̸=y

∣∣∂sf(x)− ∂sf(y)
∣∣

∥x− y∥α−⌊α⌋
2

<∞ for any x,y in the interior of X .

When f ∈ Hα(X), we define its Hölder norm as

∥f∥Hα(X) =
∑

0≤s≤⌊α⌋

∥∂sf∥∞ +
∑

|s|=⌊α⌋

sup
x ̸=y

∣∣∂sf(x)− ∂sf(y)
∣∣

∥x− y∥α−⌊α⌋
2

.

The Hölder continuity above can be generalized to multi-dimensional mappings. Specifi-

cally, for g = [g1, . . . , gd]
⊤ : X 7→ Rd, we say it is α-Hölder if and only if each coordinate

mapping gi is α-Hölder. In addition, the Hölder norm of g is defined as ∥g∥Hα(X) =
∑d

i=1 ∥gi∥Hα(X).

Next, we turn to Sobolev functions.

Definition 2.7 (Sobolev Function). Let α ≥ 0, 1 ≤ p ≤ ∞ be integers, and domain

X ⊂ RD. We define Sobolev space Wα,p(X) as

Wα,p(X) =
{
f ∈ Lp(X) : Dsf ∈ Lp(X) for all |s| ≤ α

}
,

where s is a multi-index.

For f ∈ Wα,p(X), we define its Sobolev norm as

∥f∥Wα,p(X) =
(∑

|s|≤α

∥Dsf∥pLp(X)

)1/p
.

In the special case of p = ∞, the Sobolev norm can be rewritten as ∥f∥Wα,∞(X) =

max|s|≤α ∥Dsf∥L∞(X). In this case, ∥f∥W 0,∞ < ∞ implies that the function value is

bounded, and ∥f∥W 1,∞ <∞ implies both the function value and its derivatives are bounded.

Our later approximation theories will provide error estimate in terms of Sobolev norms.

To allow more flexibility, we define fractional Sobolev norms, which can be viewed as a

9

generalization of Sobolev norms to non-integer α. The fractional Sobolev functions are

defined as follows.

Definition 2.8 (Sobolev-Slobodeckij space [27]). For 0 < α < 1 and 1 ≤ p ≤ ∞, we

define Wα,p(X) as

Wα,p(X) =
{
f ∈ Lp(X) : ∥f∥Wα,p(X) <∞

}

with

∥f∥Wα,p(X) =
(
∥f∥pLp(X) +

∫

X

∫

X

(|f(x)− f(y)|
∥x− y∥α+D/p

2

)p
dxdy

)1/p

for 1 ≤ p <∞ and

∥f∥Wα,∞(X) = max

{
∥f∥L∞(X), ess supx,y∈X

|f(x)− f(y)|
∥x− y∥α2

}
.

We restrict our attention to α < 1 for simplicity, as we later focus on approximation

guarantees up to first-order continuity.

Lastly, we define Besov functions. The Besov space Bα
p,q is a complete quasi-normed

space which is a Banach space when 1 ≤ p, q ≤ ∞. It generalizes more elementary func-

tion spaces such as the Sobolev and Hölder spaces. To define Besov space, we introduce

modulus of smoothness.

Definition 2.9 (Modulus of Smoothness [28]). Let X ⊂ RD. Let a function f : X → R be

in Lp(X) for p > 0, the r-th modulus of smoothness of f is defined by

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥Lp ,

10

where

∆r
h(f)(x) =

∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ X ,x+ rh ∈ X ,

0 otherwise.

Definition 2.10 (Besov Space Bα
p,q(X)). For 0 < p, q ≤ ∞, α > 0, r = ⌊α⌋+1, define the

seminorm | · |Bα
p,q

as

|f |Bα
p,q

=

(∫ ∞

0

(t−αwr,p(f, t))
q dt

t

) 1
q

if q <∞,

supt>0 t
−αwr,p(f, t) if q = ∞.

The norm of the Besov space Bα
p,q(X) is defined as ∥f∥Bα

p,q
:= ∥f∥Lp + |f |Bα

p,q
. The Besov

space is Bα
p,q(X) = {f ∈ Lp(X) : ∥f∥Bα

p,q
<∞}.

2.2.2 Regularity on Riemannian Manifold

The existence of an atlas on a manifold allows us to generalize function regularity in Eu-

clidean spaces to manifolds. Roughly speaking, regularity on manifold is characterized by

local regularity on each neighborhood of the manifold. We first define differentiability of a

function supported on a Riemannian manifold.

Definition 2.11 (Cs Function on Manifold). Let M be a d-dimensional Riemannian man-

ifold isometrically embedded in RD. A function f : M 7→ R is Cs if for any chart (U, ϕ),

the composition f ◦ ϕ−1 : ϕ(U) 7→ R is continuously differentiable up to order s.

Remark 2.1. The definition of Cs functions is independent of the choice of the chart (U, ϕ).

Suppose (V, ψ) is another chart and V
⋂
U ̸= ∅. Then we have

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1).

Since M is a smooth manifold, (U, ϕ) and (V, ψ) are C∞ compatible. Thus, f ◦ ϕ−1 is Cs

11

and ϕ ◦ ψ−1 is C∞, and their composition is Cs.

We next define Hölder functions on a smooth manifold M.

Definition 2.12 (Hölder Function on M). Let M be a d-dimensional compact Riemannian

manifold isometrically embedded in RD. Let {(Ui,Pi)}i∈A be an atlas of M where the Pi’s

are orthogonal projections onto tangent spaces. For a positive index α > 0, a function

f : M 7→ R is α-Hölder continuous if for each chart (Ui,Pi) in the atlas, we have

1. f ◦ P−1
i ∈ Cs with |Ds(f ◦ P−1

i)| ≤ 1 for any |s| ≤ ⌊α⌋,x ∈ Ui;

2. for any |s| = ⌊α⌋ and x1,x2 ∈ Ui,

∣∣∣Ds(f ◦ P−1
i)
∣∣
Pi(x1)

−Ds(f ◦ P−1
i)
∣∣
Pi(x2)

∣∣∣ ≤ ∥Pi(x1)− Pi(x2)∥α−⌊α⌋
2 . (2.1)

Moreover, we denote the collection of α-Hölder functions on M as Hα(M).

Definition 2.12 requires that all s-th order derivatives of f ◦P−1
i are Hölder continuous.

We recover the standard Hölder class on a Euclidean space if Pi is the identity mapping.

Following the same spirit, we define Sobolev functions on a manifold.

Definition 2.13 (Sobolev Function on Manifold). Let M be a compact Riemannian man-

ifold of dimension d. Let {(Ui, ϕi)}CM
i=1 be a finite atlas on M and {ρi}CM

i=1 be a partition

of unity on M such that supp(ρi) ⊂ Ui. For integers α ≥ 0 and 1 ≤ p ≤ ∞, a function

f : M → R is in the Sobolev space Wα,p(M) if

∥f∥Wα,p(M) =

CM∑

i=1

∥(fρi) ◦ ϕ−1
i ∥Wα,p(ϕi(Ui)) <∞.

Here we no longer restrict our attention to projections used in Definition 2.12. In fact,

we can replace Pi’s in Definition 2.12 by any given diffeomorphism on a chart, since they

are compatible as discussed in Remark 2.1.

Lastly, we define Besov functions on a manifold.

12

Definition 2.14 (Besov Function on Manifold). Let M be a compact Riemannian manifold

of dimension d. Let {(Ui, ϕi)}CM
i=1 be a finite atlas on M and {ρi}CM

i=1 be a partition of unity

on M such that supp(ρi) ⊂ Ui. A function f : M 7→ R is in Bα
p,q(M) if

∥f∥Bα
p,q(M) =

CM∑

i=1

∥(fρi) ◦ ϕ−1
i ∥Bα

p,q(Rd) <∞.

Since ρi is supported on Ui, the function (fρi) ◦ ϕ−1
i is supported on ϕ(Ui). We can

extend (fρi) ◦ ϕ−1
i from ϕ(Ui) to Rd by setting the function to be 0 in Rd \ ϕ(Ui). The

extended function lies in the Besov space Bα
p,q(Rd) [29, Chapter 7].

2.3 Neural Network Architecture

2.3.1 Feedforward Neural Network

Feedforward neural networks has attracted many attentions due to its simple compositional

form:

f(x) = WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (2.2)

with Wi’s and bi’s being weight matrices and intercepts, respectively. The ReLU activa-

tion function computes ReLU(a) = max{a, 0} and is applied entrywise. We define the

following feedforward network architecture:

FNN(R, κ, L, p,K) =
{
g
∣∣ g in the form of (Eq. 2.2),

with L layers and max width p,

∥gi∥∞ ≤ R, ∥Wi∥∞ ≤ κ, ∥bi∥∞ ≤ κ,

L∑

j=1

∥Wi∥0 + ∥bi∥0 ≤ K, for i = 1, . . . , L
}
,

(2.3)

where ∥·∥0 denotes the number of nonzero entries in a vector or a matrix.

13

2.3.2 Convolutional Residual Network

Convolutional Residual Networks (ConvResNets) are widely used in computer vision and

natural language processing. We consider one-sided stride-one convolution in our network.

Let W = {Wj,k,l} ∈ RC′×K×C be a filter, where C ′ is the output channel size, K is the

filter size and C is the input channel size. For Z ∈ RD×C , the convolution of W with Z

gives Y = W ∗ Z ∈ RD×C′ with

Yi,j =
K∑

k=1

C∑

l=1

Wj,k,lZi+k−1,l,

where we setZi+k−1,l = 0 for i+k−1 > D. See a graphical demonstration in Figure 2.2(a).

(a) Convolution. (b) A residual block.

Figure 2.2: (a) Convolution of W ∗ Z, where the input is Z ∈ RD×C , and the output is
W ∗Z ∈ RD×C′ . Here W = {Wj,k,l} ∈ RC′×K×C is a filter where C ′ is the output channel
size, K is the filter size and C is the input channel size. Wj,:,: is a D × C matrix for the
j-th output channel. (b) A convolutional residual block.

In this thesis, we study ConvResNets equipped with the ReLU activation function. The

ConvResNet we consider consists consecutively of a padding layer, several residual blocks,

and finally a fully connected output layer.

Given an input vector x ∈ RD, the network first applies a padding operator P : RD →

RD×C for some integer C ≥ 1 such that

Z = P (x) =

[
x 0 · · · 0

]
∈ RD×C .

14

Then the matrix Z is passed through M residual blocks. To ease the notation, we denote

the input matrix to the m-th block as Zm and its output as Zm+1 (Consequently, Z1 = Z).

In the m-th block, let Wm = {W(1)
m , ...,W(Lm)

m } and Bm = {B(1)
m , ..., B

(Lm)
m } be a

collection of filters and biases of proper sizes. The m-th residual block maps its input

matrix Zm from RD×C to RD×C by the operator

ConvWm,Bm + id,

where id is the identity mapping (also known as the shortcut connection) and

ConvWm,Bm(Zm) = ReLU
(
W(Lm)

m ∗ · · · ∗ ReLU
(
W(1)

m ∗ Zm +B(1)
m

)
· · ·+B(Lm)

m

)
,

with ReLU applied entrywise. We denote the mapping from input x to the output of the

M -th residual block as

Q(x) = (ConvWM ,BM
+ id) ◦ · · · ◦ (ConvW1,B1 + id) ◦ P (x). (2.4)

Given (Eq. 2.4), a ConvResNet applies an additional fully connected layer to Q and

outputs

f(x) = W ⊗Q(x) + b,

where W ∈ RD×C and b ∈ R are a weight matrix and a bias, respectively, and ⊗ denotes

sum of entrywise product, i.e., W ⊗ Q(x) =
∑

i,j Wi,j[Q(x)]i,j . To this end, we define

ConvResNet architecture as

CRN(M,L, J,K, κ1, κ2, R) =
{
f | f(x) = W ⊗Q(x) + b with ∥W∥∞ ∨ |b| ≤ κ2,

Q(x) in the form of (Eq. 2.4) with M residual blocks.

15

The number of filters per block is bounded by L;

filter size is bounded by K;

the number of channels is bounded by J ;

max
m,l

∥W(l)
m ∥∞ ∨ ∥B(l)

m ∥∞ ≤ κ1, ∥f∥∞ ≤ R
}
. (2.5)

16

CHAPTER 3

REPRESENTATION THEORY OF NEURAL NETWORKS

A line of research attempts to explain the empirical success of neural networks through the

lens of expressivity – neural networks can effectively approximate various classes of func-

tions. Among existing works, the most well-known results are the universal approximation

theorems, see [30, 31, 32, 33, 34, 35]. Specifically, [32] showed that neural networks

with one single hidden layer and continuous sigmoidal activations (σ(x) is sigmoidal, if

σ(x) → 0 as x → −∞, and σ(x) → 1 as x → ∞) can approximate continuous functions

in a unit cube with arbitrary accuracy. Later, [33] extended the universal approximation the-

orem to general feed-forward networks with a single hidden layer, while the width of the

network has to be exponentially large. Specific approximation rates of shallow networks

(with one hidden layer) with smooth activation functions were given in [36] and [37]. Re-

cently, [38] proved the universal approximation theorem for width-bounded deep neural

networks, and [39] improved the result with ReLU (Rectified Linear Units) activations,

i.e. ReLU(x) = max{0, x}. [40] further showed that deep ReLU networks can uniformly

approximate functions in Sobolev spaces, while the network size scales exponentially in

the approximation error with an exponent depending on the data dimension. Moreover, the

network size in [40] matches its lower bound.

The network size considered in applications, however, is significantly smaller than what

is predicted by the theory above. Recall from Chapter 1 that the ImageNet consists of RGB

images with a resolution of 224 × 224. The theory above suggests that, to achieve a ϵ

uniform approximation error, the number of neurons has to scale as ϵ−224×224×3/2 [36].

Setting ϵ = 0.1 already gives rise to 10224×224×3/2 neurons. However, the AlexNet [1]

only consists of 650000 neurons and 60 million parameters to beat the state-of-the-art.

To boost the performance on the ImageNet, several more sophisticated network structures

17

were proposed later, such as VGG16 [41] which consists of about 138 million parameters.

The size of both networks remains extremely small compared to 10224×224×3/2.

To bridge the gap between theory and practice, we exploit data manifold structures and

aim to answer a natural question:

Can deep neural networks efficiently approximate functions supported on low dimen-

sional manifolds?

In literature, function approximation on manifolds has been well studied using local

polynomials [42] and wavelets [43]. However, studies using neural networks are very lim-

ited. Two noticeable works are [44] and [45]. In [44], high order differentiable functions

on manifolds are approximated by neural networks with smooth activations, e.g., sigmoid

activations and rectified quadratic unit functions (σ(x) = (max{0, x})2). These smooth ac-

tivations, however, are rarely used in the mainstream applications such as computer vision

[1, 3, 10]. In [45], a 4-layer network with ReLU activations was proposed to approximate

C2 functions on low dimensional manifolds that have absolutely summable wavelet coeffi-

cients. However, this theory does not cover arbitrarily smooth functions, and the analysis

is built upon a restrictive assumption – there exists a linear transformation that maps the

input data to sparse coordinates, but such transformation is not explicitly given.

In this chapter, we propose a framework to construct deep neural networks with non-

smooth activations to approximate functions supported on a d-dimensional Riemannian

manifold isometrically embedded in RD. We prove that, in order to achieve a fixed approx-

imation error, the network size scales exponentially with respect to the intrinsic dimension

d, instead of the ambient dimension D. Our framework is flexible: 1). It applies to popular

network architectures with nonsmooth activations, e.g., ReLU and leaky ReLU activations;

2). It applies to a wide class of functions, such as Hölder, Sobolev, and Besov classes which

are typical examples in nonparametric statistics [13]; 3). It exploits high order smoothness

of functions for making the approximation as efficient as possible.

The rest of the chapter is organized as follows: Section 3.1 presents an efficient ap-

18

proximation theory using feedforward neural networks for approximating Hölder functions

supported on a low dimensional Riemannian manifold; Section 3.2 extends to Convolu-

tional Residual Networks (ConvResNets) for approximating Besov functions supported on

a low dimensional Riemannian manifold; Section 3.3 demonstrates additional continuity of

wide and deep neural networks in approximating Sobolev functions; Section 3.4 provides

a conclusion and discusses related topics.

3.1 Efficient Approximation of Feedforward Neural Networks

We begin with some assumptions.

Assumption 3.1. M is a d-dimensional compact Riemannian manifold isometrically em-

bedded in RD. There exists a constant B such that for any point x ∈ M, we have |xi| ≤ B

for all i = 1, . . . , D.

Assumption 3.2. The reach of M is τ > 0.

Assumption 3.3. f : M 7→ R belongs to the Hölder space Hα(M) with a positive index

α > 1.

We now state our function approximation result.

Theorem 3.1. Suppose Assumption 3.1 and 3.2 hold. Given any ϵ ∈ (0, 1), there exists

a ReLU network structure such that, for any f : M → R satisfying Assumption 3.3,

if the weight parameters are properly chosen, the network yields a function f̂ satisfying

∥f̂ − f∥∞ ≤ ϵ. Such a network has no more than c1(log 1
ϵ
+ logD) layers, and at most

c2(ϵ
− d

α log 1
ϵ
+D log 1

ϵ
+D logD) neurons and weight parameters, where c1, c2 depend on

d, α, f , τ , and the surface area of M.

The network structure identified by Theorem 3.1 consists of three sub-networks as

shown in Figure 3.1:

19

• Chart determination sub-network, which assigns the input to its corresponding neigh-

borhoods;

• Taylor approximation sub-network, which approximates f by polynomials in each

neighborhood;

• Pairing sub-network, which yields multiplications of the proper pairs of outputs from

the chart determination and the Taylor approximation sub-networks.

P
<latexit sha1_base64="PVOqlyFnedxpBSr3+6iiXLUv7WU=">AAACAXicbVC7TgJBFL2LL8QXamkzEUysyC4WUpLYWGIijwQ2ZHZ2FkZmZjczsyaEUPkDtvoHdsbWL/EH/A5nYQsFT3KTk3PuKydIONPGdb+cwsbm1vZOcbe0t39weFQ+PunoOFWEtknMY9ULsKacSdo2zHDaSxTFIuC0G0xuMr/7SJVmsbw304T6Ao8kixjBxkqd6kCnojosV9yauwBaJ15OKpCjNSx/D8KYpIJKQzjWuu+5ifFnWBlGOJ2XBqmmCSYTPKJ9SyUWVPuzxbdzdGGVEEWxsiUNWqi/J2ZYaD0Vge0U2Iz1qpeJ/3qhzhauXDdRw58xmaSGSrI8HqUcmRhlcaCQKUoMn1qCiWL2f0TGWGFibGglG4y3GsM66dRr3lXNvatXmo08oiKcwTlcggfX0IRbaEEbCDzAM7zAq/PkvDnvzseyteDkM6fwB87nD0HflyI=</latexit>

Input x
<latexit sha1_base64="dL0dMPLsW2Fg2clRUpJX4ZR3PQA=">AAACD3icbVDLTsJAFL3FF+Kr4tLNRDBxRVpc6JLEje4wkUcCDZkOU5gwnTYzUwNp+Ah/wK3+gTvj1k/wB/wOp9CFgieZ5OTc15njx5wp7ThfVmFjc2t7p7hb2ts/ODyyj8ttFSWS0BaJeCS7PlaUM0FbmmlOu7GkOPQ57fiTm6zeeaRSsUg86FlMvRCPBAsYwdpIA7t8J+JEo2o/xHrsB+l0Xh3YFafmLIDWiZuTCuRoDuzv/jAiSUiFJhwr1XOdWHsplpoRTuelfqJojMkEj2jPUIFDqrx04X2Ozo0yREEkzRMaLdTfEykOlZqFvunMLKrVWib+WxuqbOHKdR1ceynLvkwFWR4PEo50hLJw0JBJSjSfGYKJZMY/ImMsMdEmwpIJxl2NYZ206zX3subc1yuNeh5REU7hDC7AhStowC00oQUEpvAML/BqPVlv1rv1sWwtWPnMCfyB9fkDODWcgg==</latexit>

Chart Determination
<latexit sha1_base64="eYW/DtD3JxkNK4qnf8s9n3kGubQ=">AAACEHicbVDLSsNAFJ3UV62vapduBovgqiR1YZeFunBZwT6gDWUyuWmHTiZhZiKE0J/wB9zqH7gTt/6BP+B3OGmz0NYDFw7n3BfHizlT2ra/rNLW9s7uXnm/cnB4dHxSPT3rqyiRFHo04pEcekQBZwJ6mmkOw1gCCT0OA2/eyf3BI0jFIvGg0xjckEwFCxgl2kiTaq0zI1LjW9AgQyYKtW437CXwJnEKUkcFupPq99iPaBKC0JQTpUaOHWs3M4sZ5bCojBMFMaFzMoWRoYKEoNxs+fwCXxrFx0EkTQmNl+rviYyESqWhZzpDomdq3cvFfz1f5QvXruug5WZMxIkGQVfHg4RjHeE8HewzCVTz1BBCJTP/Y2oCItTEoyomGGc9hk3Sbzac60bzvllvt4qIyugcXaAr5KAb1EZ3qIt6iKIUPaMX9Go9WW/Wu/Wxai1ZxUwN/YH1+QN9/51D</latexit>

Taylor Approximation
<latexit sha1_base64="XO7DmYmkw5sml1IVBEt9AA149Z8=">AAACEXicbVA7TgMxFPSGXwi/8OloLCIkqmg3FKQMoqEMUn5Ssoq8Xm9ixWtbthexrHIKLkALN6BDtJyAC3AOnGQLSHjVaGbee6MJJKPauO6XU1hb39jcKm6Xdnb39g/Kh0cdLRKFSRsLJlQvQJowyknbUMNITyqC4oCRbjC5mende6I0FbxlUkn8GI04jShGxlLD8kkLpdYDr6VU4oHGOV1xq+584CrwclAB+TSH5e9BKHASE24wQ1r3PVcaP0PKUMzItDRINJEIT9CI9C3kKCbaz+bpp/DcMiGMbIhIcAPn7O+NDMVap3FgnTbeWC9rM/JfLdSzg0vfTVT3M8plYgjHi+dRwqARcFYPDKki2LDUAoQVtfkhHiOFsLEllmwx3nINq6BTq3qX1dpdrdKo5xUVwSk4AxfAA1egAW5BE7QBBo/gGbyAV+fJeXPenY+FteDkO8fgzzifP66Tne4=</latexit>

Pairing
<latexit sha1_base64="SEMrlTJf4KpMunKRiogQz4XSGQc=">AAACAnicbVDLSsNAFL3xWeur6tLNYBFclaQu7LLgxmUF+4A2lMlk2g6dTMLMjVBCd/6AW/0Dd+LWH/EH/A4nbRbaeuDC4Zz74gSJFAZd98vZ2Nza3tkt7ZX3Dw6Pjisnpx0Tp5rxNotlrHsBNVwKxdsoUPJeojmNAsm7wfQ297uPXBsRqwecJdyP6FiJkWAUrdRtUaGFGg8rVbfmLkDWiVeQKhRoDSvfgzBmacQVMkmN6Xtugn5GNQom+bw8SA1PKJvSMe9bqmjEjZ8t3p2TS6uEZBRrWwrJQv09kdHImFkU2M6I4sSsern4rxeafOHKdRw1/EyoJEWu2PL4KJUEY5LnQUKhOUM5s4QyLez/hE2opgxtamUbjLcawzrp1Gveda1+X682G0VEJTiHC7gCD26gCXfQgjYwmMIzvMCr8+S8Oe/Ox7J1wylmzuAPnM8ft9eX/w==</latexit>

�1
<latexit sha1_base64="F3h1zoHDXmmgsvSwmSaFr/3F4xA=">AAACAXicbVDLSsNAFL1TX7W+qi7dDBbBVUmqYJcFNy4r2FZoQ5lMJu3YySTMTIQSuvIH3OofuBO3fok/4Hc4abPQ1gMXDufcF8dPBNfGcb5QaW19Y3OrvF3Z2d3bP6geHnV1nCrKOjQWsbr3iWaCS9Yx3Ah2nyhGIl+wnj+5zv3eI1Oax/LOTBPmRWQkecgpMVbqDpIxH7rDas2pO3PgVeIWpAYF2sPq9yCIaRoxaaggWvddJzFeRpThVLBZZZBqlhA6ISPWt1SSiGkvm387w2dWCXAYK1vS4Ln6eyIjkdbTyLedETFjvezl4r9eoPOFS9dN2PQyLpPUMEkXx8NUYBPjPA4ccMWoEVNLCFXc/o/pmChCjQ2tYoNxl2NYJd1G3b2oN24va61mEVEZTuAUzsGFK2jBDbShAxQe4Ble4BU9oTf0jj4WrSVUzBzDH6DPH5ckl1o=</latexit>

�CM
<latexit sha1_base64="QDp9fSJqzOGvREr19Mu0d/Xrn48=">AAACEXicbVDLSsNAFJ3UV62v+Ni5GSyCq5JUwS4L3bgRKtgHNCFMJpN26GQSZiZCDfkKf8Ct/oE7cesX+AN+h5M2C209MHA45965h+MnjEplWV9GZW19Y3Orul3b2d3bPzAPj/oyTgUmPRyzWAx9JAmjnPQUVYwME0FQ5DMy8Kedwh88ECFpzO/VLCFuhMachhQjpSXPPHGSCfWyjudESE0wYtltnntm3WpYc8BVYpekDkp0PfPbCWKcRoQrzJCUI9tKlJshoShmJK85qSQJwlM0JiNNOYqIdLN5+hyeayWAYSz04wrO1d8bGYqknEW+niwyymWvEP/1All8uHRdhS03ozxJFeF4cTxMGVQxLOqBARUEKzbTBGFBdX6IJ0ggrHSJNV2MvVzDKuk3G/Zlo3l3VW+3yoqq4BScgQtgg2vQBjegC3oAg0fwDF7Aq/FkvBnvxsditGKUO8fgD4zPH8Gpnfs=</latexit>

d̂2
1

<latexit sha1_base64="/nKRVIb+wwcGaNuyb9PPB7nyDzA=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVZIq2GXBjcsKthXaWCaTSTt0MhNmboQSuvcH3OofuBO3/oY/4Hc4abPQ1gMXDufcFydIBDfgul9OaW19Y3OrvF3Z2d3bP6geHnWNSjVlHaqE0vcBMUxwyTrAQbD7RDMSB4L1gsl17vcemTZcyTuYJsyPyUjyiFMCVuoPxgSycDb0HhrDas2tu3PgVeIVpIYKtIfV70GoaBozCVQQY/qem4CfEQ2cCjarDFLDEkInZMT6lkoSM+Nn85dn+MwqIY6UtiUBz9XfExmJjZnGge2MCYzNspeL/3qhyRcuXYeo6WdcJikwSRfHo1RgUDjPBIdcMwpiagmhmtv/MR0TTSjY5Co2GG85hlXSbdS9i3rj9rLWahYRldEJOkXnyENXqIVuUBt1EEUKPaMX9Oo8OW/Ou/OxaC05xcwx+gPn8wdqZJl0</latexit>

d̂2
CM

<latexit sha1_base64="B/N0upGd5GE5FqlQtZ78az+zfRo=">AAACFnicbVDLSsNAFJ34rPUVdSVuBovgqiRVsMtCN26ECvYBTQyTyaQdOpmEmYlQQvA3/AG3+gfuxK1bf8DvcNJmoa0HBg7n3NccP2FUKsv6MlZW19Y3Nitb1e2d3b198+CwJ+NUYNLFMYvFwEeSMMpJV1HFyCARBEU+I31/0i78/gMRksb8Tk0T4kZoxGlIMVJa8sxjZ4xUFuRe1vacCKkxRiy7yfP7hmfWrLo1A1wmdklqoETHM7+dIMZpRLjCDEk5tK1EuRkSimJG8qqTSpIgPEEjMtSUo4hIN5t9IYdnWglgGAv9uIIz9XdHhiIpp5GvK4sr5aJXiP96gSwGLmxXYdPNKE9SRTieLw9TBlUMi4xgQAXBik01QVhQfT/EYyQQVjrJqg7GXoxhmfQadfui3ri9rLWaZUQVcAJOwTmwwRVogWvQAV2AwSN4Bi/g1Xgy3ox342NeumKUPUfgD4zPH7SooBU=</latexit>

b1�
<latexit sha1_base64="gDkYxWJ3p16Y/ECTdAJ4ayGkePM=">AAACGnicbVDLSsNAFJ34rPVVdSlCsBVclaQu7LKgC5cV7AOaECaT23bo5MHMjVJCV/6GP+BW/8CduHXjD/gdTtoutPXAwOGc+5rjJ4IrtKwvY2V1bX1js7BV3N7Z3dsvHRy2VZxKBi0Wi1h2fapA8AhayFFAN5FAQ19Axx9d5X7nHqTicXSH4wTckA4i3ueMopa80knFeeABDClmTkhxGKjMnkw85xoE0opXKltVawpzmdhzUiZzNL3StxPELA0hQiaoUj3bStDNqETOBEyKTqogoWxEB9DTNKIhKDebfmNinmklMPux1C9Cc6r+7shoqNQ49HVlfqpa9HLxXy9Q+cCF7divuxmPkhQhYrPl/VSYGJt5TmbAJTAUY00ok1zfb7IhlZShTrOog7EXY1gm7VrVvqjWbmvlRn0eUYEck1NyTmxySRrkhjRJizDySJ7JC3k1now34934mJWuGPOeI/IHxucPWJqhbw==</latexit>

b1�
<latexit sha1_base64="gDkYxWJ3p16Y/ECTdAJ4ayGkePM=">AAACGnicbVDLSsNAFJ34rPVVdSlCsBVclaQu7LKgC5cV7AOaECaT23bo5MHMjVJCV/6GP+BW/8CduHXjD/gdTtoutPXAwOGc+5rjJ4IrtKwvY2V1bX1js7BV3N7Z3dsvHRy2VZxKBi0Wi1h2fapA8AhayFFAN5FAQ19Axx9d5X7nHqTicXSH4wTckA4i3ueMopa80knFeeABDClmTkhxGKjMnkw85xoE0opXKltVawpzmdhzUiZzNL3StxPELA0hQiaoUj3bStDNqETOBEyKTqogoWxEB9DTNKIhKDebfmNinmklMPux1C9Cc6r+7shoqNQ49HVlfqpa9HLxXy9Q+cCF7divuxmPkhQhYrPl/VSYGJt5TmbAJTAUY00ok1zfb7IhlZShTrOog7EXY1gm7VrVvqjWbmvlRn0eUYEck1NyTmxySRrkhjRJizDySJ7JC3k1now34934mJWuGPOeI/IHxucPWJqhbw==</latexit>

b⇥<latexit sha1_base64="5rKBV9G1ak+LnP3Hp02BoVHsI7A=">AAACD3icbVBLTsMwFHTKr5RfKEs2ES0SqyopC1hWsGFZJPqRmqhyHKe16jiR/QJUUQ/BBdjCDdghthyBC3AOnDYLaBnJ0mjmPc/T+AlnCmz7yyitrW9sbpW3Kzu7e/sH5mG1q+JUEtohMY9l38eKciZoBxhw2k8kxZHPac+fXOd+755KxWJxB9OEehEeCRYygkFLQ7Nadx9YQMcYMhdYRNWsPjRrdsOew1olTkFqqEB7aH67QUzSiAogHCs1cOwEvAxLYITTWcVNFU0wmeARHWgqsI7xsvntM+tUK4EVxlI/AdZc/b2R4UipaeTryQjDWC17ufivF6j8w6V0CC+9jIkkBSrIIjxMuQWxlZdjBUxSAnyqCSaS6fstMsYSE9AVVnQxznINq6TbbDjnjeZts9a6Kioqo2N0gs6Qgy5QC92gNuoggh7RM3pBr8aT8Wa8Gx+L0ZJR7ByhPzA+fwC18Zze</latexit>

bf(x)
<latexit sha1_base64="LY5VQBt2Xs9WRrZ7EQ5DF/pfpSU=">AAACFnicbVC7TsMwFHV4lvIKMCEWixapLFVSBhgrWBiLRB9SE1WO47RWHSeyHaCKIn6DH2CFP2BDrKz8AN+B02aAliNZOjrnvny8mFGpLOvLWFpeWV1bL22UN7e2d3bNvf2OjBKBSRtHLBI9D0nCKCdtRRUjvVgQFHqMdL3xVe5374iQNOK3ahITN0RDTgOKkdLSwDysOvfUJyOk0iCrOSFSIy9IH7LT6sCsWHVrCrhI7IJUQIHWwPx2/AgnIeEKMyRl37Zi5aZIKIoZycpOIkmM8BgNSV9TjkIi3XT6hQyeaMWHQST04wpO1d8dKQqlnISersxvlPNeLv7r+TIfOLddBRduSnmcKMLxbHmQMKgimGcEfSoIVmyiCcKC6vshHiGBsNJJlnUw9nwMi6TTqNtn9cZNo9K8LCIqgSNwDGrABuegCa5BC7QBBo/gGbyAV+PJeDPejY9Z6ZJR9ByAPzA+fwDg2p+b</latexit>

ef1
<latexit sha1_base64="GsA17F4fN5nHel44YuT3aQTycoU=">AAACDHicbVDLSsNAFJ3UV62PRl26GSyCq5JUwS4LblxWsA9oQ5lMbtqhk0mYmSgl9Bf8Abf6B+7Erf/gD/gdTtostPXAhcM598XxE86Udpwvq7SxubW9U96t7O0fHFbto+OuilNJoUNjHsu+TxRwJqCjmebQTySQyOfQ86c3ud97AKlYLO71LAEvImPBQkaJNtLIrg4fWQCa8QCycD5yR3bNqTsL4HXiFqSGCrRH9vcwiGkagdCUE6UGrpNoLyNSM8phXhmmChJCp2QMA0MFiUB52eLxOT43SoDDWJoSGi/U3xMZiZSaRb7pjIieqFUvF//1ApUvXLmuw6aXMZGkGgRdHg9TjnWM82RwwCRQzWeGECqZ+R/TCZGEapNfxQTjrsawTrqNuntZb9xd1VrNIqIyOkVn6AK56Bq10C1qow6iKEXP6AW9Wk/Wm/VufSxbS1Yxc4L+wPr8AaS3m70=</latexit>

efCM
<latexit sha1_base64="D7+S+hctqX0vuLu8b8jOjuEFUzk=">AAACGnicbVDLSsNAFJ34rPUVdSlCsAiuSlIFuyx040aoYB/QhDCZ3LRDJw9mJkoJWfkb/oBb/QN34taNP+B3OGmz0NYDA4dz7muOlzAqpGl+aSura+sbm5Wt6vbO7t6+fnDYE3HKCXRJzGI+8LAARiPoSioZDBIOOPQY9L1Ju/D798AFjaM7OU3ACfEoogElWCrJ1U/sB+qDpMyHLMjdrO3aIZZjgll2k+euXjPr5gzGMrFKUkMlOq7+bfsxSUOIJGFYiKFlJtLJMJeUMMirdiogwWSCRzBUNMIhCCebfSM3zpTiG0HM1YukMVN/d2Q4FGIaeqqyuFEseoX4r+eLYuDCdhk0nYxGSSohIvPlQcoMGRtFToZPORDJpopgwqm63yBjzDGRKs2qCsZajGGZ9Bp166LeuL2stZplRBV0jE7RObLQFWqha9RBXUTQI3pGL+hVe9LetHftY166opU9R+gPtM8fjP6iLQ==</latexit>

b⇥
⇣
(efi � �i), (b1� � bd2

i)
⌘

<latexit sha1_base64="3/H7GEKCN7N78z+GWJf39FkbtaM=">AAACcHicbVHbattAEF2pN8e9xG1fAn3Itk7BDsFI7kPzGGge+phCnASyrlitRtaQ1YXdUYsR+tD8QD4gP9CuHIe2TgcWDmfO2dk5G1caLQXBtec/evzk6bPeVv/5i5evtgev35zZsjYKZqrUpbmIpQWNBcwIScNFZUDmsYbz+OpL1z//AcZiWZzSsoJ5LhcFpqgkOSoa2D3xExPIJDWCMAfbcqEhpdFoxRPqBJq0jZALhUZxUWUY4fiAj/74cklZYpuwbSNxDJrkvfZekTj/9+lYGFxkNN6LBsNgEqyKPwThGgzZuk6iwY1ISlXnUJDS0trLMKho3khDqDS0fVFbqKS6kgu4dLCQbo95swqn5R8dk/C0NO4UxFfs345G5tYu89gpu0XsZq8j/9tLbHfhxnRKD+cNFlVNUKi74WmtOZW8S58naECRXjoglUH3fq4yaaQi90d9F0y4GcNDcDadhJ8m02/T4dHhOqIee8c+sBEL2Wd2xL6yEzZjil2zX17P2/Ju/R1/139/J/W9tect+6f8/d+/jb57</latexit>

...
<latexit sha1_base64="/4tyr2CRglXNS7iGErVDHQ3QOrY=">AAACDHicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZdFNy4r2Ac0pUwmk3boZBJmbgol9Bf8Abf6B+7Erf/gD/gdTtostPXAwOGce+cejp8IrsFxvqzSxubW9k55t7K3f3BYtY+OOzpOFWVtGotY9XyimeCStYGDYL1EMRL5gnX9yV3ud6dMaR7LR5glbBCRkeQhpwSMNLSrXkRg7IeZNw1i0POhXXPqzgJ4nbgFqaECraH97QUxTSMmgQqidd91EhhkRAGngs0rXqpZQuiEjFjfUEkipgfZIvgcnxslwGGszJOAF+rvjYxEWs8i30zmMfWql4v/eoHOP1y5DuHNIOMySYFJujwepgJDjPNmcMAVoyBmhhCquMmP6ZgoQsH0VzHFuKs1rJNOo+5e1hsPV7XmbVFRGZ2iM3SBXHSNmugetVAbUZSiZ/SCXq0n6816tz6WoyWr2DlBf2B9/gAiAZwU</latexit>

...
<latexit sha1_base64="/4tyr2CRglXNS7iGErVDHQ3QOrY=">AAACDHicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZdFNy4r2Ac0pUwmk3boZBJmbgol9Bf8Abf6B+7Erf/gD/gdTtostPXAwOGce+cejp8IrsFxvqzSxubW9k55t7K3f3BYtY+OOzpOFWVtGotY9XyimeCStYGDYL1EMRL5gnX9yV3ud6dMaR7LR5glbBCRkeQhpwSMNLSrXkRg7IeZNw1i0POhXXPqzgJ4nbgFqaECraH97QUxTSMmgQqidd91EhhkRAGngs0rXqpZQuiEjFjfUEkipgfZIvgcnxslwGGszJOAF+rvjYxEWs8i30zmMfWql4v/eoHOP1y5DuHNIOMySYFJujwepgJDjPNmcMAVoyBmhhCquMmP6ZgoQsH0VzHFuKs1rJNOo+5e1hsPV7XmbVFRGZ2iM3SBXHSNmugetVAbUZSiZ/SCXq0n6816tz6WoyWr2DlBf2B9/gAiAZwU</latexit>

...
<latexit sha1_base64="/4tyr2CRglXNS7iGErVDHQ3QOrY=">AAACDHicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZdFNy4r2Ac0pUwmk3boZBJmbgol9Bf8Abf6B+7Erf/gD/gdTtostPXAwOGce+cejp8IrsFxvqzSxubW9k55t7K3f3BYtY+OOzpOFWVtGotY9XyimeCStYGDYL1EMRL5gnX9yV3ud6dMaR7LR5glbBCRkeQhpwSMNLSrXkRg7IeZNw1i0POhXXPqzgJ4nbgFqaECraH97QUxTSMmgQqidd91EhhkRAGngs0rXqpZQuiEjFjfUEkipgfZIvgcnxslwGGszJOAF+rvjYxEWs8i30zmMfWql4v/eoHOP1y5DuHNIOMySYFJujwepgJDjPNmcMAVoyBmhhCquMmP6ZgoQsH0VzHFuKs1rJNOo+5e1hsPV7XmbVFRGZ2iM3SBXHSNmugetVAbUZSiZ/SCXq0n6816tz6WoyWr2DlBf2B9/gAiAZwU</latexit>

...
<latexit sha1_base64="/4tyr2CRglXNS7iGErVDHQ3QOrY=">AAACDHicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZdFNy4r2Ac0pUwmk3boZBJmbgol9Bf8Abf6B+7Erf/gD/gdTtostPXAwOGce+cejp8IrsFxvqzSxubW9k55t7K3f3BYtY+OOzpOFWVtGotY9XyimeCStYGDYL1EMRL5gnX9yV3ud6dMaR7LR5glbBCRkeQhpwSMNLSrXkRg7IeZNw1i0POhXXPqzgJ4nbgFqaECraH97QUxTSMmgQqidd91EhhkRAGngs0rXqpZQuiEjFjfUEkipgfZIvgcnxslwGGszJOAF+rvjYxEWs8i30zmMfWql4v/eoHOP1y5DuHNIOMySYFJujwepgJDjPNmcMAVoyBmhhCquMmP6ZgoQsH0VzHFuKs1rJNOo+5e1hsPV7XmbVFRGZ2iM3SBXHSNmugetVAbUZSiZ/SCXq0n6816tz6WoyWr2DlBf2B9/gAiAZwU</latexit>

Figure 3.1: The ReLU network identified by Theorem 3.1.

Specifically, we partition the manifold as M =
⋃CM

i=1 Ui, where the Ui’s are open sets

contained in a Euclidean ball of radius no larger than τ/4. CM depends on the reach τ , the

surface area of M, and the dimension d (see Section 3.1.1 for an explicit characterization).

For each chart, the chart determination sub-network computes an approximation of the in-

dicator function on Ui. The Taylor approximation sub-network provides a local polynomial

approximation of f on Ui. Then the pairing sub-network approximates the product for the

proper pairs of outputs in the previous two sub-networks. Finally, f̂ is obtained by taking a

sum over CM outputs from the pairing sub-network.

The size of our ReLU network matches its lower bound up to a logarithmic factor for the

approximation of functions in Hölder spaces. Denote Fα,d as functions defined on [0, 1]d

in the Hölder space Hα([0, 1]d). We state a lower bound due to [46].

Theorem 3.2. Fix d and α. Let W be a positive integer and κ : RW 7→ C([0, 1]d) be any

mapping. Suppose there is a continuous map Θ : Fα,d 7→ RW such that ∥f−κ(Θ(f))∥∞ ≤

20

ϵ for any f ∈ Fα,d. Then W ≥ cϵ−
d
α with c depending on α only.

We take RW as the parameter space of a ReLU network, and κ as the network structure.

Then to approximate any f ∈ Fα,d, the ReLU network has at least cϵ−
d
α weight parameters.

Although Theorem 3.2 holds for functions on [0, 1]d, our network size remains in the same

order up to a logarithmic factor even when the function is supported on a manifold of

dimension d.

3.1.1 Proof – Construction of Network Approximator

This section contains a constructive proof of Theorem 3.1. Before we proceed, we show

how to approximate the multiplication operation using ReLU networks. This operation is

heavily used in the Taylor approximation sub-network, since Taylor polynomials involve a

sum of products. We first show ReLU networks can approximate quadratic functions.

Lemma 3.1 (Proposition 2 in [40]). The function f(x) = x2 with x ∈ [0, 1] can be approx-

imated by a ReLU network with any error ϵ > 0. The network has depth and the number of

neurons and weight parameters no more than c log(1/ϵ) with an absolute constant c, and

the width of the network is an absolute constant.

This lemma is proved in Appendix A.1.1. The idea is to approximate quadratic func-

tions using a weighted sum of a series of sawtooth functions. Those sawtooth functions are

obtained by compositing the triangular function

g(x) = 2ReLU(x)− 4ReLU(x− 1/2) + 2ReLU(x− 1),

which can be implemented by a single layer ReLU network.

We then approximate the multiplication operation by invoking the identity ab = 1
4
((a+

b)2−(a−b)2) where the two squares can be approximated by ReLU networks in Lemma 3.1.

Corollary 3.1 (Proposition 3 in [40]). Given a constant C > 0 and ϵ ∈ (0, C2), there is a

ReLU network which implements a function ×̂ : R2 7→ R such that: 1). For all inputs x

21

and y satisfying |x| ≤ C and |y| ≤ C, we have |×̂(x, y)− xy| ≤ ϵ; 2). The depth and the

weight parameters of the network is no more than c log C2

ϵ
with an absolute constant c.

The ReLU network in Theorem 3.1 is constructed in the following 5 steps.

Step 1. Construction of an atlas. Denote the open Euclidean ball with center c and

radius r in RD by B(c, r). For any r, the collection {B(x, r)}x∈M is an open cover of M.

Since M is compact, there exists a finite collection of points ci for i = 1, . . . , CM such

that M ⊂ ⋃i B(ci, r).

The following lemma says that when the radius r is properly chosen, Ui = B(ci, r)∩M

is diffeomorphic to Rd.

Lemma 3.2. Suppose Assumption 3.1 and 3.2 hold and let r ≤ τ/4. Then the local neigh-

borhood Ui = B(ci, r)∩M is diffeomorphic to Rd. In particular, the orthogonal projection

Pi onto the tangent space Tci(M) at ci is a diffeomorphism.

The proof is provided in Appendix A.2.1, which utilizes the results in [47]. Therefore,

we pick radius r ≤ τ/4, and let {(Ui, ϕi)}CM
i=1 be an atlas on M as illustrated in Figure 3.2,

where ϕi is to be defined in Step 2. The number of charts CM is upper bounded by

CM ≤
⌈
SA(M)

rd
Td

⌉
,

where SA(M) is the surface area of M, and Td is the thickness of the Ui’s, which is defined

as the average number of Ui’s that contain a point on M (See Eq. (1) in Chapter 2 of [48]).

Remark 3.1. The thickness Td scales approximately linear in d. As shown in Eq. (19) in

Chapter 2 of [48], there exist coverings with d
e
√
e
≲ Td ≤ d log d+ d log log d+ 5d.

Step 2. Projection with rescaling and translation. We denote the tangent space at ci

as

Tci(M) = span(vi1, . . . ,vid),

22

Ui
<latexit sha1_base64="+uWov4e4PdBDYxgIJSR0pKNwOoM=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiS1oMuCmy4rmrbQhjKZTNqhk0mYmQglFPwBt/oH7sStv+IP+B1O2iy09cCFwzn3xfETzpS27S+rtLG5tb1T3q3s7R8cHlWPT7oqTiWhLol5LPs+VpQzQV3NNKf9RFIc+Zz2/Olt7vceqVQsFg96llAvwmPBQkawNtK9O2Kjas2u2wugdeIUpAYFOqPq9zCISRpRoQnHSg0cO9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovW7w6RxdGCVAYS1NCo4X6eyLDkVKzyDedEdYTterl4r9eoPKFK9d1eONlTCSppoIsj4cpRzpGeRYoYJISzWeGYCKZ+R+RCZaYaJNYxQTjrMawTrqNunNVb9w1a612EVEZzuAcLsGBa2hBGzrgAoExPMMLvFpP1pv1bn0sW0tWMXMKf2B9/gB2cJY8</latexit>

�i
<latexit sha1_base64="6wfaupwd6Pdz3cweTZ57+84o4FY=">AAACAXicbVDLSsNAFL1TX7W+qi7dDBbBVUmqoMuCmy4r2FZoQ5lMJu3YySTMTIQSuvIH3OofuBO3fok/4Hc4abPQ1gMXDufcF8dPBNfGcb5QaW19Y3OrvF3Z2d3bP6geHnV1nCrKOjQWsbr3iWaCS9Yx3Ah2nyhGIl+wnj+5yf3eI1Oax/LOTBPmRWQkecgpMVbqDpIxH/JhtebUnTnwKnELUoMC7WH1exDENI2YNFQQrfuukxgvI8pwKtisMkg1SwidkBHrWypJxLSXzb+d4TOrBDiMlS1p8Fz9PZGRSOtp5NvOiJixXvZy8V8v0PnCpesmvPYyLpPUMEkXx8NUYBPjPA4ccMWoEVNLCFXc/o/pmChCjQ2tYoNxl2NYJd1G3b2oN24va81WEVEZTuAUzsGFK2hCC9rQAQoP8Awv8Iqe0Bt6Rx+L1hIqZo7hD9DnD/U0l6I=</latexit>

More Open
Balls to Cover

⇢ [0, 1]d
<latexit sha1_base64="Q4TpLbYskWVW0d9iz9+tsM2Veu0=">AAACDXicbVDLSsNAFL3xWesr6tLNYBFcSEmqoMuiG5cV7APaWCaTSTt0Mgkzk0IJ/QZ/wK3+gTtx6zf4A36HkzYLbT1w4XDOfXH8hDOlHefLWlldW9/YLG2Vt3d29/btg8OWilNJaJPEPJYdHyvKmaBNzTSnnURSHPmctv3Rbe63x1QqFosHPUmoF+GBYCEjWBupb9s9lfqKatR1zpHrPQZ9u+JUnRnQMnELUoECjb793QtikkZUaMKxUl3XSbSXYakZ4XRa7qWKJpiM8IB2DRU4osrLZp9P0alRAhTG0pTQaKb+nshwpNQk8k1nhPVQLXq5+K8XqHzhwnUdXnsZE0mqqSDz42HKkY5RHg0KmKRE84khmEhm/kdkiCUm2gRYNsG4izEsk1at6l5Ua/eXlfpNEVEJjuEEzsCFK6jDHTSgCQTG8Awv8Go9WW/Wu/Uxb12xipkj+APr8weHOpsF</latexit>

Figure 3.2: Curvature decides the number of charts: smaller reach requires more chart.

where {vi1, . . . ,vid} form an orthonormal basis. We obtain the matrix Vi = [vi1, . . . ,vid] ∈

RD×d by concatenating the vij’s as column vectors.

Define

ϕi(x) = bi(V
⊤
i (x− ci) + ui) ∈ [0, 1]d

for any x ∈ Ui, where bi ∈ (0, 1] is a scaling factor and ui is a translation vector. Since Ui

is bounded, we can choose proper bi and ui to guarantee ϕi(x) ∈ [0, 1]d. We rescale and

translate the projection to ease the notation for the development of local Taylor approxima-

tions in Step 4. We also remark that each ϕi is a linear function, and can be realized by a

single layer linear network.

Step 3. Chart determination. This step is to assign a given input x to the proper charts

to which x belongs. This avoids projecting x using unmatched charts (i.e., x ̸∈ Uj for some

j) as illustrated in Figure 3.3.

Unmatched

Uj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ui
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xi
<latexit sha1_base64="XDpw8cAx/zc/9WPXea/utByy0Lw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBFuhqzKt4mNXcOOygn1AO5ZMmmlDM5khyahl6H+4caGIW//FnX9jZjqIWg8EDufcyz05bsiZ0rb9aeWWlldW1/LrhY3Nre2d4u5eWwWRJLRFAh7IrosV5UzQlmaa024oKfZdTjvu5DLxO3dUKhaIGz0NqePjkWAeI1gb6bbc97Eeu178MBuw8qBYsqt2CrRIahkpQYbmoPjRHwYk8qnQhGOlejU71E6MpWaE01mhHykaYjLBI9ozVGCfKidOU8/QkVGGyAukeUKjVP25EWNfqanvmskkpPrrJeJ/Xi/S3rkTMxFGmgoyP+RFHOkAJRWgIZOUaD41BBPJTFZExlhiok1RhbSEiwSn319eJO16tXZcPbmulxqVrI48HMAhVKAGZ9CAK2hCCwhIeIRneLHurSfr1Xqbj+asbGcffsF6/wJN55Jw</latexit>

xj
<latexit sha1_base64="ceAL5mLg1AhoCjoO0cTSQZAM478=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYCt0VaZVfOwKblxWsA9ox5JJM21sJjMkGbUM/Q83LhRx67+482/MTAdR64HA4Zx7uSfHDTlT2rY/rYXFpeWV1dxafn1jc2u7sLPbUkEkCW2SgAey42JFORO0qZnmtBNKin2X07Y7vkj89h2VigXiWk9C6vh4KJjHCNZGuin1fKxHrhc/TPu3pX6haFfsFGieVDNShAyNfuGjNwhI5FOhCcdKdat2qJ0YS80Ip9N8L1I0xGSMh7RrqMA+VU6cpp6iQ6MMkBdI84RGqfpzI8a+UhPfNZNJSPXXS8T/vG6kvTMnZiKMNBVkdsiLONIBSipAAyYp0XxiCCaSmayIjLDERJui8mkJ5wlOvr88T1q1SvWocnxVK9bLWR052IcDKEMVTqEOl9CAJhCQ8AjP8GLdW0/Wq/U2G12wsp09+AXr/QtPbJJx</latexit>

�i(xj)
<latexit sha1_base64="/zuruomcsf8c56qegN+rTzii7U4=">AAACEHicbVDLSsNAFJ3Ud31FXboJtmLdlLSKj53gxqWCfUBTwmR6046dPJi5EUvIJ7jxV9y4UMStS3f+jUlaRK0HBg7n3Dtz5jih4ApN81MrzMzOzS8sLhWXV1bX1vWNzaYKIsmgwQIRyLZDFQjuQwM5CmiHEqjnCGg5w/PMb92CVDzwr3EUQtejfZ+7nFFMJVvfsxDuML8nltBL4rIVDrjNK5ZHceC48V1i3+yXE1svmVUzhzFNahNSIhNc2vqH1QtY5IGPTFClOjUzxG5MJXImIClakYKQsiHtQyelPvVAdeM8SGLspkrPcAOZHh+NXP25EVNPqZHnpJNZTPXXy8T/vE6E7kk35n4YIfhs/JAbCQMDI2vH6HEJDMUoJZRJnmY12IBKyjDtsJiXcJrh6PvL06RZr9YOqodX9dJZZVLHItkmO6RCauSYnJELckkahJF78kieyYv2oD1pr9rbeLSgTXa2yC9o71/RHJ29</latexit>

�i(xi)
<latexit sha1_base64="ZwHM1JxSQnMefImlAK5+toAZPAg=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAr1E1JqvjYFdy4rGAf0JQwmU7aoZNJmJmIJXbhr7hxoYhbf8Odf+MkDaLWAwOHc+7lnjlexKhUlvVpFBYWl5ZXiqultfWNzS1ze6ctw1hg0sIhC0XXQ5IwyklLUcVINxIEBR4jHW98mfqdWyIkDfmNmkSkH6Ahpz7FSGnJNfcqTjSiLq06AVIjz0/upi49qrhm2apZGeA8sXNSBjmarvnhDEIcB4QrzJCUPduKVD9BQlHMyLTkxJJECI/RkPQ05Sggsp9k+afwUCsD6IdCP65gpv7cSFAg5STw9GSaUv71UvE/rxcr/7yfUB7FinA8O+THDKoQpmXAARUEKzbRBGFBdVaIR0ggrHRlpayEixSn31+eJ+16zT6unVzXy41qXkcR7IMDUAU2OAMNcAWaoAUwuAeP4Bm8GA/Gk/FqvM1GC0a+swt+wXj/Aj0ulac=</latexit>

�j(xj)
<latexit sha1_base64="K12YxKnhPh1vuURyb0vNrGyfYLk=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAr1E1JqvjYFdy4rGAf0IQwmU7aaSeTMDMRS+zCX3HjQhG3/oY7/8YkDaLWAwOHc+7lnjluyKhUhvGpFRYWl5ZXiqultfWNzS19e6ctg0hg0sIBC0TXRZIwyklLUcVINxQE+S4jHXd8mfqdWyIkDfiNmoTE9tGAU49ipBLJ0fcqVjikzqhq+UgNXS++mzqjo4qjl42akQHOEzMnZZCj6egfVj/AkU+4wgxJ2TONUNkxEopiRqYlK5IkRHiMBqSXUI58Iu04yz+Fh4nSh14gkscVzNSfGzHypZz4bjKZppR/vVT8z+tFyju3Y8rDSBGOZ4e8iEEVwLQM2KeCYMUmCUFY0CQrxEMkEFZJZaWshIsUp99fniftes08rp1c18uNal5HEeyDA1AFJjgDDXAFmqAFMLgHj+AZvGgP2pP2qr3NRgtavrMLfkF7/wJAR5Wp</latexit>

M
<latexit sha1_base64="bjDmPp0n5on4Yn3q+eqtfRjwNqY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBFvBVZmpC10W3LgRKtgHtEPJpJk2NJOMSaZQhn6HGxeKuPVj3Pk3ZtpZaOuBwOGce7knJ4g508Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKEJbRHKpugHWlDNBW4YZTruxojgKOO0Ek9vM70yp0kyKRzOLqR/hkWAhI9hYya/2I2zGBPP0fl4dlCtuzV0ArRMvJxXI0RyUv/pDSZKICkM41rrnubHxU6wMI5zOS/1E0xiTCR7RnqUCR1T76SL0HF1YZYhCqewTBi3U3xspjrSeRYGdzDLqVS8T//N6iQlv/JSJODFUkOWhMOHISJQ1gIZMUWL4zBJMFLNZERljhYmxPZVsCd7ql9dJu17zrmr1h3ql4eZ1FOEMzuESPLiGBtxBE1pA4Ame4RXenKnz4rw7H8vRgpPvnMIfOJ8/OxqRrw==</latexit>

Figure 3.3: Projecting xj using a matched chart (blue) (Uj, ϕj), and an unmatched chart
(green) (Ui, ϕi).

An input x can belong to multiple charts, and the chart determination sub-network

23

determines all these charts. This can be realized by compositing an indicator function and

the squared Euclidean distance

d2i (x) = ∥x− ci∥22 =
D∑

j=1

(xj − ci,j)
2

for i = 1, . . . , CM. The squared distance d2i (x) is a sum of univariate quadratic functions,

thus, we can apply Lemma 3.1 to approximate d2i (x) by ReLU networks. Denote ĥsq as an

approximation of the quadratic function x2 on [0, 1] with an approximation error ν. Then

we define

d̂2i (x) = 4B2

D∑

j=1

ĥsq

(∣∣∣∣
xj − ci,j

2B

∣∣∣∣
)
.

as an approximation of d2i (x). The approximation error is ∥d̂2i − d2i ∥∞ ≤ 4B2Dν, by the

triangle inequality. We consider an approximation of the indicator function 1(x ∈ [0, r2])

as in Figure 3.4:

1̂∆(a) =

1 a ≤ r2 −∆+ 4B2Dν

− 1
∆−8B2Dν

a+ r2−4B2Dν
∆−8B2Dν

a ∈ [r2 −∆+ 4B2Dν, r2 − 4B2Dν]

0 a > r2 − 4B2Dν

, (3.1)

where ∆ (∆ ≥ 8B2Dν) will be chosen later according to the accuracy ϵ.

Uj
<latexit sha1_base64="pwIwGLln04Srwr8ZSNz3PWIUkEE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiRV0GXRjcuKpi20oUwmk3bsZBJmJkIJBX/Arf6BO3Hrr/gDfoeTNgttPXDhcM59cfyEM6Vt+8sqrayurW+UNytb2zu7e9X9g7aKU0moS2Iey66PFeVMUFczzWk3kRRHPqcdf3yd+51HKhWLxb2eJNSL8FCwkBGsjXTnDh4G1Zpdt2dAy8QpSA0KtAbV734QkzSiQhOOleo5dqK9DEvNCKfTSj9VNMFkjIe0Z6jAEVVeNnt1ik6MEqAwlqaERjP190SGI6UmkW86I6xHatHLxX+9QOULF67r8NLLmEhSTQWZHw9TjnSM8ixQwCQlmk8MwUQy8z8iIywx0SaxignGWYxhmbQbdees3rg9rzWviojKcATHcAoOXEATbqAFLhAYwjO8wKv1ZL1Z79bHvLVkFTOH8AfW5w92OpY3</latexit>

Ui
<latexit sha1_base64="ibpjcNHhvCg9dutr56SrKdo26j0=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiS1oMuiG5cVTVtoQ5lMJu3QySTMTIQSCv6AW/0Dd+LWX/EH/A4nbRbaeuDC4Zz74vgJZ0rb9pdVWlvf2Nwqb1d2dvf2D6qHRx0Vp5JQl8Q8lj0fK8qZoK5mmtNeIimOfE67/uQm97uPVCoWiwc9TagX4ZFgISNYG+neHbJhtWbX7TnQKnEKUoMC7WH1exDEJI2o0IRjpfqOnWgvw1IzwumsMkgVTTCZ4BHtGypwRJWXzV+doTOjBCiMpSmh0Vz9PZHhSKlp5JvOCOuxWvZy8V8vUPnCpes6vPIyJpJUU0EWx8OUIx2jPAsUMEmJ5lNDMJHM/I/IGEtMtEmsYoJxlmNYJZ1G3bmoN+6atdZ1EVEZTuAUzsGBS2jBLbTBBQIjeIYXeLWerDfr3fpYtJasYuYY/sD6/AF0opY2</latexit>

cj
<latexit sha1_base64="eccxobEmlbvwr7/7p8f0+ar7AvI=">AAACDXicbVDLSsNAFL2pr1pfUZdugkVwVZIq6LLoxmUF+4A2hMlk2o6dzISZSaGEfoM/4Fb/wJ249Rv8Ab/DSZuFth4Y5nDOfXHChFGlXffLKq2tb2xulbcrO7t7+wf24VFbiVRi0sKCCdkNkSKMctLSVDPSTSRBcchIJxzf5n5nQqSigj/oaUL8GA05HVCMtJEC2+6HgkVqGpsvw7PgMbCrbs2dw1klXkGqUKAZ2N/9SOA0JlxjhpTqeW6i/QxJTTEjs0o/VSRBeIyGpGcoRzFRfja/fOacGSVyBkKax7UzV393ZChW+XGmMkZ6pJa9XPzXi1Q+cGm7Hlz7GeVJqgnHi+WDlDlaOHk0TkQlwZpNDUFYUnO/g0dIIqxNgBUTjLccwypp12veRa1+f1lt3BQRleEETuEcPLiCBtxBE1qAYQLP8AKv1pP1Zr1bH4vSklX0HMMfWJ8/7w6cgw==</latexit>

1
<latexit sha1_base64="ylmYBBh39LZ1en+l8d8qe0iQbxY=">AAACCXicbVDLSgMxFL3js9ZX1aWbYBFclZkq6MJFwY3LCvYB7VgymUwbmkmGJCOUoV/gD7jVP3Anbv0Kf8DvMNPOQlsPhBzOuS9OkHCmjet+OSura+sbm6Wt8vbO7t5+5eCwrWWqCG0RyaXqBlhTzgRtGWY47SaK4jjgtBOMb3K/80iVZlLcm0lC/RgPBYsYwcZKD/1A8lBPYvtl3nRQqbo1dwa0TLyCVKFAc1D57oeSpDEVhnCsdc9zE+NnWBlGOJ2W+6mmCSZjPKQ9SwWOqfaz2dVTdGqVEEVS2ScMmqm/OzIc6/w0WxljM9KLXi7+64U6H7iw3URXfsZEkhoqyHx5lHJkJMpjQSFTlBg+sQQTxez9iIywwsTY8Mo2GG8xhmXSrte881r97qLauC4iKsExnMAZeHAJDbiFJrSAgIJneIFX58l5c96dj3npilP0HMEfOJ8/jEebPQ==</latexit>

0
<latexit sha1_base64="wn+bO+lusf1RnGorkqG5qjWDbcI=">AAACCXicbVDLSgMxFL3js9ZX1aWbYBFclZkq6MJFwY3LCvYB7VgymUwbmkmGJCOUoV/gD7jVP3Anbv0Kf8DvMNPOQlsPhBzOuS9OkHCmjet+OSura+sbm6Wt8vbO7t5+5eCwrWWqCG0RyaXqBlhTzgRtGWY47SaK4jjgtBOMb3K/80iVZlLcm0lC/RgPBYsYwcZKD/1A8lBPYvtl7nRQqbo1dwa0TLyCVKFAc1D57oeSpDEVhnCsdc9zE+NnWBlGOJ2W+6mmCSZjPKQ9SwWOqfaz2dVTdGqVEEVS2ScMmqm/OzIc6/w0WxljM9KLXi7+64U6H7iw3URXfsZEkhoqyHx5lHJkJMpjQSFTlBg+sQQTxez9iIywwsTY8Mo2GG8xhmXSrte881r97qLauC4iKsExnMAZeHAJDbiFJrSAgIJneIFX58l5c96dj3npilP0HMEfOJ8/iq6bPA==</latexit>

b1�
<latexit sha1_base64="K70up/TAfM08v0R1sXRQ70Q+6FI=">AAACGHicbVDLSsNAFJ3UV62vqMtugkVwVRItPjZS0IXLCvYBTSmTyW07dPJg5kYpoQt/wx9wq3/gTty68wf8DpM0iFYPDBzOua85Tii4QtP80AoLi0vLK8XV0tr6xuaWvr3TUkEkGTRZIALZcagCwX1oIkcBnVAC9RwBbWd8kfrtW5CKB/4NTkLoeXTo8wFnFBOpr5ftO+7CiGJsexRHroqt6bRvX4JA2tcrZtXMYPwlVk4qJEejr3/absAiD3xkgirVtcwQezGVyJmAacmOFISUjekQugn1qQeqF2efmBr7ieIag0Amz0cjU392xNRTauI5SWV6qZr3UvFfz1XpwLntODjtxdwPIwSfzZYPImFgYKQpGS6XwFBMEkKZ5Mn9BhtRSRkmWZayYM5SHH/H8Je0DqvWUbV2XavUz/OIiqRM9sgBscgJqZMr0iBNwsg9eSRP5Fl70F60V+1tVlrQ8p5d8gva+xemmKFP</latexit>

ci
<latexit sha1_base64="p/9SB+Z+Flv7fazv2mk7ZRzfqhs=">AAACB3icbVDLSsNAFL2pr1pfVZduBovgqiRafOyKblxWsA9oQplMJu3QySTMTIQS+gH+gFv9A3fi1s/wB/wOJ20QrR4YOJxz79zD8RPOlLbtD6u0tLyyulZer2xsbm3vVHf3OipOJaFtEvNY9nysKGeCtjXTnPYSSXHkc9r1x9e5372nUrFY3OlJQr0IDwULGcHaSK4bYT3yw4xMB2xQrdl1ewb0lzgFqUGB1qD66QYxSSMqNOFYqb5jJ9rLsNSMcDqtuKmiCSZjPKR9QwWOqPKyWeYpOjJKgMJYmic0mqk/NzIcKTWJfDOZZ1SLXi7+6wUq/3Dhug4vvIyJJNVUkPnxMOVIxygvBQVMUqL5xBBMJDP5ERlhiYk21VVmxVzmOPuu4S/pnNSd03rjtlFrXhUVleEADuEYHDiHJtxAC9pAIIFHeIJn68F6sV6tt/loySp29uEXrPcvDbCamA==</latexit>

x<latexit sha1_base64="674KEbwfo+XhsoKfua9LVagun0c=">AAACBXicbVDLSsNAFL2pr1pfVZduBovgqqRafOwKIrisYGuxDWUymbRDJ5MwMxFL6NofcKt/4E7c+h3+gN/hJA2irQcGDufcO/dw3IgzpW370yosLC4trxRXS2vrG5tb5e2dtgpjSWiLhDyUHRcrypmgLc00p51IUhy4nN66o4vUv72nUrFQ3OhxRJ0ADwTzGcHaSHe9AOuh6ycPk365YlftDGie1HJSgRzNfvmr54UkDqjQhGOlujU70k6CpWaE00mpFysaYTLCA9o1VOCAKifJEk/QgVE85IfSPKFRpv7eSHCg1DhwzWSaUM16qfiv56n0w5nr2j9zEiaiWFNBpsf9mCMdorQS5DFJieZjQzCRzORHZIglJtoUV8qKOU9x8lPDPGkfVWvH1fp1vdK4zCsqwh7swyHU4BQacAVNaAEBAU/wDC/Wo/VqvVnv09GCle/swh9YH9+ef5nU</latexit>

bd2
j (x)

<latexit sha1_base64="lYOi043jK6mIJx/DTW05k5FK6Qo=">AAACGXicbVBJTsMwFHXKVMoUYAkLiwqpbKq0VAy7CjYsi0QHqQmR4zitqTPIdoAqyoZrcAG2cAN2iC0rLsA5SNIIQcuTLD299yc/K2BUSE37VApz8wuLS8Xl0srq2vqGurnVEX7IMWljn/m8ZyFBGPVIW1LJSC/gBLkWI11rdJ763VvCBfW9KzkOiOGigUcdipFMJFPd1e+oTYZIRnZs3lzXK7qL5NByovv4AJpqWatqGeAsqeWkDHK0TPVLt30cusSTmCEh+jUtkEaEuKSYkbikh4IECI/QgPQT6iGXCCPKfhHD/USxoePz5HkSZurvjgi5QoxdK6lMbxTTXir+69kiHTi1XTonRkS9IJTEw5PlTsig9GEaE7QpJ1iycUIQ5jS5H+Ih4gjLJMxSFsxpiqOfGGZJp16tHVYbl41y8yyPqAh2wB6ogBo4Bk1wAVqgDTB4AE/gGbwoj8qr8qa8T0oLSt6zDf5A+fgGbwahHg==</latexit>

bd2
i (x)

<latexit sha1_base64="Uo1D1C3fjZMchdVR9X6qgRM9Ffo=">AAACGXicbVDLSsNAFJ34rPUVdamLwSLUTUlq8bErunFZwT6giWEymbRDJw9mJmoJ2fgb/oBb/QN34taVP+B3mKRBtPXAwOGc+5pjh4wKqWmfytz8wuLScmmlvLq2vrGpbm13RBBxTNo4YAHv2UgQRn3SllQy0gs5QZ7NSNceXWR+95ZwQQP/Wo5DYnpo4FOXYiRTyVL3jDvqkCGSsZNY9KZeNTwkh7Yb3yeH0FIrWk3LAWeJXpAKKNCy1C/DCXDkEV9ihoTo61oozRhxSTEjSdmIBAkRHqEB6afURx4RZpz/IoEHqeJAN+Dp8yXM1d8dMfKEGHt2WpndKKa9TPzXc0Q2cGq7dE/NmPphJImPJ8vdiEEZwCwm6FBOsGTjlCDMaXo/xEPEEZZpmOU8mLMMxz8xzJJOvaYf1RpXjUrzvIioBHbBPqgCHZyAJrgELdAGGDyAJ/AMXpRH5VV5U94npXNK0bMD/kD5+AZtX6Ed</latexit>

<latexit sha1_base64="j9U8db8zI4FE+x1hWIcoJ5Fza5w=">AAACQHicbVDLSsNAFJ34tr6qLt0MFqFuSiKKbgRRFy4VrAqmhsnkph06eTBzo5aQD/I3/AG3+gPiTty6clKLaOuBgcO55z7m+KkUGm37xRobn5icmp6ZrczNLywuVZdXLnSSKQ5NnshEXflMgxQxNFGghKtUAYt8CZd+96isX96C0iKJz7GXQiti7ViEgjM0klc9cu9EAB2GuRsx7AQ6d4rCy91jkMgK6nKhOP3xBIUnbrbqfasf5vfFJt2njlet2Q27DzpKnAGpkQFOveqrGyQ8iyBGLpnW146dYitnCgWXUFTcTEPKeJe14drQmEWgW3n/swXdMEpAw0SZFyPtq787chZp3Yt84yzP1MO1Uvy3Fuhy4NB2DPdauYjTDCHm38vDTFJMaJkmDYQCjrJnCONKmPsp7zDFOJrMKyYYZziGUXKx1XB2GvbZdu3gcBDRDFkj66ROHLJLDsgJOSVNwskDeSLP5MV6tN6sd+vj2zpmDXpWyR9Yn189D7EX</latexit>

b1� � bd2
i (x) = 1

<latexit sha1_base64="0PIRVfFpD/SyY3AVcQhm0zGHtrw=">AAACQHicbVDLSsNAFJ34tr6qLt0MFkE3JRFFN4JYFy4VrAqmhsnkxo6dPJi5UUvIB/kb/oBb+wPiTty6clKLaPXAwOHccx9z/FQKjbbds0ZGx8YnJqemKzOzc/ML1cWlM51kikOTJzJRFz7TIEUMTRQo4SJVwCJfwrnfaZT181tQWiTxKXZTaEXsOhah4AyN5FUb7p0IoM0wdyOG7UDnTlF4uXsIEllBXS4Up9+eoPBurjbX+1Y/zO+LDbpHba9as+t2H/QvcQakRgY49qovbpDwLIIYuWRaXzp2iq2cKRRcQlFxMw0p4x12DZeGxiwC3cr7ny3omlECGibKvBhpX/3ZkbNI627kG2d5ph6uleK/tUCXA4e2Y7jbykWcZggx/1oeZpJiQss0aSAUcJRdQxhXwtxPeZspxtFkXjHBOMMx/CVnm3Vnu26fbNX2DwYRTZEVskrWiUN2yD45IsekSTh5IE/kmfSsR+vVerPev6wj1qBnmfyC9fEJPSGxFw==</latexit>

b1� � bd2
j (x) = 0

Figure 3.4: Chart determination utilizes the composition of approximated distance function
d̂2i and the indicator function 1̂∆.

To implement 1̂∆(a), we consider a basic step function g = 2ReLU(x − 0.5(r2 −

24

4B2Dν))− 2ReLU(x− r2 + 4B2Dν). It is straightforward to check

gk(a) = g ◦ · · · ◦ g︸ ︷︷ ︸
k

(a)

=

0 a < (1− 2−k)(r2 − 4B2Dν)

2k(a− r2 + 4B2Dν) + r2 − 4B2Dν a ∈
[
(1− 1

2k
)(r2 − 4B2Dν), r2 − 4B2Dν

]

r2 − 4B2Dν a > r2 − 4B2Dν

.

Let 1̂∆ = 1 − 1
r2−4B2Dν

gk. It suffices to choose k satisfying (1 − 1
2k
)(r2 − 4B2Dν) ≥

r2 −∆+4B2Dν, which yields k =
⌈
log r2

∆

⌉
. We use 1̂∆ ◦ d̂2i to approximate the indicator

function on Ui:

• if x ̸∈ Ui, i.e., d2i (x) ≥ r2, we have 1̂∆ ◦ d̂2i (x) = 0;

• if x ∈ Ui and d2i (x) ≤ r2 −∆, we have 1̂∆ ◦ d̂2i (x) = 1.

We remark that although the approximate indicator function 1̂∆ is a piecewise linear func-

tion with two breakpoints, we implement it using a deep neural network to control the range

of weight parameters in the network. Otherwise, the parameter upper bound can be as large

as 1/∆ due to the steep slope in 1̂∆.

Step 4. Taylor approximation. In each chart (Ui, ϕi), we locally approximate f using

Taylor polynomials of order n as shown in Figure 3.5. Specifically, we decompose f as

f =

CM∑

i=1

fi with fi = fρi,

where ρi is an element in a C∞ partition of unity on M which is supported inside Ui.

The existence of such a partition of unity is guaranteed by Proposition 2.1. Since M is a

compact smooth manifold and ρi is C∞, fi preserves the regularity (smoothness) of f such

that fi ∈ Hα(M) for i = 1, . . . , CM.

25

�i(Ui) ⇢ [0, 1]d
<latexit sha1_base64="5ykNWlqa92MBD9AlISkFjfasK2Q=">AAACGXicbVDLSsNAFJ3UV62vqEtdDBahgpSkCrosuHFZwbSFJobJZNIOnUzCzEQooRt/wx9wq3/gTty68gf8DidtFlo9cOFwzr1z554gZVQqy/o0KkvLK6tr1fXaxubW9o65u9eVSSYwcXDCEtEPkCSMcuIoqhjpp4KgOGCkF4yvCr93T4SkCb9Vk5R4MRpyGlGMlJZ889BNR9SnDcenJ9CVWSCJggPrFNreXeibdatpzQD/ErskdVCi45tfbpjgLCZcYYakHNhWqrwcCUUxI9Oam0mSIjxGQzLQlKOYSC+fXTGFx1oJYZQIXVzBmfpzIkexlJM40J0xUiO56BXiv14oiwcXtqvo0sspTzNFOJ4vjzIGVQKLmGBIBcGKTTRBWFD9f4hHSCCsdJg1HYy9GMNf0m017bNm6+a83nbKiKrgAByBBrDBBWiDa9ABDsDgATyBZ/BiPBqvxpvxPm+tGOXMPvgF4+Mb72ifgw==</latexit>

�i(x)
<latexit sha1_base64="W1GsS7Pt5tyoz3L5xLIvIt3QI4k=">AAACD3icbVDLSsNAFJ3UV62vWJduBotQNyXR4mNXcOOygqmFJoTJZNIOnTyYmUhL6Ef4A271D9yJWz/BH/A7nKRBtPXAwOGce+cejpcwKqRhfGqVldW19Y3qZm1re2d3T9+v90ScckwsHLOY9z0kCKMRsSSVjPQTTlDoMXLvja9z//6BcEHj6E5OE+KEaBjRgGIkleTqdTsZUZc27RDJkRdkk9mJqzeMllEALhOzJA1QouvqX7Yf4zQkkcQMCTEwjUQ6GeKSYkZmNTsVJEF4jIZkoGiEQiKcrMg+g8dK8WEQc/UiCQv190aGQiGmoacm84hi0cvFfz1f5B8uXJfBpZPRKEklifD8eJAyKGOYlwN9ygmWbKoIwpyq/BCPEEdYqgprRTFXOc5/algmvdOWedZq37YbHausqAoOwRFoAhNcgA64AV1gAQwm4Ak8gxftUXvV3rT3+WhFK3cOwB9oH9/BZp0b</latexit>

M ⇢ RD
<latexit sha1_base64="R/WAjU9EhpIP3Y2jawZnoZiYULk=">AAACHXicbVDNSsNAGNzUv1r/oh69LBbBU0mqoMeCHrwIVUxbaGLZbDbt0s0m7G6EEnL1NXwBr/oG3sSr+AI+h5s2B20dWBhmvr8dP2FUKsv6MipLyyura9X12sbm1vaOubvXkXEqMHFwzGLR85EkjHLiKKoY6SWCoMhnpOuPLwq/+0CEpDG/U5OEeBEachpSjJSWBiZ0I6RGGLHsOoeuTH1J1Ezz/ew2v78cmHWrYU0BF4ldkjoo0R6Y324Q4zQiXGGGpOzbVqK8DAlFMSN5zU0lSRAeoyHpa8pRRKSXTX+SwyOtBDCMhX5cwan6uyNDkZSTyNeVxY1y3ivEf71AFgPntqvw3MsoT1JFOJ4tD1MGVQyLqGBABcGKTTRBWFB9P8QjJBBWOtCaDsaej2GRdJoN+6TRvDmtt5wyoio4AIfgGNjgDLTAFWgDB2DwCJ7BC3g1now34934mJVWjLJnH/yB8fkD48Ci4g==</latexit>

Ui<latexit sha1_base64="z9s72Pj1ZErQq2SdZIIJVOoJji8=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiRV0GXBjcuKpi20oUwmk3boZBJmJkIIBX/Arf6BO3Hrr/gDfoeTNgttPXDhcM59cfyEM6Vt+8uqrK1vbG5Vt2s7u3v7B/XDo66KU0moS2Iey76PFeVMUFczzWk/kRRHPqc9f3pT+L1HKhWLxYPOEupFeCxYyAjWRrp3R2xUb9hNew60SpySNKBEZ1T/HgYxSSMqNOFYqYFjJ9rLsdSMcDqrDVNFE0ymeEwHhgocUeXl81dn6MwoAQpjaUpoNFd/T+Q4UiqLfNMZYT1Ry14h/usFqli4dF2H117ORJJqKsjieJhypGNUZIECJinRPDMEE8nM/4hMsMREm8RqJhhnOYZV0m01nYtm6+6y0XbLiKpwAqdwDg5cQRtuoQMuEBjDM7zAq/VkvVnv1seitWKVM8fwB9bnD3pZlkk=</latexit>

fi � ��1
i 2 Hs,↵

<latexit sha1_base64="NmhVJhXDQ+qX+qeb5hxD8fWIqFU=">AAACLnicbVDLSsNAFJ3UV62vqks3g0VwoSXR4mNXcNNlBfuApg0300k7dDIJMxOhhHyHv+EPuNU/EFyIO/EzTNoi2npg4HDOfc1xQ86UNs03I7e0vLK6ll8vbGxube8Ud/eaKogkoQ0S8EC2XVCUM0EbmmlO26Gk4LucttzRTea37qlULBB3ehzSrg8DwTxGQKeSU7Q8h2GbMEmwHQ6Zw3rxqZVgmwls+6CHBHhcS3qxOsE28HAIiVMsmWVzArxIrBkpoRnqTvHT7gck8qnQhINSHcsMdTcGqRnhNCnYkaIhkBEMaCelAnyquvHkawk+SpU+9gKZPqHxRP3dEYOv1Nh308rsXDXvZeK/Xl9lA+e2a++qGzMRRpoKMl3uRRzrAGfZ4T6TlGg+TgkQydL7MRmCBKLThAuTYK4zXPzEsEiaZ2XrvFy5rZSqjVlEeXSADtExstAlqqIaqqMGIugBPaFn9GI8Gq/Gu/ExLc0Zs5599AfG1zcgh6lB</latexit>

fi(x) 2 Hs,↵(M)
<latexit sha1_base64="ZctcUrwm+gi0F3qRAY8WP1Ul27A=">AAACNXicbVDLSgMxFM3UV62vqks3wSK0IGXGB7oU3HQjVLAPcGq5k2ba0ExmSDJiGeZX/A1/wK3uXbiTbv0FM20RrR4InJxzb+7N8SLOlLbtNyu3sLi0vJJfLaytb2xuFbd3miqMJaENEvJQtj1QlDNBG5ppTtuRpBB4nLa84WXmt+6pVCwUN3oU0U4AfcF8RkAbqVs897us7AagB56fPKQV7DKBJ3cCPKmld4k6xC7waABp+Vu/SivdYsmu2hPgv8SZkRKaod4tjt1eSOKACk04KHXr2JHuJCA1I5ymBTdWNAIyhD69NVRAQFUnmfwwxQdG6WE/lOYIjSfqz44EAqVGgWcqsx3VvJeJ/3o9lT04N137552EiSjWVJDpcD/mWIc4ixD3mKRE85EhQCQz+2MyAAlEm6ALJhhnPoa/pHlUdY6rp9cnpYvGLKI82kP7qIwcdIYuUA3VUQMR9Iie0Qt6tZ6sd+vDGk9Lc9asZxf9gvX5BXkDrFs=</latexit>

Figure 3.5: Locally approximate f in each chart (Ui, ϕi) using Taylor polynomials.

Lemma 3.3. Suppose Assumption 3.3 holds. For i = 1, . . . , CM, the function fi is Hölder

continuous on M, in the sense that there exists a Hölder coefficient Li depending on d,

the upper bounds of derivatives of the partition of unity ρi and coordinate system ϕi, up to

order s, such that for any |s| = ⌊α⌋, we have

∣∣∣Ds(fi ◦ ϕ−1
i)
∣∣
ϕi(x1)

−Ds(fi ◦ ϕ−1
i)
∣∣
ϕi(x2)

∣∣∣ ≤ Li ∥ϕi(x1)− ϕi(x2)∥α−⌊α⌋
2 , ∀x1,x2 ∈ Ui.

Proof Sketch. We provide a sketch here. More details are deferred to Appendix A.2.2.

Without loss of generality, suppose Assumption 3.3 holds with the atlas chosen in Step 1.

Denote g1 = f ◦ ϕ−1
i and g2 = ρi ◦ ϕ−1

i . By the Leibniz rule, we have

Ds(fi ◦ ϕ−1
i) = Ds(g1 × g2) =

∑

|p|+|q|=⌊α⌋

(⌊α⌋
|p|

)
Dpg1D

qg2.

Consider each term in the sum: for any x1,x2 ∈ Ui,

∣∣Dpg1D
qg2|ϕi(x1) −Dpg1D

qg2|ϕi(x2)

∣∣

≤ |Dpg1(ϕi(x1))|
∣∣Dqg2|ϕi(x1) −Dqg2|ϕi(x2)

∣∣+ |Dqg2(ϕi(x2))|
∣∣Dpg1|ϕi(x1) −Dpg1|ϕi(x2)

∣∣

≤ λiθi,α ∥ϕi(x1)− ϕi(x2)∥α−⌊α⌋
2 + µiβi,α ∥ϕi(x1)− ϕi(x2)∥α−⌊α⌋

2 .

Here λi and µi are uniform upper bounds on the derivatives of g1 and g2 with order up to s,

respectively. The quantities θi,α and βi,α in the last inequality above is chosen as follows:

26

by the mean value theorem, we have

∣∣Dqg2|ϕi(x1) −Dqg2|ϕi(x2)

∣∣ ≤
√
dµi ∥ϕi(x1)− ϕi(x2)∥2

=
√
dµi ∥ϕi(x1)− ϕi(x2)∥1−α+⌊α⌋

2 ∥ϕi(x1)− ϕi(x2)∥α−⌊α⌋
2

≤
√
dµi(2r)

1−α+⌊α⌋ ∥ϕi(x1)− ϕi(x2)∥α−⌊α⌋
2 ,

where the last inequality is due to the fact that ∥ϕi(x1)− ϕi(x2)∥2 ≤ bi ∥Vi∥ ∥x1 − x2∥2 ≤

2r. Then we set θi,α =
√
dµi(2r)

1−α+⌊α⌋ and by a similar argument, we set βi,α =
√
dλi(2r)

1−α+⌊α⌋. We complete the proof by taking Li = 2⌊α⌋+1
√
dλiµi(2r)

1−α+⌊α⌋.

Lemma 3.3 is crucial for the error estimation in the local approximation of fi ◦ ϕ−1
i by

Taylor polynomials. This error estimate is given in the following theorem, where some of

the proof techniques are from Theorem 1 in [40].

Theorem 3.3. Let fi = fρi as in Step 4. For any δ ∈ (0, 1), there exists a ReLU net-

work structure that, if the weight parameters are properly chosen, the network yields an

approximation of fi ◦ ϕ−1
i uniformly with an L∞ error δ. Such a network has

1. no more than c1
(
log 1

δ
+ 1
)

layers, with width bounded by c2δ−d/α,

2. at most c3δ−
d
α

(
log 1

δ
+ 1
)

neurons and weight parameters, with the range of weight

parameters bounded by κ = c4max{1,
√
d},

where c1, c2, c3 depend on α, d, τ , and the upper bound of derivatives of fi◦ϕ−1
i up to order

⌊α⌋, and c4 depends on the upper bound of the derivatives of ρi’s up to order ⌊α⌋.

Proof Sketch. The detailed proof is provided in Appendix A.2.3. The proof consists of two

steps:

1. Approximate fi ◦ ϕ−1
i using a weighted sum of Taylor polynomials;

2. Implement the weighted sum of Taylor polynomials using ReLU networks.

27

Specifically, we set up a uniform grid and divide [0, 1]d into small cubes, and then approx-

imate fi ◦ ϕ−1
i by its ⌊α⌋-th order Taylor polynomial in each cube. To implement such

polynomials by ReLU networks, we recursively apply the multiplication ×̂ operator in

Corollary 3.1, since these polynomials are sums of the products of different variables.

Step 5. Estimating the total error. We have collected all the ingredients to implement

the entire ReLU network to approximate f on M. Recall that the network structure consists

of 3 main sub-networks as demonstrated in Figure 3.1. Let ×̂ be an approximation to the

multiplication operator in the pairing sub-network with error η. Accordingly, the function

given by the whole network is

f̃ =

CM∑

i=1

×̂(f̂i, 1̂∆ ◦ d̂2i) with f̂i = f̃i ◦ ϕi,

where f̃i is the approximation of fi ◦ ϕ−1
i using Taylor polynomials in Theorem 3.3. The

total error can be decomposed into three components according to Lemma 3.4 below. We

denote 1(x ∈ Ui) as the indicator function of Ui. Let the approximation errors of the

multiplication operation ×̂ and the local Taylor polynomial in Theorem 3.3 be η and δ,

respectively.

Lemma 3.4. For any i = 1, . . . , CM, we have ∥f̃ − f∥∞ ≤ ∑CM
i=1 (Ai,1 + Ai,2 + Ai,3),

where

Ai,1 =
∥∥×̂(f̂i, 1̂∆ ◦ d̂2i)− f̂i × (1̂∆ ◦ d̂2i)

∥∥
∞ ≤ η,

Ai,2 =
∥∥f̂i × (1̂∆ ◦ d̂2i)− fi × (1̂∆ ◦ d̂2i)

∥∥
∞ ≤ δ,

Ai,3 =
∥∥fi × (1̂∆ ◦ d̂2i)− fi × 1(x ∈ Ui)

∥∥
∞ ≤ c(π + 1)

r(1− r/τ)
∆ for some constant c.

Lemma 3.4 is proved in Appendix A.2.4. In order to achieve an ϵ total approximation

error, i.e., ∥f − f̃∥∞ ≤ ϵ, we need to control the errors in the three sub-networks. In other

words, we need to decide ν for d̂2i , ∆ for 1̂∆, δ for f̃i, and η for ×̂. Note thatAi,1 is the error

28

from the pairing sub-network, Ai,2 is the approximation error in the Taylor approximation

sub-network, and Ai,3 is the error from the chart determination sub-network. The error

bounds on Ai,1, Ai,2 are straightforward from the constructions of ×̂ and f̂i. The estimate

of Ai,3 involves some technical analysis since ∥1̂∆ ◦ d̂2i − 1(x ∈ Ui)∥∞ = 1. Note that we

have

1̂∆ ◦ d̂2i (x)− 1(x ∈ Ui) = 0

whenever ∥x− ci∥22 < r2 − ∆ or ∥x− ci∥22 > r2. Therefore, we only need to prove that

|fi(x)| is sufficiently small in the shell region

Ki = {x ∈ M : r2 −∆ ≤ ∥x− ci∥22 ≤ r2}.

We bound the maximum of fi on Ki using a first-order Taylor expansion. Since fi van-

ishes at the boundary of Ui due to the partition of unity ρi, we can show that supx∈Ki
|fi(x)|

is proportional to the width ∆ of Ki. In particular, there exists a constant c depending on

fi’s and ϕi’s such that

max
x∈Ki

|fi(x)| ≤
c(π + 1)

r(1− r/τ)
∆ for any i = 1, . . . , CM. (3.2)

Then (Eq. 3.2) immediately implies the upper bound on Ai,3. The formal statement of

(Eq. 3.2) and its proof are deferred to Lemma A.1 and Appendix A.2.5.

Given Lemma 3.4, we choose

η = δ =
ϵ

3CM
and ∆ =

r(1− r/τ)ϵ

3c(π + 1)CM
(3.3)

so that the approximation error is bounded by ϵ. Moreover, we choose

ν =
∆

16B2D
(3.4)

29

to guarantee ∆ > 8B2Dν so that the definition of 1̂∆ is valid.

Finally we quantify the size of the ReLU network. Recall that the chart determination

sub-network has c1 log 1
ν

layers, the Taylor approximation sub-network has c2 log 1
δ

layers,

and the pairing sub-network has c3 log 1
η

layers. Here c2 depends on d, α, f , and c1, c3

are absolute constants. Combining these with (Eq. 3.3) and (Eq. 3.4) yields the depth in

Theorem 3.1. By a similar argument, we can obtain the number of neurons and weight

parameters. A detailed analysis is given in Appendix A.2.6.

3.2 Efficient Approximation of ConvResNets

Feedforward neural networks have attracted many theoretical studies due to its simplicity.

In practice, Convolutional Residual Networks (ConvResNets) give rise to the state-of-the-

art performance in wide applications. In this section, we build upon the framework devel-

oped in Section 3.1 and study the universal approximation properties of ConvResNets.

We shift our focus to Besov functions as a generalization of Hölder functions.

Assumption 3.4. Let 0 < p, q ≤ ∞, d/p + 1 ≤ α < ∞. Assume f ∈ Bα
p,q(M) and

∥f∥Bα
p,q(M) ≤ c0 from a constant c0 > 0. Additionally, we assume ∥f∥L∞ ≤ C for a

constant C > 0.

Our universal approximation guarantee of ConvResNets for Besov functions on M is

summarized in the following (Proof can be found in [49]). We recall the ConvResNet

architecture CRN(. . .) from (Eq. 2.5).

Theorem 3.4. Assume Assumption 3.1 and 3.2 hold. For any function f satisfying Assump-

tion 3.4, any ϵ ∈ (0, 1), and positive integer K ∈ [2, D], there is a ConvResNet architec-

ture CRN(M,L, J,K, κ1, κ2,∞) such that if the weight parameters of this ConvResNet are

properly chosen, the network yields a function f̂ ∈ CRN(M,L, J,K, κ1, κ2,∞) satisfying

∥f̂ − f∥L∞ ≤ ϵ. (3.5)

30

Input
FC

Output

Cardinal B-spline approximation

id id
Residual block

Pad

Residual block

Chart determination

Figure 3.6: The ConvResNet in Theorem 3.4 contains a padding layer, M residual blocks,
and a fully connected (FC) layer.

Such a network architecture has

M = O
(
ϵ−d/α

)
, L = O(log(1/ϵ)), J = O(1), κ1 = O(1), log κ2 = O(log2(1/ϵ)).

The constant hidden in O(·) depend on d, D logD, α, 2d
αp−d

, p, q, c0, τ and the surface area

of M. In particular, the constant depends on D logD linearly.

The architecture of the ConvResNet in Theorem 3.4 is illustrated in Figure 3.6. It has

the following properties:

• The network has a fixed filter size and a fixed number of channels.

• There is no cardinality constraint (number of nonzero weight parameters).

• The network size depends on the intrinsic dimension d, and only weakly depends on

D.

Theorem 3.4 can be compared with [50] on the approximation theory for Besov func-

tions in RD by FNNs as follows: (1) To universally approximate Besov functions in RD

with ϵ error, the FNN constructed in [50] requiresO (log(1/ϵ)) depth,O
(
ϵ−D/α

)
width and

O
(
ϵ−D/α log(1/ϵ)

)
nonzero parameters. By exploiting the manifold model, our network

size depends on the intrinsic dimension d and weakly depends on D. (2) The ConvRes-

Net in Theorem 3.4 does not require any cardinality constraint, while such a constraint is

31

needed in [50].

3.3 Approximation with Smoothness Constraints

3.3.1 Benefits of Overparameterized Neural Networks

Deep neural networks of enormous sizes have achieved remarkable success in various ap-

plications. Some well-known examples include ViT-Huge of 632 million parameters [51],

BERT-Large of 336 million parameters [52], and the gigantic GPT-3 of 175 billion param-

eters [53]. In addition to outstanding testing accuracy, there has been evidence that large

neural networks favor smoothness and yield good robustness [54, 55].

Among vast literature on explaining the success of neural networks, universal approxi-

mation theories analyze how well neural networks can represent complex data models (see

literature in related work section). These works focus on approximating a target function

in terms of its function value (i.e., in function L∞ norm). However, other important prop-

erties, espcifically the smoothness of the neural networks, are less investigated. A few

early results provide asymptotic results on two-layer networks with smooth activation for

approximating both function value and derivatives [56, 57]. Recently, [58, 59] established

nonasymptotic approximation theory of feedforward networks in terms of Sobolev norms.

In real-world applications, on the other hand, practitioners empirically demonstrated a

close tie between the smoothness of a trained neural network to its adversarial robustness

[60, 61, 62, 63]. The intuition behind is relatively clear. Consider, for instance, adding

some adversarial perturbation to an input. A network of small (local) Lipschitz constant

produces less deviation to the original output, and therefore, is often resilient to adversar-

ial attackes. On the contrary, a network that is vulnerable to adversarial attacks usually

has a large Lipschitz constant. Over the years, many computational methods are proposed

and extensively tested in experiments for promoting network smoothness [64, 54, 63, 65].

Apart from these explicit training methodologies, the size of a network is also recognized

as a critical factor to its generalization and robustness [66, 54, 67]. Yet, theoretical under-

32

standing is largely missing.

In this section, we investigate universal approximation ability of neural networks with

smoothness guarantees. We consider ConvResNet with ReLU activation as an example. We

measure the approximation error of ConvResNet in terms of not only the function value,

but also higher order smoothness. Specifically, suppose given a target function f belonging

to a Sobolev space in a D-dimensional hypercube. We provide an approximation error

estimate in terms of Sobolev norm as a function of the size of ConvResNet. We also extend

our theory to functions supported on a d-dimensional Riemannian manifold (d ≪ D). All

of the proofs can be found in [68].

3.3.2 W s,p-approximation in Euclidean Space

Consider a Sobolev function class defined on a unit hypercube (0, 1)D. We aim to use

convolutional residual networks for approximating functions in the target class in terms of

the W s,p norm. Here p is a positive integer and s can vary in [0, 1]; in particular, s = 0

corresponds to function value approximation, and s = 1 resembles the result in previous

sections. We formally define our target function class as a Sobolev norm ball.

Assumption 3.5. Let α ≥ 2, 1 ≤ p ≤ +∞ be integers. Assume the target function f

satisfies

f ∈ Wα,p
(
(0, 1)D

)
and ∥f∥Wα,p((0,1)D) ≤ 1.

We set the norm ball of radius 1 for the sake of simplicity, while the results in the sequel

hold for any constant radius. We also let α ≥ 2 for techincal convenience. In the following

theorem, we show that ConvResNets can approximate any functions in a Sobolev norm ball

in terms of W s,p norm (s ≤ 1). The approximation error is obtained as a function of the

network configuration.

33

Theorem 3.5. For any positive integers K ∈ [2, D], M̃ , and J̃ > 0, we choose

L = O(log(M̃J̃)), J = O(J̃), κ1 = O((M̃J̃)1/D), κ2 = O((M̃J̃)1/D), M = O(M̃).

Then given s ∈ [0, 1], the ConvResNet architecture CRN(M,L, J,K, κ1, κ2) can approxi-

mate any function f satisfying Assumption 3.5, i.e., there exists f̂ ∈ CRN(M,L, J,K, κ1, κ2,∞)

with

∥f̂ − f∥W s,p((0,1)D) ≤ C1(M̃J̃)−
α−s
D

for some constant C1 depending on D,α, p.

Theorem 3.5 says that the approximation power of ConvResNet amplifies as its width

and depth increase. To better interpret the result, we choose s = 1 and p = ∞, which

corresponds to simultaneously approximating function value and first-order derivatives.

Corollary 3.2. In the setup of Theorem 3.5, taking s = 1 and p = ∞, the ConvResNet

architecture CRN(M,L, J,K, κ1, κ2,∞) can approximate any f satisfying Assumption 3.5

up to first-order, i.e., there exists f̂ ∈ CRN(M,L, J,K, κ1, κ2,∞) with

∥∥∥f̂ − f
∥∥∥
∞

≤ C2(M̃J̃)−
α−1
D and sup

i

∥∥∥∥∥
∂f̂

∂xi
− ∂f

∂xi

∥∥∥∥∥
∞

≤ C2(M̃J̃)−
α−1
D ,

where the constant C2 depends on D and α. In particular, we have Lipschitz continuity

bound

∥∥∥f̂
∥∥∥
Lip

≤ 1 + C2

√
D(M̃J̃)−

α−1
D .

Theorem 3.5 and Corollary 3.2 have rich implications.

Large network for smooth approximation. Taking s = 0 in Theorem 3.5 recovers func-

tion approximation in terms of L∞ norm. The corresponding approximation error scales as

34

O((M̃J̃)−
α
D). A quick comparison to Corollary 3.2 indicates that in order to additionally

capture the first-order information of a target function, large network is needed to achieve

the same function value error bound.

Arbitrary width and depth. [58, 59] provide approximation guarantees of feedforward

networks in terms of W s,p norm. Despite different network architectures, we remark that

our theory covers general networks with arbitrary width and depth. More specifically, for

a given approximation error ϵ, [58] set the network depth and width as O(log 1/ϵ) and

O(ϵ−D/(α−s)), respectively. Yet in our result, we only need to ensure M̃J̃ = O(ϵ−D/(α−s)),

which does not require any scaling relation between M̃ and J̃ .

3.3.3 W s,p-approximation on Manifold

Theorem 3.5 indicates a curse of data dimensionality: When data dimension D is large,

such as image data, Theorem 3.5 converges extremely slowly and becomes less attractive.

Motivated by applications, we model data as a low-dimensional Riemannian manifold M.

We will show that ConvResNet is still adaptable to manifold structures, even we impose

smoothness constraints on approximation. Analogous to the Euclidean case, we consider a

Sobolev norm ball on a manifold.

Assumption 3.6. Let α ≥ 2 be an integer. Assume the target function f satisfies

f ∈ Wα,∞ (M) and ∥f∥Wα,∞(M) ≤ 1.

We now present a counterpart of Theorem 3.5, showing an efficient approximation of

functions in a Sobolev norm ball on M.

Theorem 3.6. For any positive integers K ∈ [2, D], M̃ , and J̃ > 0, we choose

L = O(log(M̃J̃)) +D, J = O(DJ̃), κ1 = O((M̃J̃)1/d),

κ2 = O((M̃J̃)1/d), M = O(M̃).

35

Then given k ∈ {0, 1}, the ConvResNet architecture CRN(M,L, J,K, κ1, κ2,∞) can ap-

proximate any function f satisfying Assumption 3.6, i.e., there exists f̂ ∈ C(M,L, J,K, κ1, κ2,∞)

with

∥f̂ − f∥Wk,∞(M) ≤ C3(M̃J̃)−
α−k
d ,

where constant C3 depends on d, α,B, τ , and the surface area of M.

As can be seen, the approximation error decays at a rate only depending on intrinsic

data dimension d, which is a significant improvement over Theorem 3.5 given d≪ D. We

also note that the size of ConvResNet has a weak dependence on D, yet it is inevitable due

to the residual connection preserves input dimensionality.

3.4 Conclusion and Discussion

In this chapter, we develop efficient function approximation theories of feedforward neural

networks and convolutional residual networks using the ReLU activation. We show that

these network architectures enjoy fast rate in approximating Hölder, Sobolev, and Besov

functions. We also prove wide and deep networks can not only approximate function value,

but first-order derivatives. We discuss related topics and future directions.

ReLU activations We consider neural networks with ReLU activations for a practical

concern — ReLU activations are widely used in deep networks. Moreover, ReLU networks

are easier to train compared with sigmoid or hyperbolic tangent activations, which are

known for their notorious vanishing gradient problem [69, 70].

Low-dimensional Manifolds The low dimensional manifold model plays a vital role to

reduce the network size. As shown in Theorem 3.2, to approximate functions in F n,D with

accuracy ϵ, the minimal number of weight parameters is O(ϵ−
D
n). This lower bound is

huge, and can not be improved without low dimensional structures of data.

36

Existence vs. Learnability and Generalization Our Theorem 3.1 shows the existence

of a ReLU network structure that gives efficient approximations of functions on low dimen-

sional manifolds, if the weight parameters are properly chosen. In practice, it is observed

that larger neural networks are easier to train and yield better generalization performances

[71, 72, 73]. This is referred to as overparameterization. Establishing the connection be-

tween learnability and generalization is an important future direction.

Convolutional Filters Convolutional neural networks (CNNs, [1]) are widely used in

computer vision, language modeling, etc. Empirical results reveal that different convolu-

tional filters can capture various patterns in images, e.g., edge detection filters. An inter-

esting question is whether convolutional filters serve as charts in our framework.

Equivalent Networks The ReLU network identified in Theorem 3.1 and ConvResNet in

Theorem 3.4 are capable of approximating same functions. Several other network struc-

tures can also yield the same function. It is interesting to investigate whether these network

structures also possess the universal approximation property and whether different archi-

tectures exhibit advantages in different scenarios.

37

CHAPTER 4

NONPARAMETRIC REGRESSION/CLASSIFICATION USING NEURAL

NETWORKS

In approximation theories, we constructively show the existence of a network for approx-

imating target functions supported on manifolds. Such results provide valuable guidelines

for choosing proper network architectures depending on problem regularity. A followup

question naturally arises as “Can we establish sample complexity bounds of these net-

works in various learning problems?”. In Chapter 4, Chapter 5, and Chapter 6, we devote

to studying statistical applications using neural networks. In this chapter, we consider non-

parametric regression and classification problems [74, 13, 14] using neural networks in

exploitation of low-dimensional geometric structures of data; the corresponding results are

presented in Section 4.1 and Section 4.2, respectively. Section 4.3 concludes the chapter.

4.1 Nonparametric Regression

In nonparametric regression, the goal is to recover the regression function f0 supported on

a manifold M using samples Sn = {(xi, yi)}ni=1 with x ∈ M and y ∈ R. The xi’s are i.i.d.

sampled from a distribution Dx on M, and the response yi satisfies

yi = f0(xi) + ξi,

where ξi’s are i.i.d. sub-Gaussian noise independent of xi’s.

We use multi-layer ReLU (Rectified Linear Unit) neural networks to recover f0. We

denote F as a class of neural networks with bounded weight parameters and bounded out-

38

put:

F(R, κ, L, p,K) = FNN(R, κ, L, p,K) (defined in (Eq. 2.3)). (4.1)

To obtain an estimator f̂ ∈ F(R, κ, L, p,K) of f0, we minimize the empirical quadratic

risk

f̂n = argmin
f∈F(R,κ,L,p,K)

R̂n(f) = argmin
f∈F(R,κ,L,p,K)

1

n

n∑

i=1

(f(xi)− yi)
2 . (4.2)

The subscript n emphasizes that the estimator is obtained using n pairs of samples.

Related work Nonparametric regression has been widely studied in statistics. A variety

of methods has been proposed to estimate the regression function, including kernel meth-

ods, wavelets, splines, and local polynomials [75, 76, 77, 14, 13]. Nonetheless, there is

limited study on regression using deep ReLU networks until recently. The earliest works

focused on neural networks with a single hidden layer and smooth activations (e.g., sig-

moidal and sinusoidal functions, [78, 79]). Later results achieved the minimax lower bound

for the mean squared error in the order ofO(n− 2s
2s+D) up to a logarithmic factor forCs func-

tions in RD [80, 81, 82, 83]. Theories for deep ReLU networks were developed in [84],

where the estimate matches the minimax lower bound up to a logarithmic factor for Hölder

functions. Extensions to more general function spaces, such as Besov spaces, can be found

in [50] and results for classification problems can be found in [85, 86].

The rate of convergence in the results above cannot fully explain the success of deep

learning due to the curse of the data dimension with a largeD. Fortunately, many real-world

data sets exhibit low-dimensional geometric structures. It has been demonstrated that, some

classical methods are adaptive to the low-dimensional structures of data sets, and perform

as well as if the low-dimensional structures were known. Results in this direction include

local linear regression [87, 88], multiscale polynomial regression [89], k-nearest neighbor

39

[90], kernel regression [91], and Bayesian Gaussian process regression [92], where optimal

rates depending on the intrinsic dimension were proved for functions having the second or-

der of continuity [87], globally Lipschitz functions [90], and Hölder functions with Hölder

index no more than 1 [91].

Recently, several independent works [93, 94, 95] justified the adaptability of deep neu-

ral networks to the low-dimensional data structures. [93] considered function approxima-

tion and regression of Hölder functions on a low-dimensional manifold, which is similar to

the setup in this paper. The proofs in [93] and this paper both utilize a collection of charts to

map each point on M into a local coordinate in Rd, and then approximate functions in Rd.

There are two differences in the detailed proof: (1) In exploitation of a positive reach prop-

erty of M, we construct local coordinates on the manifold given by orthogonal projections

onto the tangent spaces, while [93] assumed the existence of smooth local coordinates; (2)

A main novelty of our work is to explicitly construct a chart determination sub-network

which assigns each data point to its proper chart. In [93], the chart determination is real-

ized by the partition of unity. In order to approximate functions in Hα(M), [93] required

a uniform upper bound on the derivatives of each coordinate map and each function in the

partition of unity, up to order αD/d. Our proof does not rely on such regularity condi-

tions depending on the ambient dimension D. To describe the intrinsic dimensionality of

data, [94] applied the notion of Minkowski dimension, which can be defined for a broader

class of sets without smoothness restrictions. The intrinsic dimension of manifolds and

the Minkowski dimension are different notions for low-dimensional sets, and one does not

naturally imply the other. [93] and [94] established a O(n− 2α
2α+d) convergence rate of the

mean squared error for learning functions in Hα(M), where d is the manifold dimension

in [93] and Minkowski dimension in [94], respectively. Recently [95] studied the approxi-

mation and regression error of ReLU neural networks for a class of functions in the form of

f(x) = g(πM(x)), where x is near the low-dimensional manifold M, πM is a projection

onto M, and g is a Hölder function on M.

40

4.1.1 Statistical Estimation Guarantee

We characterize the convergence rate for the estimation of f0.

Theorem 4.1. Suppose Assumption 3.1 and 3.2 hold. Let f̂n be the minimizer of empirical

risk (Eq. 4.2) with the network class F(R, κ, L, p,K) properly designed such that

L = Õ

(
α

2α + d
log n

)
, p = Õ

(
n

d
2α+d

)
, K = Õ

(
α

2α + d
n

d
2α+d log n

)
,

R = ∥f0∥∞ , and κ = O(max{1, B,
√
d, τ 2}).

Then we have

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ c(R2 + σ2)

(
n− 2α

2α+d +
D

n

)
log3 n,

where the expectation is taken over the training samples Sn, and c is a constant depending

on logD, d, α, τ , B, the surface area of M, and the upper bounds of derivatives of the

coordinate systems ϕi’s and partition of unity ρi’s, up to order ⌊α⌋.

Our theory implies that, in order to estimate an α-Hölder function up to an ϵ-error, the

sample complexity is n ≳ ϵ−
2α+d

α up to a log factor. This sample complexity depends on

the intrinsic dimension d, and thus largely improves on existing theories of nonparametric

regression using neural networks, where the sample complexity scales as Õ(ϵ−
2α+D

α) [80,

81, 82, 83, 84]. Our result partially explains the success of deep ReLU neural networks in

tackling high-dimensional data with low-dimensional geometric structures.

Theorem 4.1 is established by a bias-variance trade-off. We decompose the mean

squared error to a squared bias term and a variance term. The bias is quantified by The-

orem 3.1, and the variance term is proportional to the network size. A detailed proof of

Theorem 4.1 is provided in Subsection 4.1.2. Here are some remarks:

1. The network class in Theorem 4.1 is sparsely connected, i.e. K = O(Lp), while

41

densely connected networks satisfy K = O(Lp2).

2. The network class F(R, κ, L, p,K) has outputs uniformly bounded by R. Such a

requirement can be achieved by appending an additional clipping layer to the end of

the network structure, i.e.,

g(a) = max{−R,min{a,R}} = ReLU(a−R)− ReLU(a+R)−R.

3. Each weight parameter in our network class is bounded by a constant κ only depend-

ing on the curvature τ , the range B of the manifold M, and the manifold dimension

d. Such a boundedness condition is crucial to our theory and can be computationally

realized by normalization after each step of the stochastic gradient descent.

4.1.2 Proof – Bias-variance Tradeoff

To prove Theorem 4.1, we decompose the mean squared error of the estimator f̂n into

a squared bias term and a variance term. We bound the bias and variance separately,

where the bias is tackled using the approximation theory (Theorem 3.1), and the variance

is bounded using the metric entropy arguments [96, 13]. We begin with an oracle-type de-

composition of the L2 risk, in which we introduce the empirical L2 risk as the intermediate

term:

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]

= 2E

[
1

n

n∑

i=1

(f̂n(xi)− f0(xi))
2

]

︸ ︷︷ ︸
T1

+ E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
− 2E

[
1

n

n∑

i=1

(f̂n(xi)− f0(xi))
2

]

︸ ︷︷ ︸
T2

,

42

where T1 reflects the squared bias of using neural networks for estimating f0 and T2 is the

variance term.

Bias Characterization – Bounding T1

Since T1 is the empirical L2 risk of f̂n evaluated on the samples Sn, we relate T1 to the

empirical risk (Eq. 4.2) by rewriting f0(xi) = yi − ξi. Substituting into T1, we derive the

following decomposition,

T1 = 2E

[
1

n

n∑

i=1

(f̂n(xi)− yi + ξi)
2

]

(i)
= 2E

[
1

n

n∑

i=1

[
(f̂n(xi)− yi)

2 + 2ξif̂n(xi)− ξ2i

]]

= 2E

[
inf

f∈F(R,κ,L,p,K)

1

n

n∑

i=1

[
(f(xi)− yi)

2 − ξ2i + 2ξif̂n(xi)
]]

(ii)

≤ 2 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

︸ ︷︷ ︸
(A)

+4E

[
1

n

n∑

i=1

ξif̂n(xi)

]

︸ ︷︷ ︸
(B)

. (4.3)

Equality (i) is obtained by expanding the square, where the cross term E[ξiyi] = E[ξi(f0(xi)+

ξi)] = E[ξ2i] due to the independence between xi and ξi. Inequality (ii) invokes the

Jensen’s inequalty to pass the expectation. To obtain term (A), we expand (f(xi)− yi)
2 =

(f(xi)−f0(xi)−ξi)2, and observe the cancellation of −ξ2i . Note that term (A) is the squared

approximation error of neural networks, and we will tackle it later using Theorem 3.1. We

bound term (B) by quantifying the complexity of the network class F(R, κ, L, p,K). A

precise upper bound of T1 is given in the following lemma, whose proof follows a similar

argument in [84, Lemma 4].

Lemma 4.1. Fix the neural network class F(R, κ, L, p,K). For any constant δ ∈ (0, 2R),

43

we have

T1 ≤ 4 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ 48σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n

+ (8
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
+ 8)σδ,

where N (δ,F(R, κ, L, p,K), ∥·∥∞) denotes the δ-covering number of F(R, κ, L, p,K)

with respect to the ℓ∞ norm, i.e., there exists a discretization of F(R, κ, L, p,K) into

N (δ,F(R, κ, L, p,K), ∥·∥∞) distinct elements, such that for any f ∈ F , there is f̄ in

the discretization satisfying
∥∥f̄ − f

∥∥
∞ ≤ ϵ.

Proof Sketch. Given the derivation in (Eq. 4.3), we need to bound term (B). We discretize

the neural network class F(R, κ, L, p,K) as {f ∗
i }

N (δ,F(R,κ,L,p,K),∥·∥∞)
i=1 . By the definition of

covering, there exists f ∗ such that ∥f̂n−f ∗∥∞ ≤ δ. Denoting ∥f − f0∥n = 1
n

∑n
i=1(f(xi)−

f0(xi))
2, we cast (B) into

(B) = E

[
1

n

n∑

i=1

ξi(f̂n(xi)− f ∗(xi) + f ∗(xi)− f0(xi))

]

(i)

≤ E

[
1

n

n∑

i=1

ξi(f
∗(xi)− f0(xi))

]
+ δσ

= E
[∥f ∗ − f0∥n√

n

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n ∥f ∗ − f0∥n

]
+ δσ

(ii)

≤
√
2E

[
∥f̂n − f0∥n + δ√

n

∣∣∣∣
∑n

i=1 ξi(f
∗(xi)− f0(xi))√

n ∥f ∗ − f0∥n

∣∣∣∣

]
+ δσ,

where (i) follows from Hölder’s inequality and (ii) is obtained by some algebraic manipu-

lation. To break the dependence between f ∗ and the samples, we replace f ∗ by any f ∗
j in the

δ-covering and observe that
∣∣∣
∑n

i=1 ξi(f
∗(xi)−f0(xi))√

n∥f∗−f0∥n

∣∣∣ ≤ maxj

∣∣∣
∑n

i=1 ξi(f
∗
j (xi)−f0(xi))√

n∥f∗
j −f0∥n

∣∣∣. Applying

44

the Cauchy-Schwarz inequality, we can show

(B) ≤
√
2

(√
1

n
E
[
∥f̂n − f0∥2n

]
+

δ√
n

)√
E
[
max

j
z2j

]
+ δσ,

where zj =
∣∣∣
∑n

i=1 ξi(f
∗(xi)−f0(xi))√

n∥f∗−f0∥n

∣∣∣. Given x1, . . . ,xn, we note that zj is a sub-Gaussian

random variable with parameter σ (i.e., its variance is bounded by σ2). It is well established

in the existing literature on empirical processes [96] that the maximum of a collection of

squared sub-Gaussian random variables satisfies

E
[
max

j
z2j | x1, . . . ,xn

]
≤ 3σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 6σ2.

Substituting the above inequality into (B) and combining (A) and (B), we have

T1 = 2E
[
∥f̂n − f0∥2n

]

≤ 2 inf
f∈F(R,κ,L,p,K)

E
[
(f(x)− f0(x))

2
]
+ 4δσ

+ 4
√
6σ

(√
E
[
∥f̂n − f0∥2n

]
+ δ

)√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
.

Some manipulation gives rise to the desired result

T1 ≤ 4 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ 48σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n

+ (8
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
+ 8)σδ.

See proof details in Appendix B.1.1.

45

Variance Characterization – Bounding T2

We observe that T2 is the difference between the population L2 risk of f̂n and its empirical

counterpart. However, bounding such a difference is distinct from conventional concen-

tration results due to the scaling factor 2 before the empirical risk. In particular, we split

the empirical risk evenly into two parts, and bound one part using its higher-order moment

(fourth moment). Using Bernstein-type inequality allows us to establish a 1/n convergence

rate of T2; the corresponding upper bound is presented in the following lemma.

Lemma 4.2. For any constant δ ∈ (0, 2R), T2 satisfies

T2 ≤
104R2

3n
logN (δ/4R,F(R, κ, L, p,K), ∥·∥∞) +

(
4 +

1

2R

)
δ.

Proof Sketch. The detailed proof is deferred to Appendix B.1.2. For notational simplic-

ity, we denote ĝ(x) = (f̂n(x) − f0(x))
2 and ∥ĝ∥∞ ≤ 4R2. Applying the inequality

∫
M ĝ2dDx(x) ≤ 4R2

∫
M ĝdDx(x) [78], we rewrite T2 as

T2 = E

[∫

M
ĝ(x)dDx(x)−

2

n

n∑

i=1

ĝ(xi)

]

= 2E

[∫

M
ĝ(x)dDx(x)−

1

n

n∑

i=1

ĝ(xi)−
1

2

∫

M
ĝ(x)dDx(x)

]

≤ 2E

[∫

M
ĝ(x)dDx(x)−

1

n

n∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]
.

We now utilize ghost samples of x to bound T2, which is a common technique in existing

literature on nonparametric statistics [96, 13]. Specifically, let x̄i’s be independent replica-

tions of xi’s. We bound T2 as

T2 ≤ 2E

[
sup
g∈G

∫

M
g(x)dDx(x)−

1

n

n∑

i=1

g(xi)−
1

8R2

∫

M
g2(x)dDx(x)

]

≤ 2Ex,x̄

[
sup
g∈G

1

n

n∑

i=1

(g(x̄i)− g(xi))−
1

16R2
Ex,x̄

[
g2(x) + g2(x̄)

]
]
,

46

where G = {g = (f −f0)2 | f ∈ F(R, κ, L, p,K)}. We use the shorthand Ex,x̄[·] to denote

the double integral
∫
M

∫
M ·dDx(x)dDx(x̄) with respect to the joint distribution of (x, x̄).

The last inequality holds due to Jensen’s inequality. Note here g2(x) + g2(x̄) contributes

as the variance term of g(x̄i)− g(xi), which yields a fast convergence of T2 as n grows.

Similar to bounding T1, we discretize the function space G using a δ-covering denoted

by G∗. This allows us to replace the supremum by the maximum over a finite set:

T2 ≤ 2Ex̄,x

[
sup
g∗∈G∗

1

n

n∑

i=1

(g∗(x̄i)− g∗(xi))−
1

16R2
Ex,x̄

[
(g∗)2(x) + (g∗)2(x̄)

]
]

+

(
4 +

1

2R

)
δ.

We can bound the above maximum by the Bernstein’s inequality, which yields

T2 ≤
104R2

3n
logN (δ,G, ∥·∥∞) +

(
4 +

1

2R

)
δ.

The last step is to relate the covering number of G to that of F(R, κ, L, p,K). Specifi-

cally, consider any g1, g2 ∈ G with g1 = (f1 − f0)
2 and g2 = (f2 − f0)

2, respectively. We

can derive

∥g1 − g2∥∞ = sup
x∈M

|f1(x)− f2(x)| |f1(x) + f2(x)− 2f0(x)| ≤ 4R ∥f1 − f2∥∞ .

Therefore, the inequality N (δ,G, ∥·∥∞) ≤ N (δ/4R,F(R, κ, L, p,K), ∥·∥∞) holds, which

implies

T2 ≤
104R2

3n
logN (δ/4R,F(R, κ, L, p,K), ∥·∥∞) +

(
4 +

1

2R

)
δ.

The proof is complete.

47

Covering Number of Neural Networks

The upper bounds of T1 and T2 in Lemma 4.1 and 4.2 both depend on the covering number

of the network class F(R, κ, L, p,K). In this section, we provide an upper bound on the

covering number N (δ,F(R, κ, L, p,K), ∥·∥∞) for a given a resolution δ > 0. Since each

weight parameter in the network is bounded by a constant κ, we construct a covering by

partitioning the range of each weight parameter into a uniform grid. By choosing a proper

grid size, we show the following lemma.

Lemma 4.3. Given δ > 0, the covering number of neural network class F(R, κ, L, p,K)

satisfies

N (δ,F(R, κ, L, p,K), ∥·∥∞) ≤
(
2L2(pB + 2)κLpL+1

δ

)K

. (4.4)

Proof Sketch. Consider f, f ′ ∈ F(R, κ, L, p,K) with each weight parameter differing at

most h. By an induction on the number of layers in the network, we show that the ℓ∞ norm

of the difference f − f ′ scales as

∥f − f ′∥∞ ≤ hL(pB + 2)(κp)L−1.

As a result, to achieve a δ-covering, it suffices to choose h such that hL(pB+2)(κp)L−1 =

δ. Moreover, there are
(
Lp2

K

)
≤ (Lp2)K different choices of K non-zero entries out of Lp2

weight parameters. Therefore, the covering number is bounded by

N (δ,F(R, κ, L, p,K), ∥·∥∞) ≤
(
Lp2
)K
(
2κ

h

)K

≤
(
2L2(pB + 2)κLpL+1

δ

)K

.

The detailed proof is provided in Appendix B.1.3.

48

Putting Together and Tradeoff

We are ready to finish the proof of Theorem 4.1. Combining the upper bounds of T1 in

Lemma 4.1 and T2 in Lemma 4.2 together and substituting the covering number (Eq. 4.4),

we obtain

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ 4 inf

f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ 48σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n

+ 8
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
σδ

+
104R2

3n
logN (δ/4R,F(R, κ, L, p,K), ∥·∥∞)

+

(
4 +

1

2R
+ 8σ

)
δ.

It suffices to choose δ = 1/n, which gives rise to

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ 4 inf

f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ Õ

(
R2 + σ2

n
KL log(RκLpn) +

σ2

n

)
, (4.5)

where we also plug in the covering number upper bound in Lemma Eq. 4.4. We further

set the approximation error as ϵ, i.e., inff∈F(R,κ,L,p,K)∥f(x) − f0(x)∥∞ ≤ ϵ. Theorem 3.1

suggests that we choose L = Õ(log 1
ϵ
), p = Õ(ϵ−

d
α), and K = Õ

(
ϵ−

d
α log 1

ϵ
+D log 1

ϵ

)
.

Substituting L, p, and K into (Eq. 4.5), we have

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
= Õ

(
ϵ2 +

R2 + σ2

n

(
ϵ−

d
α +D

)
log3

1

ϵ
+

1

n

)
.

To balance the error terms, we pick ϵ satisfying ϵ2 = 1
n
ϵ−

d
α , which gives ϵ = n− α

d+2α . The

proof of Theorem 4.1 is complete by plugging in ϵ = n− α
d+2α and rearranging the terms.

49

4.2 Nonparametric Classification

This section studies binary classification on a smooth manifold. Different from regression

problems, in classification, we use neural networks for approximating likelihood functions.

Moreover, to measure the performance of a classifier, we focus on the excess risk by com-

peting with the optimal Bayes classifier. We impose the following data assumption.

Assumption 4.1. Assume the given data set {xi, yi}ni=1, where xi ∈ M and yi ∈ {−1, 1}

is the label, are i.i.d samples from a probability measure (x, y) ∼ µ.

Denote η(x) = E(1{y = 1} | x) as the probability that the label of x is 1 where

1{·} = 1 if {·} is true and is 0 otherwise.

Let Q be the class of all functions mapping M to {−1, 1}. The Bayes classifier, which

minimizes the misclassification error, is defined as

f ∗ = argmin
Q∈Q

E(1{Q(x) ̸= y}).

It can be shown that f ∗ = sign(η − 1/2). Given a classifier f , the excess risk is defined as

E(f, f ∗) = E(f)− E(f ∗) (4.6)

with E(f) = E
[
1
2
(1− yf(x))

]
being the misclassification risk of f .

While it is natural to define optimal classifier as the minimizer of E(f), E(f) is not

differentiable and is NP hard to minimize. Instead, surrogate loss is considered whose

minimizer has the same sign as f ∗ for all x. One popular choice is the logistic loss defined

as ϕ(z) = log(1 + exp(−z)). The logistic risk Eϕ(f) of a classifier f and its empirical risk

Eϕ,n(f) are defined as

Eϕ(f) = E(ϕ(yf)), Eϕ,n(f) =
1

n

n∑

i=1

ϕ(yif(xi)). (4.7)

50

Denote the minimizer of Eϕ(f) and Eϕ,n(f) by

f ∗
ϕ = argmin

f
Eϕ(f), f̂ϕ,n = argmin

f
Eϕ,n(f).

One has f ∗
ϕ = log η(x)

1−η(x)
and sign(f ∗

ϕ) = f ∗. The logistic excess risk of a classifier f is

defined as

Eϕ(f, f ∗
ϕ) = Eϕ(f)− Eϕ(f ∗

ϕ). (4.8)

Related Work Statistical theories for binary classification by FNNs are established with

the hinge loss [86, 97] and the logistic loss [85]. Among these works, [97] uses a para-

metric model given by a teacher-student network. The nonparametric results in [86, 85]

are cursed by the data dimension, and therefore require a large number of samples for

high-dimensional data.

Binary classification by CNNs has been studied in [98, 99, 100, 101]. Image binary

classification is studied in [98, 99] in which the probability function is assumed to be in a

hierarchical max-pooling model class. ResNet-type classifiers are considered in [100, 101]

while the generalization error is not given explicitly.

4.2.1 Excess Risk Bound

We use ConvResNets to learn a classifier on a smooth manifold by minimizing the logistic

loss. In the following theorem, we establish an upper bound on the excess risk of the

learned classifier (A proof can be found in [49]).

Theorem 4.2. Suppose Assumption 3.1, 3.2 and 4.1 hold. Assume 0 < p, q ≤ ∞, 0 <

α < ∞, α > d/p + 1 and η ∈ U(Bα
p,q(M)). For any 2 ≤ K ≤ D and a ConvResNet

architecture C(n) defined as

C(n) =
{
f̄ | f̄ = ḡ2 ◦ h̄ ◦ ḡ1 ◦ η̄ where η̄ ∈ CRN (M1, L, p,K, κ1,∞,∞) ,

51

ḡ1 ∈ CRN (1, 4, 8, 1, κ2,∞,∞) , h̄ ∈ CRN (M2, L, p, 1, κ1,∞,∞) ,

ḡ2 ∈ C (1, 3, 8, 1, κ3, 1, R) with

M1 = O
(
n

2d
α+2(α∨d)

)
, M2 = O

(
n

2α
α+2(α∨d)

)
, L = O(log(n)), p = O(1),

κ1 = O(1), log κ2 = O(log2 n), κ3 = O(log n), R = O(log n).
}

Let f̄ϕ,n be the minimizer of the empirical risk in (Eq. 4.7) among functions in C(n). We

have

E(Eϕ(f̄ , f ∗
ϕ)) ≤ Cn− α

2α+2(α∨d) log4 n

for some constant C. The constants hidden in O(·) depend on d, logD,α, 2d
αp−d

, τ and the

surface area of M.

The ConvResNet Cn in Theorem 4.2 consists of four sub-ConvResNets: η̄, ḡ1, h̄ and

ḡ2. η̄ is a network estimating the probability function η and ḡ1 is a function which truncates

η̄ to some range. h̄ approximates the function log z
log(1−z)

and ḡ2 truncates the output of h̄ to

some range. Recall that

f ∗
ϕ =

log η

log(1− η)
. (4.9)

h̄ approximates the operation on the right-hand side of (Eq. 4.9).

Theorem 4.2 shows that if the architecture of the ConvResNet is properly chosen, the

minimizer of the empirical logistic risk in (Eq. 4.7) has the excess risk in the order of

n− α
2α+2(α∨d) log3 n. The exponent in the rate only depends on the smoothness of the proba-

bility function η and the intrinsic dimension d, not the ambient dimension D. In the case

that s > d, we get rate O
(
n− 1

4 log3 n
)

. Compared with [85, Theorem 4] in which the

authors made assumptions on the smoothness of the decision boundary of the Bayes classi-

fier, the margin ([85, Assumption (M)]) and the behavior of f ∗
ϕ ([85, Assumption (E)]), in

52

Theorem 4.2, only assumption on the smoothness of η is made.

4.3 Conclusion

In this chapter, we establish sample complexity bounds using neural networks for nonpara-

metric regression/classification, when data are sampled from a low-dimensional Rieman-

nian manifold. We demonstrate that properly chosen neural networks can circumvent the

curse of data ambient dimensionality.

53

CHAPTER 5

DISTRIBUTION ESTIMATION OF GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs, [2]) utilize two neural networks competing with

each other to generate new samples with the same distribution as the training data. They

have been successful in many applications including producing photorealistic images, im-

proving astronomical images, and modding video games [102, 103, 104, 105, 106, 107,

108].

Generator
Discriminator

Random Noise

Real Data

Fake Sample

Real

Fake

Figure 5.1: The architecture of GANs.

From the perspective of statistics, GANs have stood out as an important unsupervised

method for learning target data distributions. Different from explicit distribution estimators,

such as the kernel density estimator, GANs implicitly learn the data distribution and act as

samplers to generate new fake samples mimicking the data distribution (see Figure 5.1).

To estimate a data distribution µ, GANs solve the following minimax optimization

problem

(g∗, f ∗) ∈ argmin
g∈G

max
f∈F

Ez∼ρ[f(g(z))]− Ex∼µ[f(x)], (5.1)

where G denotes a class of generators, F denotes a symmetric class (if f ∈ F , then −f ∈

F) of discriminators, and z follows some easy-to-sample distribution ρ, e.g., a uniform

distribution. The estimator of µ is given by a pushforward distribution of ρ under g∗.

The inner maximization problem of (Eq. 5.1) is an Integral Probability Metric (IPM,

[109]), which quantifies the discrepancy between two distributions µ and ν w.r.t. the sym-

54

metric function class F :

dF(µ, ν) = sup
f∈F

Ex∼µ[f(x)]− Ey∼ν [f(y)].

Accordingly, GANs essentially minimize an IPM between the generated distribution and

the data distribution. IPM unifies many standard discrepancy metrics. For example, when

F is taken to be all 1-Lipschitz functions, dF(·, ·) is the Wasserstein-1 distance W1(·, ·);

when F is the class of all indicator functions, dF(·, ·) is the total variation distance; when

F is taken as neural networks, dF(·, ·) is the so-called “neural net distance” [110].

In practical GANs, the generator and discriminator classes G and F are parametrized by

neural networks. We denote G = GNN and F = FNN to emphasize such a parameterization.

In this chapter, we focus on using feedforward ReLU networks, since it has wide applica-

tions [111, 70, 112] and can ease the notorious vanishing gradient issue during training,

which commonly arises with sigmoid or hyperbolic tangent activations [70, 69]

When n samples of the data distribution µ are given, denoted as {xi}ni=1, one can replace

µ in (Eq. 5.1) by its empirical counterpart µ̂n, and (Eq. 5.1) becomes

(g∗θ , f
∗
ω) ∈ argmin

gθ∈GNN

max
fω∈FNN

Ez∼ρ[fω(gθ(z))]−
1

n

n∑

i=1

fω(xi), (5.2)

where θ and ω are parameters in the generator and discriminator networks, respectively.

The empirical estimator of µ given by GANs is the pushforward distribution of ρ under g∗θ ,

denoted by (g∗θ)♯ρ.

In contrast to the prevalence of GANs in applications, there are very limited works on

the theoretical properties of GANs [110, 113, 114, 115, 116]. This chapter focuses on the

following fundamental questions from a theoretical point of view:

• (Q1). What types of distributions can be approximated by a deep neural network

generator?

55

• (Q2). If the distribution can be approximated, what is the statistical rate of estimation

using GANs?

• (Q3). If further there are unknown low-dimensional structures in the data distribu-

tion, can GANs capture the low-dimensional data structure and enjoy a fast rate of

estimation?

5.1 Results in A Nutshell

Results in Euclidean space To address (Q1) and (Q2), we show that, if the generator and

discriminator network architectures are properly chosen, GANs can learn distributions with

Hölder densities supported on a convex domain. Specifically, we consider a data distribu-

tion µ supported on a compact convex subset X ⊂ RD, where D is the data dimension. We

assume µ has an α-Hölder density with respect to Lebesgue measure in RD and the density

is lower bounded away from 0 on X .

Our generator and discriminator network architectures are explicitly chosen – we spec-

ify the width and depth of the network, total number of neurons, and total number of weight

parameters (details are provided in Section 5.3). Roughly speaking, the generator needs to

be flexible enough to approximately transform an easy-to-sample distribution to the data

distribution, and the discriminator is powerful enough to distinguish the generated distri-

bution from the data distribution.

Let g∗θ be the optimal solution of (Eq. 5.2), and then (g∗θ)♯ρ is the generated data distri-

bution as an estimation of µ. Our main result can be summarized as, for any β ≥ 1, if the

generator and discriminator network architectures are properly chosen, then

E [dHβ ((g∗θ)♯ρ, µ)] = Õ
(
n− β

2β+D log2 n
)
, (5.3)

where the expectation is taken over the randomness of samples and Õ hides polynomial

factors in β,D. It shows that the β-Hölder IPM between the generated distribution and

56

the data distribution converges at a rate depending on the Hölder index β and dimension

D. When β = 1, our theory implies that GANs can estimate any distribution with a

Hölder density under the Wasserstein-1 distance. A comparison to closely related works is

provided in Section 5.5.

In our analysis, we decompose the distribution estimation error into a statistical error

and an approximation error by an oracle inequality. A key step is to properly choose the

generator network architecture to control the approximation error. Specifically, the gen-

erator architecture allows an accurate approximation to a data transformation T such that

T♯ρ = µ. The existence of such a transformation T is guaranteed by optimal transport

theory [117], and holds universally for all the data distributions with Hölder densities.

Results in low-dimensional linear subspace Moreover, we provide a positive answer to

(Q3) by considering data distributions with low-dimensional linear structures. Specifically,

we assume the data support X ⊂ RD is a compact subset of a q-dimensional linear sub-

space. Let columns of A ∈ RD×q denote a set of orthonormal basis of the q-dimensional

linear subspace. We assume the pushforward A⊤
♯ µ of data distribution has a density func-

tion pµ defined in Rq, and pµ is α-Hölder continuous and lower bounded away from 0

on its support. We leverage the data geometric structures and generate samples by trans-

forming an easy-to-sample distribution ρ in Rq. With a proper choice of the generator and

discriminator network architectures, the statistical error of GANs converges at a fast rate

E [W1 ((g
∗
θ)♯ρ, µ)] = Õ

(
n− 1

2+q log2 n
)
. (5.4)

By taking β = 1 in (Eq. 5.3), we note that (Eq. 5.4) enjoys a faster statistical convergence

in the Wasserstein-1 distance, since the exponent only depends on the intrinsic dimension

q. Meanwhile, (Eq. 5.4) indicates that GANs can circumvent the curse of ambient dimen-

sionality when data are supported on a low-dimensional subspace. A detailed comparison

with existing works is given in Section 5.5.

57

From a technical point of view, a key challenge in obtaining the fast rate in (Eq. 5.4) is

to prove that the generator can capture the unknown linear structure in data. We achieve

this by introducing a learnable linear projection layer in the generator, and pairing it with an

“anti-projection” layer in the discriminator. We show (see Lemma 5.9) that by optimizing

(Eq. 5.2), the linear projection layer in generator accurately recovers the linear subspace of

data.

The rest of the chapter is organized as follows: Section 5.2 briefly introduces IPM

and optimal transport theory. Section 5.3 presents the statistical guarantees of GANs for

learning data distributions with a Hölder density. Section 5.4 extends the statistical theory

to low-dimensional data, and shows that GANs can adapt to the intrinsic structures in data.

Section 5.5 comapres with existing works. Section 5.6 proves main results. Section 5.7

concludes the chapter and discusses related topics.

5.2 IPM and Optimal Transport

In order to measure the performance of GANs in estimating target distribution µ, we adopt

the Integral Probability Metric (IPM) with respect to Hölder discriminative functions. In

particular, suppose GAN generates a fake distribution ν. For any β ≥ 1, we denote

dHβ(µ, ν) = sup
f∈Hβ

Ex∼µ[f(x)]− Ey∼ν [f(y)].

Remark 5.1. It is convenient to restrict Hβ in IPM dHβ to have a bounded radius. Specif-

ically, for any f ∈ Hβ , we assume ∥f∥Hβ ≤ C for some constant C. Otherwise, we can

simply rescale f while maintaining the discriminative power of the IPM. In addition, since

IPMs are translation invariant, meaning that discriminative functions f and f + c for some

constant c are equivalent. Therefore, we also assume f(0) = 0 for simplicity.

In the special case of β = 1, dHβ(·, ·) shares the same discriminative power as Wasserstein-

58

1 distance, which can be defined using the dual formulation,

W1(µ, ν) = sup
∥f∥Lip≤1

Ex∼µ[f(x)]− Ey∼ν [f(y)].

In the right-hand side above, ∥f∥Lip denotes the Lipschitz coefficient of f . It can be

checked that Lipschitz functions are Hölder continuous with Hölder index equal to 1.

Therefore, W1(·, ·) is equivalent to dH1(·, ·).

GANs are closely related to Optimal Transport (OT, [118, 119, 120, 121]), as the gener-

ator essentially learns a pushforward mapping of an easy-to-sample distribution. A typical

problem in OT is the following: Let X ,Z be subsets of RD. Given two probability spaces

(X , µ) and (Z, ρ), OT aims to find a transformation T : Z 7→ X , such that T (z) ∼ µ for

z ∼ ρ. In general, the transformation T may neither exist nor be unique. Fortunately, in

the case that µ and ρ have Hölder densities pµ and pρ, respectively, the Monge map ensures

the existence of a Hölder transformation T ∗, when X is convex. In particular, the Monge

map T ∗ is the solution to the following optimization problem:

T ∗ ∈ argmin
T

Ez∼ρ [ℓ(z, T (z))] , subject to T♯ρ = µ, (5.5)

where ℓ is a cost function. (Eq. 5.5) is known as the Monge problem. When X is convex and

the cost function is quadratic, the solution to (Eq. 5.5) satisfies the Monge-Ampère equation

[122]. The regularity of T ∗ was proved in [123, 124, 125] and [126, 127] independently.

Their main result is summarized in the following lemma.

Lemma 5.1 ([123]). Suppose µ and ρ both have α-Hölder densities, and the support X is

convex. Then there exists a transformation T ∗ : Z 7→ X such that T ∗
♯ ρ = µ. Moreover, this

transformation T ∗ belongs to the Hölder class Hα+1(Z).

We will see later that Lemma 5.1 provides important guidelines for choosing proper

generator networks in distribution estimation.

59

5.3 Distribution Estimation in Euclidean Space

We consider a data distribution µ supported on a convex subset X ⊂ RD and assume

that µ has a density function pµ with respect to the Lebesgue measure in RD. GANs

seek to estimate the data distribution µ by transforming some easy-to-sample distribution

ρ supported on domain Z ⊂ RD, such as a uniform distribution. Our main results provide

statistical guarantees of GANs for the estimation of µ, based on the following assumptions.

Assumption 5.1. The domains X and Z are compact, and X is convex. There exists a

constant B > 0 such that for any x ∈ X or x ∈ Z , ∥x∥∞ ≤ B.

Assumption 5.2. Given a Hölder index α > 0, the density function pµ of µ (w.r.t. Lebesgue

measure in RD) belongs to the Hölder class Hα(X) with ∥pµ∥Hα(X) ≤ C for some constant

C > 0. Meanwhile, pµ is lower bounded, i.e.,

inf
x∈X

pµ(x) ≥ τ

for some constant τ > 0.

Assumption 5.3. The easy-to-sample distribution ρ has a C∞ (smooth) density function

pρ.

Hölder regularity is commonly used in literature on smooth density estimation [74, 14].

In the remaining of the paper, we occasionally omit the domain in Hölder spaces when it

is clear from the context. The condition of pµ being lower bounded is a common technical

assumption in the optimal transport theory [128, 125]. This condition and the convexity of

X guarantee that, there exists a Hölder transformation T such that T♯ρ = µ (see Lemma

5.1). Besides, Assumption 5.3 is always satisfied, since ρ is often taken as a uniform

distribution.

60

Given Assumption 5.1 – 5.3, we set the generator network architecture as

GNN(R, κ, L, p, J) = FNN(R, κ, L, p, J) with input output dimension din = dout = d.

and the discriminator network architecture as

FNN(R̄, κ̄, L̄, p̄, J̄) = FNN(R̄, κ̄, L̄, p̄, J̄) with input output dimension din = d, dout = 1.

We first show a properly chosen generator network can universally approximate data

distributions with a Hölder density.

Theorem 5.1 (Distribution approximation theory). For any data distribution (X , µ) and

easy-to-sample distribution (Z, ρ) satisfying Assumption 5.1 - 5.3, there exists an (α+ 1)-

Hölder continuous transformation T : RD → RD such that T♯ρ = µ. Moreover, given any

ϵ ∈ (0, 1), there exists a generator network with configuration

L = O(log(1/ϵ)), p = O(Dϵ−
D

α+1), J = O(Dϵ−
D

α+1 log(1/ϵ)),

R = B, κ = max{C,B},
(5.6)

such that, if the weight parameters of this network are properly chosen, then it yields a

transformation gθ satisfying

max
z∈Z

∥gθ(z)− T (z)∥∞ ≤ ϵ and W1((gθ)♯ρ, µ) ≤
√
Dϵ.

In Theorem 5.1, the existence of a transformation T is guaranteed by optimal transport

theory (Lemma 5.1). Furthermore, we explicitly choose a generator network architecture to

approximately realize T , such that the easy-to-sample distribution is approximately trans-

formed to the data distribution.

Our statistical result is the following finite-sample estimation error bound in terms of the

Hölder IPM between (g∗θ)♯ρ and µ, where g∗θ is the optimal solution of GANs in (Eq. 5.2).

61

We use O(·) to hide constant factors depending on B, C, α, and β; Õ(·) further hides

polynomial factors of D and logarithmic factors of n.

Theorem 5.2 (Statistical estimation theory). Suppose Assumption 5.1 – 5.3 hold. For any

β ≥ 1, choose ϵ = n− β
2β+D in Theorem 5.1 for the generator network and

L̄ = O

(
β

2β +D
log n

)
, p̄ = O

(
n

D
2β+D

)
, J̄ = O

(
β

2β +D
n

D
2β+D log n

)
,

R̄ = C, κ̄ = C,

for the discriminator network. Then it holds

E [dHβ((g∗θ)♯ρ, µ)] = Õ
(
n− β

2β+D log2 n
)
. (5.7)

Theorem 5.2 demonstrates that GANs can effectively learn data distributions, with a

convergence rate depending on the smoothness of the function class in IPM and the dimen-

sion D.

In the case that only m samples from the easy-to-sample distribution ρ are collected,

GANs solve the following empirical minimax problem

min
gθ∈GNN

max
fω∈FNN

1

m

m∑

i=1

fω(gθ(zi))−
1

n

n∑

j=1

fω(xj). (5.8)

We denote (g∗,mθ , f ∗,m
ω) as the optimal solution of (Eq. 5.8). We show in the following

corollary that GANs retain similar statistical guarantees for distribution estimation with

finite generated samples.

Corollary 5.1. Suppose Assumption 5.1 – 5.3 hold and m ≥ n. We choose

L = O

(
α + 1

2(α + 1) +D
logm

)
, p = O

(
Dm

D
2(α+1)+D

)
,

J = O

(
D(α + 1)

2(α + 1) +D
m

D
2(α+1)+D logm

)
, R = B, κ = max{C,B},

62

for the generator network and the same architecture as in Theorem 5.2 for the discriminator

network. Then it holds

E [dHβ((g∗,mθ)♯ρ, µ)] = Õ
(
n− β

2β+D +m− α+1
2(α+1)+D

)
.

Here Õ also hides a logarithmic factors m. As it is often cheap to obtain a large amount

of samples from ρ, the convergence rate in Corollary 5.1 is dominated by n− β
2β+D whenever

m ≥ n
β

α+1
2(α+1)+D

2β+D
∨1.

Theorem 5.2 and Corollary 5.1 suggest that GANs suffer from the curse of data di-

mensionality. However, such an exponential dependence on the dimension d is inevitable

without further assumptions on the data, as indicated by the minimax optimal rate of distri-

bution estimation: To estimate a distribution µ with a Hα(X) density, the minimax optimal

rate under the Hβ IPM loss satisfies

inf
µ̃n

sup
µ∈Hα

E [dHβ(µ̃n, µ)] ≳ n− α+β
2α+D + n− 1

2 ,

where µ̃n is any estimator of µ based on n data points [114, 129].

5.4 Distribution Estimation in Low-dimensional Linear Subspace

In this section, we prove that GANs are adaptive to unknown low-dimensional linear struc-

tures in data. We consider the data domain X ⊂ RD being a compact subset of a q-

dimensional linear subspace with q ≪ D. Our analysis holds for general q ≤ D, while

q ≈ D is less of interest as practical data sets are often low-dimensional with intrinsic

dimension much smaller than ambient dimension [18, 19, 130].

Assumption 5.4. The data domain X is compact, i.e., there exists a constant B > 0 such

that for any x ∈ X , ∥x∥∞ ≤ B. Moreover, X is a convex subset of a q-dimensional linear

subspace in Rd, and the span of X is the q-dimensional subspace.

63

<latexit sha1_base64="MXr+qUHhSBD1rPSx53vp4aJ4SSM=">AAACC3icbVDLSsNAFJ34rPUVdelmaCu4KkkRdVlw47KKfUATy2QyaYdOJmFmIpSQvRt/xY0LRdz6A+78GydpFtp64MLhnHu59x4vZlQqy/o2VlbX1jc2K1vV7Z3dvX3z4LAno0Rg0sURi8TAQ5IwyklXUcXIIBYEhR4jfW96lfv9ByIkjfidmsXEDdGY04BipLQ0MmsNJ0RqghFLBxl0ZOJJomCheV56m937jZFZt5pWAbhM7JLUQYnOyPxy/AgnIeEKMyTl0LZi5aZIKIoZyapOIkmM8BSNyVBTjkIi3bT4JYMnWvFhEAldXMFC/T2RolDKWejpzvxIuejl4n/eMFHBpZtSHieKcDxfFCQMqgjmwUCfCoIVm2mCsKD6VognSCCsdHxVHYK9+PIy6bWa9nnz7KZVb7fLOCrgGNTAKbDBBWiDa9ABXYDBI3gGr+DNeDJejHfjY966YpQzR+APjM8fuyWa2g==</latexit>

X ⇢ Rd

Projection
<latexit sha1_base64="vz7T1gI2LiEZP+0E+YKOk93eBYI=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbRL0IFS8eK9gPaZeSTbNtaJJdkqxYlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG6mfuuRKs0ieW/GMfUFHkgWMoKNlR7KT+gKXaNxuVcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZwRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCS/9lMk4MVSS+aIw4chEaPo96jNFieFjSzBRzN6KyBArTIzNqGBD8BZfXibNasU7r5zdVUu1WhZHHo7gGE7BgwuowS3UoQEEBDzDK7w5ynlx3p2PeWvOyWYO4Q+czx+M0o7w</latexit>

x = Ay

<latexit sha1_base64="cb1OxCCI4JeGnQdgvktJQgVdqtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4r2lpoS9lsJ+3SzSbsboQQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8w8PxZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEMWyxSESq41ONgktsGW4EdmKFNPQFPvqTm5n/+IRK80g+mDTGfkhHkgecUWOl+2paHZQrbs2dg6wSLycVyNEclL96w4glIUrDBNW667mx6WdUGc4ETku9RGNM2YSOsGuppCHqfjY/dUrOrDIkQaRsSUPm6u+JjIZap6FvO0NqxnrZm4n/ed3EBNf9jMs4MSjZYlGQCGIiMvubDLlCZkRqCWWK21sJG1NFmbHplGwI3vLLq6Rdr3mXtYu7eqXRyOMowgmcwjl4cAUNuIUmtIDBCJ7hFd4c4bw4787HorXg5DPH8AfO5w+hK41e</latexit>y

<latexit sha1_base64="KhKHCTMgYUsv2F5LpZ9laFLVgxM=">AAACB3icbVDLSsNAFJ3UV62vqEtBBlvBhZSkiLosuHFZwT4kiWUynbZDJw9nboQSunPjr7hxoYhbf8Gdf+OkZqGtBy4czrmXe+/xY8EVWNaXUVhYXFpeKa6W1tY3NrfM7Z2WihJJWZNGIpIdnygmeMiawEGwTiwZCXzB2v7oIvPb90wqHoXXMI6ZF5BByPucEtBS19yvuAGBISUivZlgVyW+YoAd6xjb3u1dpWuWrao1BZ4ndk7KKEeja366vYgmAQuBCqKUY1sxeCmRwKlgk5KbKBYTOiID5mgakoApL53+McGHWunhfiR1hYCn6u+JlARKjQNfd2ZHq1kvE//znAT6517KwzgBFtKfRf1EYIhwFgrucckoiLEmhEqub8V0SCShoKMr6RDs2ZfnSatWtU+rJ1e1cr2ex1FEe+gAHSEbnaE6ukQN1EQUPaAn9IJejUfj2Xgz3n9aC0Y+s4v+wPj4BvP0mBE=</latexit>

Y ⇢ [0, 1]q

<latexit sha1_base64="u+vzUAwo/CUllWC6c89IMinfsqs=">AAACAHicbVC7TsMwFL0pr1JeAQYGFosWiYUqqRAwMFSCgYGhCPqQ2qhyXLe1aifBdpCqqAu/wsIAQqx8Bht/g9tmgJYjWTo65z58jx9xprTjfFuZhcWl5ZXsam5tfWNzy97eqakwloRWSchD2fCxopwFtKqZ5rQRSYqFz2ndH1yO/fojlYqFwb0eRtQTuBewLiNYG6lt7xUeCsdXTKAbMwBLdBf7KsKEtu28U3QmQPPETUkeUlTa9lerE5JY0EATjpVquk6kvQRLzQino1wrVtQMHuAebRoaYEGVl0wOGKFDo3RQN5TmBRpN1N8dCRZKDYVvKgXWfTXrjcX/vGasu+dewoIo1jQg00XdmCMdonEaqMMkJZoPDcFEMvNXRPpYYqJNZjkTgjt78jyplYruafHktpQvX6RxZGEfDuAIXDiDMlxDBapAYATP8Apv1pP1Yr1bH9PSjJX27MIfWJ8//nyVYw==</latexit>

q-Dim Linear Subspace

Figure 5.2: Low-dimensional linear structures in X .

Under Assumption 5.4, a data point x ∈ X can be represented as Ay, where y ∈ Rq

and A ∈ RD×q is a linear transformation (See graphical illustration in Figure 5.2). The

following lemma formally justifies the existence of the linear transformation A.

Lemma 5.2. Suppose Assumption 5.4 holds. Consider a matrix A ∈ RD×q with columns

being an orthonormal basis of the q-dimensional linear subspace. Then it holds that Y =

A⊤X = {A⊤x : x ∈ X} is a compact and convex subset of Rq, and AY = X .

The proof is deferred to Appendix C.4. The projected domain Y captures the intrinsic

geometric structures in X . More importantly, using transformation A allows us to define

smoothness of the target data distribution. Specifically, we consider a data distribution

µ supported on X . Since X is a low-dimensional space, µ does not have a well defined

density function with respect to the Lebesgue measure in RD. Thanks to Lemma 5.2, the

pushforward distribution A⊤
♯ µ has a well-defined density function. Accordingly, we make

the following data distribution assumption.

Assumption 5.5. Without loss of generality, we assume Y ⊂ [0, 1]q. Given a Hölder index

α > 0, the density function pµ of A⊤
♯ µ belongs to Hα(Y) with a bounded Hölder norm

∥pµ∥Hα(Y) ≤ C for some constant C > 0, and pµ ≥ τ > 0 on Y for some constant τ .

We assume Y ⊂ [0, 1]q for convenience. Otherwise, we can rescale input space X by

a constant c, so that the projected space Y ⊂ [0, 1]q. Since X is compact, the constant c is

bounded and will not undermine the statistical rate of convergence.

To generate samples mimicking data distribution µ, we consider transforming a q-

dimensional easy-to-sample distribution ρ supported on [0, 1]q to leverage the structural

64

assumption in domain X . We define the generator network architecture G ld
NN(R, κ, L, p, J)

as

G ld
NN(R, κ, L, p, J) =

{
U ◦ g : U ∈ Rd×q with orthonormal columns and

g ∈ FNN(R, κ, L, p, J) with din = q, dout = d)
}
.

(5.9)

Note that U ∈ RD×q lifts the transformed easy-to-sample distribution (gθ)♯ρ to RD. We

expect U to extract the linear structures in data, while gθ approximates an optimal transport

plan for transforming ρ to A⊤
♯ µ.

In correspondence with the generator, we define the discriminator network architecture

F ld
NN(R̄, κ̄, L̄, p̄, J̄ , γ̄) as

F ld
NN(R̄, κ̄, L̄, p̄, J̄ , γ̄) =

{
f ◦ V ⊤ : V ∈ Rd×q with ∥V ∥2 ≤ 1,

f ∈ FNN(R̄, κ̄, L̄, p̄, J̄) with din = q, dout = 1, and

|f(x)− f(y)| ≤ γ̄ ∥x− y∥∞ for x,y ∈ [0, 1]q
}
.

(5.10)

<latexit sha1_base64="UUposjEvY7KHrmByQreeOoitZd0=">AAAB7HicbVBNS8NAEJ3Ur1q/oh69LLaCp5IUUY8FLx4rmLbQhrLZbtqlu5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH7vFJWyeZIjQgCU9UN8KaciZpYJjhtJsqikXEaSea3M39zhNVmiXy0UxTGgo8kixmBBsrBbW+yGoDt+rVvQXQOvELUoUCrYH71R8mJBNUGsKx1j3fS02YY2UY4XRW6WeapphM8Ij2LJVYUB3mi2Nn6MIqQxQnypY0aKH+nsix0HoqItspsBnrVW8u/uf1MhPfhjmTaWaoJMtFccaRSdD8czRkihLDp5Zgopi9FZExVpgYm0/FhuCvvrxO2o26f12/emhUm80ijjKcwTlcgg830IR7aEEABBg8wyu8OdJ5cd6dj2VrySlmTuEPnM8fF+GONw==</latexit>µ

<latexit sha1_base64="w4rkbqBnt6vH6rtXl7656p57WQM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBlvBVUmKqMuKG5cV7AOaGCbTSTt0JhNmJkII9VfcuFDErR/izr9x2mahrQcuHM65l3vvCRNGlXacb6u0tr6xuVXeruzs7u0f2IdHXSVSiUkHCyZkP0SKMBqTjqaakX4iCeIhI71wcjPze49EKirie50lxOdoFNOIYqSNFNjV+nXgqTGSyYOnRQI9ntYDu+Y0nDngKnELUgMF2oH95Q0FTjmJNWZIqYHrJNrPkdQUMzKteKkiCcITNCIDQ2PEifLz+fFTeGqUIYyENBVrOFd/T+SIK5Xx0HRypMdq2ZuJ/3mDVEdXfk7jJNUkxotFUcqgFnCWBBxSSbBmmSEIS2puhdgEgbA2eVVMCO7yy6uk22y4F43zu2at1SriKINjcALOgAsuQQvcgjboAAwy8AxewZv1ZL1Y79bHorVkFTNV8AfW5w/Ph5Q7</latexit>

A>
] µ

<latexit sha1_base64="oFEDBAWpU9VQA0A5LmVWAXX5yMI=">AAACAXicbVDLSsNAFJ34rPUVdSO4GWyFuilJEXVZcOOygn1AE8JkOmmGTh7M3Agl1I2/4saFIm79C3f+jdM2C209cOFwzr3ce4+fCq7Asr6NldW19Y3N0lZ5e2d3b988OOyoJJOUtWkiEtnziWKCx6wNHATrpZKRyBes649upn73gUnFk/gexilzIzKMecApAS155nG1NvQcCBmQc89RIZEpdmSYVD2zYtWtGfAysQtSQQVanvnlDBKaRSwGKohSfdtKwc2JBE4Fm5SdTLGU0BEZsr6mMYmYcvPZBxN8ppUBDhKpKwY8U39P5CRSahz5ujMiEKpFbyr+5/UzCK7dnMdpBiym80VBJjAkeBoHHnDJKIixJoRKrm/FVIdAKOjQyjoEe/HlZdJp1O3L+sVdo9JsFnGU0Ak6RTVkoyvURLeohdqIokf0jF7Rm/FkvBjvxse8dcUoZo7QHxifPyVxlg8=</latexit>

(g✓)]⇢

<latexit sha1_base64="BAB99o+XCtNLXTrTIqROF3QF6Q8=">AAACCXicbVBNS8NAEN3Ur1q/oh69LLZCvZSkiHosePFYwbSFJoTNdtMu3XywOxFK6NWLf8WLB0W8+g+8+W/ctjlo64OBx3szzMwLUsEVWNa3UVpb39jcKm9Xdnb39g/Mw6OOSjJJmUMTkcheQBQTPGYOcBCsl0pGokCwbjC+mfndByYVT+J7mKTMi8gw5iGnBLTkm7hWd7BLuaR46LswYkDOfVeNiEyxK0dJzTerVsOaA68SuyBVVKDtm1/uIKFZxGKggijVt60UvJxI4FSwacXNFEsJHZMh62sak4gpL59/MsVnWhngMJG6YsBz9fdETiKlJlGgOyMCI7XszcT/vH4G4bWX8zjNgMV0sSjMBIYEz2LBAy4ZBTHRhFDJ9a2Y6hAIBR1eRYdgL7+8SjrNhn3ZuLhrVlutIo4yOkGnqI5sdIVa6Ba1kYMoekTP6BW9GU/Gi/FufCxaS0Yxc4z+wPj8AXidmPE=</latexit>

(U � g✓)]⇢

Linear
Projection

Target
Distribution

Generated
Distribution

Pushforward

<latexit sha1_base64="YtoQ1OM+OBSm2TWuNQz38OsKW+8=">AAAB+3icbVDLSgNBEJyNrxhfazx6GRIET2E3iHrwENBDjhHMA5IQZie9yZDZmWVmVgzL/ooXD4p49Ue8+TdOHgdNLGgoqrrp7gpizrTxvG8nt7G5tb2T3y3s7R8cHrnHxZaWiaLQpJJL1QmIBs4ENA0zHDqxAhIFHNrB5Hbmtx9BaSbFg5nG0I/ISLCQUWKsNHCL9V4plRkfgsJ3IDQz04Fb9ireHHid+EtSRks0Bu5XbyhpEoEwlBOtu74Xm35KlGGUQ1boJRpiQidkBF1LBYlA99P57Rk+s8oQh1LZEgbP1d8TKYm0nkaB7YyIGetVbyb+53UTE173UybixICgi0VhwrGReBYEHjIF1PCpJYQqZm/FdEwUocbGVbAh+Ksvr5NWteJfVi7uq+XazTKOPDpFJXSOfHSFaqiOGqiJKHpCz+gVvTmZ8+K8Ox+L1pyznDlBf+B8/gCuYpQ0</latexit>

Hölder Density Generator
<latexit sha1_base64="BZcgjSXwUtwrygwyhS9noeV70do=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WWwFTyUpoh4LXjxWMG2hCWGz3bRLN5uwOxFL6V/x4kERr/4Rb/4bt20O2vpg4PHeDDPzokxwDY7zbZU2Nre2d8q7lb39g8Mj+7ja0WmuKPNoKlLVi4hmgkvmAQfBepliJIkE60bj27nffWRK81Q+wCRjQUKGksecEjBSaFfrHvYpVxQPQx9GDEg9tGtOw1kArxO3IDVUoB3aX/4gpXnCJFBBtO67TgbBlCjgVLBZxc81ywgdkyHrGypJwnQwXdw+w+dGGeA4VaYk4IX6e2JKEq0nSWQ6EwIjverNxf+8fg7xTTDlMsuBSbpcFOcCQ4rnQeABV4yCmBhCqOLmVkxHRBEKJq6KCcFdfXmddJoN96pxed+stVpFHGV0is7QBXLRNWqhO9RGHqLoCT2jV/RmzawX6936WLaWrGLmBP2B9fkDgxeTdg==</latexit>

U � g✓

Discriminator
<latexit sha1_base64="2P4OqwoJBnA4BCMka2mU9dcxIDs=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgZbwVVJiqjLghuXFWwtNDFMppN26DzCzEQooRt/xY0LRdz6Ge78G6dtFtp64MLhnHu59544ZVQbz/t2Siura+sb5c3K1vbO7p67f9DRMlOYtLFkUnVjpAmjgrQNNYx0U0UQjxm5j0fXU//+kShNpbgz45SEHA0ETShGxkqRe1RLokByMkAwwFRh2HkIjExrkVv16t4McJn4BamCAq3I/Qr6EmecCIMZ0rrne6kJc6QMxYxMKkGmSYrwCA1Iz1KBONFhPntgAk+t0oeJVLaEgTP190SOuNZjHttOjsxQL3pT8T+vl5nkKsypSDNDBJ4vSjIGjYTTNGCfKoING1uCsKL2VoiHSCFsbGYVG4K/+PIy6TTq/kX9/LZRbTaLOMrgGJyAM+CDS9AEN6AF2gCDCXgGr+DNeXJenHfnY95acoqZQ/AHzucPbPmVqA==</latexit>

f! � V >

<latexit sha1_base64="sT5f3HaczuIThUJtRdF3d8TDdrI=">AAACDHicbVC7TsMwFHXKq5RXgZElokViqpIKAWMlFsaC6ENqQ+U4DrXqOJF9g6iifAALv8LCAEKsfAAbf4OTZoCWK1k6Ouc+jo8bcabAsr6N0tLyyupaeb2ysbm1vVPd3euqMJaEdkjIQ9l3saKcCdoBBpz2I0lx4HLacycXmd67p1KxUNzANKJOgO8E8xnBoKlRtVYfAn2AfFGiNSoAp8kwwDB23eQ6vfXSuu6yGlZe5iKwC1BDRbVH1a+hF5I40MsIx0oNbCsCJ8ESGOE0rQxjRSNMJvrcQEOBA6qcJPeQmkea8Uw/lPoJMHP290SCA6Wmgas7M5dqXsvI/7RBDP65kzARxUAFmR3yY25CaGbJmB6TlACfaoCJZNqrScZYYgI6v4oOwZ7/8iLoNhv2aePkqllrtYo4yugAHaJjZKMz1EKXqI06iKBH9Ixe0ZvxZLwY78bHrLVkFDP76E8Znz8Da5w5</latexit>

Rd

<latexit sha1_base64="9jLRl47tEuKTne2gsz8jfexkBzA=">AAACCXicbVC7TsMwFHXKq5RXgZHFokViqpIKAWMlFsaC6ENqSuW4bmvVcYJ9g6iirCz8CgsDCLHyB2z8DU7aAVqOZOnonHvt4+OFgmuw7W8rt7S8srqWXy9sbG5t7xR395o6iBRlDRqIQLU9opngkjWAg2DtUDHie4K1vPFF6rfumdI8kDcwCVnXJ0PJB5wSMFKviMsusAfILorphMgkdn0CI8+Lr5Pbu6TcK5bsip0BLxJnRkpohnqv+OX2Axr5TAIVROuOY4fQjYkCTgVLCm6kWUjomAxZx1BJfKa7cRYgwUdG6eNBoMyRgDP190ZMfK0nvmcm05R63kvF/7xOBIPzbsxlGAGTdPrQIBIYApzWgvtcMQpiYgihipusmI6IIhRMeQVTgjP/5UXSrFac08rJVbVUq83qyKMDdIiOkYPOUA1dojpqIIoe0TN6RW/Wk/VivVsf09GcNdvZR39gff4Ar6ya9g==</latexit>

Rq

Figure 5.3: Learning data distribution µ with unknown linear structures using generator in
(Eq. 5.9) and discriminator in (Eq. 5.10).

Matrix V is chosen to “couple” with the linear structures learned by the generator (“anti-

projection”) and fω will approximate Lipschitz functions in Rq for approximating Wasser-

65

stein distance. We remark that an appropriate choice of Lipschitz coefficient γ̄ on fω will

not undermine the approximation power of F ld
NN as confirmed in Lemma 5.8. Meanwhile,

the Lipschitz constraint of discriminator ensures that the generator can accurately capture

the linear structures in data. In practice, such a Lipschitz regularity is often enforced by

computational heuristics [131, 132, 133].

With proper configurations of network classes (Eq. 5.9) and (Eq. 5.10), we train GANs

using (Eq. 5.2) (see Figure 5.3 for illustration) and denote the optimizer as (U∗, g∗θ , V
∗, f ∗

ω),

i.e.,

(U∗, g∗θ , V
∗, f ∗

ω) ∈ argmin
fω◦V ⊤∈F ld

NN

max
U◦gθ∈Gld

NN

Ez∼ρ

[
(fω ◦ V ⊤) ◦ (U ◦ gθ)(z)

]

− 1

n

n∑

i=1

(fω ◦ V ⊤)(xi).

The following theorem establishes a fast statistical rate of convergence of (U∗ ◦ g∗θ)♯ρ to

data distribution µ.

Theorem 5.3. Suppose Assumption 5.4 and 5.5 hold. We choose

R = B, κ = max{B,C}, L = O

(
α

2α + q
log n

)
,

p = O
(
qn

qα
(α+1)(2α+q) ∨D

)
, J = O

(
Dq +

α

2α + q
n

qα
(α+1)(2α+q) log n

)
.

for the generator G ld
NN(R, κ, L, p, J) in (Eq. 5.9) and

R̄ = C, κ̄ = C, γ̄ = 10q, L̄ = O

(
1

2 + q
log n

)
,

p̄ = O
(
nq/(2+q) ∨D

)
, J̄ = O

(
Dq +

1

2 + q
nq/(2+q) log n

)
.

for the discriminator F ld
NN(R̄, κ̄, L̄, p̄, J̄ , γ̄) in (Eq. 5.10). Then it holds

E [W1((U
∗ ◦ g∗θ)♯ρ, µ)] = Õ

(
n− 1

2+q log2 n
)
.

66

Compared to Theorem 5.2, we observe that the sizes of generator and discriminator

in Theorem 5.3 only weakly depend on D. Meanwhile, the rate of convergence is fast as

the exponent only depends on q. This result provides important understandings of why

GANs can circumvent the curse of dimensionality in real-world applications, since low-

dimensional intrinsic structures are often seen in real-world data sets. Nonetheless, linear

structures in Assumption 5.4 is largely simplified, as it is rare the case that real-world

data lie in a subset of a low-dimensional linear subspace. At the same time, real data are

often contaminated with observational noise and concentrate only near a low-dimensional

manifold.

Theorem 5.3 demonstrates that GANs with properly chosen generator and discrimina-

tor are adaptive to the unknown linear structures in data. Since data are concentrated on

a linear subspace, one may advocate PCA-like methods for estimating the linear structure

first and then learn the data distribution on a projected subspace. However, such a method

requires two-step learning and is rarely used in practical GANs. In fact, GANs simulta-

neously capture the linear structure and learning the target data distribution via optimizing

the empirical risk (Eq. 5.2).

A major difficulty in establishing Theorem 5.3 is proving GANs can capture unknown

linear structures in data. We exploit the optimality of (U∗, g∗θ) to prove that ∥U∗ − A∥F is

small, i.e., the column spaces of U∗ and the ground truth matrix A match closely. In partic-

ular, the mismatch ∥U∗ − A∥F depends on the approximation power of the generator and

discriminator (see Lemma 5.9). Built upon this crucial ingredient, the remaining analysis

focuses on tackling the projected Wasserstein distance with respect to the data transfor-

mation A (see [134, 135] for applications of projected Wasserstein distance in two-sample

test). In this way, we circumvent the curse of ambient dimensionality.

67

5.5 Comparison with Existing Literature

• Distribution approximation using deep generative models. Using generator to ac-

curately approximate the data distribution is of essential importance in understanding the

statistical properties of GANs. [113] considered data distribution being exactly realized by

an invertible generator, i.e., all the weight matrices and activation functions are invertible.

Such an invertibility requires the width of the generator to be the same as input data di-

mension D. Existing literature has shown that such narrow networks lack approximation

ability [38, 136]. In fact, to ensure universal approximation for Lebesgue-integrable func-

tions and Lp functions in RD, the weakest width requirement needs to be D+4 and D+1,

respectively. Our work, in contrast, allows the generator to be wide and expressive for any

data distribution with Hölder densities.

⋆ Approximating empirical distribution using neural networks. After the release of an early

version of the manuscript, the authors were aware of a concurrent work studying distribu-

tion approximation using generative networks. Specifically, [137] established universal

approximation abilities of neural network generators for approximating sub-Gaussian data

distributions. They proved the existence of a properly chosen generator architecture for

achieving an ϵ approximation error of data distribution in Wasserstein-1 distance. Our The-

orem 5.1 shares a similar conclusion to [137] for data distributions with Hölder densities.

However, the analysis in [137] is very different and relies on memorizing discretized data

distribution using neural networks. More recently, [138] showed that GANs can approx-

imate any data distribution (in any dimension) by transforming an absolutely continuous

distribution. The idea is to memorize the empirical data distribution using ReLU networks.

Nonetheless, the designed generator may not be able to generate new samples (different

from the training data), which cannot explain the success of GANs in practice.

• Statistical properties of GANs. Statistical guarantees of generative models for distri-

bution estimation has been studied in several works. We compare with existing works in

68

Table 5.1 and provide more details in following context.

Table 5.1: A comparison to closely related works in problem setups and statistical re-
sults. NN stands for neural networks and ‘—’ indicates no specific choice is given. Weak
metric refers to “neural net distance” in [110] and strong metric refers to IPMs with non-
parametric discriminative function classes, e.g., using 1-Lipschitz discriminative functions
corresponds to the Wasserstein-1 distance.

Generator Discriminator Distribution Metric
Generalization error bound

[110, 139, 140] NN NN General
(Euclidean)

Weak

[113, 141, 114] Invertible NN NN Realizable by invert-
ible NN generators
(Eulidean and low-d)

Strong

[142] Cs — Cs pushforward of sub-
Gaussian distributions
(Eulidean and low-d)

Sinkhorn

[116] — Hölder General
(Euclidean and low-
d)

Strong

Statistical estimation bound
[115] NN Lipschitz Cs pushforward of

uniform distributions
(low-d)

Strong

Ours NN NN Having Hölder densities
(Euclidean and low-d)

Strong

⋆ Generalization bound of GANs. [110] studied the generalization error of GANs. Lemma

1 in [110] shows that GANs cannot generalize under the Wasserstein distance and the

Jensen-Shannon divergence unless the sample size is Õ(ϵ−poly(D)), where ϵ is the gener-

alization gap. Alternatively, they defined a surrogate metric called “neural net distance”

dFNN(·, ·), where FNN is the class of discriminator networks. They proved that GANs gen-

eralize under the neural net distance, with sample complexity of Õ(ϵ−2). This result has

two limitations: 1). The sample complexity depends on some unknown parameters of the

discriminator network class (e.g., the Lipschitz constant of discriminators with respect to

parameters); 2). A small neural net distance does not necessarily imply that two distribu-

tions are close [110, Corollary 3.2], which in turn can not answer (Q1) firmly. Our results

69

are explicit in the network architectures, and provide a statistical convergence of GANs

under the Wasserstein distance.

Some follow-up works attempted to address the first limitation in [110]. [139] explicitly

quantified the Lipschitz constant and the covering number of the discriminator network.

They improved the generalization bound in [110] with the technique in [143]. Whereas

the bound has an exponential dependence on the depth of the discriminator. [140] proved

a tighter generalization bound under spectral normalization applied to the discriminator,

where the bound has a polynomial dependence on the size of the discriminator. These

generalization theories rely on the assumption that the generator can approximate the data

distribution well with respect to the neural net distance, nonetheless, the existence of such

a generator is unknown.

[113] tackled the second limitation in [110], and studied the estimation error of GANs

under the Wasserstein distance for a special class of distributions implemented by a gen-

erator, while the discriminator is designed to guarantee zero bias (or approximation error).

Specifically, [113] showed that for certain generator classes, there exist corresponding dis-

criminator classes with a strong discriminative power against the generator. Particular ex-

amples include two-layer ReLU network discriminators (half spaces) for distinguishing

Gaussian distributions/mixture of Gaussians, and (L+2)-layer discriminators for (L+1)-

layer invertible generators. In these examples, if the data distribution can be exactly im-

plemented by some generator, then the neural net distance can provably approximate the

Wasserstein distance. Consequently, GANs can generalize under the Wasserstein distance.

As mentioned earlier, these results require an invertibility assumption on the generator.

Concurrent with [113], [114] studied the estimation error of GANs under the Sobolev

IPMs. [114] considered both nonparametric and parametric settings. In the nonparametric

setting, the generator and discriminator network architectures are not explicitly chosen, so

the bias of the distribution estimation remains unknown. As a result, the bound cannot

provide an explicit sample complexity for distribution estimation. Their parametric results

70

are very similar to [113], which requires the same invertibility assumptions and the data

distribution needs to be exactly implementable by the generator.

⋆ Generative distribution estimation under IPMs. Recently, several works studied distri-

bution estimation under certain discrepancy measures using generative models, when data

exhibit low-dimensional structures [142, 115, 116]. The distribution estimation framework

is

g∗ ∈ argmin
g∈G

discrepancy(g♯ρ, µ)

and the corresponding statistical rate of estimation is free of the curse of data ambient di-

mensionality. Specifically, in [142], the generative models are assumed to be continuously

differentiable up to order s. By simultaneously optimize the choice of latent distribution ρ

and generative model g, they proved that the Sinkhorn divergence between the generated

distribution and data distribution converges only depending on data intrinsic dimension.

[115] consider data being generated by a ground truth pushfowrad mapping applied to la-

tent samples from a low-dimensional unit cube. Using Lipschitz generator, they proved

that the generalization bound in terms of Wassesrstein-1 distance converges only depend-

ing on the dimension of the latent space. More recently, [116] established a generalization

bound in terms of Hölder IPMs for generative models and the bound converges depending

on data intrinsic dimension. Nonetheless, how well the generator can represent the data

distribution remains unclear. All of the aforementioned results rely on training the gen-

erative model by minimizing certain discrepancy metric, e.g., Wasserstein-1 distance and

Sinkhorn divergence. There is no explicit discriminator network involved, nor there exists

any straightforward method to parameterize the discrepancy metric by a discriminator net-

work with performance guarantees. It is worth mentioning that [144] considered estimating

low-dimensional singular distributions using deep generative models. They adopted a like-

lihood approach, which is different from GANs. In this regard, these existing works does

71

not directly apply to GANs and cannot precisely evaluate the distribution estimation power

of GANs.

⋆ Density estimation under IPMs. There is also a line of works considering nonparametric

density estimation under IPMs [145, 146]. [145] studied the minimax error under Sobolev

IPMs. Later, [146] generalized the minimax result to Besov IPMs for estimating distribu-

tions with Besov densities. Yet our work is different from these works. Specifically, the

distribution estimation framework in [145, 146] is

min
ν∈P

max
fω∈FNN

∫
fω(y)ν(y)dy −

1

n

n∑

i=1

fω(xi), (5.11)

where ν : X 7→ R is a density function and P denotes a class of density estimators, such as

the wavelet-thresholding estimator in [146]. Compared to our framework in (Eq. 5.2), we

consider the push-forward structure in GANs, where the generator gθ is a multidimensional

mapping. In contrast, (Eq. 5.11) considers density estimators, where ν : X 7→ R is some

density function parameterized by a neural network – involving NO generator architecture

which transforms the easy-to-sample distribution to the data distribution. Moreover, to

evaluate the integral in (Eq. 5.11), one needs to exactly know the feature space X , and

efficiently sample from X . Consequently, [145, 146] only apply to X = [0, 1]d. Besides,

only estimating the density function requires extensive extra efforts to sample from it, e.g.,

using Monte Carlo simulation, due to the lack of the push-forward structure. However, our

theories are applicable to push-forward GANs, and allow an efficient sampling of generated

(fake) data.

5.6 Proof Outline

We provide proofs of Theorem 5.1 and Theorem 5.2. The developed analytical frame-

work will also be adopted for proving Theorem 5.3 with additional treatments on low-

dimensional structures in Section 5.6.3.

72

5.6.1 Proof of Distribution Approximation Theory

Theorem 5.1 is obtained by combining Lemma 5.1 and Theorem 3.1 (take Euclidean space

itself as a manifold). Under Assumption 5.1 – 5.3, Lemma 5.1 ensures the existence of

a Hα+1(Z) data transformation T such that T♯ρ = µ. The remaining step is to choose a

proper generator network for approximating T .

If the latent space Z ⊂ [0, 1]D, we can directly apply Theorem 3.1 for constructing

the generator. Otherwise, if Z ⊂ [−B,B]D, we define a linear scaling function ϕ(z) =

(z + B1)/(2B) ∈ [0, 1]D for any z ∈ Z , where 1 denotes a vector of 1’s. For the data

transformation T , we rewrite it as T ◦ ϕ−1(ϕ(·)) so that it suffices to approximate T ◦ ϕ−1

supported on [0, 1]D. T ◦ϕ−1 retains the same Hölder smoothness as T , since ϕ is invertible

and linear. To this end, without loss of generality, we focus on Z ⊂ [0, 1]D.

Our generator network architecture is constructed in the following way. By denoting

T = [T1, . . . , TD]
⊤ with Ti : Z → R for i = 1, . . . , D, we approximate each coordinate

mapping Ti using Theorem 3.1. For a given error ϵ ∈ (0, 1), Ti can be approximated by a

ReLU network with O
(
log 1

ϵ

)
layers and O

(
δ−

D
α+1 log 1

ϵ

)
neurons and weight parameters.

Thus, mapping T can be approximated by D such networks and we denote as gθ. Further,

the distribution approximation error is

W1((gθ)♯ρ, µ) = sup
∥f∥Lip≤1

Ez∼ρ[f(gθ(z))]− Ex∼µ[f(x)]

≤ Ez∼ρ ∥gθ(z)− T (z)∥2

≤
√
Dϵ.

5.6.2 Proof of Statistical Estimation Theory

We prove an oracle inequality for establishing Theorem 5.2, which decomposes the dis-

tribution estimation error into the generator approximation error E1, the discriminator ap-

proximation error E2, and the statistical error E3.

73

Lemma 5.3. Let Hβ(X) be the Hölder function class defined on X with Hölder index

β ≥ 1. Define Hβ
∞(X) =

{
f ∈ Hβ(X) : |f(x)− f(y)| ≤ ∥x− y∥∞

}
. Then it holds

dHβ((g∗θ)♯ρ, µ) ≤ E1 + 4E2 + E3,

where E1 = infgθ∈GNN
dHβ

∞
((gθ)♯ρ, µ) , E2 = supf∈Hβ inffω∈FNN

∥f − fω∥∞, and E3 =

dHβ (µ, µ̂n) + dFNN
(µ, µ̂n).

The proof is provided in Appendix C.1.1. We next bound each error term separately. E1
and E2 can be controlled by proper choices of the generator and discriminator architectures.

E3 can be controlled based on empirical process [96, 13].

• Bounding Generator Approximation Error E1. We answer this question: Given ϵ1 ∈

(0, 1), how can we properly choose GNN to guarantee E1 ≤ ϵ1? Later, we will pick ϵ1 based

on the sample size n, and Hölder indexes β and α.

Lemma 5.4. Given ϵ1 ∈ (0, 1), there exists a ReLU network architecture GNN(R, κ, L, p,K)

with parameters given by (Eq. 5.6) with ϵ = ϵ1 such that, for any data distribution (X , µ)

and easy-to-sample distribution (Z, ρ) satisfying Assumptions 5.1 – 5.3, if the weight pa-

rameters of this network are properly chosen, then it yields a transformation gθ satisfying

dHβ
∞
((gθ)♯ρ, µ) ≤ ϵ1.

The proof is provided in Appendix C.1.2.

• Bounding Discriminator Approximation Error E2. Analogous to the generator, we

pre-define an error ϵ2 ∈ (0, 1), and determine the discriminator architecture.

The discriminator is expected to approximate any function f ∈ Hβ(X). We have the

following result.

Lemma 5.5. Given any ϵ2 ∈ (0, 1), there exists a ReLU network architecture FNN(R̄, κ̄, L̄, p̄, J̄)

with

L̄ = O
(
log(1/ϵ2)

)
, p̄ = O

(
ϵ
−D/β
2

)
, J̄ = O

(
ϵ
−D/β
2 log(1/ϵ2)

)
,

74

R̄ = C, κ̄ = C,

such that, for any discriminative function f ∈ Hβ(X), if the weight parameters are prop-

erly chosen, this network architecture yields a function fω satisfying ∥fω − f∥∞ ≤ ϵ2.

The proof is provided in Appendix C.1.3.

• Bounding Statistical Error E3. The statistical error term is essentially the concentration

of empirical data distribution µ̂n to its population counterpart. Given a symmetric function

class F , we show E [dF(µ̂n, µ)] scales with the complexity of the function class F .

Lemma 5.6. For a symmetric function class F with supf∈F ∥f∥∞ ≤M for a constant M ,

we have

E [dF(µ̂n, µ)] ≤ 2 inf
0<δ<M

(
2δ +

12√
n

∫ M

δ

√
logN (ϵ,F , ∥·∥∞)dϵ

)
,

where N (ϵ,F , ∥·∥∞) denotes the ϵ-covering number of F with respect to the L∞ norm.

The proof is provided in Appendix C.1.4. Now we need to find the covering number

of Hölder class and that of the discriminator network. Classical result shows that the δ-

covering number of Hβ satisfies logN (δ,Hβ, ∥ · ∥∞) ≤ C(1/δ)
D
β
∨2 [147].

On the other hand, Lemma 4.3 quantifies the covering number of FNN:

N
(
δ,FNN(R̄, κ̄, L̄, p̄, K̄), ∥·∥∞

)
≤
(

2L̄2(p̄B+2)(κ̄p̄)L̄+1

δ

)J̄
.

Combining Lemma 5.6 and the covering numbers, the statistical error can be bounded

by

E [dHβ(µ̂n, µ) + dFNN(µ, µ̂n)]

≤ 4 inf
δ1∈(0,C)

(
δ1 +

6√
n

∫ C

δ1

√
logN (ϵ,Hβ, ∥·∥∞)dϵ

)

75

+ 4 inf
δ2∈(0,C)

(
δ2 +

6√
n

∫ C

δ2

√
logN (ϵ,FNN, ∥·∥∞)dϵ

)

(i)

≤ 4 inf
δ1∈(0,C)

δ1 +

6√
n

∫ C

δ1

√

c

(
1

ϵ

)(D
β
∨2)
dϵ

+ 4 inf
δ2∈(0,C)

(
δ2 +

6√
n

∫ C

δ2

√
J̄ log

L̄(p̄B + 2)(κ̄p̄)L̄

ϵ
dϵ

)
.

We find that the first infimum in step (i) is attained at δ1 = n− β
D . It suffices to take δ2 = 1

n

in the second infimum. By omitting constants and polynomial dependence on β, we derive

E [dHβ(µ̂n, µ) + dFNN(µ, µ̂n)] = Õ

(
1

n
+ n− β

D +
1√
n

√
J̄ L̄ log

(
nL̄p̄

))
.

• Balancing the Approximation Error and Statistical Error. Combining the previous

three ingredients, by invoking the oracle inequality (Lemma 5.3), we can establish

E [dHβ((g∗θ)♯ρ, µ)] = Õ

ϵ1 + ϵ2 +

1

n
+ n− β

D +

√
J̄ L̄ log

(
nL̄p̄

)

n

= Õ

ϵ1 + ϵ2 +

1

n
+ n− β

D +

√√√√ϵ
−D

β

2 log 1
ϵ2
log
(
nϵ

−D
β

2

)

n

 .

We choose ϵ1 = n− β
2β+D , and ϵ2 satisfying ϵ2 = n− 1

2 ϵ
− D

2β

2 , i.e., ϵ2 = n− β
2β+D . This yields

(Eq. 5.7).

When given finite generated fake samples, we need an extra concentration argument.

This is tackled by an alternative oracle inequality (Eq. 5.12) shown in below. The rest of

the proof utilizes the same argument in Theorem 5.2.

Proof of Corollary 5.1. We show an alternative oracle inequality for finite generated sam-

76

ples as follows. Inequality (Eq. C.1) in the proof of Lemma 5.3 yields

dHβ((g∗,mθ)♯ρ, µ) ≤ dFNN((g
∗,m
θ)♯ρ, µ̂n) + 2 sup

f∈Hβ

inf
fω∈FNN

∥f − fω∥∞

+ dHβ(µ̂n, µ).

We further expand the first term on the right-hand side above as

dFNN((g
∗,m
θ)♯ρ, µ̂n) ≤ dFNN((g

∗,m
θ)♯ρ, (g

∗,m
θ)♯ρ̂m) + dFNN((g

∗,m
θ)♯ρ̂m, µ̂n).

By the optimality of g∗,mθ , for any gθ ∈ GNN, we have

dFNN((g
∗,m
θ)♯ρ̂m, µ̂n)

≤ dFNN((gθ)♯ρ̂m, µ̂n)

≤ dFNN((gθ)♯ρ̂m, (gθ)♯ρ) + dFNN((gθ)♯ρ, µ) + dFNN(µ, µ̂n)

≤ dFNN((gθ)♯ρ, µ) + sup
gθ∈GNN

dFNN((gθ)♯ρ̂m, (gθ)♯ρ) + dFNN(µ, µ̂n)

≤ dHβ
∞
((gθ)♯ρ, µ) + 2 sup

f∈Hβ

inf
fω∈FNN

∥f − fω∥∞ + 2dFNN(µ, µ̂n)

+ sup
gθ∈GNN

dFNN((gθ)♯ρ̂m, (gθ)♯ρ),

where the last inequality follows the same argument in the proof of Lemma 5.6. Combining

all the inequalities together, we have

dHβ((g∗,mθ)♯ρ, µ)

≤ inf
gθ∈GNN

dHβ
∞
((gθ)♯ρ, µ) + 4 sup

f∈Hβ

inf
fω∈FNN

∥f − fω∥∞ + 2dFNN(µ, µ̂n)

+ dHβ(µ̂n, µ) + sup
gθ∈GNN

dFNN((gθ)♯ρ̂m, (gθ)♯ρ) + dFNN((g
∗,m
θ)♯ρ, (g

∗,m
θ)♯ρ̂m).

(5.12)

77

Given the proof of Theorem 5.2, we only need to bound the extra statistical error terms

sup
gθ∈GNN

dFNN((gθ)♯ρ̂m, (gθ)♯ρ) and dFNN((g
∗,m
θ)♯ρ, (g

∗,m
θ)♯ρ̂m).

In fact, 5.6 and Lemma 4.3 together imply

sup
gθ∈GNN

dFNN((gθ)♯ρ̂m, (gθ)♯ρ) = Õ

(
1√
m

√
J̄ L̄ log

(
mL̄p̄

)
+ JL log (mLp)

)
,

dFNN((g
∗,m
θ)♯ρ, (g

∗,m
θ)♯ρ̂m) = Õ

(
1√
m

√
J̄ L̄ log

(
mL̄p̄

))
,

where the first inequality is obtained by taking F = FNN ◦ GNN in Lemma 5.6, and its

covering number is upper bounded by the product of the covering numbers of FNN and

GNN. Putting together, the estimation error dHβ((g∗,mθ)♯ρ, µ) can be bounded analogously

to Theorem 5.2 as

E [dHβ((g∗,mθ)♯ρ, µ)]

= Õ

ϵ1 + ϵ2 +

1

n
+

1

m
+ n− β

D +

√
ϵ
−D

β

2

n
+

√
ϵ
− D

α+1

1 + ϵ
−D

β

2

m

 .

It suffices to choose ϵ2 = n− β
2β+D and ϵ1 = m− α+1

2(α+1)+D , which yields

E [dHβ((g∗,mθ)♯ρ, µ)] = Õ

n− β

2β+D +m− α+1
2(α+1)+D +

√
n

D
2β+D

m

 .

In the case of m ≥ n, we have
√

n
D

2β+D

m
≤ n− β

2β+D . The proof is complete.

5.6.3 Proof of Statistical Theory in Low-dimensional Space

The proof idea follows that of Theorem 5.2, with extra attentions to the exploitation of low-

dimensional structures in data. We first slightly modify the oracle inequality in Lemma 5.3

78

to decompose the distribution estimation error.

Lemma 5.7. Let (U∗, g∗θ , V
∗, f ∗

ω) be the global optimizer of (Eq. 5.2). The following error

decomposition holds,

W1((U
∗ ◦ g∗θ)♯ρ, µ)

≤ inf
gθ:A◦gθ∈Gld

NN

∥∥A ◦ gθ − A ◦ T ld
∥∥
∞

︸ ︷︷ ︸
generator approximation error

+W1(µ̂n, µ) + dF ld
NN
(µ̂n, µ)︸ ︷︷ ︸

statistical error

+ sup
f∈Lip1(RD)

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ U∗ − fω ◦ V ⊤U∗∥∥
∞ +

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞

︸ ︷︷ ︸
discriminator approximation error (HARD)

+ 2 sup
f∈Lip1(RD)

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞

︸ ︷︷ ︸
discriminator approximation error (EASY)

.

(5.13)

The proof is provided in Appendix C.2.1. In the sequel, we bound error terms in

(Eq. 5.13) respectively. The generator approximation error can be reduced to approximat-

ing T ld. By some manipulation on the intrinsic structures of data distribution, we expect

that the statistical error scales with the subspace dimension q. The main difficulty stems

from bounding the discriminator approximation error. A quick comparison to Lemma 5.3

indicates that the (EASY) error term may be bounded similarly as in Theorem 5.2. In

contrast, the (HARD) error term involves simultaneously approximating the discriminative

function projected into the column space of U∗ and A. In general, such an approximation

error is hardly small unless U∗, A share approximately the same column space. Fortu-

nately, this is indeed the case as shown in Lemma 5.9 so that the (HARD) error term can

be controlled.

• Bounding Generator Approximation Error. Suppose that we require the generator

approximation error to be bounded by ϵ1 > 0, i.e.,

inf
g:U◦gω∈Gld

NN

∥∥U ◦ gω − A ◦ T ld
∥∥
∞ ≤ ϵ1.

79

It suffices to choose a proper generator architecture G ld
NN such that there exists g̃ω satisfying

∥∥g̃ω − T ld
∥∥
∞ ≤ ϵ1/q. To see this, we take U = A and substitute g̃ω into the generator

approximation error,

∥∥A ◦ g̃ω − A ◦ T ld
∥∥
∞ =

∥∥∥∥∥

q∑

j=1

A:,j[g̃ω − T ld]j

∥∥∥∥∥
∞

≤
q∑

j=1

∥A:,j∥∞
∥∥g̃ω − T ld

∥∥
∞

≤ ϵ1,

where the last inequality holds since A has orthonormal columns. We can apply Theo-

rem 3.1 and Lemma 5.4 for choosing proper network configuration of G ld
NN to ensure the

existence of g̃ω. We recall that T ld is a Hα+1 continuous mapping in Rq by Lemma 5.1.

Therefore, the resulting network architecture has the following configuration

R = B, κ = O(1), L = O

(
log

1

ϵ1

)
,

p = O
(
qϵ

− q
α+1

1

)
, K = O

(
Dq + ϵ

− q
α+1

1 log
1

ϵ1

)
.

(5.14)

We will choose ϵ1 later in the last step of the proof to balance all the error terms.

• Bounding Discriminator Approximation Error. We first consider the (EASY) error

term. Suppose that we require the (EASY) discriminator approximation error to be bounded

by ϵ2 > 0. We check that once f : RD 7→ R is 1-Lipschitz andA has orthonormal columns,

then f ◦ A : Rq 7→ R is also 1-Lipschitz. To see this, for any x,y ∈ RD, we have

|f(Ax)− f(Ay)| ≤ ∥Ax− Ay∥2 ≤ ∥A∥2 ∥x− y∥2 = ∥x− y∥2 .

By taking V = A in the (EASY) term, it suffices to ensure that fω can approximate any

1-Lipschitz function in a compact subset of [0, 1]q. Due to the additional γ̄-Lipschitz con-

tinuity constraint in (Eq. 5.10), we need a stronger universal approximation theory of the

80

discriminator. The following lemma shows that ReLU neural networks can accurately ap-

proximating 1-Lipschitz functions in L∞-norm, while the Lipschitz continuity of the net-

work remains independent of the approximation error.

Lemma 5.8. For any ϵ2 ∈ (0, 1), there exists a ReLU network architecture F(R̄, κ̄, L̄, p̄, J̄),

such that for any target 1-Lipschitz function f defined on [0, 1]q with f(0) = 0, the archi-

tecture yields an approximation f̂ satisfying ∥f − f̂∥∞ ≤ ϵ2. Moreover, the Lipschitz

continuity of f̂ is bounded by

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 10q ∥x− y∥∞ for any x,y ∈ [0, 1]q.

The configuration of F is

R̄ =
√
q, κ̄ = O(1), L̄ = O (log 1/ϵ2 + q) ,

p̄ = O
(
ϵ−q
2

)
, J̄ = O

(
ϵ−q
2 (log 1/ϵ2 + q)

)
.

The proof is defered to Appendix C.2.2. Lemma 5.8 improves the approximation guar-

antee in Theorem 3.1 with the additional Lipschitz continuity characterization, while the

newtork size shares the same order of magnitude when specializing Theorem 3.1 to d = q

and β = 1. We take F ld
NN(R̄, κ̄, L̄, p̄, J̄ , γ̄) with γ̄ = 10q and all the other parameters the

same as in Lemma 5.8. Since the (EASY) error term is invariant with respect to translations

on f , we can always assume f(0) = 0 without loss of generality. It then holds

(EASY) Error Term ≤ 2ϵ2.

We next bound the (HARD) term. Recall that we need the column spaces of U∗ and

A to be approximately identical for controlling this error. Thanks to the choice of both the

generator and discriminator class, we can show that the column spans of U∗ and A match

up to some error.

81

Lemma 5.9. Given ϵ1, ϵ2 ∈ (0, 1). Suppose Assumption 5.5 and 5.4 hold. Let the generator

G ld
NN be chosen as (Eq. 5.14) and discriminator F ld

NN be chosen as in Lemma 5.8 with γ̄ =

10q. For the global optimizer (U∗, g∗θ), it holds

∥U∗ − A∥2F

≤ 4q

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)2

·
(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2,

where ϵ = 10qϵ1 + 3ϵ2.

The full proof is deferred to Appendix C.2.3. We remark that Ez∼ρ[T
ld
i (z)] is always

lower bounded by a positive constant τ for any i = 1, . . . , q, since its density is positive

on the support by Assumption 5.5. To establish Lemma 5.9, we leverage the optimality

of U∗, g∗θ and the corresponding discriminator network. We show by contraction that if

the column spaces of U∗ and A do not match closely, there exists a discriminator network

capable of distinguishing the generated distribution and data distribution.

Given Lemma 5.9, we are ready to derive an upper bound for the (HARD) discriminator

approximation error term.

sup
f∈Lip1(RD)

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ U∗ − fω ◦ V ⊤U∗∥∥
∞ +

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞

(i)

≤ sup
f∈Lip1(RD)

inf
fω◦A⊤∈F ld

NN

∥∥f ◦ U∗ − fω ◦ A⊤U∗∥∥
∞ + ∥f ◦ A− fω∥∞

(ii)

≤ sup
f∈Lip1(RD)

inf
fω◦A⊤∈F ld

NN

∥f ◦ U∗ − f ◦ A∥∞ +
∥∥fω − fω ◦ A⊤U∗)

∥∥
∞

+ 2 ∥f ◦ A− fω∥∞ , (5.15)

where (i) is obtained by taking V = A, and inequality (ii) is obtained by the triangle

82

inequality

∥∥f ◦ U∗ − fω ◦ A⊤U∗∥∥
∞ ≤ ∥f ◦ U∗ − f ◦ A∥∞ + ∥f ◦ A− fω∥∞

+
∥∥fω − fω ◦ A⊤U∗∥∥

∞ .

The first term on the right-hand side of (Eq. 5.15) can be bounded using the Lipschitz

continuity of f , i.e.,

∥f ◦ U∗ − f ◦ A∥∞

≤ sup
x∈[0,1]q

∥U∗ − A∗∥2 ∥x∥2

≤ 2q
(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
max

i
E−1

z∼ρ

[
T ld
i (z)

]
ϵ.

A similar argument applies to

∥∥fω − fω ◦ A⊤U∗∥∥
∞

≤ sup
x∈[0,1]q

10q
∥∥I − A⊤U∗∥∥

2
∥x∥2

≤ sup
x∈[0,1]q

10q3/2 ∥A− U∗∥2

≤ 20q2
(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
max

i
E−1

z∼ρ

[
T ld
i (z)

]
ϵ.

The last term in the right-hand side of (Eq. 5.15) is the discriminator approximation error,

which is bounded by ϵ2. As a result, the (HARD) error term is upper bounded by

(HARD) Error Term

≤ 2q
(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
max

i
E−1

z∼ρ

[
T ld
i (z)

]
ϵ

+ 20q2
(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
max

i
E−1

z∼ρ

[
T ld
i (z)

]
ϵ

+ 2ϵ2

83

= O(ϵ2 + q3ϵ),

where the last step is obtained by ∥g∗θ(z)∥2 ≤
√
q due to g∗θ(z) ∈ [0, 1]q.

• Bounding Statistical Error. Similar to the statistical error in Lemma 5.3, we can bound

it via finite-sample concentration. Yet we can pursue a faster convergence rate here by

rewriting the data distribution as a pushforward of a low-dimensional distribution.

Lemma 5.10. Suppose Assumption 5.4 and 5.5 hold. Statistical error terms in Lemma 5.7

are bounded by

W1(µ̂n, µ) = O
(
n−1/q log n

)
,

dF ld
NN
(µ̂n, µ) = O

(
1

n
+

1√
n

√
J̄ L̄ log(L̄p̄κ̄n)

)
.

From Lemma 5.10, we observe that the statistical error W1(µ̂n, µ) only depends on

dimension q. To make sense the result, we rewrite the data distribution µ = A♯(A
⊤
♯ µ).

In this way, we can translate the concentration of µ̂n to µ in RD into a counterpart in Rq.

Recall that A⊤
♯ µ is a distribution with a Hα(Rq) density by Assumption 5.5. Threfore, we

can apply Lemma 5.6 to complete the proof. See detailed arguments in Appendix C.2.4.

• Balancing the Approximation Error and Statistical Error. We collect all the error

terms in the oracle inequality of Lemma 5.7 and choose optimal scalings on ϵ1 and ϵ2. We

list all the error upper bounds in the following for a quick reference.

1. Generator approximation error O(ϵ1).

2. Statistical error O
(
n−1/q log n+ 1√

n

√
J̄ L̄ log(L̄p̄κ̄n)

)
.

3. (EASY) discriminator approximation error O(ϵ2).

4. (HARD) discriminator approximation error O(ϵ2 + q3ϵ).

84

Summing up four error bounds above yields

W1((U
∗ ◦ g∗θ)♯ρ, µ) = O

(
ϵ1 + ϵ2 + n−1/q log n+ q3ϵ+

1√
n

√
J̄ L̄ log(L̄p̄κ̄n)

)
.

Substituting the configuration of F ld
NN in Lemma 5.8 into the last display, we set ϵ1 = ϵ2 =

n− 1
2+q . By collecting terms, we derive

W1 ((U
∗ ◦ g∗θ)♯ρ, µ) = Õ

(
n− 1

2+q log2 n
)
.

The corresponding configurations of generator G ld
NN and discriminator F ld

NN is obtained by

substituting ϵ1 and ϵ2 in (Eq. 5.14) and Lemma 5.8, respectively.

5.7 Conclusion and Discussion

We establish statistical convergence of distribution estimation using GANs. Specifically,

with proper generator and discriminator network architecture, we show GANs are consis-

tent estimator of data distribution in terms of the Wasserstein distance. Moreover, when

data have intrinsic low-dimensional linear structures, we show GANs can capture the un-

known linear structure and enjoy a faster statistical rate of estimation, which is free of the

curse of dimensionality. Compared to existing works, our theory exploits the pushforward

structure of GANs and network architectures are explicitly given without invertibility con-

straints. In the sequel, we discuss several related topics and future directions.

Convolutional filters and residual connections Convolutional filters [1] are widely used

in GANs for image generating and processing. Empirical results show that convolutional

filters can learn hidden representations aligned with various patterns in images [148, 149],

e.g., textures and skeletons. An interesting question is to understand how convolutional

filters capture the aforementioned low-dimensional structures in data sets.

85

Smoothness of data distributions and regularized distribution Estimation Theorem 5.2

indicates a convergence rate independent of the smoothness of the data distribution. The

reason behind is that the empirical data distribution µ̂n cannot inherit the same smoothness

as the underlying data distribution. This limitation exists in all previous works [141, 145,

146]. It is interesting to investigate whether GANs can achieve a faster convergence rate

(e.g., attain the minimax optimal rate).

From a theoretical perspective, [114] suggested first obtaining a smooth kernel estima-

tor from µ̃n, and then replacing µ̂n by µ̃n to train GANs. In practice, kernel smoothing is

hardly used in GANs. Instead, regularization (e.g., entropy regularization) and normaliza-

tion (e.g., spectral normalization and batch-normalization) are widely applied as implicit

regularizers to promote the smoothness of the learned distribution. Several empirical stud-

ies of GANs suggest that divergence-based and mutual information-based regularization

can stabilize the training and improve the performance [150, 151] of GANs. We leave the

studies on statistical properties of regularized GANs for future investigation.

Computational concerns Our statistical results hold for global optimizer of (Eq. 5.2),

whereas solving (Eq. 5.2) is often difficult. In practice, it is observed that larger neural

networks are easier to train and yield better statistical performance [72, 152, 153, 154, 155,

156, 157, 158, 159]. This is referred to as overparameterization. Establishing a connection

between computation and statistical properties of GANs is an important direction.

86

CHAPTER 6

OFFLINE DOUBLY-ROBUST POLICY LEARNING USING NEURAL

NETWORKS

6.1 Personalized Offline Policy Learning

Causal inference studies the causal connection between actions and rewards, which has

wide applications in healthcare [160, 161], digital advertising [162], product recommenda-

tion [163], and policy formulation [164]. For example in healthcare, each patient can be

characterized by a set of covariates (also called features), and the actions are a set of treat-

ments. Each patient has the corresponding reactions, or rewards, to different treatments.

Causal inference enables one to personalize the treatment to each patient to maximize the

total rewards. Such a personalized decision-making rule is referred to as a policy, which is a

map from the covariate set to the action set. In off-policy learning, a batch of observational

data is given, which typically consists of a covariate, the action taken (e.g. medical treat-

ments and recommendations), and the observed reward. In this chapter, we are interested

in learning an optimal policy that targets personalized treatments or services to different in-

dividuals based on the logged data. This is also known as the optimal treatment assignment

in literature [165, 166].

Conventional causal inference methods often rely on parametric models [161, 167, 168,

169], which can introduce a large bias when the real model is not in the assumed parametric

form. Many nonparametric methods are proposed [170, 169, 171, 172, 173, 174, 175, 176,

177, 178, 179], while the statistical theories often suffer from the curse of dimensionality.

Recently neural networks became a popular modeling tool for causal inference. Many re-

sults have shown that neural networks outperform conventional nonparametric approaches,

especially when the learning task involves high-dimensional complex data. For example,

87

[180] proposed to discover causal and anticausal features in images from ImageNet using

a 20-layer residual network. [181] used recurrent neural networks to study the causality

between group forming loans and the funding time on an online non-profit financial plat-

form. Other examples can be found in diverse areas, including climate analysis, medical

diagnosis, cognitive science, and online recommendations [182, 183, 184, 185, 186].

Despite the great progress of causal inference, there is still a huge gap between theory

and practice. In casual inference, many existing theories on nonparametric or neural net-

works approaches are asymptotic, and suffer from the curse of dimensionality. Specifically,

to achieve an ϵ accuracy, the sample complexity needs to grow in the order of ϵ−D, whereD

is the covariate dimension. Such theories can not explain the empirical success when D is

large. For example, in [180], the RGB images in ImageNet are of resolution 3×224×224.

To obtain a 0.1 error, the sample complexity needs to scale like 10−3×224×224, which well

exceeds the training size of 99, 309. Besides, the curse of dimensionality is inevitable un-

less additional data structures are considered. [187] proved that, for binary policy learning

problems, the sample complexity obtained by the optimal algorithm still grows exponen-

tially in the covariate dimension D in the order of ϵ−D.

This chapter establishes statistical guarantees of policy learning in causal inference

using neural networks. We consider the doubly robust method (see Section 6.2 for details),

and use deep ReLU neural networks to parameterize the policy class, the propensity score,

and the conditional expected reward. We summarize our contributions as follows.

1. We establish nonasymptotic regret bounds for doubly robust policy learning in the

finite-action scenario (Theorem 6.1 and Theorem 6.2). Our nonasymptotic theory op-

timally balances bias and variance under general regularity conditions (see a detailed

discussion after Theorem 6.1). We highlight that we develop novel policy approxima-

tion theory using neural networks, which can efficiently approximate deterministic

policies that are not continuous with respect to its input covariate (Theorem 6.2).

2. We leverage low-dimensional intrinsic structures in covariates. The obtained nonasymp-

88

totic regret bound of learned policy converges at a fast rate dependent on covariate

intrinsic dimension, instead of the covariate ambient dimension D (Theorem 6.1 –

Theorem 6.3). This partially explains the success of deep learning-based causal in-

ference in high-dimensional applications.

3. We consider a discretization method and propose new analysis for policy learning in

the continuous-action setting. A nonasymptotic regret bound is established (Theo-

rem 6.3), where we carefully balance the discretization error in addition to the bias

and variance in the finite-action scenario.

6.1.1 Related Work

In off-policy learning, one line of research learns the optimal policy by evaluating the

expected reward of candidate policies and then finding the policy with the largest expected

reward. The procedure of evaluating a target policy from the given data is called off-policy

evaluation, which has been intensively studied in literature. The simplest way to evaluate

a policy is the direct method which estimates the empirical reward of the target policy

from collected data [188]. The direct method is unbiased if one specifies the reward model

correctly. However, model specification is a difficult task in practice. Another method is the

inverse propensity weighting [189, 168], which uses the importance weighting to correct

the mismatch between the propensity scores of the target policy and the data collection

policy. This method is unbiased if the data collection policy can be exactly estimated, yet

it has a large variance especially when some actions are rarely observed. A more robust

method is the doubly robust method [190, 167, 191], which integrates the direct method and

the inverse propensity weighting. This method is unbiased if the reward model is correctly

specified or the data collection policy is known.

The aforementioned methods have been used in [169, 171, 192, 193] for off-policy

learning. [169] used the inverse propensity weighting, and [192] and [171] used the doubly

robust method to learn the optimal policy with binary actions. In [193], an algorithm based

89

on decision trees was proposed to learn the optimal policy with multiple actions using the

doubly robust method. [194] proposed a balanced method which minimizes the worst-

case conditional mean squared error to evaluate and learn the optimal policy with multiple

actions.

Another line of research learns the optimal policy without evaluating policies. In [195,

196], the authors transformed the policy learning task with binary actions into a classifica-

tion problem. Other works on off-policy learning include [197, 198], and [199].

Most of the aforementioned works provide asymptotic regret bounds with finite actions,

which are valid when the number of samples goes to infinity. A nonasymptotic bound was

derived in [169], but this work requires that the propensity score is known and the algo-

rithm only works for policy learning with binary actions. Meanwhile, off-policy learning

with continuous actions has not been addressed until recently [200, 201, 202, 203]. [201]

developed a semi-parametric off-policy learning algorithm, which relies on the special form

of the reward function. Then a regret bound was derived, while explicit dependency of the

bound on the number of samples is not given. Although their algorithm can be applied

when the reward model is misspecified, in this case the regret between the learned policy

and the optimal one (not restricted to the semi-parametric model) is unclear. [200] applied

a kernel method to extend the inverse propensity weighting and the doubly robust method

to the continuous-action setting. Incorporated with the kernel method, the framework pro-

posed in [204] can be used to learn policies with continuous actions. However, such an

extension is only discussed in [204], without explicit statistical guarantees provided. [203]

proposed a kernel based nonparametric double debiased machine learning estimator for

causal effects with continuous actions. These works on continuous actions did not provide

a nonasymptotic regret bound with an explicit dependency on the number of samples.

The rest of the chapter is organized as follows: Section 6.2 presents the doubly robust

estimation framework; Section 6.3 states our regret bounds of the learned policy; Sec-

tion 6.4 concludes the chapter and discusses related topics.

90

6.2 Doubly-robust Learning Framework

We introduce a two-stage policy learning scheme using neural networks. Suppose we re-

ceive n i.i.d. triples {(xi, ai, yi)}ni=1, where xi ∈ M denotes a covariate independently

sampled from an unknown distribution on M, ai ∈ A denotes the action taken, and yi ∈ R

is the observed reward. To incorporate the low-dimensional geometric structures of the

covariates, we assume M is a d-dimensional Riemannian manifold isometrically embed-

ded in RD. The action space A can be either finite or continuous. For each covariate and

action pair (x, a), there is an associated random reward. We adopt the unconfoundedness

assumption to simplify the model, which is commonly used in existing literature on causal

inference [205, 193].

Assumption 6.1 (Unconfoundedness). The reward is independent of a conditioned on x.

To interpret Assumption 6.1, we first consider a finite action space A = {A1, . . . , A|A|},

where Aj is a one-hot vector, i.e. Aj = [0, . . . , 0, 1, 0, . . . , 0]⊤ with 1 appearing at the j-

th position. Given the covariate x, there is a reward {Y (x, A1), . . . , Y (x, A|A|)} for each

action, where the randomness of Y (x, Aj) depends on x and the noise in the reward. The

observed reward yi is a realization of Y (xi, Aj) with ai = Aj .

6.2.1 Policy Learning with Discrete Action

When the action space is finite, a policy π : M → ∆|A| maps a covariate on M to a vector

on the |A|-dimensional simplex

∆|A| =

{
z ∈ R|A| : zi ≥ 0 and

∑

i

zi = 1

}
.

The j-th entry of π(x) denotes the probability of choosing the action Aj given x. A policy

in the interior of the simplex is called a randomized policy. If π(x) is a one-hot vector, it is

91

called a deterministic policy. The expected reward of deploying a policy π is

Q(π) = E[Y (π(x))] = E
[〈
[Y (x, A1), . . . , Y (x, A|A|)]

⊤, π(x)
〉]
. (6.1)

We investigate the doubly robust approach [190, 168, 191] for policy learning, which

consists of two stages. After receiving the training data, we split them into two groups

S1 = {(xi, ai, yi)}n1
i=1 and S2 = {(xi, ai, yi)}ni=n1+1. (6.2)

We denote n2 = n− n1 and choose n1, n2 to be proportional to n such that n1/n is a con-

stant. In the first stage, we solve nonparametric regression problems using S1 to estimate

two important functions — the propensity score and the conditional expected reward. For

any action Aj , the propensity score

eAj
(x) = P(a = Aj | x)

quantifies the probability of choosing Aj given the covariate x, and the expected reward of

choosing Aj is

µAj
(x) = E[Y (x, Aj) | x].

Substituting the definition above into (Eq. 6.1), we can write

Q(π) = E
〈
[µA1(x), ..., µA|A|(x)]

⊤, π(x)
〉
=

∫

M

〈
[µA1(x), ..., µA|A|(x)]

⊤, π(x)
〉
dx.

(6.3)

In the second stage, we learn a policy using S2 based on our estimated eAj
’s and µAj

’s,

which only requires that either the eAj
’s or the µAj

’s are accurately estimated.

• Stage 1: Estimating µAj
and eAj

. For each action Aj , we use a neural network to

92

Algorithm 1 A two-stage algorithm for doubly-robust off-policy learning with discrete
actions.

Input: Collected data {(xi, ai, yi)}ni=1. Network architectures FNN,GNN and ΠNN.
Stage 1: Estimating µAj

and eAj
.

For each action Aj ,

• For each action Aj , estimate the reward function µAj
by minimizing (Eq. 6.4),

• Estimate eAj
’s by solving (Eq. 6.5) – (Eq. 6.6).

Stage 2: Policy Learning.

• Learn the optimal policy by solving (Eq. 6.7) – (Eq. 6.8).

Output: Learned policy π̂DR.

estimate the reward function µAj
by minimizing the following empirical quadratic loss

µ̂Aj
(x) = argmin

f∈FNN

1

nAj

n1∑

i=1

(yi − f(xi))
21{ai = Aj} with nAj

=

n1∑

i=1

1{ai = Aj},

(6.4)

where FNN : M → R is a properly chosen network class defined in Lemma 6.1.

An estimator of the propensity score eAj
is obtained by minimizing the multinomial

logistic loss. Let GNN : M 7→ R|A|−1 be a properly chosen network class defined in

Lemma 6.1. We obtain êAj
(x) via

ĝ(x) = argmin
g∈GNN

1

n1

n1∑

i=1

−[g(xi)
⊤, 1]ai + log

(
1 +

|A|−1∑

j=1

exp([g(xi)]j)
)
, (6.5)

êAj
(x) =

exp([ĝ(x)]j)

1 +
∑|A|−1

j=1 exp([ĝ(x)]j)
for j ≤ |A| − 1, and êA|A|(x) =

1

1 +
∑|A|−1

j=1 exp([ĝ(x)]j)
.

(6.6)

Here [g]j denotes the j-th entry, and [g⊤, 1] ∈ R|A| is obtained by augmenting g by 1.

• Stage 2: Policy Learning. Given µ̂Aj
and êAj

, we learn an optimal policy by maximizing

93

a doubly robust empirical reward:

Q̂(π) :=
1

n2

n∑

i=n1+1

π(xi)
⊤Γ̂i

with Γ̂i =
yi − µ̂ai

(xi)

êai
(xi)

· ai + [µ̂A1(xi), . . . , µ̂A|A|(xi)]
⊤ ∈ R|A|. (6.7)

A doubly robust optimal policy is learned by

π̂DR = argmax
π∈ΠNN

Q̂(π), (6.8)

where ΠNN is a properly chosen network class (see Section 6.3 for the configurations of

ΠNN, e.g., (Eq. 6.19) and (Eq. 6.20)). The doubly robust reward Q̂ can tolerate a relatively

large estimation error in either µ̂Aj
or êAj

(see the discussion after Theorem 6.1). Our

algorithm is summarized in Algorithm 1.

In the proposed two-stage method, one only needs to estimate the reward functions and

propensity scores, and then learn the optimal policy. Although the covariates are defined

on a low-dimensional manifold, we do not need to explicitly learn the manifold. Instead,

neural networks are adaptive to the low-dimensional structure and the manifold is learned

implicitly during the estimation process.

6.2.2 Policy Learning with Continuous Action

Continuous actions, e.g. doses of drugs, often arise in applications, but there are limited

studies on policy learning with continuous actions. In this chapter, we consider the contin-

uous action space A = [0, 1] and use a ∈ A to denote an action. When the random action a

takes the value A ∈ [0, 1], we denote Y (x, A) as its random reward. The propensity score

and conditional expected reward are defined analogously to the finite action case:

e(x, A) =
d

dA
P(a ≤ A,A ∈ A | x) and µ(x, A) = E[Y (x, A) | x].

94

Note that e(x, A) is a probability density function.

In this scenario, we can learn an optimal policy by replicating the two-stage scheme

with a discretization technique on the continuous action space. Specifically, we uniformly

partition the action space A into V sub-intervals and denote Ij = [(j − 1)/V, j/V] for

j = 1, . . . V . Accordingly, we define the discretized propensity score and conditional

expected reward for the sub-interval Ij as

eIj(x) = P(a ∈ Ij | x) and µIj(x) = E[Y (x, a)1{a ∈ Ij} | x]/eIj . (6.9)

After the discretization on the action space, we identify all the actions a belonging to a

single sub-interval Ij as the midpoint Aj = (2j − 1)/2V of Ij and equips Aj with the

average expected reward µIj . After discretization, we resemble the setup in the finite-

action scenario, and then apply the aforementioned two-stage doubly robust approach to

learn a discretized policy concentrated on the Aj’s. In the first stage, we obtain µ̂Ij and êIj

as estimators of µIj and eIj , respectively. In the second stage, we use neural networks for

policy learning by maximizing the discretized doubly robust empirical reward. Specifically,

we define I(ai) = Ij for ai ∈ Ij which maps the continuous action to the corresponding

discretized sub-interval. For ai ∈ Ij , we denote ai ∈ {0, 1}V as the one-hot vector with the

j-th element being 1, which encodes the action ai. The discretized doubly robust empirical

reward is defined as

Q̂(D)(π) =
1

n2

n∑

i=n1+1

〈
Γ̂
(D)
i , π(xi)

〉

with Γ̂
(D)
i =

yi − µ̂I(ai)(xi)

êI(ai)(xi)
· ai + [µ̂I1(xi), . . . , µ̂IV (xi)]

⊤, (6.10)

where the superscript (D) denotes the discretized quantities. We learn an optimal policy by

95

solving the following maximization problem:

π̂ C-DR = argmax
π∈ΠNN

Q̂(D)(π) (6.11)

where ΠNN is a properly chosen neural network. See Section Subsection 6.3.2 for more

details of the learning procedure, a proper choice of V , and the statistical guarantees of the

learned policy.

6.3 Policy Regret Bound

Our main results are nonasymptotic regret bounds (see Definition 6.1) on the policy learned

by the two-stage scheme in Section 6.2, when the covariates are concentrated on a low-

dimensional manifold.

The regret of a policy π against a reference policy π̄ is defined as the difference between

their respective expected rewards. The formal definition is given as follows.

Definition 6.1. Let π̄ be a fixed reference policy. For any policy π, the regret of π against

π̄ is

R(π̄, π) = Q(π̄)−Q(π).

HereQ(π) is the expected reward either in the finite-action scenario defined in (Eq. 6.1)

or the continuous-action scenario which is defined later in (Eq. 6.26). We consider two ref-

erence policies: 1) the optimal Hölder policy that maximizes the expected reward; 2) the

unconstrained optimal policy that maximizes the expected reward. We establish high prob-

ability bounds on the regret of the learned policy for both discrete actions (Section 6.3.1)

and continuous actions (Section 6.3.2).

96

6.3.1 Regret with Discrete Action

Our theory is based on the following assumptions, including some standard assumptions

on the smoothness of the propensity score and the reward.

Assumption 6.A.2. The propensity score and random reward satisfy:

(i) Overlap: eAj
(x) ≥ η for j = 1, . . . , |A|, where η > 0 is a constant;

(ii) Bounded Reward: Y (x, Aj) is bounded and has a bounded variance, i.e., we have

supx∈M |Y (x, Aj)| ≤ M1 and Var[Y (x, Aj)|x] ≤ σ2 for any j = 1, . . . , |A|, where

M1 > 0 and σ > 0 are constants.

Assumption 6.A.2 is a standard assumption for statistical guarantees of all learning

approaches using the inverse propensity score [205, 206, 193]. Assumption 6.A.2 implies

that expected reward µAj
is bounded since |µAj

(x)| ≤ E[|Y (x, Aj)| | x] ≤ M1 for every

x ∈ M.

Assumption 6.A.3. Assume covariate x lies on M. Given a Hölder index α ≥ 1, we

further assume µAj
(x) ∈ Hα(M) and eAj

(x) ∈ Hα(M) for j = 1, . . . , |A|. Moreover,

for a fixed C∞ atlas of M, there exists M2 > 0 such that

max
j

∥∥µAj

∥∥
Hα ≤M2 and max

j
∥ log eAj

∥Hα ≤M2.

Thanks to Assumption 6.A.2 (i), eAj
∈ Hα implies log eAj

∈ Hα (see Lemma D.10

in Appendix D.4). In the first part of Assumption 6.A.3, all covariates are located on M.

Since all of µAj
’s and eAj

’s are functions of x, they are defined on the same manifold M.

The second part of Assumption 6.A.3 characterizes the smoothness of these functions. Now

we are ready to derive the following estimation bounds for µAj
and eAj

using nonparametric

regression techniques [14]. To simplify the notation, we denote

M = max{1,M1, 2M2,− log η}. (6.12)

97

Estimation Bounds of µAj
(x) and eAj

(x)

By choosing networks

FNN = F(L1, p1, K1, κ1, R1) and GNN = F(L2, p2, K2, κ2, R2) (6.13)

to estimate µAj
and eAj

in (Eq. 6.4) and (Eq. 6.6), respectively, we prove the following

estimation error bounds for the estimators µ̂Aj
and êAj

(Lemma 6.1 is proved in Ap-

pendix D.3.1). We use O(·) to hide absolute constants and polynomial factors of α, Hölder

norm, logD, d, τ , |A|, and the surface area of M.

Lemma 6.1. Suppose Assumption 3.1, 3.2, 6.1, and 6.A.2 – 6.A.3 hold. We choose

L1 = O(log ηn1), p1 = O
(
(ηn1)

d
2α+d

)
, K1 = O

(
(ηn1)

d
2α+d log ηn1

)
,

κ1 = max{B,M,
√
d, τ 2}, R1 =M

(6.14)

for FNN and

L2 = O(log n1), p2 = O
(
|A| 2α

2α+dn
d

2α+d

1

)
, K2 = O

(
|A| 2α

2α+dn
d

2α+d

1 log n1

)
,

κ2 = max{B,M,
√
d, τ 2}, R2 =M,

(6.15)

for GNN in (Eq. 6.13). Then for any j = 1, . . . , |A|, we have

ES1

[∥∥µ̂Aj
− µAj

∥∥2
L2

]
≤ C1(M

2 + σ2)(ηn1)
− 2α

2α+d log3(ηn1), (6.16)

ES1

[∥∥êAj
− eAj

∥∥2
L2

]
≤ C2M

2|A| 4α+d
2α+dn

− 2α
2α+d

1 log3 n1, (6.17)

where C1, C2 depend on logD, B, τ and the surface area of M.

In (Eq. 6.16) and (Eq. 6.17), the expectation is taken with respect to S1 defined in

(Eq. 6.2). Lemma 6.1 provides performance guarantees of neural networks to solve regres-

sion problems (Eq. 6.4) and (Eq. 6.6) in order to estimate µAj
and eAj

. When the covariates

98

x are on a manifold, we prove that the estimation errors converge at a fast rate in which the

exponent only depends on the intrinsic dimension d instead of the ambient dimension D.

Such a fast convergence is consistent with [93, 207] and indicates the adaptability of neural

networks to data intrinsic structures. Note that the network architectures in (Eq. 6.14) and

(Eq. 6.15) only require the knowledge of generic information of the data manifold: mani-

fold dimension d, reach τ , and range B. Local geometries of the manifold is automatically

captured by the network during empirical risk minimization in Stage 1 of the doubly robust

learning method.

Regret Bound of Learned Policy versus Constrained Oracle Policy

Our first main result is a regret bound of π̂DR obtained in (Eq. 6.8) against the oracle policy

in a Hölder policy class:

π∗
β = argmax

π∈ΠHβ

E[Q(π(x))],

where the Hölder policy class ΠHβ is defined as

ΠHβ =
{

Softmax[ν1(x), . . . , ν|A|(x)]
⊤ : νj ∈ Hβ(M) and ∥νj∥Hβ ≤M for j = 1, . . . , |A|

}
.

(6.18)

Accordingly, we pick the neural network policy class as

Π
|A|
NN = {Softmax(f) with f : M → R|A| ∈ F(LΠ, pΠ, KΠ, κΠ, RΠ)}. (6.19)

Our first theorem shows that π̂DR is a consistent estimator of the oracle Hölder policy

π∗
β as long as the network parameters LΠ, pΠ, KΠ, κΠ, RΠ are properly chosen.

Theorem 6.1. Suppose Assumption 3.1, 3.2, 6.1, and 6.A.2 – 6.A.3 hold. Under the setup

99

in Lemma 6.1, if the network parameters of Π|A|
NN are chosen with

LΠ = O(log n), pΠ = O
(
|A|n d

2β+d
)
, KΠ = O

(
|A|n d

2β+d log n
)
,

κΠ = max{B,M,
√
d, τ 2}, RΠ =M,

(6.20)

then with probability no less than 1 − C1|A|n− β
2β+d over the randomness of data S1 and

S2, the following bound holds

R(π∗
β, π̂DR) ≤ C|A|2n− β

2β+d log3/2 n

+ η−1|A|

√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
êAj

(xi)− eAj
(xi)

)2
,

(6.21)

where C1 > 0 is an absolute constant and C depends on logD, d, B, M , τ , η, β, and the

surface area of M.

Theorem 6.1 is proved in Appendix D.2.1. Theorem 6.1 corroborates the doubly robust

property of π̂DR. The regret of π̂DR is not sensitive to the individual estimation error of ei-

ther µ̂Aj
or êAj

, since the bound depends on the product of the estimation errors. Combining

Theorem 6.1 and Lemma 6.1 yields the following corollary (see proof in Appendix D.2.2).

Corollary 6.1. Suppose Assumption 3.1, 3.2, 6.1, and 6.A.2 – 6.A.3 hold. If the network

structures are chosen as in Lemma 6.1 and Theorem 6.1, the following regret bound holds

with probability no less than 1− C1n
− α∧β

2(α∧β)+d log3 n

R(π∗
β, π̂DR) ≤ C|A|

16α+7d
2(2α+d)n− α∧β

2(α∧β)+d log3/2 n (6.22)

where C1 is an absolute constant, and C depends on logD, d, B, M , σ, τ , η, α, β, and the

surface area of M.

In comparison with existing works, our theory has several advantages:

100

• We allow competing the learned policy π̂DR with the best oracle policy, while sev-

eral closely related works [206, 193] only consider competing with the best in-class

policy. Specifically, our learnable policy class Π|A|
NN is chosen depending on the sam-

ple size n and regularity of oracle policies. In Theorem 6.1, we established a regret

bound on R(π∗
β, π̂DR). Note that π∗

β ∈ ΠHβ does not necessarily belong to Π
|A|
NN. In

contrast, [193] only applies to a comparison of π̂DR to the best policy π∗
NN ∈ Π

|A|
NN,

with Π
|A|
NN being given a priori. Figure 6.1 demonstrates such a difference.

<latexit sha1_base64="4J0GMZP5R33MgGqjYaeTfJuEyHk=">AAACJHicbVC7TsMwFHV4lvIKMLJYVAjEUCUIRMdKLB2LRB9Sk0aO47RWHSeyHaQq6ifwG/wAK/wBG2JgYeQ7cNIM0HIkS0fn3JePnzAqlWV9Giura+sbm5Wt6vbO7t6+eXDYlXEqMOngmMWi7yNJGOWko6hipJ8IgiKfkZ4/uc393gMRksb8Xk0T4kZoxGlIMVJa8swzJ6HDC8/xiULQoRw6beplToTUGCOWtWbDwpp5Zs2qWwXgMrFLUgMl2p757QQxTiPCFWZIyoFtJcrNkFAUMzKrOqkkCcITNCIDTTmKiHSz4kMzeKqVAIax0I8rWKi/OzIUSTmNfF2ZXyoXvVz81wtkPnBhuwobbkZ5kirC8Xx5mDKoYpgnBgMqCFZsqgnCgur7IR4jgbDSuVZ1MPZiDMuke1m3r+vW3VWt2SgjqoBjcALOgQ1uQBO0QBt0AAaP4Bm8gFfjyXgz3o2PeemKUfYcgT8wvn4A79mlZw==</latexit>

⇡⇤
� 2 ⇧H�

<latexit sha1_base64="hvnba964KsoluGaj/qswOzJdjlQ=">AAACNHicbVDLTgIxFO3gC/E16tJNIzFxRWYMEZYYXbgiaOSRMEg6nQINnc6k7WjIMJ/ib/gDbvUDTNwZXfoNdoCFgCdpcnLOvbmnxw0Zlcqy3o3Myura+kZ2M7e1vbO7Z+4fNGQQCUzqOGCBaLlIEkY5qSuqGGmFgiDfZaTpDi9Tv/lAhKQBv1OjkHR81Oe0RzFSWuqaJeeRemSAVOyENOnGjvDh1W0CHcqhU6NToVpN7uOx4yM1wIjFF8k46Zp5q2BNAJeJPSN5MEOta347XoAjn3CFGZKybVuh6sRIKIoZSXJOJEmI8BD1SVtTjnwiO/Hkgwk80YoHe4HQjys4Uf9uxMiXcuS7ejINKRe9VPzPa0eqV+7ElIeRIhxPD/UiBlUA07agRwXBio00QVhQnRXiARIIK93p3BVPptGSnC7GXqxhmTTOCvZ5oXhTzFfKs4qy4Agcg1NggxKogGtQA3WAwRN4Aa/gzXg2PoxP42s6mjFmO4dgDsbPL8lkrJc=</latexit>

b⇡DR 2 ⇧
|A|
NN

<latexit sha1_base64="UdBxuDFNRibCvjzDkj29ftzPIhs=">AAACD3icbVBLTsMwFHT4lvILZcnGokJiVSUVgi4r2LCjSPQjtVHlOE5r1bEj20FEUQ/BBdjCDdghthyBC3AOnDYL2jKSpdHMe36j8WNGlXacb2ttfWNza7u0U97d2z84tI8qHSUSiUkbCyZkz0eKMMpJW1PNSC+WBEU+I11/cpP73UciFRX8Qacx8SI04jSkGGkjDe3KNVEa3kmEGYEtwShOh3bVqTkzwFXiFqQKCrSG9s8gEDiJCNeYIaX6rhNrL0NSU/PrtDxIFIkRnqAR6RvKUUSUl82yT+GZUQIYCmke13Cm/t3IUKRUGvlmMkJ6rJa9XPzP6yc6bHgZ5XGiCcfzQ2HCoBYwLwIGVBKsWWoIwpKarBCPkSlCm7oWrgQqjzYtm2Lc5RpWSadecy9rF/f1arNRVFQCJ+AUnAMXXIEmuAUt0AYYPIEX8ArerGfr3fqwPueja1axcwwWYH39AupsnG0=</latexit>

Best Oracle Policy

<latexit sha1_base64="J5MZ3pFAG/nJEbMlmi0vzc9c7vM=">AAACEXicbVBLTsMwFHTKr5Rf+OzYWFRIbKiSCkGXFWxgVyT6kdqochynteo4ke0ghain4AJs4QbsEFtOwAU4B06aBW0ZydJo5j2/0bgRo1JZ1rdRWlldW98ob1a2tnd298z9g44MY4FJG4csFD0XScIoJ21FFSO9SBAUuIx03clN5ncfiZA05A8qiYgToBGnPsVIaWloHl0TqeAdP8cMSQlbIaM4GZpVq2blgMvELkgVFGgNzZ+BF+I4IFzl//RtK1JOioSimJFpZRBLEiE8QSPS15SjgEgnzdNP4alWPOiHQj+uYK7+3UhRIGUSuHoyQGosF71M/M/rx8pvOCnlUawIx7NDfsygCmFWBfSoIFixRBOEBdVZIR4jgbDShc1d8WQWbVrRxdiLNSyTTr1mX9Yu7uvVZqOoqAyOwQk4Aza4Ak1wC1qgDTB4Ai/gFbwZz8a78WF8zkZLRrFzCOZgfP0CRgedJQ==</latexit>

Best In-class Policy

<latexit sha1_base64="kUpPFgToUnAGBqQuv/h4L0Ei4IY=">AAACEXicbVDLSsNAFJ3UV62v+Ni5GSyCq5IU0S4L3biSCvYBNZTJZNIOncyEmYkSQ7/CH3Crf+BO3PoF/oDf4aTNQlsPXDicc18cP2ZUacf5skorq2vrG+XNytb2zu6evX/QVSKRmHSwYEL2faQIo5x0NNWM9GNJUOQz0vMnrdzv3ROpqOC3Oo2JF6ERpyHFSBtpaB9dE/0g5AS2BaM4hS2GlBraVafmzACXiVuQKijQHtrfd4HASUS4xvmCgevE2suQ1BQzMq3cJYrECE/QiAwM5Sgiystm30/hqVECGAppims4U39PZChSKo180xkhPVaLXi7+6wUqX7hwXYcNL6M8TjTheH48TBjUAubxwIBKgjVLDUFYUvM/xGMkEdYmxIoJxl2MYZl06zX3onZ+U682G0VEZXAMTsAZcMElaIIr0AYdgMEjeAYv4NV6st6sd+tj3lqyiplD8AfW5w/yaJ19</latexit>

Network Policy Class

<latexit sha1_base64="AipjlWaqO65RXowXW4zzV6k2vDQ=">AAACLHicbVDLSgMxFM3UV62vqks3wSKIizojRbusuHFVKtgHdNqSyWTa0ExmSDJCmc5n+Bv+gFv9AzcibvsdZtoitvVA4HDOvdyT44SMSmWan0ZmbX1jcyu7ndvZ3ds/yB8eNWQQCUzqOGCBaDlIEkY5qSuqGGmFgiDfYaTpDO9Sv/lEhKQBf1SjkHR81OfUoxgpLfXyl3ZIuxe92BY+rFYTaFMO7Rr9Fbrx2PaRGmDE4ttknPTyBbNoTgFXiTUnBTBHrZef2G6AI59whRmSsm2ZoerESCiKGUlydiRJiPAQ9UlbU458Ijvx9GMJPNOKC71A6McVnKp/N2LkSznyHT2ZhpTLXir+57Uj5ZU7MeVhpAjHs0NexKAKYNoSdKkgWLGRJggLqrNCPEACYaW7XLjiyjRaktPFWMs1rJLGVdG6LpYeSoVKeV5RFpyAU3AOLHADKuAe1EAdYPAMXsEbeDdejA/jy/iejWaM+c4xWIAx+QEMv6ib</latexit>

⇡⇤
NN 2 ⇧

|A|
NN

Figure 6.1: Learned policy π̂DR competes with best in-class policy π∗
NN and best oracle

policy π∗
β . [193] analyzed the regret between π̂DR and π∗

NN, while our analysis applies to
π̂DR compared to π∗

β .

• By considering the low-dimensional geometric structures of the covariates, we obtain

a fast rate depending on the intrinsic dimension d. Our theory partially justifies the

success of off-policy learning by neural networks for high-dimensional data with

low-dimensional structures.

• Our assumptions on the propensity score and expected reward are weak in the sense

that the Hölder index α ≥ 1 can be arbitrary. In [206] and [193], the Hölder index

α of the propensity score and expected reward needs to satisfy 2α > D. This con-

dition is hard to satisfy when the covariates are high-dimensional, unless µAj
’s and

eAj
’s are super smooth with bounded high-order derivatives. Moreover, our theory is

obtained by optimally choosing the policy network class Π|A|
NN, yet [193, Assumption

3] requires a pre-fixed policy class with certain bounded complexity.

101

• Our theory is nonasymptotic, while most existing works focus on asymptotic analysis

[193, 192, 206].

Remark 6.1. In Lemma 6.1 and Theorem 6.1, we consider the weight parameters in net-

work classes being uniformly bounded. Such a condition is often implicitly implemented in

practice, such as using weight decay (ℓ2-norm penalty), weight normalization [208, 209]

and weight clipping. From a theoretical point of view, the boundedness condition is only

imposed for technical convenience to control the complexity of the network class (see the

covering number in Lemma D.5). In fact, we can remove such a condition and obtain the

same nonasymptotic policy learning guarantees up to a logarithmic factor in n, when the

propensity score and expected reward functions are α-Hölder continuous on manifold M

with α ≥ 1 being an integer. We provide a detailed analysis in Appendix D.1.

Regret Bound of Learned Policy versus Unconstrained Optimal Policy

We have shown that neural networks can accurately learn an oracle Hölder policy in Corol-

lary 6.1. In this section, we enlarge the oracle policy class to capture all possible poli-

cies, including highly nonsmooth polices, e.g., deterministic policies. We show that neural

networks can still achieve a small regret, due to their strong expressive power. The rela-

tionship between the Hölder policy class, neural network policy class, and unconstrained

policy class is depicted in Figure 6.2.

The unconstrained optimal policy is defined as

π∗ = argmax
π

Q(π).

To establish the regret bound of π̂DR in (Eq. 6.8) against π∗, we need the following assump-

tion on the µAj
’s.

Assumption 6.A.4 (Noise Condition). Let q ≥ 1 and denote j∗(x) = argmaxj µAj
(x).

102

<latexit sha1_base64="LX5AwnAckeQqOjkv/qvwukjHPDY=">AAACGXicbVDLSgMxFM3UV62vUZe6CC2CqzJTELssdNNlBfuAdiiZTKYNzSRDkhGGoRt/wx9wq3/gTty68gf8DjPtLLT1wIXDOffm5h4/ZlRpx/mySlvbO7t75f3KweHR8Yl9etZXIpGY9LBgQg59pAijnPQ01YwMY0lQ5DMy8Oft3B88EKmo4Pc6jYkXoSmnIcVIG2liX3bG1UwsWEAkbAuuKU9EomBXMIrTiV1z6s4ScJO4BamBAt2J/T0OBE4iwjVmSKmR68Tay5DUFDOyqIwTRWKE52hKRoZyFBHlZcsrFvDKKAEMhTTFNVyqvycyFCmVRr7pjJCeqXUvF//1ApU/uLZdh00vozxONOF4tTxMGNQC5jHBgEqCNUsNQVhS83+IZ0girE2YFROMux7DJuk36u5N3blr1FrNIqIyuABVcA1ccAtaoAO6oAcweATP4AW8Wk/Wm/VufaxaS1Yxcw7+wPr8AWx5oPM=</latexit>

Hölder Continuous Policy

<latexit sha1_base64="ZjOFArAnf19ifZfh1k10KThSrBk=">AAACEnicbVDLSsNAFJ34rPUVFVduBovgqiQFscuCG1elgn1AG8pkctsOnWTCzEQJoX/hD7jVP3Anbv0Bf8DvcNJmoa0HLhzOuS+OH3OmtON8WWvrG5tb26Wd8u7e/sGhfXTcUSKRFNpUcCF7PlHAWQRtzTSHXiyBhD6Hrj+9yf3uA0jFRHSv0xi8kIwjNmKUaCMN7dMmJJJw3AT9KOQUtwRnNB3aFafqzIFXiVuQCirQGtrfg0DQJIRIU06U6rtOrL2MSM0oh1l5kCiICZ2SMfQNjUgIysvm78/whVECPBLSVKTxXP09kZFQqTT0TWdI9EQte7n4rxeofOHSdT2qexmL4kRDRBfHRwnHWuA8HxwwCVTz1BBCJTP/YzohklBtUiybYNzlGFZJp1Z1r6rOXa3SqBcRldAZOkeXyEXXqIFuUQu1EUUZekYv6NV6st6sd+tj0bpmFTMn6A+szx/Qtp3z</latexit>

Neural Network Policy

<latexit sha1_base64="rHPTQ2luKTtH+jY/3JYLE1Zt/yU=">AAACEXicbVDLSsNAFL3xWesrPnZuBovgqiQFscuCG5cV7APaUCaTSTt0MhNmJkIN/Qp/wK3+gTtx6xf4A36Hk7YLbT1w4XDOfXHClDNtPO/LWVvf2NzaLu2Ud/f2Dw7do+O2lpkitEUkl6obYk05E7RlmOG0myqKk5DTTji+KfzOA1WaSXFvJikNEjwULGYEGysN3NOWIFJoo7BdEKGm5IxMBm7Fq3ozoFXiL0gFFmgO3O9+JEmWUGEIx1r3fC81QY6VYYTTabmfaZpiMsZD2rNU4ITqIJ99P0UXVolQLJUtYdBM/T2R40TrSRLazgSbkV72CvFfL9LFwqXrJq4HORNpZqgg8+NxxpGRqIgHRUxRYvjEEkwUs/8jMsIKE2NDLNtg/OUYVkm7VvWvqt5drdKoLyIqwRmcwyX4cA0NuIUmtIDAIzzDC7w6T86b8+58zFvXnMXMCfyB8/kDiOed1Q==</latexit>

Unconstrained Policy

<latexit sha1_base64="6rtGJ6HM5/V4UamYZn546PD+Fv0=">AAACEHicbVDLSsNAFJ3UV62vaJduBovgqiQFscuCG5cV7QPaUCaTaTt0HmFmIobQn/AH3OofuBO3/oE/4Hc4abPQ1gMXDufcFyeMGdXG876c0sbm1vZOebeyt39weOQen3S1TBQmHSyZVP0QacKoIB1DDSP9WBHEQ0Z64ew693sPRGkqxb1JYxJwNBF0TDEyVhq51baSIQopoyaFd5THjDyO3JpX9xaA68QvSA0UaI/c72EkccKJMJghrQe+F5sgQ8pQzMi8Mkw0iRGeoQkZWCoQJzrIFs/P4blVIjiWypYwcKH+nsgQ1zrloe3kyEz1qpeL/3qRzheuXDfjZpBRESeGCLw8Pk4YNBLm6cCIKoINSy1BWFH7P8RTpBA2NsOKDcZfjWGddBt1/7Lu3TZqrWYRURmcgjNwAXxwBVrgBrRBB2CQgmfwAl6dJ+fNeXc+lq0lp5ipgj9wPn8AsWmdYQ==</latexit>

Probability Simplex

<latexit sha1_base64="4J0GMZP5R33MgGqjYaeTfJuEyHk=">AAACJHicbVC7TsMwFHV4lvIKMLJYVAjEUCUIRMdKLB2LRB9Sk0aO47RWHSeyHaQq6ifwG/wAK/wBG2JgYeQ7cNIM0HIkS0fn3JePnzAqlWV9Giura+sbm5Wt6vbO7t6+eXDYlXEqMOngmMWi7yNJGOWko6hipJ8IgiKfkZ4/uc393gMRksb8Xk0T4kZoxGlIMVJa8swzJ6HDC8/xiULQoRw6beplToTUGCOWtWbDwpp5Zs2qWwXgMrFLUgMl2p757QQxTiPCFWZIyoFtJcrNkFAUMzKrOqkkCcITNCIDTTmKiHSz4kMzeKqVAIax0I8rWKi/OzIUSTmNfF2ZXyoXvVz81wtkPnBhuwobbkZ5kirC8Xx5mDKoYpgnBgMqCFZsqgnCgur7IR4jgbDSuVZ1MPZiDMuke1m3r+vW3VWt2SgjqoBjcALOgQ1uQBO0QBt0AAaP4Bm8gFfjyXgz3o2PeemKUfYcgT8wvn4A79mlZw==</latexit>

⇡⇤
� 2 ⇧H�

<latexit sha1_base64="F204T9shIjVs/k1U1++RSQjO/P8=">AAACJHicbVC7TsMwFHXKq5RXgJHFokIwVQkC0bESDExVQfQhNVHkOG5r1XEi2wFVUT6B3+AHWOEP2BADCyPfgdNmgJYjXenonHt9fY8fMyqVZX0apaXlldW18nplY3Nre8fc3evIKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I1x9f5n73nghJI36nJjFxQzTkdEAxUlryzGPngQZkhFTqxDTzUkeE8Oo2gw7l0GnRmdBsZp5ZtWrWFHCR2AWpggItz/x2gggnIeEKMyRl37Zi5aZIKIoZySpOIkmM8BgNSV9TjkIi3XR6UAaPtBLAQSR0cQWn6u+JFIVSTkJfd4ZIjeS8l4v/eoHMH5zbrgZ1N6U8ThTheLZ8kDCoIpgnBgMqCFZsognCgur/QzxCAmGlc63oYOz5GBZJ57Rmn9esm7Nqo15EVAYH4BCcABtcgAa4Bi3QBhg8gmfwAl6NJ+PNeDc+Zq0lo5jZB39gfP0AsWelNQ==</latexit>b⇡DR 2 ⇧NN

<latexit sha1_base64="nYsthz9RyzpXYaWWz/J8Lpqzzqg=">AAACAHicbVDLSsNAFL2pr1pfVZduBosgLkoiFbssuHFZwbSFNpbJZNIOnUzCzEQooRt/wK3+gTtx65/4A36HkzYLbT1w4XDOfXH8hDOlbfvLKq2tb2xulbcrO7t7+wfVw6OOilNJqEtiHsuejxXlTFBXM81pL5EURz6nXX9yk/vdRyoVi8W9nibUi/BIsJARrI3kDhL2cDGs1uy6PQdaJU5BalCgPax+D4KYpBEVmnCsVN+xE+1lWGpGOJ1VBqmiCSYTPKJ9QwWOqPKy+bMzdGaUAIWxNCU0mqu/JzIcKTWNfNMZYT1Wy14u/usFKl+4dF2HTS9jIkk1FWRxPEw50jHK00ABk5RoPjUEE8nM/4iMscREm8wqJhhnOYZV0rmsO1d1+65RazWLiMpwAqdwDg5cQwtuoQ0uEGDwDC/waj1Zb9a79bFoLVnFzDH8gfX5A72UluA=</latexit>

⇡⇤
<latexit sha1_base64="geDPuj6hGvwWzV1rm2BTzwf4Ah0=">AAACEXicbVDLSsNAFJ3UV62v+Ni5CRbBVUkKYpcFXbisYB/QhjKZ3LRDJzNhZiLE0q/wB9zqH7gTt36BP+B3OGmz0NYDA4dz7r1nOEHCqNKu+2WV1tY3NrfK25Wd3b39A/vwqKNEKgm0iWBC9gKsgFEObU01g14iAccBg24wuc797gNIRQW/11kCfoxHnEaUYG2koX1yAxpkTLmJosRpCUZJNrSrbs2dw1klXkGqqEBraH8PQkHSGLgmDCvV99xE+1MszU0Gs8ogVZBgMsEj6BvKcQzKn85/P3POjRI6kZDmce3M1d8bUxwrlcWBmYyxHqtlLxf/9UKVH1xK11HDn1KepBo4WYRHKXO0cPJ6nJBKIJplhmAiad4JGWOJiWlJVUwx3nINq6RTr3mXNfeuXm02iorK6BSdoQvkoSvURLeohdqIoEf0jF7Qq/VkvVnv1sditGQVO8foD6zPH3lfncw=</latexit>

Deterministic Policy

Figure 6.2: The unconstrained policy class is the whole probability simplex with vertices
being deterministic polices. The inclusion relation of the neural network policy class and
the Hölder policy class indicates that for any Hölder continuous policy, there is an approx-
imation given by a neural network policy.

There exists c > 0, such that

P
[∣∣µAj∗(x)(x)− max

j ̸=j∗(x)
µAj

(x)
∣∣ ≤Mt

]
≤ ctq, for any t ∈ (0, 1).

Assumption 6.A.4 implies that, with high probability, there exists an optimal action

whose expected reward is larger than those of others by a positive margin. This is an

analogue of Tsybakov low-noise condition [210] in multi-class classification problems,

which appears similarly in [211]. A similar noisy condition for policy learning with binary

actions are proposed in [169]. Assumption 6.A.4 is a generalization of that in [169] to

multiple actions. We illustrate the noise condition in a binary-action scenario in Figure 6.3.

We utilize a temperature parameter H in the Softmax layer of the neural network to

better learn the unconstrained optimal policy. Under the Hölder continuity in Assumption

6.A.3, there exists a deterministic optimal policy π∗, i.e., π∗(x) = Aj∗(x), which is a one-

hot vector. In contrast, the output of the Softmax function is a randomized policy (i.e., a

vector in the interior of the simplex), unless the output of the neural network is positive

infinity. Accordingly, we adopt the Softmax function with a tunable temperature parameter

103

<latexit sha1_base64="dLgCItvqvexGth1ZQQwtEeE727s=">AAACDHicbVDLSsNAFJ3UV62PRl26GSxSVyUpiF0W3LiSivYBbWgnk0k7dGYSZiZCCf0Ff8Ct/oE7ces/+AN+h5M2C209cOFwzn1x/JhRpR3nyypsbG5t7xR3S3v7B4dl++i4o6JEYtLGEYtkz0eKMCpIW1PNSC+WBHGfka4/vc787iORikbiQc9i4nE0FjSkGGkjDe3yaHTPEWPVKryNqCJDu+LUnAXgOnFzUgE5WkP7exBEOOFEaMyQUn3XibWXIqkpZmReGiSKxAhP0Zj0DRWIE+Wli8fn8NwoAQwjaUpouFB/T6SIKzXjvunkSE/UqpeJ/3qByhauXNdhw0upiBNNBF4eDxMGdQSzZGBAJcGazQxBWFLzP8QTJBHWJr+SCcZdjWGddOo197Lm3NUrzUYeURGcgjNwAVxwBZrgBrRAG2CQgGfwAl6tJ+vNerc+lq0FK585AX9gff4AN8Wa2w==</latexit>

“Small” Noise
<latexit sha1_base64="aChb1nZ5NgeGXwISwdIIiIOzbT8=">AAACDHicbVDLSsNAFJ3UV62PRl26GSxSVyUpiF0W3LgQqWAf0IZ2Mrlph04ezEyEEvoL/oBb/QN34tZ/8Af8DidtFtp64MLhnPviuDFnUlnWl1HY2Nza3inulvb2Dw7L5tFxR0aJoNCmEY9EzyUSOAuhrZji0IsFkMDl0HWn15nffQQhWRQ+qFkMTkDGIfMZJUpLQ7M8Gt0SMYZqFd9FTMLQrFg1awG8TuycVFCO1tD8HngRTQIIFeVEyr5txcpJiVCMcpiXBomEmNApGUNf05AEIJ108fgcn2vFw34kdIUKL9TfEykJpJwFru4MiJrIVS8T//U8mS1cua78hpOyME4UhHR53E84VhHOksEeE0AVn2lCqGD6f0wnRBCqdH4lHYy9GsM66dRr9mXNuq9Xmo08oiI6RWfoAtnoCjXRDWqhNqIoQc/oBb0aT8ab8W58LFsLRj5zgv7A+PwBIOKazQ==</latexit>

“Large” Noise

<latexit sha1_base64="au3oW3A3Se/KVKDoB7+7sF/1ZYs=">AAAB/nicbVDLSsNAFL2pr1pfVZduBlvBVUkKYpcFNy4rmrbQhjKZTNqhk0mYmQglFPwBt/oH7sStv+IP+B1O2iy09cCFwzn3xfETzpS27S+rtLG5tb1T3q3s7R8cHlWPT7oqTiWhLol5LPs+VpQzQV3NNKf9RFIc+Zz2/OlN7vceqVQsFg96llAvwmPBQkawNtJ93a6PqjW7YS+A1olTkBoU6Iyq38MgJmlEhSYcKzVw7ER7GZaaEU7nlWGqaILJFI/pwFCBI6q8bPHqHF0YJUBhLE0JjRbq74kMR0rNIt90RlhP1KqXi/96gcoXrlzXYcvLmEhSTQVZHg9TjnSM8ixQwCQlms8MwUQy8z8iEywx0SaxignGWY1hnXSbDeeqYd81a+1WEVEZzuAcLsGBa2jDLXTABQJjeIYXeLWerDfr3fpYtpasYuYU/sD6/AFpbJWF</latexit>

0

<latexit sha1_base64="E2RKAqveB6SXzOm8d+aymlTKbgk=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwVZKC2GVBFy4r2Ae0oUwmk3boZBJmboRQuvMH3OofuBO3/og/4Hc4abPQ1gMXDufcF8dPBNfoOF9WaWNza3unvFvZ2z84PKoen3R1nCrKOjQWser7RDPBJesgR8H6iWIk8gXr+dOb3O89MqV5LB8wS5gXkbHkIacEjdS7ZVJzzEbVmlN3FrDXiVuQGhRoj6rfwyCmacQkUkG0HrhOgt6MKORUsHllmGqWEDolYzYwVJKIaW+2eHduXxglsMNYmZJoL9TfEzMSaZ1FvumMCE70qpeL/3qBzheuXMew6c24TFJkki6Ph6mwMbbzPOyAK0ZRZIYQqrj536YToghFk1rFBOOuxrBOuo26e1V37hu1VrOIqAxncA6X4MI1tOAO2tABClN4hhd4tZ6sN+vd+li2lqxi5hT+wPr8AdrUmBU=</latexit> D
en

si
ty

<latexit sha1_base64="9XkRY4ntt/vxPFBOUmhcqK2yjU8=">AAAB/nicbVDLSsNAFL2pr1pfVZduBlvBVUkKYpcFNy4rmrbQhjKZTNqhk0mYmQglFPwBt/oH7sStv+IP+B1O2iy09cCFwzn3xfETzpS27S+rtLG5tb1T3q3s7R8cHlWPT7oqTiWhLol5LPs+VpQzQV3NNKf9RFIc+Zz2/OlN7vceqVQsFg96llAvwmPBQkawNtJ93amPqjW7YS+A1olTkBoU6Iyq38MgJmlEhSYcKzVw7ER7GZaaEU7nlWGqaILJFI/pwFCBI6q8bPHqHF0YJUBhLE0JjRbq74kMR0rNIt90RlhP1KqXi/96gcoXrlzXYcvLmEhSTQVZHg9TjnSM8ixQwCQlms8MwUQy8z8iEywx0SaxignGWY1hnXSbDeeqYd81a+1WEVEZzuAcLsGBa2jDLXTABQJjeIYXeLWerDfr3fpYtpasYuYU/sD6/AFrBZWG</latexit>

1
<latexit sha1_base64="azue+LHVub+0LsE6xnK+M41LGJ4=">AAACQ3icbVDLSgMxFM34rPVVdekmWIW6sM4UxC4VQdwIFWwVOmXIZDJtaOZBckcsY//I3/AH3Imu3bgTt4KZdhbaeiDkcM69uTfHjQVXYJovxszs3PzCYmGpuLyyurZe2thsqSiRlDVpJCJ56xLFBA9ZEzgIdhtLRgJXsBu3f5b5N3dMKh6F1zCIWScg3ZD7nBLQklM637UF8+HBDhInPXWsYcV2I+GpQaCv9H64jw9w7tWmPFvybg8eDi93nVLZrJoj4Gli5aSMcjSc0rvtRTQJWAhUEKXalhlDJyUSOBVsWLQTxWJC+6TL2pqGJGCqk47+O8R7WvGwH0l9QsAj9XdHSgKVbakrAwI9Nell4r+ep7IHJ6aDX++kPIwTYCEdD/cTgSHCWaDY45JREANNCJVc749pj0hCQcde1MFYkzFMk1atah1Vzata+aSeR1RA22gHVZCFjtEJukAN1EQUPaJn9IrejCfjw/g0vsalM0bes4X+wPj+ARVOsfs=</latexit>

|µA1(x) � µA2(x)| /M

Figure 6.3: Noise condition in a binary-action scenario. “Large” noise corresponds to high
densities when |µA1(x)− µA2(x)| is small; “Small” noise corresponds to low densities near
the origin.

H to push the learned policy to a one-hot vector. This idea has given many empirical

successes in reinforcement learning [212, 213]. Specifically, we set

Π
|A|
NN(H) = {SoftmaxH(f) with f : M 7→ R|A| ∈ F(LΠ, pΠ, KΠ, κΠ, RΠ)}, (6.23)

where [SoftmaxH(f)]i = exp(fi/H)∑
j exp(fj/H)

. A small temperature H will push the output of

Π
|A|
NN(H) towards a one-hot vector, which can better approximate the deterministic policy

π∗.

Our main result is the following regret bound of π̂DR (see proof in Appendix D.2.3).

Theorem 6.2. Suppose Assumption 3.1, 3.2, 6.1, and 6.A.2 – 6.A.4 hold. Assume the

network structures defined in Lemma 6.1 are used to estimate the µAj
’s and the eAj

’s. If

the network parameters of Π|A|
NN(H) are chosen with

LΠ = O (log n) , pΠ = O
(
|A|n d

2α+d

)
, KΠ = O

(
|A|n d

2α+d log n
)
,

κΠ = max{B,M,
√
d, τ 2, 1/H}, RΠ =M,

then the following bound holds with probability no less than 1− C1n
− α

2α+d log3 n,

R(π∗, π̂DR) ≤ C|A|
16α+7d
2(2α+d)n− α

2α+d log3/2 n log1/2 (1/H)︸ ︷︷ ︸
T1

104

+ min
t∈(0,1)

2cMtq +M |A|2 exp
[(

−Mt+ 2n− α
2α+d

)
/H
]

︸ ︷︷ ︸
T2

,

(6.24)

where C1 is an absolute constant, and C depends on logD, d, B, M , σ, τ , η, α, and the

surface area of M.

We observe that our choice of the policy network Π
|A|
NN(H) is adaptive to the smoothness

in the propensity score and expected reward. However, the policy network Π
|A|
NN(H) is con-

structed for approximating a deterministic optimal policy π∗ (akin to a classifier) that is not

smooth with respect to its input covariate. Indeed, we propose novel policy approximation

technique beyond existing function approximation theories of neural networks on mani-

folds [214, 93]. Specifically, we compute SoftmaxH [µ̃A1 , . . . , µ̃A|A|]
⊤ to approximate π∗,

where µ̃ is an approximation to the expected reward function µ. There are two advantages.

On the one hand, SoftmaxH [µ̃A1 , . . . , µ̃A|A|]
⊤ maintains the preference to the optimal ac-

tion returned by π∗, thanks to the noise condition in Assumption 6.A.4. On the other hand,

by Assumption 6.A.3, we can efficiently approximate the expected reward functions using

neural networks as they are α-Hölder smooth.

The regret R(π∗, π̂DR) consists of two parts: a variance term T1 and a bias term T2.

When the temperature H is fixed, the variance T1 converges at the rate n− α
2α+d , while

the bias T2 does not vanish. This is because π̂DR is a random policy as the output of a

softmax function, while π∗ is deterministic as a one-hot vector under Assumption 6.A.4.

Furthermore, π̂DR is asymptotically consistent with π∗ when H → 0. If we choose H =

n− 2α
2α+d and t = 2n− α

2α+d , then T2 converges at the rate n− qα
2α+d and T1 converges at the rate

n− α
2α+d . We have the following corollary.

Corollary 6.2. Suppose Assumption 3.1, 3.2, 6.1, and 6.A.2 – 6.A.4 hold. In the setup of

105

Theorem 6.2, setting H = n− 2α
2α+d and t = 2n− α

2α+d gives rise to

R(π∗, π̂DR) ≤ C|A|
16α+7d
2(2α+d)n− (1∧q)α

2α+d log2 n (6.25)

with probability no less than 1 − C1n
− α

2α+d log3 n, where C1 is an absolute constant, and

C depends on logD, d, B, M , σ, τ , η, α, and the surface area of M.

6.3.2 Regret with Continuous Action

Our analysis can be extended to the continuous-action scenario. For simplicity, we let the

action space be a unit interval, i.e., A = [0, 1]. In such a continuous-action scenario, a

policy π(x, ·), either randomized or deterministic, is a probability distribution on [0, 1] for

each covariate x ∈ M. The expected reward of the policy π is defined as

Q(π) =

∫

M

∫ 1

0

µ(x, A)π(x, A)dAdP(x), (6.26)

where P is the marginal distribution of covariate x.

As mentioned in Section 6.2.2, we tackle the continuous-action scenario using a dis-

cretization technique on the action space. This is motivated by practical applications where

continuous objects are often quantized. The action space A is uniformly partitioned into

V sub-intervals Ij = [(j − 1)/V, j/V] for j = 1, . . . , V , where V is to be determined in

Theorem 6.3. The discretized version of the propensity score and the expected reward on

Ij are defined in (Eq. 6.9).

We also consider discretized policies on A. In particular, we identify all the actions

belonging to a single sub-interval Ij as its midpoint Aj = 2j−1
2V

. A discretized policy is

defined as

π(D)(x, A) =
V∑

j=1

pj(x)δAj
(A), (6.27)

106

where δAj
is the Dirac delta function at Aj and pj(x) denotes the probability of choosing

action Aj , which satisifes
∑V

j=1 pj(x) = 1. In fact, π(D)(x, ·) can be interpreted as a vector

in the V -dimensional simplex, since it is only supported on V discretized actions. For

simplicity, we denote vector π(D)(x) = [p1(x), . . . , pV (x)]
⊤ with pj(x) representing the

probability of choosing the action Aj , as an equivalent notation of π(D)(x, ·).

For the discretized policy in (Eq. 6.27), the discretized expected reward is defined as

Q(D)(π(D)) =

∫

M

〈
[µI1(x), . . . , µIV (x)]

⊤, π(D)(x)
〉
dP(x). (6.28)

We observe the analogy between (Eq. 6.28) and (Eq. 6.3) — the discrete conditional reward

µAj
is replaced by the discretized conditional reward µIj , and the number of discrete actions

|A| becomes the number of discretized actions V . On the other hand, the expected reward

of a discretized policy is

Q(π(D)) =

∫

M

∫ 1

0

µ(x, A)
V∑

j=1

πj(x)δAj
(A)dAdP(x)

=

∫

M

〈
[µ(x, A1), . . . , µ(x, AV)]

⊤, π(D)(x)
〉
dP(x). (6.29)

The following lemma shows that if the µ(x, A) is Lipschitz in A uniformly for any

x ∈ M, Q(D)(π(D)) is close to Q(π(D)) when V is large (see proof in Appendix D.3.2).

Lemma 6.2. Assume there exists a constant Lµ > 0 such that

sup
x∈M

|µ(x, A)− µ(x, Ã)| ≤ Lµ|A− Ã| for any A, Ã ∈ [0, 1].

Then for any discretized policy π(D) given in (Eq. 6.27), we have

|Q(π(D))−Q(D)(π(D))| ≤ Lµ/V.

We remark a key difference between (Eq. 6.28) and (Eq. 6.29). To evaluate (Eq. 6.29),

107

one needs to accurately estimate the µ(x, Aj)’s, which requires the action Aj to be re-

peatedly observed. However, this is prohibitive in the continuous-action scenario, since

an action Aj is observed with probability 0. In contrast, (Eq. 6.28) relies on the average

expected reward on a sub-interval, which can be estimated using standard nonparametric

methods in the following Section 6.3.2. Moreover, thanks to Lemma 6.2, we can well

approximate Q(π(D)) by Q(D)(π(D)) up to a small discretization error. This is crucial to

establish the regret bound in Theorem 6.3.

Doubly Robust Policy Learning with Continuous Actions

After discretization, we can apply the doubly robust framework to learn an optimal dis-

cretized policy.

In the first stage, we estimate the µIj ’s and eIj ’s. In the sequel, we use the plain font ai

to denote the observed action of the i-th sample. The bold font ai ∈ {0, 1}V denotes the

one-hot vector with the j-th element being 1, if ai ∈ Ij . Similar to (Eq. 6.4) – (Eq. 6.6)

in the finite-action case, we obtain estimators of the µIj ’s and eIj ’s by minimizing the

following empirical risks:

µ̂Ij(x) = argmin
f∈FNN

1

nIj

n1∑

i=1

(yi − f(xi))
21{ai ∈ Ij} with nIj =

n1∑

i=1

1{ai ∈ Ij},

(6.30)

and

ĝ(x) = argmin
g∈GNN

1

n1

n1∑

i=1

−
〈
[g(xi)

⊤, 1]⊤, ai

〉
+ log

(
1 +

V−1∑

j=1

exp([g(xi)]j)
)
, (6.31)

êIj(x) =
exp([ĝ(x)]j)

1 +
∑V−1

j=1 exp([ĝ(x)]j)
for j ≤ V − 1, and êIV (x) =

1

1 +
∑V−1

j=1 exp([ĝ(x)]j)
,

(6.32)

where FNN : M → R and GNN : M → RV−1 are neural networks.

108

Algorithm 2 A two–stage algorithm for doubly-robust off-policy learning with continuous
actions.

Input: Collected data {(xi, ai, yi)}ni=1. Network architectures FNN,GNN and ΠV
NN(H).

Stage 1: Estimating µAj
and eAj

.
For each action Aj ,

• For each action Aj , estimate the reward function µAj
by solving (Eq. 6.30),

• Estimate eAj
’s by solving (Eq. 6.31) – (Eq. 6.32).

Stage 2: Policy Learning.

• Learn the optimal policy by solving (Eq. 6.33).

Output: Learned policy π̂DR.

Remark 6.2. Although our method suggests partitioning the continuous action space into

V sub-intervals, we do not require training V independent neural networks for estimating

the expected reward and propensity score functions. In practice, the networks for estimating

expected reward functions often share a large amount of parameters. The shared part is

expected to extract useful data embeddings, while the remaining network layers adapt to

individual target expected reward functions. In addition, to estimate the propensity score,

we directly train a single multi-dimensional input-output neural network.

In the second stage, we learn an optimal discretized policy using the µ̂Ij ’s and êIj ’s.

Recall that we define a mapping I(ai) := Ij for ai ∈ Ij to index which sub-interval ai

belongs to. We use neural networks to learn a discretized policy by maximizing the doubly

robust empirical reward in (Eq. 6.10) and (Eq. 6.11), i.e.,

π̂ C-DR = argmax
π∈ΠV

NN(H)

Q̂(D)(π), (6.33)

where ΠV
NN(H) represents the network class in (Eq. 6.10), which is defined as (Eq. 6.23).

We emphasize that π̂C-DR is a discretized policy and the output π̂C-DR(x) is a V -dimensional

vector in the simplex. Our algorithm for learning policies with continuous actions is sum-

marized in Algorithm 2.

109

Regret Bound of Learned Discretized Policy

We begin with several assumptions, which are the continuous counterparts of Assumptions

6.A.2 – 6.A.4 in the finite-action scenario.

Assumption 6.B.2. The propensity score and random reward satisfy:

(i) Overlap: e(x, A) ≥ η for any A ∈ A, where η > 0 is a constant.

(ii) Bounded Reward: |Y (x, A)| ≤ M1 for any (x, A) ∈ M× [0, 1], where M1 > 0 is a

constant.

Assumption 6.B.3. Given a Hölder index α ≥ 1, we have both the expected reward

µ(·, A) ∈ Hα(M) and the propensity score e(·, A) ∈ Hα(M) for any fixed action A.

Moreover, the Hölder norms of µ(·, A) and e(·, A) are uniformly bounded for any A ∈

[0, 1], i.e.,

sup
A∈[0,1]

∥µ(·, A)∥Hα ≤M2, and sup
A∈[0,1]

∥e(·, A)∥Hα ≤M2

for some constant M2 > 0. Furthermore, there exists a constant M3 > 0 such that

sup
x∈M

|µ(x, A1)− µ(x, A2)| ≤M3|A1 − A2| for any A1, A2 ∈ [0, 1].

There also exists a constant M4 > 0 such that

∥∥∥∥log
(∫

I1

e(x, A)dA/

∫

I2

e(x, A)dA

)∥∥∥∥
Hα

≤M4

for any intervals I1, I2 ⊂ [0, 1] of the same length.

Let pI(x) =
∫
I
e(x, A)dA denote the probability of choosing actions in I given x. In

Assumption 6.B.3, the condition e(·, A) ∈ Hα(M) for any given A implies pI ∈ Hα(M)

(see Lemma D.8). Combining this and Assumption 6.B.2 (ii) of e(x, A) ≥ η > 0, one

deduces that log(pI1(x)/pI2(x)) belongs to Hα(M) with a bounded Hölder norm. See

110

Lemma D.9 – D.10 in Appendix D.4 for a formal justification. For simplicity, we denote

M = max{1,M1, 2M2,M3,M4,− log η}. (6.34)

Assumption 6.B.4 (Continuous Noise Condition). The following two conditions hold:

(i) For each fixed x ∈ M, µ(x, A) is unimodal with respect to A: there exists a unique

optimal action A∗(x) ∈ A such that µ(x, A∗(x)) = maxA∈A µ(x, A).

(ii) There exist constants q ≥ 1 and c > 0, such that

P [µ(x, A∗(x))− µ(x, A) ≤Mt given |A− A∗(x)| ≥ γ] ≤ ctq(1− γ),

holds for any t ∈ (0, 1) and any γ ∈ (0, 1), where P denotes the marginal distribution

on x.

Assumption 6.B.4 generalizes the noise condition for finite actions in Assumption

6.A.4, to the continuous-action scenario. Assmption 6.B.4 (i) assures the uniqueness of the

optimal action given each covariate. Assumption 6.B.4 (ii) means that, with high probabil-

ity, there is a gap between the reward at the optimal action and the rewards in its neighbors.

Such a noise condition is important to derive the regret bound of the learned policy against

the unconstrained optimal policy.

We establish a regret bound of π̂C-DR against the unconstrained optimal (deterministic)

policy

π∗
C = argmax

π
Q(π)

where Q(π) is defined in (Eq. 6.26). Due to Assumption 6.B.4 (i), π∗
C is deterministic with

π∗
C(x, ·) = δA∗(x)(·). The following theorem establishes the regret bound of π̂C-DR against

π∗
C.

111

Theorem 6.3. Suppose Assumption 3.1, 3.2, 6.1, and 6.B.2 – 6.B.4 hold. Set FNN =

F(L1, p1, K1, κ1, R1) in (Eq. 6.30) and GNN = F(L2, p2, K2, κ2, R2) in (Eq. 6.31) with

L1 = O(log n), p1 = O

(
η

d
2α+dn

12αd+7d2

7(2α+d)2

)
, K1 = O

(
η

d
2α+dn

12αd+7d2

7(2α+d)2 log n

)
,

κ1 = max{B,M,
√
d, τ 2}, R1 =M,

(6.35)

and

L2 = O(log n), p2 = O

(
n

4α2+14αd+7d2

7(2α+d)2

)
, K2 = O

(
n

4α2+14αd+7d2

7(2α+d)2 log n

)
,

κ2 = max{B,M,
√
d, τ 2}, R2 =M.

(6.36)

If the network parameters in ΠV
NN(H) are chosen as

LΠ = O(log n), pΠ = O
(
n

2α+7d
7(2α+d)

)
, KΠ = O

(
n

2α+7d
7(2α+d) log n

)
,

κΠ = max{B,M,
√
d, τ 2}, RΠ =M, (6.37)

and we set V = O
(
n2α/7(2α+d)

)
, the following bound holds with probability no less than

1− C1n
− 6α2+5αd

7(2α+d)2 log3 n

R(π∗
C, π̂C−DR) ≤ Cn− 2α

7(2α+d) log3/2 n log1/2 1/H

+
[
2cMtq +Mn

4α
7(2α+d) exp

(
−
(
Mt− 4Mn− 2α

7(2α+d)

)
/H
)]

(6.38)

for any t ∈
(
2(1 + 1/M)n− 2α

7(2α+d) , 1
)

, where C1 is an absolute constant and C depends

on logD, d, B, M, σ, τ, η, α, and the surface area of M.

Theorem 6.3 is proved in Appendix D.2.4. Rewriting V = O

(
n

1

7(1+ d
2α)
)

, Theorem 6.3

suggests that

• When d and α are fixed, as sample size n grows, we form finer discretization (large

V) to solve the problem with higher accuracy.

112

• If the intrinsic dimension d is large or smoothness index α is small, the problem is

of high complexity. Therefore, when the sample size n is fixed, the discretization

is coarse (small V), to ensure a good estimation using sufficient samples in each

sub-interval.

This indeed matches intuition: It is an indication of increased complexity if either the

intrinsic dimension d is large or smoothness index α is small. Therefore, we need to be

conservative in discretization as a compromise of limited training sample budget.

Similar to (Eq. 6.24) in Theorem 6.2, the bound in Theorem 6.3 contains a variance

term (the first term) and a bias term (the second term in square brackets). In particular,

the bias term consists of problem reduction error, neural network approximation error and

the discretization error. The network approximation error is the same one as that in Theo-

rem 6.2. The problem reduction error is due to a nontrivial reduction of the policy learning

problem with continuous actions to a policy learning problem with discrete actions. The

discretization error is due to the discretization of the action domain and the difference be-

tween µIj ’s and µAj
’s. See the term I3 and III3 in (Eq. D.52) for details. In our proof,

new techniques are developed to bound the additional error terms. Note that the variance

converges in the rate of n− 2α
7(2α+d) . For a fixed H , the bias term does not vanish as n goes to

infinity. If we setH = n− 2α
7(2α+d) and t = 4(1+M+1/M)n− α

7(2α+d) , the bias term converges

in the rate of n− 2qα
7(2α+d) . Under this choice, the behavior of R(π∗

C, π̂C−DR) is summarized in

the following corollary.

Corollary 6.3. Suppose Assumption 3.1, 3.2, 6.1, and 6.B.2 – 6.B.4 hold. In the setup of

Theorem 6.3, setting H = n− 2α
7(2α+d) and t = 4(1 +M + 1/M)n− α

7(2α+d) gives rise to

R(π∗
C, π̂C−DR) ≤ Cn− 2α

7(2(q∧1)α+d) log2 n (6.39)

with probability no less than 1−C1n
− 6α2+5αd

7(2α+d)2 log3 n, where C1 is an absolute constant and

C depends on logD , d, B, M, σ, τ, η, α, and the surface area of M.

113

There are limited theoretical guarantees for causal inference with continuous actions.

[172] proposed a doubly robust method to estimate continuous treatment effects. The

asymptotic behavior of the method was analyzed while the policy learning problem was

not addressed. To our knowledge, Theorem 6.3 and Corollary 6.3 is the first finite-sample

performance guarantee of policy learning with continuous actions.

6.4 Conclusion and Discussion

This chapter establishes statistical guarantee for doubly robust off-policy learning by neu-

ral networks. The covariate is assumed to be on a low-dimensional manifold. Non-

asymptotic regret bounds for the learned policy are proved in the finite-action scenario

and in the continuous-action scenario. Our results show that when the covariates exhibit

low dimensional-structures, neural networks provide a fast convergence rate whose expo-

nent depends on the intrinsic dimension of the manifold instead of the ambient dimension.

Our results partially justify the success of neural networks in causal inference with high-

dimensional covariates.

We finally provide some discussions in connection with the existing literature.

Sample Complexity Lower Bound without Low-dimensional Structures [187] estab-

lished a lower bound of the sample complexity for policy evaluation (or treatment effect

estimation), when the covariates are in RD and do not have low-dimensional structures.

Specifically, they assume that both the initial policy and reward functions belong to a

Hölder space. The sample complexity needs to be at least exponential in the dimension

D. This result shows that the rate can not be improved unless additional assumptions are

made. By assuming that the covariates are on a d-dimensional manifold, our sample com-

plexity only depends on the intrinsic dimension d. We remark that [187] studied the Hölder

space with a Hölder index α ∈ (0, 1], while we focus on the case of α ≥ 1. In the case that

α = 1, if we have q ≥ 1 (in Assumption 6.A.4), Corollary 6.2 gives the convergence rate

114

O
(
n− 1

2+d log3 n
)

. This rate is better than the minimax rate O
(
n− 1

2+D

)
from [187] thanks

to the low-dimensional structures of the covariates.

Nonconvex Optimization of Deep Neural Networks Our theoretical guarantees hold

for the global optimum of (Eq. 6.4)-(Eq. 6.8). However, solving these optimization can be

difficult in practice. Some recent empirical and theoretical results have shown that large

neural networks help to ease the optimization without sacrificing statistical efficiency [157,

158]. This is also referred to as an overparameterization phenomenon. We will leave it for

future investigation.

Inference on the Optimal Expected Value Function Our analysis provides nonasymp-

totic regret bounds of learned policies, which can provide a rough confidence interval of

the optimal expected value function. For example, Corollary 6.1 implies

E[Q(π∗
β)]

∈
[
Q(π̂DR)− C|A|

16α+7d
2(2α+d)n− α∧β

2(α∧β)+d log2 n, Q(π̂DR) + C|A|
16α+7d
2(2α+d)n− α∧β

2(α∧β)+d log2 n
]

with probability 1− Õ(n− α∧β
2(α∧β)+d). Nonetheless, the constant C is not exactly given.

It is yet relatively difficult to establish precise asymptotic confidence intervals for the

optimal expected value function. The optimal value function is obtained by optimizing

policy among a properly chosen class ΠNN (neural network policy class). Therefore, we

need to study the asymptotic distribution of supπ∈ΠNN
E[Q(π(x))], which can be viewed as

the supremum of a stochastic process indexed by π ∈ ΠNN. As can be seen, this is much

more difficult compared to policy evaluation problems, where the target policy is fixed.

We suspect that Stein’s method [215, 216] can provide an initial analytical framework,

however, a rigorous analysis is beyond the scope of the chapter.

115

CHAPTER 7

CONCLUDING REMARKS

In this thesis, we show deep neural networks are adaptive to data intrinsic structures in

function approximation and statistical applications. Specifically, when data concentrate

on a low-dimensional Riemannian manifold, neural networks are capable of efficiently

approximating Hölder, Sobolev, and Besov functions. The size of the network grows de-

pending on the manifold dimension. Besides approximating a target function in terms of

function value, we extend approximation guarantees to first-order derivatives.

Turning towards statistical applications, we show that by choosing network architec-

tures according to our approximation theories, neural networks can circumvent the curse

of data ambient dimensionality. In particular, for nonparametric regression/classification,

distribution estimation, and causal inference problems, we obtain fast statistical guaran-

tees. The convergence rate weakly depends on the data ambient dimension. These results

partially explain the remarkable success of neural networks in practice.

7.1 Future Directions

Besides future directions presented in the end of each previous chapter, we discuss addi-

tional future topics.

Robust function approximation and generalization guarantees Existing works on func-

tion approximation theories focus on how well a neural network can approximate target

function value under certain metrics, e.g., function L∞ norm. However, such approxima-

tion theories may fail to control the Lipschitz continuity of the network, and the obtained

neural network can be highly zigzagging. This leaves a significant vacancy in theory on

understanding whether neural network can well approximate the target function beyond

116

zero-th order. I aim to establish robust function approximation theories, showing that over-

parameterized neural networks not only recover function value, but also replicate target

function’s Lipschitz continuity.

Furthermore, in practice, Lipschitzness or even higher-order smoothness is often in-

duced by computational heuristics, e.g., weight decay and spectral normalization, and the

trained networks yield better generalization performance and are robust against adversarial

attacks. I plan to study whether popular optimization algorithms can optimize the net-

work architecture suggested by the robust function approximation theory and bias towards

the desired network. This will build upon my preliminary understandings of algorithmic

behaviors of first-order methods in nonconvex problems [217, 218, 219]. I foresee these

results possess intimate connections to max-margin classification, adversarial training, and

transfer learning.

Deep reinforcement learning Deep reinforcement learning creates astounding AI game

players like AlphaGo to convincingly beat top professional human players. In multi-player

games, deep reinforcement learning is also competitive or even better than human be-

ings. However, the success of deep reinforcement learning lacks theoretical understand-

ing. Many existing works of RL are established under simplified assumptions, e.g., linear

function approximation in reward and transition kernels. I plan to study neural network-

parameterized policy learning and evaluation problems in general online/off-line RL. This

will leverage the efficient function approximation theories and statistical analyzing tools.

In addition, I expect neural networks can adapt to geometric structures in the state-action

space, and circumvent the curse of data dimensionality.

In addition, for multi-agent environment, the joint state-action space grows exponen-

tially in the number of agents (curse of many agents). I tackle such a challenge by utilizing

the rotational invariance among agents [220], which results in a mean-field formulation of

multi-agent RL problems. I am interested in exploring other structural interactions between

117

agents, e.g., interaction according to a sparsely connected graph, for potential mitigation of

the curse of many agents.

Transfer learning Transfer learning is widely used in modern deep learning applications,

including natural language processing and computer vision. Adapting large pre-trained

models to downstream tasks gives rise to the state-of-the-art performance. More interest-

ingly, empirical results suggest that fine-tuning a small fraction of the pre-trained model

or adding simple adaptation layers already yield superior performance, and therefore, the

adaptation is both computation and sample efficient. Despite empirical successes, limited

theory has been developed to understand the power of pre-trained models and their ability

of adaptation. I plan to study transfer learning through the function approximation and

statistical perspective. In particular, I aim to investigate the following questions:

• Under what conditions, fine-tuning a small fraction of parameters in a large network

allows rich function approximation?

• Under what conditions, adding simple adaptation layers allows rich function approx-

imation?

• From a statistical perspective, does adapting a pre-trained model gives rise to better

sample complexity in comparison to training from scratch?

The first two questions are closely related to perturbation analysis of neural networks.

Different from conventional studies, the perturbation is now added on the model parame-

ters. Therefore, I expect to utilize tools from constructive function approximation as well

as develop new ones. The third question targets at a statistical measure of useful informa-

tion extracted from the pre-training stage. The information can be viewed as increasing the

“effective” sample complexity of downstream tasks. Nonetheless, a systematic measure of

the information is very open.

118

Appendices

APPENDIX A

OMITTED PROOFS IN CHAPTER 3

A.1 Proofs of Preliminary Results in Section 3.1

A.1.1 Proof of Lemma 3.1

Proof. We partition the interval [0, 1] uniformly into 2N subintervals Ik = [k
2N
, k+1

2N
] for k =

0, . . . , 2N − 1. We approximate f(x) = x2 on these subintervals by a linear interpolation

f̂k =
2k + 1

2N

(
x− k

2N

)
+

k2

22N
, for x ∈ Ik.

It is straightforward to check that f̂k meets f at the endpoints k
2N
, k+1

2N
of Ik.

We evaluate the approximation error of f̂k on the interval Ik:

max
x∈Ik

∣∣∣f(x)− f̂k(x)
∣∣∣ = max

x∈Ik

∣∣∣∣x2 −
2k + 1

2N
x+

k2 + k

22N

∣∣∣∣

= max
x∈Ik

∣∣∣∣∣

(
x− 2k + 1

2N+1

)2

− 1

22N+2

∣∣∣∣∣

=
1

22N+2
.

Note that this approximation error does not depend on k. Thus, in order to achieve an ϵ

approximation error, we only need

1

22N+2
≤ ϵ =⇒ N ≥ log 1

ϵ

2 log 2
− 1.

Since 2 log 2 > 1, we let N =
⌈
log 1

ϵ

⌉
and denote fN =

∑2N−1
k=0 f̂k1{x ∈ Ik}. We compute

120

the increment from fN−1 to fN for x ∈
[

k
2N−1 ,

k+1
2N−1

]
as

fN−1 − fN =

k2

22(N−1) +
2k+1
2N−1

(
x− k

2N−1

)
− k2

22(N−1) − 4k+1
2N

(
x− k

2N−1

)
, x ∈

[
k

2N−1 ,
2k+1
2N

)

k2

22(N−1) +
2k+1
2N−1

(
x− k

2N−1

)
− (2k+1)2

22N
− 4k+3

2N

(
x− 2k+1

2N

)
, x ∈

[
2k+1
2N

, k+1
2N−1

)

=

1
2N
x− k

22N−1 , x ∈
[

k
2N−1 ,

2k+1
2N

)

− 1
2N
x+ k+1

22N−1 , x ∈
[
2k+1
2N

, k+1
2N−1

) .

We observe that fN−1 − fN is a triangular function on
[

k
2N−1 ,

k+1
2N−1

]
. The maximum is

1
22N

independent of k attained at x = 2k+1
2N

. The minimum is 0 attained at the endpoints

k
2N−1 ,

k+1
2N−1 . To implement fN , we consider a triangular function representable by a one-

layer ReLU network:

g(x) = 2σ(x)− 4σ(x− 0.5) + 2σ(x− 1).

Denote by gm = g ◦ g ◦ · · · ◦ g the composition of totally m functions g. Observe that

gm is a sawtooth function with 2m−1 peaks at 2k+1
2m

for k = 0, . . . , 2m−1 − 1, and we have

gm
(
2k+1
2m

)
= 1 for k = 0, . . . , 2m−1−1. Then we have fN−1−fN = 1

22N
gN . By induction,

we have

fN = fN−1 −
1

22N
gN

= fN−2 −
1

22N
gN − 1

22N−2
gN−1

= · · ·

= x−
N∑

k=1

1

22k
gk.

Therefore, fN can be implemented by a ReLU network of depth
⌈
log 1

ϵ

⌉
≤ log 1

ϵ
+ 1.

Meanwhile, each layer consists of at most 3 neurons. Hence, the total number of neurons

and weight parameters is no more than c log 1
ϵ

for an absolute constant c.

121

A.1.2 Proof of Corollary 3.1

Proof. Let f̂δ be an approximation of the quadratic function on [0, 1] with error δ ∈ (0, 1).

We set

×̂(x, y) = C2

(
f̂δ

(|x+ y|
2C

)
− f̂δ

(|x− y|
2C

))
.

Now we determine δ. We bound the error of ×̂

∣∣×̂(x, y)− xy
∣∣ = C2

∣∣∣∣f̂δ
(|x+ y|

2C

)
− |x+ y|2

4C2
− f̂δ

(|x− y|
2C

)
+

|x− y|2
4C2

∣∣∣∣

≤ C2

∣∣∣∣f̂δ
(|x+ y|

2C

)
− |x+ y|2

4C2

∣∣∣∣+
∣∣∣∣f̂δ
(|x− y|

2C

)
− |x− y|2

4C2

∣∣∣∣

≤ 2C2δ.

Thus, we pick δ = ϵ
2C2 to ensure

∣∣×̂(x, y)− xy
∣∣ ≤ ϵ for any inputs x and y. As shown

in Lemma 3.1, we can implement f̂δ using a ReLU network of depth at most c′ log 1
δ
=

c log C2

ϵ
with absolute constants c′, c. The proof is complete.

A.2 Proof of Approximation Theory of Feedforward Network (Theorem 3.1)

This section consists of the detailed proofs of Lemma 3.2, Lemma 3.3, local approximation

theory Theorem 3.3, error decomposition in Lemma 3.4 and a technical Lemma A.1 for

bounding the error, as well as the configuration of the desired ReLU network class for

universally approximating Hölder functions. For notational simplicity, we let s = ⌊α⌋ and

reload α = α− ⌊α⌋.

A.2.1 Proof of Lemma 3.2

Proof. We first show Pi defined on Ui is a homeomorphism, which implies (Ui,Pi) is a

chart on the manifold. Then by Proposition 6.10 in [22], we conclude Pi is a diffeomor-

phism.

To show Pi is a homeomorphism on Ui, we only need to show Pi has a continuous

122

inverse. By Lemma 5.4 in [47], the derivative of Pi is nonsingular in Ui. The inverse func-

tion theorem implies that Pi is locally invertible in an open neighborhood B(ci, cτ)
⋂M

for some constant c > 0. In the following, we show by contradiction that the constant

c ≥ 1/4. Suppose not, there exist distinct points a,b ∈ Ui such that Pi(a) = Pi(b)

with ∥a− ci∥2 < τ/4 and ∥b− ci∥2 < τ/4. Using the triangle inequality, we obtain

∥a− b∥2 < τ/2. Applying Proposition 6.3 in [47], we derive

dM(a,b) < τ and dM(a, ci) < τ(1−
√
2/2)

with dM(·, ·) being the geodesic distance.

Furthermore, using Proposition 6.2 in [47], we lower bound the angle between the tangent

spaces Tci(M) and Ta(M) by

cos (∠(Ta(M), Tci(M)))
△
= min

u∈Ta(M)
max

v∈Tci (M)
| ⟨u,v⟩ | ≥ 1− 1

τ
dM(a, ci) >

√
2/2.

(A.1)

On the other hand, we consider a unit speed geodesic γ(t) starting from a and ending at b,

with γ(0) = a, γ(dM(a,b)) = b, and ∥γ̇∥2 = 1. Integration by parts yields

b− a = γ(dM(a,b))− γ(0)

=

∫ dM(a,b)

0

γ̇(t)dt

= γ̇(0)dM(a,b) +

∫ dM(a,b)

0

∫ t

0

γ̈(s)dsdt.

Rearranging terms gives rise to

∥b− a− γ̇(0)dM(a,b)∥2 ≤
∫ dM(a,b)

0

∫ t

0

∥γ̈(s)∥2 dsdt ≤
d2M(a,b)

2τ
, (A.2)

where the last inequality follows from Proposition 6.1 in [47]. Dividing (Eq. A.2) by

123

dM(a,b) and plugging in dM(a,b) ≤ τ , we have

∥∥∥∥
b− a

dM(a,b)
− γ̇(0)

∥∥∥∥
2

<
1

2
.

For any unit vector v ∈ Tci(M), we evaluate the inner product

|⟨γ̇(0),v⟩| ≤
∣∣∣∣
〈
γ̇(0)− b− a

dM(a,b)
,v

〉∣∣∣∣+
∣∣∣∣
〈

b− a

dM(a,b)
,v

〉∣∣∣∣
(i)
=

∣∣∣∣
〈
γ̇(0)− b− a

dM(a,b)
,v

〉∣∣∣∣

≤
∥∥∥∥

b− a

dM(a,b)
− γ̇(0)

∥∥∥∥
2

<
1

2
, (A.3)

where
∣∣∣
〈

b−a
dM(a,b)

,v
〉∣∣∣ = 0 in equality (i), since Pi(a) = Pi(b) by our assertion. Combining

(Eq. A.1) and (Eq. A.3), we obtain

√
2

2
< cos (∠(Ta(M), Tci(M))) ≤ max

v∈Tci (M)
|⟨γ̇(0),v⟩| < 1

2
,

which is a contradiction. Therefore, we conclude that Pi is injective, and hence invertible

on the local neighborhood B(ci, τ/4)
⋂M. The continuity of Pi follows from its defi-

nition, and the inverse map of a continuous map is also continuous. Therefore, Pi is a

homeomorphism on B(ci, r)
⋂M for r ≤ τ/4.

The last step is to show Pi is also a diffeomorphism. We leverage the following propo-

sition.

Proposition A.1 (Proposition 6.10 in [22]). If (U, ϕ) is a chart on a manifold M, then the

coordinate map ϕ : U 7→ ϕ(U) is a diffeomorphism.

Since Pi is a homeomorphism, we deduce that (Ui,Pi) is a chart of M. Applying

Proposition A.1, we conclude that Pi is a diffeomorphism.

124

A.2.2 Proof of Lemma 3.3

Proof. Recall that we choose local coordinate neighborhood Ui in Step 1 in Section 3.1.1.

Let Pi be the projection onto the tangent space Tci(M). Then {(Ui,Pi)} is an atlas of

M. Without loss of generality, we assume that {(Ui,Pi)} verifies the Hölder condition in

Definition 2.12. Now we rewrite fi ◦ ϕ−1
i as

(f ◦ ϕ−1
i)︸ ︷︷ ︸

g1

× (ρi ◦ ϕ−1
i)︸ ︷︷ ︸

g2

. (A.4)

By the definition of the partition of unity, we know g2 is C∞. This implies that g2 is

(s + 1) continuously differentiable. Since supp(ρi) is compact, the k-th derivative of g2 is

uniformly bounded by λi,k for any k ≤ s + 1. Let λi = maxk≤n+1 λi,k. We have for any

|n| ≤ n and x1,x2 ∈ Ui,

|Dng2(ϕi(x1))−Dng2(ϕi(x2))| ≤
√
dλi ∥ϕi(x1)− ϕi(x2)∥2

≤
√
dλib

1−α
i ∥x1 − x2∥1−α

2 ∥ϕi(x1)− ϕi(x2)∥α2 .

The last inequality follows from ϕi(x) = bi(V
⊤
i (x − ci) + ui) and ∥Vi∥2 = 1. Observe

that Ui is bounded, hence, we have ∥x1 − x2∥1−α
2 ≤ (2r)1−α. Absorbing ∥x1 − x2∥1−α

2

into
√
dλib

1−α
i , we have the derivative of g2 is Hölder continuous. We denote βi,α =

√
dλib

1−α
i (2r)1−α ≤

√
dλi(2r)

1−α. Similarly, g1 is Cs−1 by Assumption 3.3. Then there

exists a constant µi such that the k-th derivative of g1 is uniformly bounded by µi for

any k ≤ n − 1. These derivatives are also Hölder continuous with coefficient θi,α ≤
√
dµi(2r)

1−α.

By the Leibniz rule, for any |s| = s, we expand the s-th derivative of fi ◦ ϕ−1
i as

Ds(g1 × g2) =
∑

|p|+|q|=s

(
s

|p|

)
Dpg1D

qg2.

125

Consider each summand in the above right-hand side. For any x1,x2 ∈ Ui, we derive

∣∣Dpg1(ϕi(x1))D
qg2(ϕi(x1))−Dpg1(ϕi(x2))D

qg2(ϕi(x2))
∣∣

=
∣∣Dpg1(ϕi(x1))D

qg2(ϕi(x1))−Dpg1(ϕi(x1))D
qg2(ϕi(x2))

+Dpg1(ϕi(x1))D
qg2(ϕi(x2))−Dpg1(ϕi(x2))D

qg2(ϕi(x2))
∣∣

≤|Dpg1(ϕi(x1))||Dqg2(ϕi(x1))−Dqg2(ϕi(x2))|

+ |Dqg2(ϕi(x2))||Dpg1(ϕi(x1))−Dpg1(ϕi(x2))|

≤µiθi,α ∥ϕi(x1)− ϕi(x2)∥α2 + λiβi,α ∥ϕi(x1)− ϕi(x2)∥α2

≤2
√
dµiλi(2r)

1−α ∥ϕi(x1)− ϕi(x2)∥α2 .

Observe that there are totally 2s summands in the right hand side of (Eq. A.4). Therefore,

for any x1,x2 ∈ Ui and |s| = s, we have

∣∣∣Ds(fi ◦ ϕ−1
i)
∣∣
ϕi(x1)

−Ds(fi ◦ ϕ−1
i)
∣∣
ϕi(x2)

∣∣∣ ≤ 2s+1
√
dµiλi(2r)

1−α ∥ϕi(x1)− ϕi(x2)∥α2 .

A.2.3 Proof of Taylor Polynomial Approximation

Proof of Theorem 3.3. The proof consists of two steps. We first approximate fi ◦ ϕ−1
i by a

Taylor polynomial, and then implement the Taylor polynomial using a ReLU network. To

ease the analysis, we extend fi ◦ϕ−1
i to the whole cube [0, 1]d by assigning fi ◦ϕ−1

i (x) = 0

for ϕi(x) ∈ [0, 1]d \ ϕi(Ui). It is straightforward to check that this extension preserves the

regularity of fi ◦ ϕ−1
i , since fi vanishes on the complement of the compact set supp(ρi) ⊂

Ui. For notational simplicity, we denote fϕ
i = fi ◦ ϕ−1

i with the extension. Accordingly,

Lemma 3.3 can be extended to the whole cube [0, 1]d without changing its proof, i.e., for

126

any x1,x2 ∈ [0, 1]d and |s| = s, we have

∣∣∣Dsfϕ
i

∣∣
x1

−Dsfϕ
i

∣∣
x2

∣∣∣ ≤ 2s+1
√
dµiλi(2r)

1−α ∥x1 − x2∥α2 . (A.5)

Step 1. We define a trapezoid function

ψ(x) =

1 |x| < 1

2− |x| 1 ≤ |x| ≤ 2

0 |x| > 2

.

Note that we have ∥ψ∥∞ = 1. LetN be a positive integer, we form a uniform grid on [0, 1]d

by dividing each coordinate into N subintervals. We then consider a partition of unity on

these grid defined by

ζm(x) =
d∏

k=1

ψ
(
3N
(
xk −

mk

N

))
.

We can check that
∑

m ζm(x) = 1 as in Figure A.1.
<latexit sha1_base64="bT7d2xX5qKYuYnH9TjDOmvK1CkU=">AAACHnicbVDLSgMxFM3UV62vqks3wVaoC8tMfS4LblyVCvYBnTJk0kwbmnmQ3BHL0C9x46+4caGI4Er/xrSdhbYeCPdwzr3c3ONGgiswzW8js7S8srqWXc9tbG5t7+R395oqjCVlDRqKULZdopjgAWsAB8HakWTEdwVrucPrid+6Z1LxMLiDUcS6PukH3OOUgJac/HnRjgbcFsyD0mltVh+cIT7BticJTXxnOE5qY1vy/gCO01J08gWzbE6BF4mVkgJKUXfyn3YvpLHPAqCCKNWxzAi6CZHAqWDjnB0rFhE6JH3W0TQgPlPdZHreGB9ppYe9UOoXAJ6qvycS4is18l3d6RMYqHlvIv7ndWLwrroJD6IYWEBni7xYYAjxJCvc45JRECNNCJVc/xXTAdGxgE40p0Ow5k9eJM1K2boon91WCtVKGkcWHaBDVEIWukRVdIPqqIEoekTP6BW9GU/Gi/FufMxaM0Y6s4/+wPj6ASaKodo=</latexit>

�
�
3N
�
xk � mk

N

�� <latexit sha1_base64="dDSC/+pwv97CiiK+2/B24V0Xsz4=">AAACIHicbVDLSgMxFM34rPVVdekm2AoVscxUsS4LblyVCvYBnTJk0kwbmnmQ3BHL0E9x46+4caGI7vRrTNtZaOuBcA/n3MvNPW4kuALT/DKWlldW19YzG9nNre2d3dzeflOFsaSsQUMRyrZLFBM8YA3gIFg7koz4rmAtd3g98Vv3TCoeBncwiljXJ/2Ae5wS0JKTqxTsaMBtwTwontdm9cEZ4jNse5LQxHeGp9Y4qY1tyfsDOElLwcnlzZI5BV4kVkryKEXdyX3avZDGPguACqJUxzIj6CZEAqeCjbN2rFhE6JD0WUfTgPhMdZPpgWN8rJUe9kKpXwB4qv6eSIiv1Mh3dadPYKDmvYn4n9eJwbvqJjyIYmABnS3yYoEhxJO0cI9LRkGMNCFUcv1XTAdEBwM606wOwZo/eZE0yyXrsnRxW85Xy2kcGXSIjlARWaiCqugG1VEDUfSIntErejOejBfj3fiYtS4Z6cwB+gPj+wcb0qJK</latexit>

�
�
3N
�
xk � mk+1

N

��

<latexit sha1_base64="MG7DenSjhG4BYgMqJ6WYWCciiSI=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJdgKnkpSRD0WvHiSCrYW2hA22027dHcTdjdCDfklXjwo4tWf4s1/47bNQVsfDDzem2FmXpgwqrTrflultfWNza3ydmVnd2+/ah8cdlWcSkw6OGax7IVIEUYF6WiqGeklkiAeMvIQTq5n/sMjkYrG4l5PE+JzNBI0ohhpIwV2tT6IJMIZDyZ5dpvXA7vmNtw5nFXiFaQGBdqB/TUYxjjlRGjMkFJ9z020nyGpKWYkrwxSRRKEJ2hE+oYKxInys/nhuXNqlKETxdKU0M5c/T2RIa7UlIemkyM9VsveTPzP66c6uvIzKpJUE4EXi6KUOTp2Zik4QyoJ1mxqCMKSmlsdPEYmCG2yqpgQvOWXV0m32fAuGud3zVqrWcRRhmM4gTPw4BJacANt6ACGFJ7hFd6sJ+vFerc+Fq0lq5g5gj+wPn8AeOyS7Q==</latexit>

mk

N

<latexit sha1_base64="QvkT9gxajUyjJBNWRusgCPV8VLg=">AAAB+nicbVBNS8NAEJ34WetXqkcvi60gCCUpoh4LXjxJBfsBbSib7aZdutmE3Y1SYn6KFw+KePWXePPfuG1z0NYHA4/3ZpiZ58ecKe0439bK6tr6xmZhq7i9s7u3b5cOWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x9dTv/1ApWKRuNeTmHohHgoWMIK1kfp2qdILJCZp2B+fuVl6m1X6dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNOs2EsUjTEZ4yHtGipwSJWXzk7P0IlRBiiIpCmh0Uz9PZHiUKlJ6JvOEOuRWvSm4n9eN9HBlZcyESeaCjJfFCQc6QhNc0ADJinRfGIIJpKZWxEZYROFNmkVTQju4svLpFWruhfV87tauV7L4yjAERzDKbhwCXW4gQY0gcAjPMMrvFlP1ov1bn3MW1esfOYQ/sD6/AFYPpNd</latexit>

mk+1
N

<latexit sha1_base64="t0ktKVApFMpBhd7rceBVLcVnGpg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsN+3SzSbsTsRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhP9EFLDpVDcR4GSP6Sa0ziUvB2ObmZ++5FrIxJ1j+OUBzEdKBEJRtFKfvWpN6r2yhW35s5BVomXkwrkaPbKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0qrXvMvaxV290qjncRThBE7hHDy4ggbcQhN8YCDgGV7hzVHOi/PufCxaC04+cwx/4Hz+ABnpji0=</latexit>xk

Figure A.1: Illustration of the construction of ζm on the k-th coordinate.

We also observe

supp(ζm) =

{
x :
∣∣∣xk −

mk

N

∣∣∣ ≤ 2

3N
, k = 1, . . . , d

}
⊂
{
x :
∣∣∣xk −

mk

N

∣∣∣ ≤ 1

N
, k = 1, . . . , d

}
.

We use the slightly enlarged support set of length 2/N to simplify the constant computation.

127

Now we construct a Taylor polynomial of degree s for approximating fϕ
i at m

N
:

Pm(x) =
∑

|s|≤s

Dsfϕ
i

s!

∣∣∣∣
x=m

N

(
x− m

N

)s
.

Define f̄i =
∑

m∈{0,...,N}d ζmPm. We bound the approximation error
∥∥∥f̄i − fϕ

i

∥∥∥
∞

:

max
x∈[0,1]d

∣∣∣f̄i(x)− fϕ
i (x)

∣∣∣ = max
x

∣∣∣∣∣
∑

m

ϕm(x)(Pm(x)− fϕ
i (x))

∣∣∣∣∣

≤ max
x

∑

m:|xk−
mk
N |≤ 1

N

∣∣∣Pm(x)− fϕ
i (x)

∣∣∣

≤ max
x

2d max
m:|xk−

mk
N |≤ 1

N

∣∣∣Pm(x)− fϕ
i (x)

∣∣∣

(i)

≤ max
x

2dds

s!

(
1

N

)s

max
|s|=s

∣∣∣Dsfϕ
i

∣∣
m
N

−Dsfϕ
i

∣∣
y

∣∣∣
(ii)

≤ max
x

2dds

s!

(
1

N

)s

2s+1
√
dµiλi(2r)

1−α
∥∥∥m
N

− x
∥∥∥
α

2

≤
√
dµiλi(2r)

1−α2
d+s+1ds+α/2

s!

(
1

N

)s+α

.

Here y is the linear interpolation of m
N

and x, determined by the Taylor remainder, and

inequality (i) follows from the Taylor expansion of fϕ
i around m/N . Note that only s-

th order derivative remains in step (i) and there are at most ds terms. Inequality (ii) is

obtained by the Hölder continuity in the inequality (Eq. A.5).

By setting
√
dµiλi(2r)

1−α2
d+s+1ds+α/2

s!

(
1

N

)s+α

≤ δ

2
,

we getN ≥
(√

dµiλi(2r)
1−α2d+s+2ds+α/2

δs!

) 1
s+α

. Accordingly, the approximation error is bounded

by ∥f̄i − fϕ
i ∥∞ ≤ δ

2
.

Step 2. We next implement f̃i by a ReLU network that approximates f̄i up to an error

128

δ
2
. We denote

Pm(x) =
∑

|s|≤s

am,s

(
x− m

N

)s
,

where am,s =
Dsfϕ

i

s!

∣∣∣∣
x=m

N

. Then we rewrite f̄i as

f̄i(x) =
∑

m∈{0,...,N}d

∑

|s|≤s

am,sζm(x)
(
x− m

N

)s
. (A.6)

Note that (Eq. A.6) is a linear combination of products ζm
(
x− m

N

)s. Each product in-

volves at most d + n univariate terms: d terms for ζm and n terms for
(
x− m

N

)s. We

recursively apply Corollary 3.1 to implement the product. Specifically, let ×̂ϵ be the ap-

proximation of the product operator in Corollary 3.1 with error ϵ, which will be chosen

later. Consider the following chain application of ×̂ϵ:

f̃m,s(x) = ×̂ϵ

(
ψ(3Nx1 − 3m1), ×̂ϵ

(
. . . , ×̂ϵ

(
ψ(3Ndxd −md), ×̂ϵ

(
x1 −

m1

N
, . . .

))))
.

Now we estimate the error of the above approximation. Note that we have |ψ(3Nxk −

3mk)| ≤ 1 and
∣∣xk − mk

N

∣∣ ≤ 1 for all k ∈ {1, . . . , d} and x ∈ [0, 1]d. We then have

∣∣∣f̃m,s(x)− ζm

(
x− m

N

)s∣∣∣

=

∣∣∣∣×̂ϵ

(
ψ(3Nx1 − 3m1), ×̂ϵ

(
. . . , ×̂ϵ(x1 −

m1

N
, . . .)

))
− ζm

(
x− m

N

)s ∣∣∣∣

≤
∣∣×̂ϵ

(
ψ(3Nx1 − 3m1), ×̂ϵ(ψ(3Nx2 − 3m2), . . .)

)

− ψ(3N1 − 3m1)×̂ϵ(ψ(3Nx2 − 3m2), . . .)
∣∣

+ |ψ(3Nx1 −m1)|
∣∣×̂ϵ(ψ(3Nx2 − 3m2), . . .)− ψ(3Nx2 − 3m2)×̂ϵ(. . .)

∣∣

+ . . .

≤ (s+ d)ϵ.

129

Moreover, we have f̃m,s(x) = ζm
(
x− m

N

)s
= 0, if x ̸∈ supp(ζm). Now we define

f̃i =
∑

m∈{0,...,N}d

∑

|s|≤s

am,sf̃m,s.

The approximation error is bounded by

max
x

∣∣∣f̃i(x)− f̄i(x)
∣∣∣ =

∣∣∣∣∣∣
∑

m∈{0,...,N}d

∑

|s|≤n

am,s

(
f̃m,n(x)− ζm

(
x− m

N

)s)
∣∣∣∣∣∣

≤ max
x

λiµi2
d+s+1 max

m:x∈supp(ζm)

∑

|s|≤s

∣∣∣f̃m,s(x)− ζm

(
x− m

N

)s∣∣∣

≤ λiµi2
d+s+1ds(d+ s)ϵ.

We choose ϵ = δ
λiµi2d+s+2ds(d+s)

, so that ∥f̄i − f̃i∥∞ ≤ δ
2
. Thus, we eventually have

∥f̃i − fϕ
i ∥∞ ≤ δ. Now we compute the depth and computational units for implement

f̃i. f̃i can be implemented by a collection of parallel sub-networks that compute each

f̃m,s. The total number of parallel sub-networks is bounded by ds(N + 1)d. For each sub-

network, we observe that ψ can be exactly implemented by a single layer ReLU network,

i.e., ψ(x) = ReLU(x+ 2)− ReLU(x+ 1)− ReLU(x− 1) + ReLU(x− 2). Corollary 3.1

shows that ×̂ϵ can be implemented by a depth c1 log 1
ϵ

ReLU network. Therefore, the whole

network for implementing f̃i has no more than c′1
(
log 1

ϵ
+ 1
)

layers with width bounded

by O(ds(N + 1)d) and c′1d
s(N + 1)d

(
log 1

ϵ
+ 1
)

neurons and weight parameters. With

ϵ = δ
λiµi2d+s+2ds(d+s)

and N =
⌈(µiλi(2r)

1−α2d+s+2ds+α/2

δs!

) 1
s+α

⌉
, we obtain that the whole

network has no more than L = c1 log
1
δ

layers, with width bounded by p = c2δ
− d

s+α , and

at most K = c2δ
− d

s+α

(
log 1

δ
+ 1
)

neurons and weight parameters, for constants c1, c2, c3

depending on d, s, τ , and upper bound of derivatives of fi ◦ϕ−1
i , up to order s. Lastly, from

(Eq. A.6), we see each parameter has a range bounded by the upper bound of derivatives of

fi ◦ ϕ−1
i up to order s – scales as

√
d as in (Eq. A.5).

130

A.2.4 Proof of Lemma 3.4

Proof. We expand the estimation error as

∥∥∥f̂ − f
∥∥∥
∞

=

∥∥∥∥∥
CM∑

i=1

×̂(f̂i, 1̂∆ ◦ d̂2i)− f

∥∥∥∥∥
∞

=

∥∥∥∥∥
CM∑

i=1

×̂(f̂i, 1̂∆ ◦ d̂2i)− fρi1(x ∈ Ui)

∥∥∥∥∥
∞

≤
CM∑

i=1

∥∥∥×̂(f̂i, 1̂∆ ◦ d̂2i)− fi1(x ∈ Ui)
∥∥∥
∞

≤
CM∑

i=1

∥∥∥×̂(f̂i, 1̂∆ ◦ d̂2i)− f̂i · (1̂∆ ◦ d̂2i) + f̂i · (1̂∆ ◦ d̂2i)− fi · (1̂∆ ◦ d̂2i)

+ fi · (1̂∆ ◦ d̂2i)− fi · 1(x ∈ Ui)
∥∥∥
∞

≤
CM∑

i=1

∥∥∥×̂(f̂i, 1̂∆ ◦ d̂2i)− f̂i × (1̂∆ ◦ d̂2i)
∥∥∥
∞︸ ︷︷ ︸

Ai,1

+
∥∥∥f̂i × (1̂∆ ◦ d̂2i)− fi × (1̂∆ ◦ d̂2i)

∥∥∥
∞︸ ︷︷ ︸

Ai,2

+
∥∥∥fi × (1̂∆ ◦ d̂2i)− fi × 1(x ∈ Ui)

∥∥∥
∞︸ ︷︷ ︸

Ai,3

.

The first two terms Ai,1, Ai,2 are straightforward to handle, since by the construction we

have

Ai,1 =
∥∥∥×̂(f̂i, 1̂∆ ◦ d̂2i)− f̂i · (1̂∆ ◦ d̂2i)

∥∥∥
∞

≤ η, and

Ai,2 =
∥∥∥f̂i × (1̂∆ ◦ d̂2i)− fi · (1̂∆ ◦ d̂2i)

∥∥∥
∞

≤
∥∥∥f̂i − fi

∥∥∥
∞

∥∥∥1̂∆ ◦ d̂2i
∥∥∥
∞

≤ δ.

By Lemma A.1, we have maxx∈Ki
|fi(x)| ≤ c(π+1)

r(1−r/τ)
∆ for a constant c depending on fi.

Then we bound Ai,3 as

Ai,3 =
∥∥∥fi × (1̂∆ ◦ d̂2i)− fi × 1(x ∈ Ui)

∥∥∥
∞

≤ max
x∈Ki

|fi(x)| ≤
c(π + 1)

r(1− r/τ)
∆.

131

A.2.5 Helper Lemma for Bounding Ai,3 and Its Proof

Lemma A.1. For any i = 1, . . . , CM, denote

Ki = {x ∈ M : r2 −∆ ≤ ∥x− ci∥22 ≤ r2}.

Then there exists a constant c depending on the upper bounds of the first derivatives of the

partition of unity ρi’s and coordinate system ϕi’s such that

max
x∈Ki

|fi(x)| ≤
c(π + 1)

r(1− r/τ)
∆.

Proof. We extend fi◦ϕ−1
i to the whole cube [0, 1]d as in the proof of Theorem Theorem 3.3.

We also have fi(x) = 0 for ∥x− ci∥2 = r. By the first order Taylor expansion, for any

x,y ∈ Ui, we have

|fi(x)− fi(y)| =
∣∣fi ◦ ϕ−1

i (ϕi(x))− fi ◦ ϕ−1
i (ϕi(y))

∣∣

≤
∥∥∇(fi ◦ ϕ−1

i)(z)
∥∥
2
∥ϕi(x)− ϕi(y)∥2

≤
∥∥∇(fi ◦ ϕ−1

i)(z)
∥∥
2
bi ∥Vi∥2 ∥x− y∥2 ,

where z is a linear interpolation of ϕi(x) and ϕi(y) satisfying the mean value theorem.

Since fi◦ϕ−1
i isCs in [0, 1]d, the first derivative is uniformly bounded, i.e.,

∥∥∇fi ◦ ϕ−1
i (z)

∥∥
2
≤

αi for any z ∈ [0, 1]d. Let y ∈ Ui satisfying fi(y) = 0. In order to bound the function

value for any x ∈ Ki, we only need to bound the Euclidean distance between x and y.

More specifically, for any x ∈ Ki, we need to show that there exists y ∈ Ui satisfying

fi(y) = 0, such that ∥x− y∥2 is sufficiently small.

Before continuing with the proof, we introduce some notations. Let γ(t) be a geodesic

on M parameterized by the arc length. In the following context, we use γ̇ and γ̈ to denote

132

the first and second derivatives of γ with respect to t. By the definition of geodesic, we

have ∥γ̇(t)∥2 = 1 (unit speed) and γ̈(t) ⊥ γ̇(t).

Without loss of generality, we shift ci to 0. We consider a geodesic starting from x with

initial “velocity” γ̇(0) = v in the tangent space of M at x. To utilize polar coordinate, we

define two auxiliary quantities: ℓ(t) = ∥γ(t)∥2 and θ(t) = arccos γ(t)⊤γ̇(t)
∥γ(t)∥2

∈ [0, π]. As can

be seen in Figure Figure A.2, ℓ and θ have clear geometrical interpretations: ℓ is the radial

distance from the center ci, and θ is the angle between the velocity and γ(t).

ci
<latexit sha1_base64="KamUmlzpOAAMpq5bo1PKbKGaNcU=">AAACB3icbVDLSsNAFL2pr1pfVZduBovgqiRVsMuCG5cV7AOaUCaTSTt0MgkzE6GEfoA/4Fb/wJ249TP8Ab/DSZqFth4YOJxz79zD8RPOlLbtL6uysbm1vVPdre3tHxwe1Y9P+ipOJaE9EvNYDn2sKGeC9jTTnA4TSXHkczrwZ7e5P3ikUrFYPOh5Qr0ITwQLGcHaSK4bYT31w4wsxmxcb9hNuwBaJ05JGlCiO65/u0FM0ogKTThWauTYifYyLDUjnC5qbqpogskMT+jIUIEjqrysyLxAF0YJUBhL84RGhfp7I8ORUvPIN5N5RrXq5eK/XqDyD1eu67DtZUwkqaaCLI+HKUc6RnkpKGCSEs3nhmAimcmPyBRLTLSprmaKcVZrWCf9VtO5arburxuddllRFc7gHC7BgRvowB10oQcEEniGF3i1nqw36936WI5WrHLnFP7A+vwB8tOaWg==</latexit>

x
<latexit sha1_base64="SRl7GnPpXhXST9rQC7XJ9WdvmDg=">AAACBXicbVDLSsNAFL2pr1pfVZduBovgqiRVsMuCG5cV7APbUCaTSTt0MgkzE7GErv0Bt/oH7sSt3+EP+B1O0iy09cDA4Zx75x6OF3OmtG1/WaW19Y3NrfJ2ZWd3b/+genjUVVEiCe2QiEey72FFORO0o5nmtB9LikOP0543vc783gOVikXiTs9i6oZ4LFjACNZGuh+GWE+8IH2cj6o1u27nQKvEKUgNCrRH1e+hH5EkpEITjpUaOHas3RRLzQin88owUTTGZIrHdGCowCFVbponnqMzo/goiKR5QqNc/b2R4lCpWeiZySyhWvYy8V/PV9mHS9d10HRTJuJEU0EWx4OEIx2hrBLkM0mJ5jNDMJHM5EdkgiUm2hRXMcU4yzWskm6j7lzUG7eXtVazqKgMJ3AK5+DAFbTgBtrQAQICnuEFXq0n6816tz4WoyWr2DmGP7A+fwCCypmT</latexit>

y
<latexit sha1_base64="wuTK6wRB5HjPTrVohu+9hGMAcfY=">AAACBXicbVDLSsNAFL2pr1pfVZduBovgqiS1YJcFNy4r2Ae2oUwmk3boZBJmJkIIXfsDbvUP3Ilbv8Mf8DuctFlo64GBwzn3zj0cL+ZMadv+skobm1vbO+Xdyt7+weFR9fikp6JEEtolEY/kwMOKciZoVzPN6SCWFIcep31vdpP7/UcqFYvEvU5j6oZ4IljACNZGehiFWE+9IEvn42rNrtsLoHXiFKQGBTrj6vfIj0gSUqEJx0oNHTvWboalZoTTeWWUKBpjMsMTOjRU4JAqN1sknqMLo/goiKR5QqOF+nsjw6FSaeiZyTyhWvVy8V/PV/mHK9d10HIzJuJEU0GWx4OEIx2hvBLkM0mJ5qkhmEhm8iMyxRITbYqrmGKc1RrWSa9Rd67qjbtmrd0qKirDGZzDJThwDW24hQ50gYCAZ3iBV+vJerPerY/laMkqdk7hD6zPH4RjmZQ=</latexit>

�(t)
<latexit sha1_base64="Szqth62rUyn1jeubuKXYPXh1SkU=">AAACBHicbVDLTgIxFL2DL8QX6tJNIzHBDZlBE1mSuHGJiYAGJqRTOtDQdiZtx4RM2PoDbvUP3Bm3/oc/4HfYgVkoeJKbnJxzXzlBzJk2rvvlFNbWNza3itulnd29/YPy4VFHR4kitE0iHqn7AGvKmaRtwwyn97GiWAScdoPJdeZ3H6nSLJJ3ZhpTX+CRZCEj2FjpoT/CQuCqOR+UK27NnQOtEi8nFcjRGpS/+8OIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10/vAMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXiv95QZwuXrpuw4adMxomhkiyOhwlHJkJZImjIFCWGTy3BRDH7PyJjrDAxNreSDcZbjmGVdOo176JWv72sNBt5REU4gVOoggdX0IQbaEEbCAh4hhd4dZ6cN+fd+Vi0Fpx85hj+wPn8AZe0mG8=</latexit>

`(t)
<latexit sha1_base64="lsLN4nrfHXemYZOEAbnu/H09rQY=">AAACAnicbVC7SgNBFL0bXzG+opY2g0GITdiNgikDNpYRzAOSJczO3k2GzD6YmRVCSOcP2Oof2ImtP+IP+B3OJlto4oELh3Pui+Mlgitt219WYWNza3unuFva2z84PCofn3RUnEqGbRaLWPY8qlDwCNuaa4G9RCINPYFdb3Kb+d1HlIrH0YOeJuiGdBTxgDOqjdQdoBBVfTksV+yavQBZJ05OKpCjNSx/D/yYpSFGmgmqVN+xE+3OqNScCZyXBqnChLIJHWHf0IiGqNzZ4t05uTCKT4JYmoo0Wai/J2Y0VGoaeqYzpHqsVr1M/NfzVbZw5boOGu6MR0mqMWLL40EqiI5JlgfxuUSmxdQQyiQ3/xM2ppIybVIrmWCc1RjWSadec65q9fvrSrORR1SEMziHKjhwA024gxa0gcEEnuEFXq0n6816tz6WrQUrnzmFP7A+fwAMMZeV</latexit>

�̇(t)
<latexit sha1_base64="ryt9nYc0+rCuTWiJJj1UezMFWCw=">AAACDHicbVDLSsNAFJ34rPXRqEs3g0Wom5JUwS4LblxWsA9oQ5lMJu3QmSTM3Agl9Bf8Abf6B+7Erf/gD/gdTtostPXAhcM598XxE8E1OM6XtbG5tb2zW9or7x8cHlXs45OujlNFWYfGIlZ9n2gmeMQ6wEGwfqIYkb5gPX96m/u9R6Y0j6MHmCXMk2Qc8ZBTAkYa2ZVhEEM2HBMpybwGlyO76tSdBfA6cQtSRQXaI/vbbKCpZBFQQbQeuE4CXkYUcCrYvDxMNUsInZIxGxgaEcm0ly0en+MLowQ4jJWpCPBC/T2REan1TPqmUxKY6FUvF//1Ap0vXLkOYdPLeJSkwCK6PB6mAkOM82RwwBWjIGaGEKq4+R/TCVGEgsmvbIJxV2NYJ91G3b2qN+6vq61mEVEJnaFzVEMuukEtdIfaqIMoStEzekGv1pP1Zr1bH8vWDauYOUV/YH3+ADR1m3c=</latexit>

✓(t)
<latexit sha1_base64="IMzOhk8YSXLp/KDA5NVxEY3OvHk=">AAACBHicbVDLTgIxFO3gC/GFunTTSExwQ2bQRJYkblxiIqCBCemUDjS0nUl7x4RM2PoDbvUP3Bm3/oc/4HfYgVkoeJKbnJxzXzlBLLgB1/1yCmvrG5tbxe3Szu7e/kH58KhjokRT1qaRiPR9QAwTXLE2cBDsPtaMyECwbjC5zvzuI9OGR+oOpjHzJRkpHnJKwEoPfRgzIFU4H5Qrbs2dA68SLycVlKM1KH/3hxFNJFNABTGm57kx+CnRwKlgs1I/MSwmdEJGrGepIpIZP50/PMNnVhniMNK2FOC5+nsiJdKYqQxspyQwNsteJv7rDU22cOk6hA0/5SpOgCm6OB4mAkOEs0TwkGtGQUwtIVRz+z+mY6IJBZtbyQbjLcewSjr1mndRq99eVpqNPKIiOkGnqIo8dIWa6Aa1UBtRJNEzekGvzpPz5rw7H4vWgpPPHKM/cD5/ALZ1mII=</latexit>

r
<latexit sha1_base64="cVLdqOIMLzJ5kor4GghebSD0Oik=">AAAB/HicbVDLSsNAFL3xWeur6tLNYBFclaQKdllw47IF+4A2lMnkph06eTAzEUqoP+BW/8CduPVf/AG/w0mbhbYeuHA45744XiK40rb9ZW1sbm3v7Jb2yvsHh0fHlZPTropTybDDYhHLvkcVCh5hR3MtsJ9IpKEnsOdN73K/94hS8Th60LME3ZCOIx5wRrWR2nJUqdo1ewGyTpyCVKFAa1T5HvoxS0OMNBNUqYFjJ9rNqNScCZyXh6nChLIpHePA0IiGqNxs8eicXBrFJ0EsTUWaLNTfExkNlZqFnukMqZ6oVS8X//V8lS9cua6DhpvxKEk1Rmx5PEgF0THJkyA+l8i0mBlCmeTmf8ImVFKmTV5lE4yzGsM66dZrznWt3r6pNhtFRCU4hwu4AgduoQn30IIOMEB4hhd4tZ6sN+vd+li2bljFzBn8gfX5AxYOlW0=</latexit>

p
r2 ��

<latexit sha1_base64="Cg7KzyJpP54mbiO9Md+oZaWRLXY=">AAACEHicbVDLSsNAFJ34rPUV7dLNYBHcWJIq2GVBFy4r2Ac0sUwmk3bo5OHMjVBCf8IfcKt/4E7c+gf+gN/hpM1CWw9cOJxzXxwvEVyBZX0ZK6tr6xubpa3y9s7u3r55cNhRcSopa9NYxLLnEcUEj1gbOAjWSyQjoSdY1xtf5X73kUnF4+gOJglzQzKMeMApAS0NzIqjHiRk8r6Oz7BzzQSQ6cCsWjVrBrxM7IJUUYHWwPx2/JimIYuACqJU37YScDMigVPBpmUnVSwhdEyGrK9pREKm3Gz2/BSfaMXHQSx1RYBn6u+JjIRKTUJPd4YERmrRy8V/PV/lCxeuQ9BwMx4lKbCIzo8HqcAQ4zwd7HPJKIiJJoRKrv/HdEQkoaAzLOtg7MUYlkmnXrPPa/Xbi2qzUURUQkfoGJ0iG12iJrpBLdRGFE3QM3pBr8aT8Wa8Gx/z1hWjmKmgPzA+fwCVc5yz</latexit>

Figure A.2: Illustration of ℓ and θ along a parametric curve γ.

Suppose y = γ(T), we need to upper bound T . Note that ℓ(T)−ℓ(0) ≤ r−
√
r2 −∆ ≤

∆/r. Moreover, observe that the derivative of ℓ is ℓ̇(t) = cos θ(t), since γ has unit speed.

It suffices to find a lower bound on ℓ̇(t) = cos θ(t) so that T ≤ ∆
r inft ℓ̇(t)

.

We immediately have the second derivative of ℓ as ℓ̈(t) = − sin θ(t)θ̇(t). Meanwhile,

using the equation ℓ(t) =
√
γ(t)⊤γ(t), we also have

ℓ̈(t) =

(
γ̈(t)⊤γ(t) + γ̇(t)⊤γ̇(t)

)√
γ(t)⊤γ(t)−

(
γ(t)⊤γ̇(t)

)2
/
√
γ(t)⊤γ(t)

γ(t)⊤γ(t)
. (A.7)

Note that by definition, we have γ̇(t)⊤γ̇(t) = 1 and γ(t)⊤γ̇(t) = cos θ(t)
√
γ(t)⊤γ(t).

Plugging into (Eq. A.7), we can derive

ℓ̈(t) =
1 + γ̈(t)⊤γ(t)− cos2 θ(t)

ℓ(t)
=

sin2 θ(t) + γ̈(t)⊤γ(t)

ℓ(t)
. (A.8)

133

Now we find a lower bound on γ̈(t)⊤γ(t). Specifically, by Cauchy-Schwarz inequality, we

have

γ̈(t)⊤γ(t) ≥ −∥γ̈(t)∥2 ∥γ(t)∥2 |cos∠ (γ̈(t), γ(t))|

≥ − r
τ
|cos∠ (γ̈(t), γ(t))| .

The last inequality follows from ∥γ̈(t)∥2 ≤ 1
τ

[47] and ∥γ(t)∥2 ≤ r. We now need to

bound ∠(γ̈(t), γ(t)), given ∠ (γ(t), γ̇(t)) = θ(t) and γ̈(t) ⊥ γ̇(t). Consider the following

optimization problem,

min a⊤x, (A.9)

subject to x⊤x = 1,

b⊤x = 0.

By assigning a = γ(t)
∥γ(t)∥2

and b = γ̇(t)
∥γ̇(t)∥2

, the optimal objective value is exactly the minimum

of cos∠ (γ̈(t), γ). Additionally, we can find the maximum of cos∠ (γ̈(t), γ) by replacing

the minimization in (Eq. A.9) by maximization. We solve (Eq. A.9) by the Lagrangian

method. More precisely, let

L(x, λ, µ) = −a⊤x+ λ(x⊤x− 1) + µ(b⊤x).

We have the optimal solution x∗ satisfying ∇xL = 0, which implies x∗ = 1
2λ∗ (a−µ∗b) with

µ∗ and λ∗ being the optimal dual variable. By the primal feasibility, we have µ∗ = a⊤b

and λ∗ = −1
2

√
1− (a⊤b)2. Therefore, the optimal objective value is −

√
1− (a⊤b)2.

Similarly, the maximum is
√

1− (a⊤b)2. Note that a⊤b = cos θ(t), we then get

γ̈(t)⊤γ(t) ≥ − r
τ
sin θ(t).

134

Substituting into (Eq. A.8), we have the following lower bound

ℓ̈(t) =
sin θ2(t) + γ̈(t)⊤γ(t)

ℓ(t)
≥ 1

ℓ(t)

(
sin2 θ(t)− r

τ
sin θ(t)

)
.

Now combining with ℓ̈(t) = − sin θ(t)θ̇(t), we can derive

θ̇(t) ≤ − 1

ℓ(t)

(
sin θ(t)− r

τ

)
. (A.10)

Inequality (Eq. A.10) has an important implication: When sin θ(t) > r
τ
, as t increasing,

θ(t) is monotone decreasing until sin θ(t′) = r
τ

for some t′ = t. Thus, we distinguish two

cases depending on the value of θ(0). Indeed, we only need to consider θ(0) ∈ [0, π/2].

The reason behind is that if θ(0) ∈ (π/2, π], we only need to set the initial velocity in the

opposite direction.

Case 1: θ(0) ∈
[
0, arcsin r

τ

]
. We claim that θ(t) ∈

[
0, arcsin r

τ

]
for all t ≤ T . In fact,

suppose there exists some t1 ≤ T such that θ(t1) > arcsin r
τ
. By the continuity of θ, there

exists t0 < t1, such that θ(t0) = arcsin r
τ

and θ(t) ≥ arcsin r
τ

for t ∈ [t0, t1]. This already

gives us a contradiction:

θ(t0) < θ(t1) = θ(t0) +

∫ t1

t0

θ̇(t)dt

︸ ︷︷ ︸
≤0

≤ θ(t0).

Therefore, we have ℓ̇(t) ≥ cos arcsin r
τ
=
√

1− r2

τ2
, and thus T ≤ ∆

r
√

1− r2

τ2

.

Case 2: θ(0) ∈
(
arcsin r

τ
, π/2

]
. It is enough to show that θ(0) can be bounded suffi-

ciently away from π/2. Let γc,x ⊂ M be a geodesic from ci to x. We analogously define

θc,x and ℓc,x as for the geodesic from x to y. Let Tr/2 = sup {t : ℓc,x(t) ≤ r/2−∆/r},

and denote z = γc,x(Tr/2). We must have θc,x(Tr/2) ∈ [0, π/2] and ℓc,x(Tr/2) = r/2−∆/r,

otherwise there exists T ′
r/2 > Tr/2 satisfying ℓc,x(T

′
r/2) ≤ r/2. Denote Tx satisfying

135

x = γc,x(Tx). We bound θc,x(Tx) as follows,

θc,x(Tx) = θc,x(Tr/2) +

∫ Tx

Tr/2

θ̇c,x(t)dt

≤ π

2
−
∫ Tx

Tr/2

1

ℓc,x(t)

(
sin θc,x(t)−

r

τ

)
dt.

If there exists some t ∈ (Tr/2, Tx] such that sin θc,x(t) ≤ r
τ
, by the previous reasoning, we

have sin θc,x(Tx) ≤ r
τ
. Thus, we only need to handle the case when sin θc,x(t) >

r
τ

for all

t ∈ (Tr/2, Tx]. In this case, θc,x(t) is monotone decreasing, hence we further have

θc,x(Tx) ≤
π

2
−
∫ Tx

Tr/2

1

ℓc,x(t)

(
sin θc,x(Tx)−

r

τ

)
dt

≤ π

2
− (Tx − Tr/2)

1

r

(
sin θc,x(Tx)−

r

τ

)

≤ π

2
− 1

2

(
sin θc,x(Tx)−

r

τ

)
.

The last inequality follows from Tx − Tr/2 ≥ r/2. Using the fact, sinx ≥ 2
π
x, we can

derive

θc,x(Tx) ≤
π

2
− 1

2

(
2

π
θc,x(Tx)−

r

τ

)

=⇒ θc,x(Tx) ≤
π

2

(
π + r/τ

π + 1

)
.

We can then set θ(0) = θc,x(Tx), and thus

cos θ(0) ≥ cos

(
π

2

π + r/τ

π + 1

)
= cos

(
π

2

(
1− 1− r/τ

π + 1

))

= sin

(
π

2

1− r/τ

π + 1

)

≥ 1− r/τ

π + 1
.

Therefore, we have T ≤ ∆
r cos θ(0)

≤ π+1
r(1−r/τ)

∆. By the choice of r ≤ τ/4, we immediately

136

have τ√
τ2−r2

< π+1
1−r/τ

. Hence, combining case 1 and case 2, we conclude

T ≤ π + 1

r(1− r/τ)
∆.

Therefore, the function value f(x) on Ki is bounded by αi
π+1

r(1−r/τ)
∆. It suffices to set

c = maxi αibi ∥Vi∥2, and we complete the proof.

A.2.6 Characterization of the Size of the ReLU Network

Proof. We evenly split the error ϵ into 3 parts for Ai,1, Ai,2, and Ai,3, respectively. We pick

η = ϵ
3CM

so that
∑CM

i=1 Ai,1 ≤ ϵ
3
. The same argument yields δ = ϵ

3CM
. Analogously, we

can choose ∆ = r(1−r/τ)ϵ
3c(π+1)CM

. Finally, we pick ν = ∆
16B2D

so that 8B2Dν < ∆.

Now we compute the number of layers, width, the number of neurons and weight pa-

rameters, and the range of each weight parameter in the ReLU network identified by The-

orem 3.1.

1. For the chart determination sub-network, 1̂∆ can be implemented by a ReLU network

with
⌈
log r2

∆

⌉
layers and 2 neurons in each layer. The weight parameters in the net-

work is bounded by O(max{τ 2, 1}). The approximation of the distance function d̂2i

can be implemented by a network of depth O
(
log 1

ν

)
, width bounded by a constant,

and the number of neurons and weight parameters is at most O
(
log 1

ν

)
. Each weight

parameter is bounded by B. Plugging in our choice of ν and ∆, we have the depth

is no greater than c1
(
log 1

ϵ
+ logD

)
with c1 depending on d, f, τ , and the surface

area of M. The number of neurons and weight parameters is also c′1
(
log 1

ϵ
+ logD

)

except for a different constant. Note that there are D parallel networks computing

d̂2i for i = 1, . . . , CM. Hence, the total number of neurons and weight parameters is

c′1CMD
(
log 1

ϵ
+ logD

)
with c′1 depending on d, f, τ , and the surface area of M. As

can be seen, the width of the chart-determination network is bounded by O(CMD),

and the weight parameter is bounded by O(max{1, τ 2, B}).

137

2. For the Taylor polynomial sub-network, ϕi can be implemented by a linear network

with at mostDd weight parameters. To implement each f̂i, we need a ReLU network

of depth c4 log 1
δ
. The number of neurons and weight parameters is c′4δ

− d
s+α log 1

δ
,

and the width is bounded by c′′4δ
− d

s+α . Here c4, c′4, c
′′
4 depend on s, d, τ, fi ◦ ϕ−1

i . In

addition, all the weight parameters are bounded by the upper bound of the derivatives

of fi◦ϕ−1
i up to order s (which scales as

√
d as in Lemma 3.3). Substituting δ = ϵ

3CM
,

we get the depth is c2 log 1
ϵ

and the number of neurons and weight parameters is

c′2ϵ
− d

s+α log 1
ϵ
. There are totally CM parallel f̂i’s, hence the width is further bounded

by c′′2CMϵ−
d

s+α . Meanwhile, the total number of neurons and weight parameters is

c′2CMϵ−
d

s+α log 1
ϵ
. Here constants c′2 and c′′2 depend on d, s, fi◦ϕ−1

i , τ , and the surface

area of M.

3. For the product sub-network, the analysis is similar to the chart determination sub-

network. The depth is O
(
log 1

η

)
, the width is bounded by a constant, he number

of neurons and weight parameters is O
(
log 1

η

)
, and all the weight parameters are

bounded by a constant. The choice of η yields that the depth is c3 log 1
ϵ
, and the

number of neurons and weight parameters is c′3 log
1
ϵ
. There are CM parallel pairs

of outputs from the chart determination and the Taylor polynomial sub-networks.

Hence, the total number of weight parameters is c′3CM log 1
ϵ

with c′3 depending on

d, τ , and the surface area of M.

Combining these 3 sub-networks, and redefining the constants c1, c2, c3 and c4 in the sequel,

we obtain that the depth of the full network is L = c1
(
log 1

ϵ
+ logD

)
for some constant

c1 depending on d, s, τ , and the surface area of M. The depth of the neural network is

bounded by p = c2(ϵ
− d

s+α + D) with c2 depending on d, s, τ , the surface area of M, and

the upper bounds on derivatives of ϕi’s and ρi’s, up to order s. The total number of neurons

and weight parameters is K = c3

(
ϵ−

d
s+α log 1

ϵ
+D log 1

ϵ
+D logD

)
for some constant

c3 depending on d, s, f, τ , and the surface area of M. Lastly, all the weight parameters in

the network is bounded by c4max{1, τ 2, B,
√
d} with c4 depends on the upper bound of

138

derivatives of ρi’s up to order s.

139

APPENDIX B

OMITTED PROOFS IN CHAPTER 4

B.1 Proof of Nonparametric Regression (Theorem 4.1)

This section consists of the detailed proofs, in Appendix B.1.1, Appendix B.1.2 and Ap-

pendix B.1.3, respectively, for upper bounding bias in Lemma 4.1, upper bounding variance

in Lemma 4.2, and upper bounding covering number in Lemma 4.3. Lastly, the statistical

bound in Theorem 4.1 is established in Appendix B.1.4 by choosing a proper approxima-

tion error and covering accuracy via the bias-variance trade-off argument.

B.1.1 Proof of Lemma 4.1

Proof. T1 essentially reflects the bias of estimating f0:

T1 = E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi)− ξi + ξi)
2

]

=
2

n
E

[
n∑

i=1

(f̂n(xi)− f0(xi)− ξi)
2 + 2ξi(f̂n(xi)− f0(xi)− ξi) + ξ2i

]

(i)
=

2

n
E

[
n∑

i=1

(f̂n(xi)− f0(xi)− ξi)
2 + 2ξif̂n(xi)− ξ2i

]

=
2

n
E

[
n∑

i=1

(f̂n(xi)− yi)
2 + 2ξif̂n(xi)− ξ2i

]

=
2

n
E

[
inf

f∈F(R,κ,L,p,K)

n∑

i=1

(f(xi)− yi)
2 + 2ξif̂n(xi)− ξ2i

]

(ii)

≤ 2 inf
f∈F(R,κ,L,p,K)

E

[
1

n

n∑

i=1

(f(xi)− f0(xi)− ξi)
2 − ξ2i

]
+ E

[
4

n

n∑

i=1

ξif̂n(xi)

]

= 2 inf
f∈F(R,κ,L,p,K)

E

[
1

n

n∑

i=1

(f(xi)− f0(xi))
2 − 2ξi(f(xi)− f0(xi))

]
+ E

[
4

n

n∑

i=1

ξif̂n(xi)

]

140

= 2 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x) + E

[
4

n

n∑

i=1

ξif̂n(xi)

]
, (B.1)

where (i) follows from E[ξif0(xi)] = 0 due to the independence between ξi and x, and

(ii) follows from Jensen’s inequality. Now we need to bound E
[
1
n

∑n
i=1 ξif̂n(xi)

]
. We

discretize the class F(R, κ, L, p,K) into F∗(R, κ, L, p,K) = {f ∗
i }

N (δ,F(R,κ,L,p,K),∥·∥∞)
i=1 ,

where N (δ,F(R, κ, L, p,K), ∥·∥∞) denotes the δ-covering number with respect to the ℓ∞

norm. Accordingly, there exists f ∗ such that ∥f ∗ − f̂n∥∞ ≤ δ. Denote ∥f̂n − f0∥2n =

1
n

∑n
i=1(f̂n(xi)− f0(xi))

2. Then we have

E

[
1

n

n∑

i=1

ξif̂n(xi)

]
= E

[
1

n

n∑

i=1

ξi(f̂n(xi)− f ∗(xi) + f ∗(xi)− f0(xi))

]

(i)

≤ E

[
1

n

n∑

i=1

ξi(f
∗(xi)− f0(xi))

]
+ δσ

= E
[∥f ∗ − f0∥n√

n

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n ∥f ∗ − f0∥n

]
+ δσ

(ii)

≤
√
2E

[
∥f̂n − f0∥n + δ√

n

∣∣∣∣
∑n

i=1 ξi(f
∗(xi)− f0(xi))√

n ∥f ∗ − f0∥n

∣∣∣∣

]
+ δσ. (B.2)

Here (i) is obtained by applying Hölder’s inequality to ξi(f̂n(xi) − f ∗(xi)) and invoking

the Jensen’s inequality:

E

[
1

n

n∑

i=1

ξi(f̂n(xi)− f ∗(xi))

]
≤ E

[
1

n

n∑

i=1

|ξi|
∥∥∥f ∗ − f̂n

∥∥∥
∞

]

≤ 1

n

n∑

i=1

E[|ξi|]δ

≤ 1

n

n∑

i=1

√
E[|ξi|2]δ

≤ δσ.

141

Step (ii) holds, since by invoking the inequality 2ab ≤ a2 + b2, we have

∥f ∗ − f0∥n =

√√√√ 1

n

n∑

i=1

(f ∗(xi)− f̂n(xi) + f̂n(xi)− f0(xi))2

≤

√√√√ 2

n

n∑

i=1

(f ∗(xi)− f̂n(xi))2 + (f̂n(xi)− f0(xi))2

≤

√√√√ 2

n

n∑

i=1

[
δ2 + f̂n(xi)− f0(xi))2

]

≤
√
2
∥∥∥f̂n − f0

∥∥∥
n
+
√
2δ.

To bound the expectation term in (Eq. B.2), we first break the dependence between f ∗ and

the samples (xi, yi). In detail, we replace f ∗ by any f ∗
j in the δ-covering, and observe

that
∑n

i=1 ξi(f
∗(xi)−f0(xi))√

n∥f∗−f0∥n
≤ maxj

∑n
i=1 ξi(f

∗
j (xi)−f0(xi))√

n∥f∗
j −f0∥n . For notational simplicity, we denote

zj =
∑n

i=1 ξi(f
∗
j (xi)−f0(xi))√

n∥f∗
j −f0∥n . Applying Cauchy-Schwarz inequality, we cast the expectation

term in (Eq. B.2) as

E

[
∥f̂n − f0∥n + δ√

n

∣∣∣∣
∑n

i=1 ξi(f
∗(xi)− f0(xi))√

n ∥f ∗ − f0∥n

∣∣∣∣

]

≤ E

[
∥f̂n − f0∥n + δ√

n
max

j
|zj|
]

= E

[
∥f̂n − f0∥n√

n
max

j
|zj|+

δ√
n
max

j
|zj|
]

≤ E

[(√
1

n
E
[
∥f̂n − f0∥2n

]
+

δ√
n

)√
E
[
max

j
z2j

]]
. (B.3)

For given x1, . . . ,xn, each term
∑n

i=1 ξi(f
∗
j (xi)−f0(xi))√

n∥f∗
j −f0∥n is sub-guassian with parameter σ. Con-

sequently, the last inequality (Eq. B.3) involves the maximum of a collection of squared

sub-Gaussian random variables z2j . Indeed, z2j is sub-exponential for each j. We can bound

142

it using the moment generating function: For any t > 0, we have

E
[
max

j
z2j | x1, . . . ,xn

]
=

1

t
log exp

(
tE[max

j
z2j | x1, . . . ,xn]

)

(i)

≤ 1

t
logE

[
exp

(
tmax

j
z2j

)
|x1, . . . ,xn

]

≤ 1

t
logE

[∑

j

exp
(
tz2j
)
|x1, . . . ,xn

]

≤ 1

t
logN (δ,F(R, κ, L, p,K), ∥·∥∞)

+
1

t
logE[exp(tz21)|x1, . . . ,xn]. (B.4)

Since z1 is σ2-sub-Gaussian given x1, . . . ,xn, we derive

E[exp(tz21)|x1, . . . ,xn] = 1 +
∞∑

p=1

tpE[z2p1 |x1, . . . ,xn]

p!

= 1 +
∞∑

p=1

[
tp

p!

∫ ∞

0

P(|z1| ≥ u1/2p)du

]

≤ 1 + 2
∞∑

p=1

[
tp

p!

∫ ∞

0

exp

(
−u

1/p

2σ2

)
du

]

= 1 + 2
∞∑

p=1

(2tσ2)p.

Taking t = (3σ2)−1 and substituting into (Eq. B.4), we deduce E
[
maxj z

2
j | x1, . . . ,xn

]
is

bounded by

E
[
max

j
z2j | x1, . . . ,xn

]
≤ 3σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 3σ2 log 5

≤ 3σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 6σ2. (B.5)

143

Combining (Eq. B.5), (Eq. B.3), (Eq. B.2), and substituting back into (Eq. B.1), we obtain

the following implicit error estimation on T1:

T1 = 2E
[
∥f̂n − f0∥2n

]

≤ 2 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x) + 4δσ

+ 4
√
6σ

(√
E
[
∥f̂n − f0∥2n

]
+ δ

)√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
.

We denote v =

√
E
[
∥f̂n − f0∥2n

]
. Then the above implicit bound on T1 implies

v2 ≤ b+ 2av (B.6)

with a =
√
6σ

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
,

b = inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+

(
2
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
+ 2

)
σδ.

Rearranging (Eq. B.6) for a, b > 0, we deduce (v− a)2 ≤ b+ a2. Some manipulation then

yields v2 ≤ 4a2 + 2b, which implies

T1 = 2v2 ≤ 4 inf
f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ 48σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n

+

(
8
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
+ 8

)
σδ.

The proof is complete.

144

B.1.2 Proof of Lemma 4.2

Proof. Recall that we denote ĝ(x) = (f̂n(x)− f0(x))
2. We rewrite T2 as

T2 = E

[∫

M
ĝ(x)dDx(x)−

2

n

n∑

i=1

ĝ(xi)

]

= 2E

[∫

M
ĝ(x)dDx(x)−

1

n

n∑

i=1

ĝ(xi)−
1

2

∫

M
ĝ(x)dDx(x)

]

≤ 2E

[∫

M
ĝ(x)dDx(x)−

1

n

n∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]
.

We lower bound
∫
M ĝ(x)dDx(x) by its second moment:

∫

M
ĝ(x)dDx(x) =

∫

M

(
f̂n(x)− f0(x)

)4
dDx(x)

=

∫

M

(
f̂n(x)− f0(x)

)2
ĝ(x)dDx(x)

≤
∫

M
4R2ĝ(x)dDx(x).

The last inequality follows from
∣∣∣f̂n(x)− f0(x)

∣∣∣ ≤ 2R. Now we cast T2 into

T2 ≤ 2E

[∫

M
ĝ(x)dDx(x)−

1

n

n∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]
. (B.7)

Introducing the second moment allows us to establish a fast convergence of T2. Specifically,

we denote x̄i’s as independent copies of xi’s following the same distribution. We also

denote

G =
{
g(x) = (f(x)− f0(x))

2
∣∣ f ∈ F(R, κ, L, p,K)

}

as the function class induced by F(R, κ, L, p,K). Then we upper bound (Eq. B.7) as

T2 ≤ 2E

[
sup
g∈G

(∫

M
g(x̄)dDx(x̄)−

1

n

n∑

i=1

g(xi)−
1

8R2

∫

M
g2(x)dDx(x)

)]

145

(i)

≤ 2Ex,x̄

[
sup
g∈G

1

n

n∑

i=1

(g(x̄i)− g(xi))−
1

16R2
Ex,x̄[g

2(x̄) + g2(x)]

]
, (B.8)

where (i) follows from Jensen’s inequality and shorthand Ex,x̄[·] denotes the expectation

(double integral
∫
M

∫
M ·dDx(x)dDx(x̄)) with respect to the joint distribution of (x, x̄).

We discretize G with respect to the ℓ∞ norm. The δ-covering number is denoted as

N (δ,G, ∥·∥∞) and the elements in the covering is denoted as G∗ = {g∗i }
N (δ,G,∥·∥∞)
i=1 , that is,

for any g ∈ G, there exists a g∗ satisfying ∥g − g∗∥∞ ≤ δ.

We replace g ∈ G by g∗ ∈ G∗ in bounding T2, which then boils down to deriving

concentration results on a finite concept class. Specifically, for g∗ satisfying ∥g − g∗∥∞ ≤

δ, we have

g(x̄i)− g(xi) = g(x̄i)− g∗(x̄i) + g∗(x̄i)− g∗(xi) + g∗(xi)− g(xi)

≤ g∗(x̄i)− g∗(xi) + 2δ.

We also have

g2(x̄) + g2(x)

=
[
g2(x̄)− (g∗)2(x̄)

]
+
[
(g∗)2(x̄) + (g∗)2(x)

]
−
[
(g∗)2(x)− g2(x)

]

= (g∗)2(x̄) + (g∗)2(x) + (g(x̄)− g∗(x̄))(g(x̄) + g∗(x̄)) + (g∗(x)− g(x))(g∗(x) + g(x))

≥ (g∗)2(x̄) + (g∗)2(x)− |g(x̄)− g∗(x̄)| |g(x̄) + g∗(x̄)| − |g∗(x)− g(x)| |g∗(x) + g(x)|

≥ (g∗)2(x̄) + (g∗)2(x)− 2Rδ − 2Rδ.

Plugging the above two items into (Eq. B.8), we upper bound T2 as

T2 ≤ 2Ex,x̄

[
sup
g∗∈G∗

1

n

n∑

i=1

(g∗(x̄i)− g∗(xi))−
1

16R2
Ex,x̄[(g

∗)2(x̄) + (g∗)2(x)]

]
+

(
4 +

1

2R

)
δ

= 2Ex,x̄

[
max

j

1

n

n∑

i=1

(
g∗j (x̄i)− g∗j (xi)

)
− 1

16R2
Ex,x̄[(g

∗
j)

2(x̄) + (g∗j)
2(x)]

]
+

(
4 +

1

2R

)
δ.

146

Denote hj(i) = g∗j (x̄i) − g∗j (xi). By symmetry, it is straightforward to see E[hj(i)] = 0.

The variance of hj(i) is computed as

Var[hj(i)] = E
[
h2j(i)

]
= E

[(
g∗j (x̄i)− g∗j (xi)

)2] (i)

≤ 2E
[
(g∗j)

2(x̄i) + (g∗j)
2(xi)

]
.

The last inequality (i) utilizes the identity (a− b)2 ≤ 2(a2 + b2). Therefore, we derive the

following upper bound for T2,

T2 ≤ 2E

[
max

j

1

n

n∑

i=1

hj(i)−
1

32R2

1

n

n∑

i=1

Var[hj(i)]

]
+

(
4 +

1

2R

)
δ.

We invoke the moment generating function to bound T2. Note that we have ∥hj∥∞ ≤

(2R)2. Then by Taylor expansion, for 0 < t/n < 3
4R2 and any j, we have

E
[
exp

(
t

n
hj(i)

)]
= E

[
1 +

t

n
hj(i) +

∞∑

k=2

(t/n)khkj (i)

k!

]

≤ E

[
1 +

t

n
hj(i) +

∞∑

k=2

(t/n)kh2j(i)(4R
2)k−2

2× 3k−2

]

= E

[
1 +

t

n
hj(i) +

(t/n)2h2j(i)

2

∞∑

k=2

(t/n)k−2(4R2)k−2

3k−2

]

= E
[
1 +

t

n
hj(i) +

(t/n)2h2j(i)

2

1

1− 4tR2/(3n)

]

= 1 + (t/n)2Var[hj(i)]
1

2− 8tR2/(3n)
(i)

≤ exp

(
Var[hj(i)]

3(t/n)2

6− 8tR2/n

)
. (B.9)

Step (i) follows from the fact 1 + x ≤ exp(x) for x ≥ 0. Given (Eq. B.9), we proceed

to bound T2. To ease the presentation, we temporarily neglect
(
4 + 1

2R

)
δ term and denote

T ′
2 = T2 −

(
4 + 1

2R

)
δ. Then for 0 < t/n < 3

4R2 , we have

exp

(
t
T ′
2

2

)
= exp

(
tE

[
max

j

1

n

n∑

i=1

hj(i)−
1

32R2

1

n

n∑

i=1

Var[hj(i)]

])

147

(i)

≤ E

[
exp

(
tmax

j

1

n

n∑

i=1

hj(i)−
1

32R2

1

n

n∑

i=1

Var[hj(i)]

)]

≤ E

[∑

j

exp

(
t

n

n∑

i=1

hj(i)−
1

32R2

t

n

n∑

i=1

Var[hj(i)]

)]

(ii)

≤ E

[∑

j

exp

(
n∑

i=1

Var[hj(i)]
3(t/n)2

6− 8tR2/n
− 1

32R2

t

n
Var[hj(i)]

)]

= E

[∑

j

exp

(
n∑

i=1

t

n
Var[hj(i)]

(
3t/n

6− 8tR2/n
− 1

32R2

))]
.

Step (i) follows from Jensen’s inequality, and step (ii) invokes (Eq. B.9) for each h(i). We

now choose t so that 3t/n
6−8tR2/n

− 1
32R2 = 0, which yields t = 3n

52R2 <
3n
4R2 . Substituting our

choice of t into exp(tT ′
2/2), we have

t
T ′
2

2
≤ log

∑

j

exp(0) =⇒ T ′
2 ≤

2

t
logN (δ,G, ∥·∥∞) =

104R2

3n
logN (δ,G, ∥·∥∞).

To complete the proof, we relate the covering number of G to that of F(R, κ, L, p,K).

Consider any g1, g2 ∈ G with g1 = (f1 − f0)
2 and g2 = (f2 − f0)

2, respectively, for

f1, f2 ∈ F(R, κ, L, p,K). We can derive

∥g1 − g2∥∞ = sup
x

∣∣(f1(x)− f0(x))
2 − (f2(x)− f0(x))

2
∣∣

= sup
x

|f1(x)− f2(x)| |f1(x) + f2(x)− 2f0(x)|

≤ 4R ∥f1 − f2∥∞ .

The above characterization immediately implies N (δ,G, ∥·∥∞) ≤ N (δ/4R,F(R, κ, L, p,K), ∥·∥∞).

Therefore, we derive the desired upper bound on T2:

T2 ≤
104R2

3n
logN (δ/4R,F(R, κ, L, p,K), ∥·∥∞) +

(
4 +

1

2R

)
δ.

148

B.1.3 Proof of Lemma 4.3

Proof. To construct a covering for F(R, κ, L, p,K), we discretize each weight parame-

ter by a uniform grid with grid size h. Recall we write f ∈ F(R, κ, L, p,K) as f =

WL · ReLU(WL−1 · · ·ReLU(W1x + b1) · · · + bL−1) + bL. Let f, f ′ ∈ F with all the

weight parameters at most h from each other. Denoting the weight matrices in f, f ′ as

WL, . . . ,W1,bL, . . . ,b1 and W ′
L, . . . ,W

′
1,b

′
L, . . . ,b

′
1, respectively, we bound the ℓ∞ dif-

ference ∥f − f ′∥∞ as

∥f − f ′∥∞

=
∥∥WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

− (W ′
L · ReLU(W ′

L−1 · · ·ReLU(W ′
1x+ b′

1) · · ·+ b′
L−1)− b′

L)
∥∥
∞

≤ ∥bL − b′
L∥∞ + ∥WL −W ′

L∥1 ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥∞

+ ∥WL∥1
∥∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1 − (W ′

L−1 · · ·ReLU(W ′
1x+ b′

1) · · ·+ b′
L−1)

∥∥
∞

≤ h+ hp ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥∞

+ κp
∥∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1 − (W ′

L−1 · · ·ReLU(W ′
1x+ b′

1) · · ·+ b′
L−1)

∥∥
∞ .

We derive the following bound on ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥∞:

∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥∞

≤ ∥WL−1(· · ·ReLU(W1x+ b1) · · ·)∥∞ + ∥bL−1∥∞

≤ ∥WL−1∥1 ∥WL−2(· · ·ReLU(W1x+ b1) · · ·) + bL−2∥∞ + κ

≤ κp ∥WL−2(· · ·ReLU(W1x+ b1) · · ·) + bL−2∥∞ + κ

(i)

≤ (κp)L−1B + κ

L−3∑

i=0

(κp)i

≤ (κp)L−1B + κ(κp)L−2,

149

where (i) is obtained by induction and ∥x∥∞ ≤ B. The last inequality holds, since κp > 1.

Substituting back into the bound for ∥f − f ′∥∞, we have

∥f − f ′∥∞

≤ κp
∥∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1 − (W ′

L−1 · · ·ReLU(W ′
1x+ b′

1) · · ·+ b′
L−1)

∥∥
∞

+ h+ hp
[
(κp)L−1B + κ(κp)L−2

]

≤ κp
∥∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1 − (W ′

L−1 · · ·ReLU(W ′
1x+ b′

1) · · ·+ b′
L−1)

∥∥
∞

+ h(pB + 2)(κp)L−1

(i)

≤ (κp)L−1 ∥W1x+ b1 −W ′
1x− b′

1∥∞ + h(L− 1)(pB + 2)(κp)L−1

≤ hL(pB + 2)(κp)L−1,

where (i) is obtained by induction. We choose h satisfying hL(pB + 2)(κp)L−1 = δ.

Then discretizing each parameter uniformly into 2κ/h grid points yields a δ-covering on

F . Note that there are
(
Lp2

K

)
≤ (Lp2)K different choices of K non-zero entries out of Lp2

total weight parameters. Therefore, the covering number is upper bounded by

N (δ,F(R, κ, L, p,K), ∥·∥∞) ≤ (Lp2)K
(
2κ

h

)K

≤
(
2L2(pB + 2)κLpL+1

δ

)K

.

B.1.4 Proof of Bias-variance Trade-off

Proof of Theorem 4.1. We recall the bias and variance decomposition

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]

= E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))
2

]

︸ ︷︷ ︸
T1

150

+ E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
− E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))
2

]

︸ ︷︷ ︸
T2

.

Combining the upper bounds on T1 and T2 in Lemma 4.1 and 4.2, we can derive

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ 4 inf

f∈F(R,κ,L,p,K)

∫

M
(f(x)− f0(x))

2dDx(x)

+ 48σ2 logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n

+ 8
√
6

√
logN (δ,F(R, κ, L, p,K), ∥·∥∞) + 2

n
σδ

+
104R2

3n
logN (δ/4R,F(R, κ, L, p,K), ∥·∥∞)

+

(
4 +

1

2R
+ 8σ

)
δ.

By our choice of F(R, κ, L, p,K), there exists a network class which can yield a function f

satisfying ∥f − f0∥∞ ≤ ϵ for ϵ ∈ (0, 1). We will choose ϵ later for the bias-variance trade-

off. Such a network consists of L = Õ
(
log 1

ϵ

)
layers and K = Õ

((
ϵ−

d
s+α +D

)
log 1

ϵ

)

weight parameters. Invoking the upper bound of the covering number in Lemma 4.3, we

derive

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]

≤ 4ϵ2 +
48σ2

n

(
K log

(
2R2L2(pB + 2)κLpL+1/δ

)
+ 2
)

+ 8
√
6

√
K log (2RL2(pB + 2)κLpL+1/δ)

n
σδ

+
104R2

3n
K log

(
8R2L2(pB + 2)κLpL+1/δ

)

+

(
4 +

1

2R
+ 8σ

)
δ

= Õ

(
ϵ2 +

R2 + σ2

n

(
ϵ−

d
s+α +D

)
log

1

ϵ
log

L2(κp)L+1

δ

+ σδ

√√√√
(
ϵ−

d
s+α +D

)
log 1

ϵ
log L2(κp)L+1

δ

n
+ σδ +

σ2

n

)
. (B.10)

151

Now we choose ϵ to satisfy ϵ2 = 1
n
ϵ−

d
s+α , which gives ϵ = n− s+α

d+2(s+α) . It suffices to pick

δ = 1
n

. Substitute both ϵ and δ into (Eq. B.10), we deduce the desired estimation error

bound

E
[∫

M

(
f̂n(x)− f0(x)

)2
dDx(x)

]

= Õ

(
ϵ2 +

R2 + σ2

n

(
ϵ−

d
s+α +D

)
log

1

ϵ
log

L2(κp)L+1

δ

+ σδ

√√√√
(
ϵ−

d
s+α +D

)
log 1

ϵ
log L2(κp)L+1

δ

n
+ σδ +

σ2

n

)

≤ c(R2 + σ2)

(
n− 2(s+α)

d+2(s+α) +
D

n

)
log3 n,

where constant c depends on depending on logD, d, s, τ , B, the surface area of M, and

the upper bounds of derivatives of the coordinate systems ϕi’s and partition of unity ρi’s,

up to order s.

152

APPENDIX C

OMITTED PROOFS IN CHAPTER 5

C.1 Detailed Proofs in Euclidean Space

In this section, we no longer use bold-faced letters to represent vectors; instead, we use

normal font lower-case letters. We also slightly alter the dimension notation D to lower

case letter d.

C.1.1 Proof of Lemma 5.3

Proof. We introduce the empirical data distribution as an intermediate term for bounding

dHβ((g∗θ)♯ρ, µ). Using the triangle inequality, we derive

dHβ((g∗θ)♯ρ, µ)

≤ dHβ((g∗θ)♯ρ, µ̂n) + dHβ(µ̂n, µ)

= dFNN((g
∗
θ)♯ρ, µ̂n) + dHβ((g∗θ)♯ρ, µ̂n)− dFNN((g

∗
θ)♯ρ, µ̂n)

+ dHβ(µ̂n, µ)

(i)

≤ dFNN((g
∗
θ)♯ρ, µ̂n) + 2 sup

f∈Hβ

inf
fω∈FNN

∥f − fω∥∞ + dHβ(µ̂n, µ), (C.1)

where step (i) is obtained by rewriting dHβ((g∗θ)♯ρ, µ̂n)− dFNN((g
∗
θ)♯ρ, µ̂n) as

dHβ((g∗θ)♯ρ, µ̂n)− dFNN((g
∗
θ)♯ρ, µ̂n)

= sup
f∈Hβ

[
Ex∼(g∗θ)♯ρ

[f(x)]− Ex∼µ̂n [f(x)]
]

− sup
fω∈FNN

[
Ex∼(g∗θ)♯ρ

[fω(x)]− Ex∼µ̂n [fω(x)]
]

= sup
f∈Hβ

inf
fω∈FNN

[
Ex∼(g∗θ)♯ρ

[f(x)]− Ex∼µ̂n [f(x)]
]

153

−
[
Ex∼(g∗θ)♯ρ

[fω(x)]− Ex∼µ̂n [fω(x)]
]

= sup
f∈Hβ

inf
fω∈FNN

Ex∼(g∗θ)♯ρ
[f(x)− fω(x)]− Ex∼µ̂n [f(x)− fω(x)]

≤ sup
f∈Hβ

inf
fω∈FNN

Ex∼(g∗θ)♯ρ
[|f(x)− fω(x)|] + Ex∼µ̂n [|f(x)− fω(x)|]

≤ 2 sup
f∈Hβ

inf
fω∈FNN

∥f − fω∥∞ .

Now we bound dFNN((g
∗
θ)♯ρ, µ̂n) using a similar triangle inequality trick:

dFNN((g
∗
θ)♯ρ, µ̂n) = inf

gθ∈GNN
dFNN((gθ)♯ρ, µ̂n)

≤ inf
gθ∈GNN

dFNN((gθ)♯ρ, µ) + dFNN(µ, µ̂n)

= inf
gθ∈GNN

dFNN((gθ)♯ρ, µ)− dHβ
∞
((gθ)♯ρ, µ)

+ dHβ
∞
((gθ)♯ρ, µ) + dFNN(µ, µ̂n)

≤ 2 sup
f∈Hβ

inf
fω∈FNN

∥f − fω∥∞ + inf
gθ∈GNN

dHβ
∞
((gθ)♯ρ, µ)

+ dFNN(µ, µ̂n),

where the last inequality holds by the identity Hβ
∞ ⊂ Hβ . Substituting the above ingredi-

ents into (Eq. C.1), we have

dHβ((g∗θ)♯ρ, µ) ≤ inf
gθ∈GNN

dHβ
∞
((gθ)♯ρ, µ)

︸ ︷︷ ︸
E1: generator approximation error

+ 4 sup
f∈Hβ

inf
fω∈FNN

∥f − fω∥∞
︸ ︷︷ ︸

E2: discriminator approximation error

+ dHβ(µ̂n, µ) + dFNN(µ, µ̂n)︸ ︷︷ ︸
E3: statistical error

.

The proof is complete.

154

C.1.2 Proof of Lemma 5.4

Proof. Without loss of generality, we assume Z = X = [0, 1]d. Otherwise, we can rescale

the domain to be a subset of [0, 1]d. By Monge map (Lemma 5.1), there exists a mapping

T = [T1, . . . , Td] : Z 7→ X such that T♯ν = µ. Such a mapping is Hölder continuous, i.e.,

each coordinate mapping Ti for i = 1, . . . , d belongs to Hα+1. We approximate each func-

tion Ti using the network architecture identified in Theorem 3.1. Specifically, given approx-

imation error δ ∈ (0, 1). There exists a network architecture with no more than c(log 1
δ
+1)

layers and c′δ−
d

α+1 (log 1
δ
+1) neurons and weight parameters, such that with properly cho-

sen weight parameters, yields an approximation T̂i of Ti satisfying ∥T̂i − Ti∥∞ ≤ δ. Ap-

plying this argument d times, we form an approximation gθ = [T̂1, . . . , T̂d] of T . We show

(gθ)♯ρ satisfies the following IPM bound

dHβ
∞
((gθ)♯ρ, µ)

= dHβ((gθ)♯ρ, T♯ρ)

= sup
f∈Hβ

Ex∼(gθ)♯ρ[f(x)]− Ey∼T♯ρ[f(y)]

= sup
f∈Hβ

Ez∼ρ[f(gθ(z))]− Ez∼ρ[f(T (z))]

≤ Ez∼ρ [∥gθ(z)− T (z)∥∞]

= Ez∼ρ

[∥∥∥[T̂1(z)− T1(z), . . . , T̂d(z)− Td(z)]
⊤
∥∥∥
∞

]

≤ δ.

Therefore, choosing δ = ϵ1 gives rise to dHβ
∞
((gθ)♯ρ, µ) ≤ ϵ1.

C.1.3 Proof of Lemma 5.5

Proof. Using Theorem 3.1 immediately yields a network architecture for uniformly ap-

proximating functions in Hβ(X). Specifically, let the approximation error be ϵ2 > 0.

155

We choose the network architecture FNN consisting of L̄ = O
(
log(1/ϵ2)

)
layers and

K̄ = O
(
ϵ
−d/β
2 log(1/ϵ2)

)
total number of neurons and weight parameters. The maximum

width is p̄ = O
(
ϵ
−d/β
2

)
. Meanwhile, for any function f ∈ Hβ(X), we have ∥f∥Hβ ≤ C.

Threfore, it is enough to choose R̄ = C and κ̄ = C. Accordingly, for any f ∈ Hβ(X),

there exists a function f̂ω given by the network architecture FNN(R̄, κ̄, L̄, p̄, K̄), such that

∥f − f̂ω∥∞ ≤ ϵ2. To this end, we can establish that for any f ∈ Hβ(X), inequality

inffω∈FNN ∥f − fω∥∞ ≤ ϵ2 holds.

C.1.4 Proof of Lemma 5.6

Proof. The proof utilizes the symmetrization technique and Dudley’s entropy integral,

which can be found in empirical process theory [221, 96]. We prove here for complete-

ness. Let y1, . . . , yn be i.i.d. samples from µ, independent of xi’s. By symmetrization, we

derive

E[dF(µ̂n, µ)] = E

[
sup
f∈F

1

n

n∑

i=1

f(xi)− Ey∼µ[f(y)]

]

= E

[
sup
f∈F

1

n

n∑

i=1

f(xi)− E yi∼µ,
i=1,...,n

1

n

n∑

i=1

f(yi)

]

≤ ExEy

[
sup
f∈F

1

n

n∑

i=1

(f(xi)− f(yi))

]

= ExEyEξ

[
sup
f∈F

1

n

n∑

i=1

ξi(f(xi)− f(yi))

]

= 2Ex,ξ

[
sup
f∈F

1

n

n∑

i=1

ξif(xi)

]
,

where ξi’s are i.i.d. Rademacher random variables, i.e., P(ξi = 1) = P(ξi = −1) = 1
2
. The

next step is to discretize the function space F . Let {δi}ki=1 be a decreasing series of real

numbers with δi+1 < δi. We construct a collection of coverings on F under the function ℓ∞

norm with accuracy δi. Denote the δi-covering number as N (δi,F , ∥·∥∞). For a given f ,

denote the closest element (in the ℓ∞ sense) to f in the δi covering as f (i) for i = 1, . . . , k.

156

We expand Ex,ξ

[
supf∈F

1
n

∑n
i=1 ξif(xi)

]
as a telescoping sum as

Ex,ξ

[
sup
f∈F

1

n

n∑

i=1

ξif(xi)

]
≤ E

[
sup
f∈F

1

n

n∑

i=1

ξi(f(xi)− fk(xi))

]

+
k−1∑

j=1

E

[
sup
f∈F

1

n

n∑

i=1

ξi(f
(j+1)(xi)− f (j)(xi))

]

+ E

[
sup
f∈F

1

n

n∑

i=1

ξif
(1)(xi)

]
.

We choose δ1 = diam(F), i.e., the diameter of the class F . Then f (1) can be arbitrar-

ily picked from F . Therefore, the last term E
[
supf∈F

1
n

∑n
i=1 ξif

(1)(xi)
]
= 0 since ξi’s

are symmetric. The first term E
[
supf∈F

1
n

∑n
i=1 ξi(f(xi)− fk(xi))

]
can be bounded by

Cauchy-Schwarz inequality:

E

[
sup
f∈F

1

n

n∑

i=1

ξi(f(xi)− fk(xi))

]

≤ E

sup

f∈F

1

n

√√√√(
n∑

i=1

ξ2i)(
n∑

i=1

(f(xi)− f (k)(xi))2)

≤ δk.

We now bound each term in the telescoping sum

k−1∑

j=1

E

[
sup
f∈F

1

n

n∑

i=1

ξi(f
(j+1)(xi)− f (j)(xi))

]
.

Observe

∥∥f (j+1) − f (j)
∥∥
∞ =

∥∥f (j+1) − f + f − f (j)
∥∥
∞

≤
∥∥f (j+1) − f

∥∥
∞ +

∥∥f − f (j)
∥∥
∞

≤ δj+1 + δj.

157

By Massart’s lemma [222], we have

E

[
sup
f∈F

1

n

n∑

i=1

ξi(f
(j+1)(xi)− f (j)(xi))

]

≤ (δj+1 + δj)
√

2 log(N (δj,F , ∥·∥∞)N (δj+1,F , ∥·∥∞))√
n

≤ 2(δj+1 + δj)
√
logN (δj+1,F , ∥·∥∞)√

n
.

Summing up all the terms indexed by j, we establish

Ex,ξ

[
sup
f∈F

1

n

n∑

i=1

ξif(xi)

]
≤ δk + 2

k−1∑

j=1

(δj+1 + δj)
√

logN (δj+1,F , ∥·∥)√
n

.

It suffices to set δj+1 =
1
2
δj . Invoking the identity δj+1 + δj = 6(δj+1 − δj+2), we derive

Ex,ξ

[
sup
f∈F

1

n

n∑

i=1

ξif(xi)

]
≤ δk + 12

k−1∑

j=1

(δj+1 − δj+2)
√

logN (δj+1,F , ∥·∥∞)√
n

≤ δk +
12√
n

∫ δ2

δk+1

√
logN (ϵ,F , ∥·∥∞)dϵ

≤ inf
δ

2δ +
12√
n

∫ δ1

δ

√
logN (ϵ,F , ∥·∥∞)dϵ.

By the assumption, we pick δ1 = M and set the δ1-covering with only one element f = 0.

This yields the desired result

E [dF(µ̂n, µ)] ≤ 2 inf
0<δ<M

(
2δ +

12√
n

∫ M

δ

√
logN (ϵ,F , ∥·∥∞)dϵ

)
.

158

C.2 Detailed proofs for Low-dimensional Linear Subspace

C.2.1 Proof of Lemma 5.7

Proof. We replicate the error decomposition in (Eq. C.1) by taking β = 1,

W1((U
∗ ◦ g∗θ)♯ρ, µ) ≤ W1((U

∗ ◦ g∗θ)♯ρ, µ̂n) +W1(µ̂n, µ)

= dF ld
NN
((U∗ ◦ g∗θ)♯ρ, µ̂n)

+W1((U
∗ ◦ g∗θ)♯ρ, µ̂n)− dF ld

NN
((U∗ ◦ g∗θ)♯ρ, µ̂n)

+W1(µ̂n, µ).

(C.2)

Using the optimality of (U∗, g∗θ), we further bound dFNN
((U∗ ◦g∗θ)♯ρ, µ̂n) in the last display

as

dFNN
((U∗ ◦ g∗θ)♯ρ, µ̂n)

≤ dF ld
NN
((U∗ ◦ g∗θ)♯ρ, µ) + dF ld

NN
(µ, µ̂n)

= inf
U◦gθ∈Gld

NN

dF ld
NN
((U ◦ gθ)♯ρ, µ) + dF ld

NN
(µ, µ̂n)

(i)
= inf

U◦gθ∈Gld
NN

dF ld
NN
((U ◦ gθ)♯ρ, µ)− dH1

∞((U ◦ gθ)♯ρ, µ)

+ dH1
∞((U ◦ gθ)♯ρ, µ) + dF ld

NN
(µ, µ̂n), (C.3)

where in (i), discriminative class H1
∞ follows the same definition in Lemma 5.3 with β = 1.

By Assumption 5.5 and the optimal transport theory in Lemma 5.1, we rewrite the data

distribution µ as a pushforward distribution µ = (A ◦ T ld)♯ρ, where T ld : Rq 7→ Rq is

an (α + 1)-Hölder continuous transport plan. Accordingly, we rewrite the empirical data

distribution µ̂n as µ̂n = (A ◦ T ld)♯ρ̂n, with ρ̂n an empirical version of ρ. Applying Lemma

Theorem 3.1 and using the same argument in Theorem 5.1 for approximating A ◦ T ld, we

obtain A ◦ g̃θ ∈ G ld
NN as a proper approximation. Note that we have chosen U = A in

159

representing A ◦ T ld for simplicity. Substituting these notations into (Eq. C.3) gives rise to

dFNN
((U∗ ◦ g∗θ)♯ρ, µ̂n)

(i)

≤ dF ld
NN

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
− dH1

∞

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)

+ dH1
∞

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
+ dF ld

NN
(µ, µ̂n)

(ii)

≤ dF ld
NN

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
− dH1

∞

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)

+
∥∥A ◦ g̃θ − A ◦ T ld

∥∥
∞ + dF ld

NN
(µ, µ̂n), (C.4)

where inequality (i) holds by instantiating the infimum in (Eq. C.3) toA◦g̃θ, and inequality

(ii) follows by the definition of IPM over H1
∞ class. We substitute (Eq. C.4) into (Eq. C.2),

which leads to

W1((U
∗ ◦ g∗θ)♯ρ, µ)

≤
∥∥A ◦ g̃θ − A ◦ T ld

∥∥
∞︸ ︷︷ ︸

generator approximation error

+W1(µ̂n, µ) + dF ld
NN
(µ̂n, µ)︸ ︷︷ ︸

statistical error

+W1

(
(U∗ ◦ g∗θ)♯ρ, (A ◦ T ld)♯ρ̂n)

)
− dF ld

NN

(
(U∗ ◦ g∗θ)♯ρ, (A ◦ T ld)♯ρ̂n

)
︸ ︷︷ ︸

discriminator approximation error (HARD)

+ dF ld
NN

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
− dH1

∞

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
︸ ︷︷ ︸

discriminator approximation error (EASY)

. (C.5)

Two disciminator approximation error terms share a similar formulation, and we can further

provide a simplified upper bound on them. Denote ∥f∥Lip as the lipschitz constant of

function f , and consider the (HARD) term for example.

W1

(
(U∗ ◦ g∗θ)♯ρ, (A ◦ T ld)♯ρ̂n)

)
− dF ld

NN

(
(U∗ ◦ g∗θ)♯ρ, (A ◦ T ld)♯ρ̂n

)

= sup
∥f∥Lip≤1

Ez∼ρ [f ◦ U∗ ◦ g∗θ(z)]− Ez∼ρ̂n

[
f ◦ A ◦ T ld(z)

]

− sup
fω◦V ⊤∈F ld

NN

Ez∼ρ

[
fω ◦ V ⊤ ◦ U∗ ◦ g∗θ(z)

]
− Ez∼ρ̂n

[
fω ◦ V ⊤ ◦ A ◦ T ld(z)

]

160

≤ sup
∥f∥Lip≤1

inf
fω◦V ⊤∈F ld

NN

{∣∣Ez∼ρ

[
(f ◦ U∗ − fω ◦ V ⊤ ◦ U∗) ◦ g∗θ(z)

] ∣∣

+
∣∣Ez∼ρ̂n

[
(f ◦ A− fω ◦ V ⊤ ◦ A) ◦ T ld(z)

] ∣∣
}

≤ sup
∥f∥Lip≤1

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ U∗ − fω ◦ V ⊤U∗∥∥
∞ +

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞ . (C.6)

Applying the same argement to the (EASY) error term yields

dF ld
NN

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)
− dH1

∞

(
(A ◦ g̃θ)♯ρ, (A ◦ T ld)♯ρ

)

≤ 2 sup
∥f∥Lip≤1

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞ . (C.7)

Note that we already used the fact that H1
∞ is a subset of H1. Plugging (Eq. C.6) and

(Eq. C.7) into (Eq. C.5) and taking infimum over g̃θ, we obtain the desired oracle inequality,

W1((U
∗ ◦ g∗θ)♯ρ, µ)

≤ inf
g:A◦g∈Gld

NN

∥∥A ◦ g − A ◦ T ld
∥∥
∞

︸ ︷︷ ︸
generator approximation error

+W1(µ̂n, µ) + dF ld
NN
(µ̂n, µ)︸ ︷︷ ︸

statistical error

+ sup
∥f∥Lip≤1

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ U∗ − fω ◦ V ⊤U∗∥∥
∞ +

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞

︸ ︷︷ ︸
discriminator approximation error (HARD)

+ 2 sup
∥f∥Lip≤1

inf
fω◦V ⊤∈F ld

NN

∥∥f ◦ A− fω ◦ V ⊤A
∥∥
∞

︸ ︷︷ ︸
discriminator approximation error (EASY)

.

The proof is complete.

C.2.2 Proof of Lemma 5.8

Proof. The proof consists of two steps: 1) construction of a piecewise linear function for

approximating 1-Lipschitz functions, which can be implemented by a ReLU neural net-

work; 2) establishing the global Lipschitz continuity of the neural network, in addition to

the L∞ approximation error guarantee.

161

Step 1). Given a positive integerN > 0, we evenly choose (N+1)q points in the hypercube

[0, 1]q, denoted as m/N with m = [m1, . . . ,mq]
⊤ ∈ {0, . . . , N}q. We define a univariate

trapezoid function (see graphical illustration in Figure C.1)

ϕ(a) =

1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

.

Then for any x ∈ [0, 1]q, we define a partition of unity based on a product of trapezoid

functions indexed by m,

ξm(x) =

q∏

k=1

ϕ
(
3N
(
xk −

mk

N

))
.

<latexit sha1_base64="bT7d2xX5qKYuYnH9TjDOmvK1CkU=">AAACHnicbVDLSgMxFM3UV62vqks3wVaoC8tMfS4LblyVCvYBnTJk0kwbmnmQ3BHL0C9x46+4caGI4Er/xrSdhbYeCPdwzr3c3ONGgiswzW8js7S8srqWXc9tbG5t7+R395oqjCVlDRqKULZdopjgAWsAB8HakWTEdwVrucPrid+6Z1LxMLiDUcS6PukH3OOUgJac/HnRjgbcFsyD0mltVh+cIT7BticJTXxnOE5qY1vy/gCO01J08gWzbE6BF4mVkgJKUXfyn3YvpLHPAqCCKNWxzAi6CZHAqWDjnB0rFhE6JH3W0TQgPlPdZHreGB9ppYe9UOoXAJ6qvycS4is18l3d6RMYqHlvIv7ndWLwrroJD6IYWEBni7xYYAjxJCvc45JRECNNCJVc/xXTAdGxgE40p0Ow5k9eJM1K2boon91WCtVKGkcWHaBDVEIWukRVdIPqqIEoekTP6BW9GU/Gi/FufMxaM0Y6s4/+wPj6ASaKodo=</latexit>

�
�
3N
�
xk � mk

N

�� <latexit sha1_base64="dDSC/+pwv97CiiK+2/B24V0Xsz4=">AAACIHicbVDLSgMxFM34rPVVdekm2AoVscxUsS4LblyVCvYBnTJk0kwbmnmQ3BHL0E9x46+4caGI7vRrTNtZaOuBcA/n3MvNPW4kuALT/DKWlldW19YzG9nNre2d3dzeflOFsaSsQUMRyrZLFBM8YA3gIFg7koz4rmAtd3g98Vv3TCoeBncwiljXJ/2Ae5wS0JKTqxTsaMBtwTwontdm9cEZ4jNse5LQxHeGp9Y4qY1tyfsDOElLwcnlzZI5BV4kVkryKEXdyX3avZDGPguACqJUxzIj6CZEAqeCjbN2rFhE6JD0WUfTgPhMdZPpgWN8rJUe9kKpXwB4qv6eSIiv1Mh3dadPYKDmvYn4n9eJwbvqJjyIYmABnS3yYoEhxJO0cI9LRkGMNCFUcv1XTAdEBwM606wOwZo/eZE0yyXrsnRxW85Xy2kcGXSIjlARWaiCqugG1VEDUfSIntErejOejBfj3fiYtS4Z6cwB+gPj+wcb0qJK</latexit>

�
�
3N
�
xk � mk+1

N

��

<latexit sha1_base64="MG7DenSjhG4BYgMqJ6WYWCciiSI=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJdgKnkpSRD0WvHiSCrYW2hA22027dHcTdjdCDfklXjwo4tWf4s1/47bNQVsfDDzem2FmXpgwqrTrflultfWNza3ydmVnd2+/ah8cdlWcSkw6OGax7IVIEUYF6WiqGeklkiAeMvIQTq5n/sMjkYrG4l5PE+JzNBI0ohhpIwV2tT6IJMIZDyZ5dpvXA7vmNtw5nFXiFaQGBdqB/TUYxjjlRGjMkFJ9z020nyGpKWYkrwxSRRKEJ2hE+oYKxInys/nhuXNqlKETxdKU0M5c/T2RIa7UlIemkyM9VsveTPzP66c6uvIzKpJUE4EXi6KUOTp2Zik4QyoJ1mxqCMKSmlsdPEYmCG2yqpgQvOWXV0m32fAuGud3zVqrWcRRhmM4gTPw4BJacANt6ACGFJ7hFd6sJ+vFerc+Fq0lq5g5gj+wPn8AeOyS7Q==</latexit>

mk

N

<latexit sha1_base64="QvkT9gxajUyjJBNWRusgCPV8VLg=">AAAB+nicbVBNS8NAEJ34WetXqkcvi60gCCUpoh4LXjxJBfsBbSib7aZdutmE3Y1SYn6KFw+KePWXePPfuG1z0NYHA4/3ZpiZ58ecKe0439bK6tr6xmZhq7i9s7u3b5cOWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x9dTv/1ApWKRuNeTmHohHgoWMIK1kfp2qdILJCZp2B+fuVl6m1X6dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNOs2EsUjTEZ4yHtGipwSJWXzk7P0IlRBiiIpCmh0Uz9PZHiUKlJ6JvOEOuRWvSm4n9eN9HBlZcyESeaCjJfFCQc6QhNc0ADJinRfGIIJpKZWxEZYROFNmkVTQju4svLpFWruhfV87tauV7L4yjAERzDKbhwCXW4gQY0gcAjPMMrvFlP1ov1bn3MW1esfOYQ/sD6/AFYPpNd</latexit>

mk+1
N

<latexit sha1_base64="t0ktKVApFMpBhd7rceBVLcVnGpg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsN+3SzSbsTsRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhP9EFLDpVDcR4GSP6Sa0ziUvB2ObmZ++5FrIxJ1j+OUBzEdKBEJRtFKfvWpN6r2yhW35s5BVomXkwrkaPbKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0qrXvMvaxV290qjncRThBE7hHDy4ggbcQhN8YCDgGV7hzVHOi/PufCxaC04+cwx/4Hz+ABnpji0=</latexit>xk

Figure C.1: Trapezoid function in one dimension.

For any target 1-Lipschitz function f , it is more convenient to write its Lipschitz conti-

nuity with respect to the ℓ∞ norm, i.e.,

|f(x)− f(y)| ≤ ∥x− y∥2 ≤
√
q ∥x− y∥∞ . (C.8)

We now define a collection of piecewise constant functions

Pm(x) = f(m) for m ∈ {0, . . . , N}q.

162

We claim that f̃(x) =
∑

m ξm(x)Pm(x) is an approximation of f , with an approximation

error evaluated as

sup
x∈[0,1]q

∣∣∣f̃(x)− f(x)
∣∣∣ = sup

x∈[0,1]q

∣∣∣∣∣
∑

m

ξm(x) (Pm(x)− f(x))

∣∣∣∣∣

≤ sup
x∈[0,1]q

∑

m:|xk−mk/N |≤ 2
3N

|Pm(x)− f(x)|

= sup
x∈[0,1]q

∑

m:|xk−mk/N |≤ 2
3N

|f(m)− f(x)|

≤ √
q2q+1 1

3N
,

where the last inequality follows from the Lipschitz continuity in (Eq. C.8) and the fact that

there are at most 2q terms in the summation.

We use a ReLU network to implement f̃ . It turns out that we only need to implement the

multiplication operation in ξm. For scalars a, b ∈ [0, 1], we rewrite ab as
(
a+b
2

)2−
(

|a−b|
2

)2
.

We know neural networks can approximate a univariate quadratic function on [0, 1] as

a2 ≈ ĥK(a) = a−
K∑

k=1

1

22k
gk(a), with gk = g ◦ · · · ◦ g︸ ︷︷ ︸

k compositions

, (C.9)

where g(a) = 2ReLU(a)−4ReLU(a−0.5)+2ReLU(a−1). The L∞ approximation error

of ĥK is 2−(2K+2) (A proof can be found in [40, Proposition 2] or [214, Lemma 1]). We

approximate ξm recursively using univariate quadratic functions. Specifically, we construct

ξm(x) ≈ ξ̂m(x) = ×̂
(
ϕ(3N(xq −mq/N)), ×̂ (ϕ(3N(xq−1 −mq−1/N)), . . .)

)
, (C.10)

where ×̂(a, b) = ĥK((a + b)/2) − ĥK(|a − b|/2) for a, b ∈ [0, 1]. Then the network for

approximating f is obtained as

f(x) ≈ f̂(x) =
∑

m

ξ̂m(x)f(m). (C.11)

163

We bound L∞ approximation error of f̂ as

∥∥∥f̂ − f
∥∥∥
∞

≤
∥∥∥f̂ − f̃

∥∥∥
∞
+
∥∥∥f̃ − f

∥∥∥
∞

≤ sup
x∈[0,1]q

∣∣∣∣∣
∑

m

(
ξ̂m(x)− ξm(x)

)
Pm(x)

∣∣∣∣∣+
√
q2q+1 1

3N

≤ ∥f∥∞ sup
x∈[0,1]q

∣∣∣∣∣
∑

m

(
ξ̂m(x)− ξm(x)

)∣∣∣∣∣+
√
q2q+1 1

3N

≤ 2q ∥f∥∞
∥∥∥ξ̂m − ξm

∥∥∥
∞
+
√
q2q+1 1

3N

≤ q2q ∥f∥∞ 2−2K−1 +
√
q2q+1 1

3N
,

where the last inequality follows from recursively decomposing
∥∥∥ξ̂m − ξm

∥∥∥
∞

into q terms

as

∥∥∥ξ̂m − ξm

∥∥∥
∞

≤
∥∥∥×̂
(
ϕ(3N(xq −mq/N)), ×̂ (ϕ(3N(xq−1 −mq−1/N)), . . .)

)

− ϕ(3N(xq −mq/N)) · ×̂ (ϕ(3N(xq−1 −mq−1/N)), . . .)
∥∥∥
∞

+ . . .

+ ϕ(3N(xq −mq/N)) · · ·ϕ(3N(x3 −m3/N))

·
∥∥∥×̂ (ϕ(3N(x2 −m2/N)), ϕ(3N(x1 −m1/N)))

− ϕ(3N(x2 −m2/N))ϕ(3N(x1 −m1/N)
∥∥∥
∞

and observing

|×̂(a, b)− ab| ≤
∣∣∣ĥK((a+ b)/2)− (a+ b)2/4

∣∣∣+
∣∣∣ĥK(|a− b|/2)− (a− b)2/4

∣∣∣

≤ 2 · 2−2K−2 = 2−2K−1

for any a, b ∈ [0, 1].

Step 2). The following lemma establishes the Lipschitz continuity of f̂ with respect to the

164

ℓ∞ norm.

Lemma C.1. Let f̂ be defined in (Eq. C.11). Then for any x, y ∈ [0, 1]q, it holds

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3q

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
∥x− y∥∞ .

The proof is deferred to Appendix C.3. Given Lemma C.1, we choose N =
⌈√

q2q+1

ϵ2

⌉

and K satisfying

2(N ∥f∥∞ + 1) · q2−K+q−11−
(
q2−K

)q

1− q2−K
≤ 1

3
,

which impliesK =
⌈
log

12q3/2(∥f∥∞+1)

ϵ2
+ 2q

⌉
. As a result, we check the L∞ approximation

error of f̂ as

∥∥∥f̂ − f
∥∥∥
∞

≤ q2q ∥f∥∞ 2−2K−1 +
√
q2q+1 1

3N

≤ 1

9q223q+5(∥f∥∞ + 1)
ϵ22 +

1

3
ϵ2

≤ ϵ2.

Meanwhile, with the choice of K and N , Lemma C.1 implies that for any x, y ∈ [0, 1]q, it

holds

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3q

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
∥x− y∥∞

≤ 10q ∥x− y∥∞ .

The remaining step is to characterize the size of the ReLU network for implementing f̂ .

Construction (Eq. C.11) suggests that the network consists of (N + 1)q parallel subnet-

works. In each subnetwork, we need to implement ξ̂m defined in (Eq. C.10), where the

subnetwork architecture consists of K layers and the width is bounded by a constant (since

165

ĥK is realizable by a width-3 network). Putting together all the parallel subnetworks, we

conclude that the whole network architecture consists ofK layers and the width is bounded

by O((N + 1)q). Substituting our choice of N and K into the network size, we obtain

L = O
(
log 1

ϵ2
+ q
)

and p = O(ϵ−q
2). The total number of neurons and nonzero weight

parameters in the network is J = O(Lp).

The last step is to ensure that each weight parameter in f̂ is bounded by a constant. The

only caveat stems from the trapezoid function in ξm, which is rescaled by 3N (see equation

(Eq. C.10)). We use a deep network to implement ϕ(3N(xk − mk

N
)). Consider a basic step

function s(x) = 2ReLU(x)− 2ReLU(x− 1), whose j-th order composition is

sj = s ◦ · · · ◦ s =

0, x < 0

2jx, x ∈ [0, 1/2j−1]

2, x > 1/2j

.

Setting j = ⌈log(3N)⌉ + 1, we observe that sj has a slope of at least 6N . We use sj/2 to

realize the left linear segments in ϕ(3N(xk−mk

N
)). For the right linear segments, we can use

1−sj/2 instead. In this way, we increment the network architecture for implementing f̂ by

a depth of ⌈log(3N)⌉+1 = O (log 1/ϵ2 + q) and a width of 4, while each weight parameter

in the network is bounded by a constant. To summarize the network architecture, we have

L = O (log 1/ϵ2 + q) , p = O
(
ϵ−q
2

)
, J = O

(
ϵ−q
2 (log 1/ϵ2 + q)

)
,

κ = O(1), R =
√
q.

The bound on R is obtained by combining Lipschitz continuity (Eq. C.8) with f(0) = 0.

166

C.2.3 Proof of Lemma 5.9

Proof. Given the choice of generator and discriminator network classes, we show that at a

global optimizer (U∗, g∗θ), it holds

W1 ((U
∗ ◦ g∗θ)♯ρ, µ) ≤

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)

· (γ̄ϵ1 + 3ϵ2). (C.12)

Suppose for the purpose of contradiction, we have

W1 ((U
∗ ◦ g∗θ)♯ρ, µ) >

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)

· (γ̄ϵ1 + 3ϵ2). (C.13)

We will prove that there exists (V, fω) such that

dF ld
NN

((U∗ ◦ g∗θ)♯ρ, µ) ≥ Ez∼ρ

[
fω(V

⊤U∗g∗θ(z))
]
− Ex∼µ[fω(V

⊤x)]

> γ̄ϵ1. (C.14)

On the other hand, by choosing U∗ = A and gθ with
∥∥T ld − gθ

∥∥
∞ ≤ ϵ1/q, we have

dF ld
NN

((U∗ ◦ gθ)♯ρ, µ) ≤ γ̄ϵ1, (C.15)

since discriminator is γ̄-Lipschitz with respect to the L∞ norm. Putting (Eq. C.14) and

(Eq. C.15) together, we conclude that (U∗, g∗θ) cannot be a global optimizer. Therefore,

(Eq. C.12) holds true. It remains to establish (Eq. C.14). Since the discriminator network

can approximate any 1-Lipschitz function by Lemma 5.8, it is convenient to show the fol-

167

lowing sufficient condition for (Eq. C.14),

sup
V

W1

(
(V ⊤U∗ ◦ g∗θ)♯ρ, V ⊤

♯ µ
)
> γ̄ϵ1 + 3ϵ2. (C.16)

In fact, (Eq. C.16) implies that for any δ ∈ (0, ϵ2), there exists a discriminative func-

tion f0 and matrix V0 such that Ez∼ρ[f0(V
⊤
0 U

∗g∗θ(z))] − Ex∼µ[f0(V
⊤
0 x)] > γ̄ϵ1 + 3ϵ2 +

2dF ld
NN
(µ̂n, µ)− δ. By choosing fω as an ϵ2-approximation of f0 and V = V0, we obtain

Ez∼ρ

[
fω(V

⊤
0 U

∗g∗θ(z))
]
− Ex∼µ[fω(V

⊤
0 x)]

= Ez∼ρ

[
fω(V

⊤
0 U

∗g∗θ(z))
]

− Ex∼µ[fω(V
⊤
0 x)]− Ez∼ρ[f0(V

⊤
0 U

∗g∗θ(z))]− Ex∼µ[f0(V
⊤
0 x)]

+ Ez∼ρ[f0(V
⊤
0 U

∗g∗θ(z))]− Ex∼µ[f0(V
⊤
0 x)]

> γ̄ϵ1 + 3ϵ2 − δ − 2 ∥fω − f0∥∞

> γ̄ϵ1,

which establishes (Eq. C.14).

To ease the presentation, we recall that ϵ = γ̄ϵ1 + 3ϵ2. We now consider two comple-

mentary cases for establishing (Eq. C.16),

• (Case 1) 1
q

∣∣tr
(
A⊤U∗)∣∣ < 1− 2

(
mini Ez∼ρ

[
T ld
i (z)

])−2
ϵ2;

• (Case 2) 1
q

∣∣tr
(
A⊤U∗)∣∣ ≥ 1− 2

(
mini Ez∼ρ

[
T ld
i (z)

])−2
ϵ2,

where T ld
i denotes the i-th coordinate mapping. Note that (Case 2) says that the column

spaces of A,U⋆ are nearly identical. We tackle the two cases separately. To further ease

the analysis, we assume without loss of generality that a⊤i u
⋆
i ≥ 0 for i = 1, . . . , q, where

ai and u⋆i are column vectors of A and U⋆, respectively. Otherwise we can replace ai with

−ai and T ld
i with −T ld

i simultaneously. As a result, we may remove the absolute values in

(Case 1) and (Case 2) for simplicity.

168

• (Case 1) We show that there exists an index I such that the corresponding column vectors

aI and u∗I are sufficiently mis-aligned in direction. Specifically, given 1
q
tr
(
A⊤U⋆

)
<

1− 2E−2
z∼ρ

[
mini T

ld
i (z)

]
ϵ2, we expand the expression as

1

q
tr
(
A⊤U⋆

)
=

1

q

q∑

i=1

a⊤i u
⋆
i < 1− 2

(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2.

Since a⊤i u
⋆
i ∈ [0, 1] for i = 1, . . . , q, by the Pigeonhole principle, we deduce that there

exists an index I with

a⊤I u
⋆
I < 1− 2

(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2. (C.17)

Now we prove that the mis-alignment of aI and u∗I already results in a sufficient separa-

tion between the generated distribution and data distribution, in terms of projected Wasser-

stein distance. By definition, we have

W1

((
V ⊤U∗g∗θ

)
♯
ρ, V ⊤

♯ µ
)

= sup
f∈Lip1(Rq)

Ez∼ρ

[
f
(
V ⊤U∗g∗θ(z)

)]
− Ez∼ρ

[
f
(
V ⊤AT ld(z)

)]

= sup
f∈Lip1(Rq)

Ez∼ρ

[
f

(
V ⊤

q∑

i=1

u∗i (g
∗
θ)i(z)

)]
− Ez∼ρ

[
f

(
V ⊤

q∑

i=1

aiT
ld
i (z)

)]
. (C.18)

We choose the projection matrix V to be a rank-1 matrix with only the I-th column nonzero,

i.e.,

V =

[
0d×(I−1),

aI−u⋆
I

∥aI−u⋆
I∥2

, 0d×(q−I)

]
.

We further choose a specific testing function f to derive a lower bound on (Eq. C.18). Let

f(x) = w⊤x be linear with wI = 1 and wi = 0 for i ̸= I . Substituting our choice of V and

169

f into (Eq. C.18), we obtain

W1

((
V ⊤U∗g∗θ

)
♯
ρ, V ⊤

♯ µ
)

≥ Ez∼ρ

[
w⊤V ⊤

q∑

i=1

u∗i (g
∗
θ)i(z)

]
− Ez∼ρ

[
w⊤V ⊤

q∑

i=1

aiT
ld
i (z)

]

=
1− a⊤I u

∗
I

∥aI − u∗I∥2
Ez∼ρ

[
(g∗θ)I(z) + T ld

I (z)
]

=
1

2
∥aI − u∗I∥2 Ez∼ρ

[
(g∗θ)I(z) + T ld

I (z)
]
. (C.19)

Using (Eq. C.17), we lower bound

∥aI − u∗I∥2 =
√

2− 2a⊤I u
∗
I > 2

(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

ϵ.

Substituting into (Eq. C.19), we conclude

W1

((
V ⊤U∗g∗θ

)
♯
ρ, V ⊤

♯ µ
)
> ϵ ·

(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ[(g
∗
θ)I(z) + T ld

I (z)]

> ϵ.

• (Case 2) The assertion of (Case 2) translates to several useful spectral norm bounds. We

first observe

∥A− U∗∥22 ≤ ∥A− U∗∥2F = tr
(
(A− U∗)⊤(A− U∗)

)

= tr
(
2I − A⊤U∗ − (U∗)⊤A

)

≤ 4q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2. (C.20)

Taking square root on both sides of (Eq. C.20), we have ∥A− U∗∥2 ≤ 2
√
q
(
mini Ez∼ρ

[
T ld
i (z)

])−1
ϵ.

In addition, since A has orthonormal columns, we have

∥∥I − A⊤
0 A⋆

∥∥
2
=
∥∥A⊤

0 (A0 − A⋆)
∥∥
2
≤ ∥A0∥2 ∥A0 − A⋆∥2

170

≤ 2
√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

ϵ. (C.21)

We use a similar proof strategy as in (Case 1) by choosing a specific projection matrix

V = A, and evaluate the Wasserstein distance

W1

((
V ⊤U∗g∗θ

)
♯
ρ, V ⊤

♯ µ
)

= sup
f∈Lip1(Rq)

Ez∼ρ

[
f(T ld(z))

]
− Ez∼ρ

[
f(A⊤U∗g∗θ(z))

]

= sup
f∈Lip1(Rq)

Ez∼ρ

[
f(T ld(z))

]
− Ez∼ρ [f(g

∗
θ(z))]

+ Ez∼ρ [f(g
∗
θ(z))]− Ez∼ρ

[
f(A⊤U∗g∗θ(z))

]

≥ sup
f∈Lip1(Rq)

Ez∼ρ

[
f(T ld(z))

]
− Ez∼ρ [f(g

∗
θ(z))]− Ez∼ρ

[∥∥(I − A⊤U∗)g∗θ(z)
∥∥
2

]

≥ sup
f∈Lip1(Rq)

Ez∼ρ

[
f(T ld(z))

]
− Ez∼ρ [f(g

∗
θ(z))]−

∥∥I − A⊤U∗∥∥
2
Ez∼ρ [∥g∗θ(z)∥2]

= W1(T
ld
♯ ρ, (g

∗
θ)♯ρ)︸ ︷︷ ︸

(♠)

−
∥∥I − A⊤U∗∥∥

2
Ez∼ρ [∥g∗θ(z)∥2]︸ ︷︷ ︸

(♣)

. (C.22)

Invoking inequality (Eq. C.21), (♣) assumes the upper bound

(♣) ≤ 2
√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

E [∥g∗θ(z)∥2] ϵ.

To lower bound (♠), we prove a lower bound on W1

(
(AT ld)♯ρ, (U

∗g∗θ)♯ρ
)
. The triangle

inequality implies

W1

(
(AT ld)♯ρ, (U

∗g∗θ)♯ρ
)
≤ W1

(
(AT ld)♯ρ, (Ag

∗
θ)♯ρ

)
+W1 ((Ag

∗
θ)♯ρ, (U

∗g∗θ)♯ρ) .

We bound the second term in the right-hand side above as

W1 ((Ag
∗
θ)♯ρ, (U

∗g∗θ)♯ρ) = sup
f∈Lip1(Rd)

Ez∼ρ [f (Ag
∗
θ(z))]− Ez∼ρ[f(U

∗g∗θ(z))]

171

(i)

≤ Ez∼ρ [∥Ag∗θ(z)− U∗g∗θ(z)∥2]

≤ ∥A− U∗∥2 Ez∼ρ [∥g∗θ(z)∥2]
(ii)

≤ 2
√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2] ϵ,

where inequality (i) invokes the Lipschitz continuity of f and inequality (ii) invokes

(Eq. C.20). Recall that in (Eq. C.13), we assume

W1

(
(AT ld)♯ρ, (U

∗g∗θ)♯ρ
)
>

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
ϵ.

Thus, we have

W1

(
(U∗T ld)♯ρ, (U

∗g∗θ)♯ρ
)
>

(
1 + 2

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
ϵ,

which implies

(♠) = W1(T
ld
♯ ρ, (g

∗
θ)♯ρ) >

(
1 + 2

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
ϵ.

Combining the bounds of (♠) and (♣) and substituting into (Eq. C.22), we obtain

W1

((
V ⊤U∗g∗θ

)
♯
ρ, V ⊤

♯ µ
)
≥ (♠)− (♣) > ϵ,

which checks (Case 2). Putting (Case 1) and (Case 2) together, we establish inequality

(Eq. C.16). Consequently, (Eq. C.14) holds true and therefore, (Eq. C.12) is valid for a

global optimizer (U∗, g∗θ).

Next, we show given (Eq. C.12), the column space of A and U∗ are approximately

equal. In particular, we show the following bound

1

2q
∥A− U∗∥2F ≤ 2 ·

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)2

172

·
(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2.

Suppose not. We expand the squared Frobenius norm ∥A− U∗∥2F as

1

2q
∥A− U∗∥2F =

1

2q
tr
(
(A− U∗)⊤(A− U∗)

)

=
1

2q
tr
(
2I − A⊤U∗ − (U∗)⊤A

)

= 1− 1

2q
tr
(
A⊤U∗ + (U∗)⊤A

)

= 1− 1

q
tr
(
A⊤U∗) .

From the last display above, we deduce

1

q
tr
(
A⊤U∗) < 1− 2 ·

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)2

·
(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2.

We consider distinguish (U∗ ◦ g∗θ)♯ρ and µ by a linear testing function f(x) = (aI−u∗
I)

⊤

∥aI−u∗
I∥2

x,

where the index I verifies

a⊤I u
∗
I < 1− 2 ·

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)2

·
(
min

i
Ez∼ρ

[
T ld
i (z)

])−2

ϵ2.

Repeating the same argument in (Case 1), we deduce

W1 ((U
∗ ◦ g∗θ)♯ρ, µ) >

(
1 + 4

√
q
(
min

i
Ez∼ρ

[
T ld
i (z)

])−1

Ez∼ρ [∥g∗θ(z)∥2]
)
ϵ,

which contradicts (Eq. C.15). The proof is complete.

173

C.2.4 Proof of Lemma 5.10

Proof. We bound W1(µ̂n, µ) first. Denote ν = A⊤
♯ µ and ν̂n = A⊤

♯ µ̂n. By Assumption 5.4,

we write W1(µ̂n, µ) as

W1(µ̂n, µ) = W1(A♯ν̂n, A♯ν)

= sup
∥f∥Lip≤1

Ex∼A♯ν̂n [f(x)]− Ey∼A♯ν [f(y)]

= sup
∥f∥Lip≤1

Ex∼ν̂n [f(Ax)]− Ey∼ν [f(Ay)]

(i)
= sup

g=f◦A
Ex∼ν̂n [g(x)]− Ey∼ν [g(y)]

≤ W1(ν̂n, ν). (C.23)

where in (i), the composite function g = f ◦ A : Rq 7→ R is Lipschitz continuous, whose

Lipschitz constant is bounded by 1. Applying Lemma 5.6, with the function class being

1-Lipschitz functions on [0, 1]q, we derive

W1(ν̂n, ν) ≤ 4 inf
δ∈(0,√q)

(
δ +

6√
n

∫ √
q

δ

√
logN (τ,H1([0, 1]q), ∥·∥∞)dτ

)

(i)

≤ 4 inf
δ

(
δ +

6√
n

∫ √
q

δ

τ−q/2dτ

)

(ii)

≤ O
(
n−1/q log n

)
, (C.24)

where in (i), we substitute a covering number bound logN (τ,H1([0, 1]q), ∥·∥∞) = O ((1/τ)q),

and in (ii), we take δ = n−1/q and distinguish two cases depending on q:

• (q = 2). Inequality (i) can be simplified as

W1(ν̂n, ν) ≤
4√
n
+

24√
n
log(

√
qn)

= O
(
n−1/q log n

)
.

174

• (q > 2). Inequality (i) can be computed as

W1(ν̂n, ν) ≤ 4n−1/q +
24√
n

1

1− q/2

(
(
√
q)−q/2+1 −

(
n−1/q

)−q/2+1
)

= O
(
n−1/q + n−1/2

)
.

Applying Lemma 5.6 again, with the function class being F ld
NN, we further have

dF ld
NN
(µ̂n, µ) ≤ 4 inf

δ∈(0,√q)

(
δ +

6√
n

∫ √
q

δ

√
logN (τ,F ld

NN, ∥·∥∞)dτ

)

(i)

≤ 4 inf
δ

(
δ +

6√
n

∫ √
q

δ

√
K̄ log

2L̄2(p̄+ 2)(κ̄p̄)L̄+1

τ
dτ

)

(ii)
= O

(
1

n
+

1√
n

√
K̄L̄ log(L̄p̄n)

)
, (C.25)

where in (i), we invoke Lemma 4.3 instantiated to F ld
NN, and in (ii), we set δ = 1

n
.

C.3 Proof of Lemma C.1

Proof. We begin by considering two points x, y ∈ [0, 1]q differing in only one coordinate.

Without loss of generality, we assume x1− y1 ≥ 0, while xj − yj = 0 for j = 2, . . . , q. We

have two base cases:

• (Base case 1) there exists m∗
1 ∈ {0, . . . , N} such that x1, y1 ∈

[
3m∗

1−1

3N
,
3m∗

1+1

3N

]
;

• (Base case 2) there exists m∗
1 ∈ {0, . . . , N} such that x1, y1 ∈

[
3m∗

1−2

3N
,
3m∗

1−1

3N

]
.

In both base cases, x1 and y1 are close enough within distance 2/3N . Later, we will reduce

general positions of x1, y1 ∈ [0, 1] to a collection of base bases. A graphical illustration of

base cases are given in Figure C.2.

In (Base case 1), we have ϕ(3N(x1 − m∗
1/N)) = ϕ(3N(y1 − m∗

1/N)) = 1 and

ϕ(3N(x1 − m1/N)) = ϕ(3N(y1 − m1/N)) = 0 for any m1 ̸= m∗
1. Therefore, the

175

<latexit sha1_base64="7FLtoXICGea9dncwOtcDnR1ys4Y=">AAAB/nicbVDLSgMxFM3UV62vUXHlJtgKIlhmWlGXBTeupIJ9QDuWTJppQ5PMkGSEMgz4K25cKOLW73Dn35i2s9DWAxcO59zLvff4EaNKO863lVtaXlldy68XNja3tnfs3b2mCmOJSQOHLJRtHynCqCANTTUj7UgSxH1GWv7oeuK3HolUNBT3ehwRj6OBoAHFSBupZx+UuoFEOKnynvtweuamSfU2LfXsolN2poCLxM1IEWSo9+yvbj/EMSdCY4aU6rhOpL0ESU0xI2mhGysSITxCA9IxVCBOlJdMz0/hsVH6MAilKaHhVP09kSCu1Jj7ppMjPVTz3kT8z+vEOrjyEiqiWBOBZ4uCmEEdwkkWsE8lwZqNDUFYUnMrxENk4tAmsYIJwZ1/eZE0K2X3onx+VynWKlkceXAIjsAJcMElqIEbUAcNgEECnsEreLOerBfr3fqYteasbGYf/IH1+QMVuZQ7</latexit>

3m⇤
1�1

3N

<latexit sha1_base64="wYCJ7hVGs+P1znIj3gJ+eOQSoBE=">AAAB/nicbVDLSgMxFM3UV62vUXHlJtgKolBmWlGXBTeupIJ9QDuWTJppQ5PMkGSEMgz4K25cKOLW73Dn35i2s9DWAxcO59zLvff4EaNKO863lVtaXlldy68XNja3tnfs3b2mCmOJSQOHLJRtHynCqCANTTUj7UgSxH1GWv7oeuK3HolUNBT3ehwRj6OBoAHFSBupZx+UuoFEOKnynvtweuamSfU2LfXsolN2poCLxM1IEWSo9+yvbj/EMSdCY4aU6rhOpL0ESU0xI2mhGysSITxCA9IxVCBOlJdMz0/hsVH6MAilKaHhVP09kSCu1Jj7ppMjPVTz3kT8z+vEOrjyEiqiWBOBZ4uCmEEdwkkWsE8lwZqNDUFYUnMrxENk4tAmsYIJwZ1/eZE0K2X3onx+VynWKlkceXAIjsAJcMElqIEbUAcNgEECnsEreLOerBfr3fqYteasbGYf/IH1+QMSo5Q5</latexit>

3m⇤
1+1

3N

<latexit sha1_base64="8EpPz9p53EVltKVM+Z8McetZwU8=">AAAB/nicbVDLSsNAFJ3UV62vqLhyE2wFESxJKuqy4MaVVLAPaGOYTCft0JlJmJkIJQT8FTcuFHHrd7jzb5y2WWjrgQuHc+7l3nuCmBKpbPvbKCwtr6yuFddLG5tb2zvm7l5LRolAuIkiGolOACWmhOOmIoriTiwwZAHF7WB0PfHbj1hIEvF7NY6xx+CAk5AgqLTkmweVXiggSmvMdx5Oz9wsrd1mFd8s21V7CmuRODkpgxwN3/zq9SOUMMwVolDKrmPHykuhUARRnJV6icQxRCM4wF1NOWRYeun0/Mw61krfCiOhiytrqv6eSCGTcswC3cmgGsp5byL+53UTFV55KeFxojBHs0VhQi0VWZMsrD4RGCk61gQiQfStFhpCHYfSiZV0CM78y4uk5Vadi+r5nVuuu3kcRXAIjsAJcMAlqIMb0ABNgEAKnsEreDOejBfj3fiYtRaMfGYf/IHx+QMXQ5Q8</latexit>

3m⇤
1�2

3N

<latexit sha1_base64="3vaGJ6B7uHTyoLbthSil0A8DH/M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33qedVeueLW3DnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadVr3mXt4q5eadTzOIpwAqdwDh5cQQNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/AMG4jfM=</latexit>x1
<latexit sha1_base64="ndqzHVLKx/38JyMc03IB/3qu4Gs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmLbQhrLZbtqlm92wuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO7+Z+94kqzaR4NFlCgxiPBYsYwcZKfj0bevVhteY23AXQOvEKUoMC7WH1azCSJI2pMIRjrfuem5ggx8owwumsMkg1TTCZ4jHtWypwTHWQL46doQurjFAklS1h0EL9PZHjWOssDm1njM1Er3pz8T+vn5roNsiZSFJDBVkuilKOjETzz9GIKUoMzyzBRDF7KyITrDAxNp+KDcFbfXmddJoN77px9dCstZpFHGU4g3O4BA9uoAX30AYfCDB4hld4c4Tz4rw7H8vWklPMnMIfOJ8/wz+N9A==</latexit>y1

<latexit sha1_base64="7FLtoXICGea9dncwOtcDnR1ys4Y=">AAAB/nicbVDLSgMxFM3UV62vUXHlJtgKIlhmWlGXBTeupIJ9QDuWTJppQ5PMkGSEMgz4K25cKOLW73Dn35i2s9DWAxcO59zLvff4EaNKO863lVtaXlldy68XNja3tnfs3b2mCmOJSQOHLJRtHynCqCANTTUj7UgSxH1GWv7oeuK3HolUNBT3ehwRj6OBoAHFSBupZx+UuoFEOKnynvtweuamSfU2LfXsolN2poCLxM1IEWSo9+yvbj/EMSdCY4aU6rhOpL0ESU0xI2mhGysSITxCA9IxVCBOlJdMz0/hsVH6MAilKaHhVP09kSCu1Jj7ppMjPVTz3kT8z+vEOrjyEiqiWBOBZ4uCmEEdwkkWsE8lwZqNDUFYUnMrxENk4tAmsYIJwZ1/eZE0K2X3onx+VynWKlkceXAIjsAJcMElqIEbUAcNgEECnsEreLOerBfr3fqYteasbGYf/IH1+QMVuZQ7</latexit>

3m⇤
1�1

3N

<latexit sha1_base64="wYCJ7hVGs+P1znIj3gJ+eOQSoBE=">AAAB/nicbVDLSgMxFM3UV62vUXHlJtgKolBmWlGXBTeupIJ9QDuWTJppQ5PMkGSEMgz4K25cKOLW73Dn35i2s9DWAxcO59zLvff4EaNKO863lVtaXlldy68XNja3tnfs3b2mCmOJSQOHLJRtHynCqCANTTUj7UgSxH1GWv7oeuK3HolUNBT3ehwRj6OBoAHFSBupZx+UuoFEOKnynvtweuamSfU2LfXsolN2poCLxM1IEWSo9+yvbj/EMSdCY4aU6rhOpL0ESU0xI2mhGysSITxCA9IxVCBOlJdMz0/hsVH6MAilKaHhVP09kSCu1Jj7ppMjPVTz3kT8z+vEOrjyEiqiWBOBZ4uCmEEdwkkWsE8lwZqNDUFYUnMrxENk4tAmsYIJwZ1/eZE0K2X3onx+VynWKlkceXAIjsAJcMElqIEbUAcNgEECnsEreLOerBfr3fqYteasbGYf/IH1+QMSo5Q5</latexit>

3m⇤
1+1

3N

<latexit sha1_base64="8EpPz9p53EVltKVM+Z8McetZwU8=">AAAB/nicbVDLSsNAFJ3UV62vqLhyE2wFESxJKuqy4MaVVLAPaGOYTCft0JlJmJkIJQT8FTcuFHHrd7jzb5y2WWjrgQuHc+7l3nuCmBKpbPvbKCwtr6yuFddLG5tb2zvm7l5LRolAuIkiGolOACWmhOOmIoriTiwwZAHF7WB0PfHbj1hIEvF7NY6xx+CAk5AgqLTkmweVXiggSmvMdx5Oz9wsrd1mFd8s21V7CmuRODkpgxwN3/zq9SOUMMwVolDKrmPHykuhUARRnJV6icQxRCM4wF1NOWRYeun0/Mw61krfCiOhiytrqv6eSCGTcswC3cmgGsp5byL+53UTFV55KeFxojBHs0VhQi0VWZMsrD4RGCk61gQiQfStFhpCHYfSiZV0CM78y4uk5Vadi+r5nVuuu3kcRXAIjsAJcMAlqIMb0ABNgEAKnsEreDOejBfj3fiYtRaMfGYf/IHx+QMXQ5Q8</latexit>

3m⇤
1�2

3N

<latexit sha1_base64="3vaGJ6B7uHTyoLbthSil0A8DH/M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33qedVeueLW3DnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadVr3mXt4q5eadTzOIpwAqdwDh5cQQNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/AMG4jfM=</latexit>x1

<latexit sha1_base64="ndqzHVLKx/38JyMc03IB/3qu4Gs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmLbQhrLZbtqlm92wuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO7+Z+94kqzaR4NFlCgxiPBYsYwcZKfj0bevVhteY23AXQOvEKUoMC7WH1azCSJI2pMIRjrfuem5ggx8owwumsMkg1TTCZ4jHtWypwTHWQL46doQurjFAklS1h0EL9PZHjWOssDm1njM1Er3pz8T+vn5roNsiZSFJDBVkuilKOjETzz9GIKUoMzyzBRDF7KyITrDAxNp+KDcFbfXmddJoN77px9dCstZpFHGU4g3O4BA9uoAX30AYfCDB4hld4c4Tz4rw7H8vWklPMnMIfOJ8/wz+N9A==</latexit>y1

(Base case 1) (Base case 2)

Figure C.2: Illustration of (Base case 1) and (Base case 2).

equality ξ̂m(x) = ξ̂m(y) holds true for any m ∈ {0, . . . , N}q. Consequently, we deduce

f̂(x)− f̂(y) = 0.

In (Base case 2), the analysis is more complicated. We first observe that ϕ(3N(x1 −

m∗
1/N)) = 3Nx1 − 3m∗

1 + 2 and ϕ(3N(x1 − (m∗
1 − 1)/N)) = −3Nx1 + 3m∗

1 − 1 are

both nonzero, while ϕ(3N(x1 −m1/N)) = 0 for any m1 ̸∈ {m∗
1 − 1,m∗

1} (the same holds

for y1). Denote m\1 = [m2, . . . ,mq]
⊤ as all the entries in m except the first entry m1. We

rewrite f̂(x) as

f̂(x) =
∑

m

ξ̂m(x)Pm(x)

=
∑

m=[m∗
1,m

⊤
\1]

⊤

ξ̂m(x)Pm(x) +
∑

m=[m∗
1−1,m⊤

\1]
⊤

ξ̂m(x)Pm(x).

The second equality above holds, since ξ̂m(x) = 0 whenever m1 ̸∈ {m∗
1− 1,m∗

1}. Further-

more, we have

∣∣∣f̂(x)− f̂(y)
∣∣∣ =

∣∣∣∣
∑

m\1:m=[m∗
1,m

⊤
\1]

⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m)

+
∑

m\1:m=[m∗
1−1,m⊤

\1]
⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m)

∣∣∣∣. (C.26)

In order to bound the right-hand side of (Eq. C.26), we establish several regularity proper-

ties of ξ̂m based on Lemma C.4. The first result proves the monotonicity of ξ̂m.

176

Lemma C.2. Let ξ̂m be defined in (Eq. C.10). Consider two points x = [x1, . . . , xi, . . . , xq]
⊤

and x′ = [x1, . . . , x
′
i, . . . , xq]

⊤ only differing in the i-th coordinate. Denote m∗
i satisfying

xi, x
′
i ∈
[
3m∗

i−2

3N
,
3m∗

i−1

3N

]
. Then it holds

(
ξ̂m(x)− ξ̂m(x

′)
)
(xi − x′i) ≥ 0 for m = [m1, . . . ,m

∗
i , . . . ,mq]

⊤ and
(
ξ̂m(x)− ξ̂m(x

′)
)
(xi − x′i) ≤ 0 for m = [m1, . . . ,m

∗
i − 1, . . . ,mq]

⊤.

The proof is deferred to Appendix C.3.1. Next, we show first-order continuity of ξ̂m.

Lemma C.3. Let ξ̂m be defined in (Eq. C.10). Consider two points x = [x1, . . . , xi, . . . , xq]
⊤

and x′ = [x1, . . . , x
′
i, . . . , xq]

⊤ only differing in the i-th coordinate. Then for anym, it holds

3N
∏

j ̸=i

max

{
ϕ(3N(xj −mj/N))− 1

2K
, 0

}
|xi − x′i| ≤

∣∣∣ξ̂m(x)− ξ̂m(x
′)
∣∣∣

≤ 3N
∏

j ̸=i

(
ϕ(3N(xj −mj/N)) +

1

2K

)
|xi − x′i|.

The proof is deferred to Appendix subsubsection C.3.1. Using Lemma C.2 and C.3, we

are able to bound the right-hand side of (Eq. C.26). We partition all the values of m\1 into

two complementary disjoint sets:

A≤0 =

{
m\1 : f

(
[m∗

1,m
⊤
\1]

⊤

N

)
f

(
[m∗

1 − 1,m⊤
\1]

⊤

N

)
≤ 0

}
and

A>0 =

{
m\1 : f

(
[m∗

1,m
⊤
\1]

⊤

N

)
f

(
[m∗

1 − 1,m⊤
\1]

⊤

N

)
> 0

}
.

In A≤0, by the Lipschitz continuity of f , we have

∣∣∣∣∣f
(
[m∗

1,m
⊤
\1]

⊤

N

)
− f

(
[m∗

1 − 1,m⊤
\1]

⊤

N

)∣∣∣∣∣ ≤ 1/N.

If either
∣∣∣f
(
[m∗

1,m
⊤
\1]

⊤/N
)∣∣∣ > 1

N
or
∣∣∣f
(
[m∗

1 − 1,m⊤
\1]

⊤/N
)∣∣∣ > 1

N
, then f

(
[m∗

1,m
⊤
\1]

⊤/N
)

177

and f
(
[m∗

1,m
⊤
\1]

⊤/N
)

should be both positive or negative. Their product must be positive.

As a result, we deduce that in A≤0,

∣∣∣∣∣f
(
[m∗

1,m
⊤
\1]

⊤

N

)∣∣∣∣∣ ≤
1

N
and

∣∣∣∣∣f
(
[m∗

1 − 1,m⊤
\1]

⊤

N

)∣∣∣∣∣ ≤
1

N

hold simultaneously.

In A>0, f
(
[m∗

1,m
⊤
\1]

⊤/N
)

and f
(
[m∗

1,m
⊤
\1]

⊤/N
)

are both positive or negative. We

rewrite (Eq. C.26) according to the partition of A≤0 and A>0 on m\1:

∣∣∣f̂(x)− f̂(y)
∣∣∣ = (♠) + (♣), (C.27)

where

(♠) =

∣∣∣∣
∑

m\1∈A≤0:m=[m∗
1,m

⊤
\1]

⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m/N)

+
∑

m\1∈A≤0:m=[m∗
1−1,m⊤

\1]
⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m/N)

∣∣∣∣,

(♣) =

∣∣∣∣
∑

m\1∈A>0:m=[m∗
1,m

⊤
\1]

⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m/N)

+
∑

m\1∈A>0:m=[m∗
1−1,m⊤

\1]
⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m/N)

∣∣∣∣.

For term (♠), we bound it by

(♠)

≤

∣∣∣∣∣∣∣

∑

m\1∈A≤0:m=[m∗
1,m

⊤
\1]

⊤

(
ξ̂m(x)− ξ̂m(y)

) 1

N

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∑

m\1∈A≤0:m=[m∗
1−1,m⊤

\1]
⊤

(
ξ̂m(x)− ξ̂m(y)

) 1

N

∣∣∣∣∣∣∣

178

(i)

≤ 1

N

∑

m\1:ξ̂m(x)̸=0,ξ̂m(y) ̸=0

6N |x1 − y1|
∏

k≥2

min

{
ϕ(3N(xk −mk/N)) +

1

2K
, 1

}

≤ 6|x1 − y1|
∑

m\1:ξ̂m(x)̸=0,ξ̂m(y)̸=0

∏

k≥2

(
ϕ(3N(xk −mk/N)) +

1

2K

)

(ii)

≤ 6|x1 − y1|
∑

m\1:ξ̂m(x) ̸=0,ξ̂m(y)̸=0

[∏

k≥2

ϕ(3N(xk −mk/N)) +

q∑

j=1

2−jK

(
q

j

)]

(iii)

≤ 6

(
1 + q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|, (C.28)

where inequality (i) invokes Lemma C.3 and neglects terms involving ξ̂m(x) = ξ̂m(y) =

0 and inequality (ii) expands the product
∏

k≥2

(
ϕ(3N(xk −mk/N)) + 1

2K

)
by noting

ϕ(3N(xk−mk/N)) ≤ 1. To see inequality (iii), we first observe that there are at most 2q−1

terms in the summation, due to the definition of ϕ. Then we bound
∑

m\1:ξ̂m(x)̸=0,ξ̂m(y)̸=0

∑q
j=1 2

−jK
(
q
j

)

as

∑

m\1:ξ̂m(x)̸=0,ξ̂m(y) ̸=0

q∑

j=1

2−jK

(
q

j

)
≤

∑

m\1:ξ̂m(x)̸=0,ξ̂m(y)̸=0

q∑

j=1

2−jKqj

≤ 2q−1q2−K 1−
(
q2−K

)q

1− q2−K

= q2−K+q−11−
(
q2−K

)q

1− q2−K
.

Meanwhile,
∏

k≥2 ϕ(3N(xk−mk/N)) is indeed a partition of unity on a (d−1)-dimensional

unit cude. Therefore, we have

∑

m\1:ξ̂m(x) ̸=0,ξ̂m(y)̸=0

∏

k≥2

ϕ(3N(xk −mk/N)) = 1.

For term (♣), we leverage the cancellation in the two summations. We assume without

loss of generality, f
(
[m∗

1,m
⊤
\1]

⊤/N
)
> 0 and f

(
[m∗

1 − 1,m⊤
\1]

⊤/N
)
> 0 form\1 ∈ A>0.

179

Otherwise, replacing f by −f won’t change term (♣). Therefore, we derive

(♣)

(i)

≤
∣∣∣∣∣

∑

m\1∈A>0:m=[m∗
1,m

⊤
\1]

⊤

(
ξ̂m(x)− ξ̂m(y)

)
f(m/N)

−
∑

m\1∈A>0:m=[m∗
1−1,m⊤

\1]
⊤

∣∣∣ξ̂m(x)− ξ̂m(y)
∣∣∣ f(m/N)

∣∣∣∣∣

(ii)

≤ 3N |x1 − y1|

·
∑

m\1:ξ̂m(x) ̸=0,ξ̂m(y)̸=0

∣∣∣∣∣
∏

k≥2

(
ϕ(3N(xk −mk/N)) +

1

2K

)
f
(
[m∗

1,m
⊤
\1]

⊤/N
)

−
∏

k≥2

max

{
ϕ(3N(xk −mk/N))− 1

2K
, 0

}
f
(
[m∗

1 − 1,m⊤
\1]

⊤/N
)
∣∣∣∣∣

(iii)

≤ 3N |x1 − y1|
∑

m\1:ξ̂m(x)̸=0,ξ̂m(y) ̸=0

(∏

k≥2

ϕ(3N(xk −mk/N))

·
∣∣f([m∗

1,m
⊤
\1]

⊤/N)− f([m∗
1 − 1,m⊤

\1]
⊤/N)

∣∣
)

+ 6N |x1 − y1| ∥f∥∞ · q2−K+q−11−
(
q2−K

)q

1− q2−K

≤ 3

(
1 + 2N ∥f∥∞ · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|, (C.29)

where inequality (i) uses the monotonicity of ξ̂m in Lemma C.2, inequality (ii) invokes

Lemma C.3, and inequality (iii) follows from the same argument of (iii) in (Eq. C.28).

Combining (Eq. C.28), (Eq. C.29) and substituting into (Eq. C.27), we obtain

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|. (C.30)

Given two base cases, we proceed to show Lipschitz continuity of f̂ . We first partition

[0, 1] into two types of sub-intervals,

180

(Type 1)
[
3k−1
3N

, 3k+1
3N

]⋂
[0, 1] and (Type 2)

[
3k+1
3N

, 3k+2
3N

]⋂
[0, 1],

where k ≤ N is an integer. We observe that on a (Type 1) sub-interval, (Base case 1)

applies; while on a (Type 2) sub-interval, (Base case 2) applies. Depending on the location

of x1 and y1, we discuss four situations.

(Situation 1): x1 belongs to a (Type 1) sub-interval and y1 belongs to a (Type 1) sub-

interval. If the two sub-intervals coincide, we obtain (Base case 1). There is nothing to

show. Otherwise, we denote integer kx such that x1 ∈
[
3kx−1
3N

, 3kx+1
3N

]⋂
[0, 1] and integer

ky < kx such that y1 ∈
[
3ky−1

3N
, 3ky+1

3N

]⋂
[0, 1]. See Figure C.3 for an illustration.

<latexit sha1_base64="K90McaTl/FtwmUUnp7Ch4MM73H4=">AAAB/HicbVBNS8NAEJ34WetXtEcvwVbwYklaUY8FL56kgv2ANpTNdtMu3WzC7kYMIf4VLx4U8eoP8ea/cdvmoK0PBh7vzTAzz4sYlcq2v42V1bX1jc3CVnF7Z3dv3zw4bMswFpi0cMhC0fWQJIxy0lJUMdKNBEGBx0jHm1xP/c4DEZKG/F4lEXEDNOLUpxgpLQ3MUqXvC4TT+mTweOZkaf02qwzMsl21Z7CWiZOTMuRoDsyv/jDEcUC4wgxJ2XPsSLkpEopiRrJiP5YkQniCRqSnKUcBkW46Oz6zTrQytPxQ6OLKmqm/J1IUSJkEnu4MkBrLRW8q/uf1YuVfuSnlUawIx/NFfswsFVrTJKwhFQQrlmiCsKD6VguPkQ5D6byKOgRn8eVl0q5VnYvq+V2t3KjlcRTgCI7hFBy4hAbcQBNagCGBZ3iFN+PJeDHejY9564qRz5TgD4zPH1vGk+Q=</latexit>

3kx�1
3N

<latexit sha1_base64="m0l+aTmkr7HOYwyPbHNdgCBvfzM=">AAAB/HicbVBNS8NAEJ34WetXtEcvwVYQhJK0oh4LXjxJBfsBbSib7aZdutmE3Y0YQvwrXjwo4tUf4s1/47bNQVsfDDzem2FmnhcxKpVtfxsrq2vrG5uFreL2zu7evnlw2JZhLDBp4ZCFoushSRjlpKWoYqQbCYICj5GON7me+p0HIiQN+b1KIuIGaMSpTzFSWhqYpUrfFwin9cng8czJ0vptVhmYZbtqz2AtEycnZcjRHJhf/WGI44BwhRmSsufYkXJTJBTFjGTFfixJhPAEjUhPU44CIt10dnxmnWhlaPmh0MWVNVN/T6QokDIJPN0ZIDWWi95U/M/rxcq/clPKo1gRjueL/JhZKrSmSVhDKghWLNEEYUH1rRYeIx2G0nkVdQjO4svLpF2rOhfV87tauVHL4yjAERzDKThwCQ24gSa0AEMCz/AKb8aT8WK8Gx/z1hUjnynBHxifP1iwk+I=</latexit>

3kx+1
3N

<latexit sha1_base64="G8+hSMkBnd3PXNUdZo/xTKbxOfY=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDLaCIJSkFXVZcONKKtgHtCFMppN26OTBzEQIof6KGxeKuPVD3Pk3TtsstPXAhcM593LvPV7MmVSW9W0U1tY3NreK26Wd3b39A/PwqCOjRBDaJhGPRM/DknIW0rZiitNeLCgOPE673uRm5ncfqZAsCh9UGlMnwKOQ+YxgpSXXLFcHvsAka0zc9NyeZo27adU1K1bNmgOtEjsnFcjRcs2vwTAiSUBDRTiWsm9bsXIyLBQjnE5Lg0TSGJMJHtG+piEOqHSy+fFTdKqVIfIjoStUaK7+nshwIGUaeLozwGosl72Z+J/XT5R/7WQsjBNFQ7JY5CccqQjNkkBDJihRPNUEE8H0rYiMsQ5D6bxKOgR7+eVV0qnX7MvaxX290qzncRThGE7gDGy4gibcQgvaQCCFZ3iFN+PJeDHejY9Fa8HIZ8rwB8bnD1o8k+M=</latexit>

3ky+1
3N

<latexit sha1_base64="XjWvpxJ4qaImwluIII5VzfCxA/w=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDLaCG0vSirosuHElFewD2hAm00k7dPJgZiKEUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3Hi/mTCrL+jYKa+sbm1vF7dLO7t7+gXl41JFRIghtk4hHoudhSTkLaVsxxWkvFhQHHqddb3Iz87uPVEgWhQ8qjakT4FHIfEaw0pJrlqsDX2CSNSZuem5Ps8bdtOqaFatmzYFWiZ2TCuRouebXYBiRJKChIhxL2betWDkZFooRTqelQSJpjMkEj2hf0xAHVDrZ/PgpOtXKEPmR0BUqNFd/T2Q4kDINPN0ZYDWWy95M/M/rJ8q/djIWxomiIVks8hOOVIRmSaAhE5QonmqCiWD6VkTGWIehdF4lHYK9/PIq6dRr9mXt4r5eadbzOIpwDCdwBjZcQRNuoQVtIJDCM7zCm/FkvBjvxseitWDkM2X4A+PzB11Sk+U=</latexit>

3ky�1
3N

<latexit sha1_base64="3vaGJ6B7uHTyoLbthSil0A8DH/M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33qedVeueLW3DnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadVr3mXt4q5eadTzOIpwAqdwDh5cQQNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/AMG4jfM=</latexit>x1
<latexit sha1_base64="ndqzHVLKx/38JyMc03IB/3qu4Gs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmLbQhrLZbtqlm92wuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO7+Z+94kqzaR4NFlCgxiPBYsYwcZKfj0bevVhteY23AXQOvEKUoMC7WH1azCSJI2pMIRjrfuem5ggx8owwumsMkg1TTCZ4jHtWypwTHWQL46doQurjFAklS1h0EL9PZHjWOssDm1njM1Er3pz8T+vn5roNsiZSFJDBVkuilKOjETzz9GIKUoMzyzBRDF7KyITrDAxNp+KDcFbfXmddJoN77px9dCstZpFHGU4g3O4BA9uoAX30AYfCDB4hld4c4Tz4rw7H8vWklPMnMIfOJ8/wz+N9A==</latexit>y1

(Base case 1)
(Base case 2)

Figure C.3: Demonstration of (Situation 1) with kx = ky + 2. We can decompose such
an situation into a serial of alternating (Base case 1) (green) and (Base case 2) (red). The
function value difference can be obtained by aggregating differences in each base case.

We can derive

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤

∣∣∣∣∣f̂(x)− f̂

([
3kx − 1

3N
, x⊤\1

]⊤)∣∣∣∣∣

+

∣∣∣∣∣f̂
([

3kx − 1

3N
, x⊤\1

]⊤)
− f̂

([
3ky + 1

3N
, y⊤\1

]⊤)∣∣∣∣∣

+

∣∣∣∣∣f̂
([

3ky + 1

3N
, y⊤\1

]⊤)
− f̂(y)

∣∣∣∣∣

(i)
=

∣∣∣∣∣f̂
([

3kx − 1

3N
, x⊤\1

]⊤)
− f̂

([
3ky + 1

3N
, y⊤\1

]⊤)∣∣∣∣∣ ,

where inequality (i) follows from (Base case 1). If kx = ky + 1, then we can apply (Base

181

case 2) to show

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤

∣∣∣∣∣f̂
([

3kx − 1

3N
, x⊤\1

]⊤)
− f̂

([
3ky + 1

3N
, y⊤\1

]⊤)∣∣∣∣∣

≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
1

3N

≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|.

Otherwise, we have

∣∣∣f̂(x)− f̂(y)
∣∣∣

≤
∣∣∣∣∣f̂
([

3kx − 1

3N
, x⊤\1

]⊤)
− f̂

([
3ky + 1

3N
, y⊤\1

]⊤)∣∣∣∣∣

≤
∣∣∣∣∣f̂
([

3kx − 1

3N
, x⊤\1

]⊤)
− f̂

([
3(kx − 1) + 1

3N
, x⊤\1

]⊤)∣∣∣∣∣

+

∣∣∣∣∣f̂
([

3(kx − 1) + 1

3N
, x⊤\1

]⊤)
− f̂

([
3(ky + 1)− 1

3N
, y⊤\1

]⊤)∣∣∣∣∣

+

∣∣∣∣∣f̂
([

3(ky + 1)− 1

3N
, y⊤\1

]⊤)
− f̂

([
3ky + 1

3N
, y⊤\1

]⊤)∣∣∣∣∣
(i)

≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
2

3N

+

∣∣∣∣∣f̂
([

3(kx − 1) + 1

3N
, x⊤\1

]⊤)
− f̂

([
3(ky + 1)− 1

3N
, y⊤\1

]⊤)∣∣∣∣∣ ,

where inequality (i) is obtained by applying (Base case 2) twice. To complete the argu-

ment, we can replace kx = kx−1 and ky = ky+1 and repeat the derivation to accumulate all

the differences yielded on a (Type 2) sub-interval, until kx−i = ky+i+1 or kx−i = ky+i

for some integer i. Consequently, noting that the total length of (Type 2) interval between

182

x1 and y1 is always smaller than |x1 − y1|, we deduce

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|.

(Situation 2): x1 belongs to a (Type 1) sub-interval and y1 belongs to a (Type 2) sub-

interval. We aim to reduce this situation to (Situation 1). Following the same notation, we

denote x1 ∈
[
3kx−1
3N

, 3kx+1
3N

]⋂
[0, 1] for some integer kx and y1 ∈

[
3ky+1

3N
, 3ky+2

3N

]⋂
[0, 1] for

ky < kx. Triangle inequality yields

∣∣∣f̂(x)− f̂(y)
∣∣∣

≤
∣∣∣∣∣f̂(x)− f̂

([
3(ky + 1)− 1

3N
, y⊤\1

]⊤)∣∣∣∣∣+
∣∣∣∣∣f̂
([

3(ky + 1)− 1

3N
, x⊤\1

]⊤)
− f̂(y)

∣∣∣∣∣

≤
∣∣∣∣∣f̂(x)− f̂

([
3(ky + 1)− 1

3N
, y⊤\1

]⊤)∣∣∣∣∣

+ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)∣∣∣∣
3(ky + 1)− 1

3N
− y1

∣∣∣∣ .

We now observe that term
∣∣∣∣f̂(x)− f̂

([
3(ky+1)−1

3N
, y⊤\1

]⊤)∣∣∣∣ falls into (Situation 1). A

straightforward adaptation of the argument in (Situation 1) gives rise to

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|.

(Situation 3): x1 belongs to a (Type 2) sub-interval and y1 belongs to a (Type 1) sub-

interval. The analysis is analogous to (Situation 2) by switching x1 and y1. Denoting x1 ∈
[
3kx+1
3N

, 3kx+2
3N

]⋂
[0, 1] for some integer kx and y1 ∈

[
3ky−1

3N
, 3ky+1

3N

]⋂
[0, 1] for ky ≤ kx, we

derive

∣∣∣f̂(x)− f̂(y)
∣∣∣

183

≤
∣∣∣∣∣f̂(x)− f̂

([
3kx + 1

3N
, x⊤\1

]⊤)∣∣∣∣∣+
∣∣∣∣∣f̂
([

3kx + 1

3N
, x⊤\1

]⊤)
− f̂(y)

∣∣∣∣∣

≤
∣∣∣∣∣f̂
([

3kx + 1

3N
, x⊤\1

]⊤)
− f̂(y)

∣∣∣∣∣

+ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)∣∣∣∣x1 −
3kx + 1

3N

∣∣∣∣ .

Note that
∣∣∣∣f̂
([

3kx+1
3N

, x⊤\1

]⊤)
− f̂(y)

∣∣∣∣ falls into (Situation 1). Therefore, the desired Lip-

schitz continuity (Eq. C.30) holds.

(Situation 4): x1 belongs to a (Type 2) sub-interval and y1 belongs to a (Type 2) sub-

interval. If the two sub-intervals coincide, this recovers (Base case 2), and there is nothing

to show. Otherwise, applying the analysis in (Situation 2) and (Situation 3) consecutively

to move x1 first into a (Type 1) sub-interval and then y1, we reduce this situation to (Situa-

tion 1) again. Therefore, Lipschitz continuity in (Eq. C.30) still holds true.

Combining all four situations, for any x, y only differing in the first coordinate, it holds

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ 3

(
3 + 2(N ∥f∥∞ + 1) · q2−K+q−11−

(
q2−K

)q

1− q2−K

)
|x1 − y1|.

The proof is complete for general x, y by aggregating coordinate-wise differences and the

fact
∑q

i=1 |xi − yi| = ∥x− y∥1 ≤ q ∥x− y∥∞.

C.3.1 Proofs of supporting results for Lemma C.1

Before we present omitted proofs in Lemma C.1, we study the regularity of the approx-

imated square function ĥK , which will be frequently used in proving Lemma C.2 and

Lemma C.3.

184

Regularity of ĥK

Given a function g : [0, 1] 7→ R, for any x ∈ (0, 1), we define upper and lower slopes at x,

denoted by slopeg and slope
g
, respectively, as

slopeg(x) = limsup
∆→0

g(x+∆)− g(x)

∆
,

slope
g
(x) = liminf

∆→0

g(x+∆)− g(x)

∆
.

The definition above coincides with upper and lower derivatives of a univariate function.

We use “slope” instead of derivatives as we will instantiate the definition to the piecewise

linear function ĥK . We show several useful properties.

Lemma C.4. For a given positive integer K, let ĥK be defined on [0, 1] as in (Eq. C.9).

Then the following identities hold.

1. For any x ∈ (0, 1), we have

slopeĥK
(x) = lim

∆→0+

ĥK(x+∆)− ĥK(x)

∆
and (C.31)

slope
ĥK

(x) = lim
∆→0+

ĥK(x)− ĥK(x−∆)

∆
. (C.32)

2. Given an integer i, we denote BK(i) = [b1, . . . , bK]
⊤ ∈ {0, 1}K as the K-bit binary

encoding of i, that is, i =
∑K

k=1 bk2
k−1. Then for any x ∈ (0, 1), we have

slopeĥK
(x) = 1 +

K∑

k=1

(
2
[
BK

(⌊
2K · x

⌋)]
K−k+1

− 1
)
2−k and (C.33)

slope
ĥK

(x) = 1 +
K∑

k=1

(
2
[
BK

(⌈
2K · x

⌉
− 1
)]

K−k+1
− 1
)
2−k. (C.34)

Proof of Lemma C.4. By construction, gk is a piecewise linear function. Each of its linear

segment is supported on a sub-interval [i/2k, (i+1)/2k] for i = 1, . . . , 2k−1. Therefore, it

185

can be checked that ĥK is also a piecewise linear function, since it is a linear combination

of gk’s. Furthermore, the i-th linear segment in gk has a slope (−1)i2k, i.e., g′k = (−1)i2k

on open interval
(
i/2k, (i+ 1)/2k

)
. As a result, ĥK is differentiable on

(
i/2K , (i+ 1)/2K

)

and its derivative satisfies

ĥ′K(x) = 1−
K∑

k=1

1

22k
g′k(x)

= 1−
K∑

k=1

(−1)⌊i/2K−k⌋ 1

2k
for any x ∈

(
i/2K , (i+ 1)/2K

)
. (C.35)

We observe i = ⌊x ·2K⌋ for x ∈
(
i/2K , (i+ 1)/2K

)
, which implies x ·2K−1 < i ≤ x ·2K .

For any k = 1, . . . , K, we have

x · 2K − 1

2K−k
< i/2K−k ≤ x · 2K

2K−k
=⇒ x · 2k − 1 < i/2K−k ≤ x · 2k.

Thus, we deduce
⌊
i/2K−k

⌋
=
⌊
x · 2k

⌋
and (Eq. C.35) can be simplified as

ĥ′K(x) = 1−
K∑

k=1

(−1)⌊x·2k⌋ 1

2k
. (C.36)

We claim

(−1)⌊x·2k⌋ = −2bK−k+1 + 1 for k = 1, . . . , K, (C.37)

where bj is the j-th entry of the K-bit binary encoding BK

(⌊
x · 2K

⌋)
. In other words,

the parity of
⌊
x · 2k

⌋
is encoded by bK−k+1. In particular, if

⌊
x · 2k

⌋
is odd (resp. even),

bK−k+1 = 1 (resp. bK−k+1 = 0).

To show the claim in (Eq. C.37), we first prove

⌊
x · 2k

⌋
=

k∑

j=1

2k−jbK−j+1

186

for any k = 1, . . . , K. Indeed, we can show the following sandwich inequality

⌊⌊
x · 2K

⌋

2K−k

⌋
(i)

≤
⌊
x · 2k

⌋ (ii)

≤
⌊
x · 2K

⌋

2K−k
. (C.38)

Inequality (i) holds, since
⌊
⌊x·2K⌋
2K−k

⌋
≤
⌊

x·2K
2K−k

⌋
=
⌊
x · 2k

⌋
; inequality (ii) holds, since

2K−k
⌊
x · 2k

⌋
=
⌊
2K−k

⌊
x · 2k

⌋⌋
≤
⌊
x · 2K

⌋
. Substituting

⌊
x · 2K

⌋
=
∑K

j=1 bj2
j−1 into

(Eq. C.38), we derive

⌊ ∑

j>K−k

bj2
j−1−K+k +

∑

j≤K−k

bj2
j−1−K+k

⌋
≤
⌊
x · 2k

⌋

≤
∑

j>K−k

bj2
j−1−K+k +

∑

j≤K−k

bj2
j−1−K+k

︸ ︷︷ ︸
(♠)<1

.

Due to (♠) < 1, we conclude
⌊
x · 2k

⌋
=
∑k

j=1 2
k−jbK−j+1. Consequently, we deduce

⌊
x · 2k

⌋
≡ bK−k+1 (mod 2), which verifies the claim by noting (−1)⌊x·2k⌋ = (−1)bK−k+1 =

−2bK−k+1 + 1.

Substituting (Eq. C.37) into (Eq. C.36), for x ∈
(
i/2K , (i+ 1)/2K

)
, we obtain

ĥ′K(x) = 1 +
K∑

k=1

(2bK−k+1 − 1)2−k with BK

(⌊
x · 2K

⌋)
= [b1, . . . , bK]

⊤. (C.39)

To establish the first assertion in Lemma C.4, we only need to consider end points

of each linear segment of ĥK . Otherwise, when x ∈
(
i/2K , (i+ 1)/2K

)
for some i =

0, . . . , 2K − 1, (Eq. C.39) shows ĥK is differentiable at x, and therefore, (Eq. C.31) holds

true. Consider an end point x = i/2K for some i = 1, . . . , 2K − 1. We evaluate left

and right derivatives of ĥK at x. We denote left and right derivatives as ∂−ĥK and ∂+ĥK ,

respectively. Using (Eq. C.39) again, we derive

∂−ĥK(x) = lim
∆→0+

ĥK(x−∆)− ĥK(x)

∆

187

= lim
y→x−

ĥ′K(y)

= 1 +
K∑

k=1

(2[BK(i− 1)]K−k+1 − 1) 2−k,

∂+ĥK(x) = lim
∆→0+

ĥK(x+∆)− ĥK(x)

∆

= lim
y→x+

ĥ′K(y)

= 1 +
K∑

k=1

(2[BK(i)]K−k+1 − 1) 2−k.

We note ∂+ĥK(x) ≥ ∂−ĥK(x), and therefore, for x = i/2K , we obtain

slopeĥK
(x) = limsup

∆→0

ĥK(x+∆)− ĥK(x)

∆
= ∂+ĥK(x),

slope
ĥK

(x) = liminf
∆→0

ĥK(x+∆)− ĥK(x)

∆
= ∂−ĥK(x).

(C.40)

This establishes the first assertion in Lemma C.4.

To show the second assertion, we also tackle separately when x is an end point of a

linear segment or inside a linear segment of ĥK . Suppose x ∈
(
i/2K , (i+ 1)/2K

)
for

some i = 0, . . . , 2K − 1. We check that
⌊
x · 2K

⌋
=
⌈
x · 2K

⌉
− 1 = i. It implies (Eq. C.33)

and (Eq. C.34) are both equal to (Eq. C.39). On the other hand, suppose x = i/2K for

some i = 1, . . . , 2K − 1, we check
⌊
x · 2K

⌋
=
⌈
x · 2K

⌉
= i. Therefore, (Eq. C.33)

and (Eq. C.34) coincide with ∂+ĥK(x) and ∂−ĥK(x), respectively. In combination with

(Eq. C.40), we verify that (Eq. C.33) and (Eq. C.34) hold for any x ∈ (0, 1). The proof is

complete.

For later convenience, we define slopes at end points x = 0 and x = 1 as

slopeĥK
(1) = 2, slope

ĥK
(1) = lim

x→1−
ĥ′K(x) = 2− 2−K ,

slope
ĥK

(0) = 0, slopeĥK
(0) = lim

x→0+
ĥ′K(x) = 2−K .

188

Proof of Lemma C.2

Proof. We first show ×̂(x, a) is monotone in x for any fixed a. Let x1 ≤ x2 ∈ [0, 1]. (We

slightly abuse the notation here. Note that x1, x2 are scalars.) By the construction of ×̂, we

have

×̂(x2, a)− ×̂(x1, a) = ĥK

(
x2 + a

2

)
− ĥK

(
x1 + a

2

)

︸ ︷︷ ︸
(A)

−
(
ĥK

(|x2 − a|
2

)
− ĥK

(|x1 − a|
2

))

︸ ︷︷ ︸
(B)

.

By the triangle inequality, we observe

∣∣∣∣
|x1 − a|

2
− |x2 − a|

2

∣∣∣∣ ≤
∣∣∣∣
|x1 − a− x2 + a|

2

∣∣∣∣ =
∣∣∣∣
x1 + a

2
− x2 + a

2

∣∣∣∣ ,

and x2+a
2

≥ max
{

|x1−a|
2

, |x2−a|
2

, x1+a
2

}
.

We need to compare the differences in term (A) and (B) in the following two cases.

• If x1+a
2

≥ max
{

|x2−a|
2

, |x1−a|
2

}
, we have

(A)− (B) ≥ slopeĥK

(
x1 + a

2

) ∣∣∣∣
x2 + a

2
− x1 + a

2

∣∣∣∣

− slope
ĥK

(
max

{ |x2 − a|
2

,
|x1 − a|

2

}) ∣∣∣∣
|x2 − a|

2
− |x1 − a|

2

∣∣∣∣ .

By the triangle inequality, we observe

∣∣∣∣
|x1 − a|

2
− |x2 − a|

2

∣∣∣∣ ≤
∣∣∣∣
|x1 − a− x2 + a|

2

∣∣∣∣ =
∣∣∣∣
x1 + a

2
− x2 + a

2

∣∣∣∣ .

Meanwhile, by Lemma C.4, slopeĥK
(z1) ≥ slope

ĥK
(z2) whenever z1 ≥ z2. Therefore, we

189

verify (A)− (B) ≥ 0.

• If on the contrary, x1+a
2

< max
{

|x2−a|
2

, |x1−a|
2

}
, by removing overlapping pieces, we

have

(A)− (B)

= ĥK

(
x2 + a

2

)
− ĥK

(
max

{ |x2 − a|
2

,
|x1 − a|

2

})

−
(
ĥK

(
x1 + a

2

)
− ĥK

(
min

{ |x2 − a|
2

,
|x1 − a|

2

}))

≥ slopeĥK

(
max

{ |x2 − a|
2

,
|x1 − a|

2

}) ∣∣∣∣
x2 + a

2
−max

{ |x2 − a|
2

,
|x1 − a|

2

}∣∣∣∣

− slope
ĥK

(
x1 + a

2

) ∣∣∣∣
x1 + a

2
−min

{ |x2 − a|
2

,
|x1 − a|

2

}∣∣∣∣
(i)

≥ 0,

where inequality (i) holds, since

∣∣∣∣
x2 + a

2
−max

{ |x2 − a|
2

,
|x1 − a|

2

}∣∣∣∣

=

∣∣∣∣
x1 + a

2
− x2 + a

2

∣∣∣∣−
∣∣∣∣max

{ |x2 − a|
2

,
|x1 − a|

2

}
− x1 + a

2

∣∣∣∣

≥
∣∣∣∣
|x1 − a|

2
− |x2 − a|

2

∣∣∣∣−
∣∣∣∣max

{ |x2 − a|
2

,
|x1 − a|

2

}
− x1 + a

2

∣∣∣∣

=

∣∣∣∣
x1 + a

2
−min

{ |x2 − a|
2

,
|x1 − a|

2

}∣∣∣∣

and slopeĥK

(
max

{
|x2−a|

2
, |x1−a|

2

})
≥ slope

ĥK

(
x1+a
2

)
.

Combining the two cases above, we deduce (A)− (B) ≥ 0, and ×̂(x, a) is monotone in

x for any fixed a. By symmetry, ×̂(a, x) is also monotone. Whenm = [m1, . . . ,m
∗
i , . . . ,mq]

⊤,

ϕ(3N(xi −m∗
i /N)) = 3Nxi − 3m∗

i + 2, which is increasing in xi. By construction of ξ̂m

in (Eq. C.10) and the monotonicity of composite functions, we deduce the monotonicity of

ξ̂m. Similarly, whenm = [m1, . . . ,m
∗
i −1, . . . ,mq]

⊤, we have ϕ(3N(xi−(m∗
i −1)/N)) =

−3Nxi +3m∗
i − 1 — decreasing in xi. Therefore, ξ̂m is decreasing with respect to the i-th

190

coordinate in x. The proof is complete.

Proof of Lemma C.3

Proof. We first analyze the Lipschitz continuity of ×̂. Let’s fix a ∈ [0, 1] and recall

×̂(x, a) = ĥK
(
x+a
2

)
− ĥK

(
|x−a|

2

)
. We observe that ×̂(x, a) is a piecewise linear function

in x, due to ĥK being piecewise linear. Therefore, to characterize the Lipschitz continuity

of ×̂, it suffices to evaluate the steepest and flattest slopes of ×̂(x, a) as x varies in [0, 1].

Specifically, we define

SteepSlope
(
×̂(·, a)

)
= sup

x∈(0,1)
limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆
, (C.41)

FlatSlope
(
×̂(·, a)

)
= inf

x∈(0,1)
liminf
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆
. (C.42)

• Steepest slope. We consider two cases depending on the value of x, namely, 0 < x ≤ a

and a < x < 1.

⋆ (Case 1) When a < x < 1, we rewrite ×̂(x, a) as ×̂(x, a) = ĥK
(
x+a
2

)
− ĥK

(
x−a
2

)
.

Substituting into (Eq. C.41), we obtain

limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

= limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+∆−a

2

)
− ĥK

(
x+a
2

)
+ ĥK

(
x−a
2

)

∆

= limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)
−
[
ĥK
(
x+∆−a

2

)
− ĥK

(
x−a
2

)]

∆
.

Lemma C.4 implies that ĥK is strictly monotone increasing. Hence, for any ∆, ĥK
(
x+∆+a

2

)
−

ĥK
(
x+a
2

)
and ĥK

(
x+∆−a

2

)
− ĥK

(
x−a
2

)
are both positive or negative depending on the sign

of ∆. Moreover, Lemma C.4 shows that slopeĥK
and slope

ĥK
are monotone increasing. As

191

a result, we have

limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

≤ limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)

∆
− liminf

∆→0

ĥK
(
x+∆−a

2

)
− ĥK

(
x−a
2

)

∆

=
1

2
slopeĥK

(
x+ a

2

)
− 1

2
slope

ĥK

(
x− a

2

)
.

Using Lemma C.4, we can upper bound slopeĥK
(z) and lower bound slope

ĥK
(z) for any

z ∈ (0, 1) as

1

2
slopeĥK

(z) ≤ min

{
z +

1

2K+1
, 1

}
, (C.43)

1

2
slope

ĥK
(z) ≥ max

{
z − 1

2K+1
, 0

}
. (C.44)

The upper bound (Eq. C.43) is a consequence of (Eq. C.33). Specifically, for any a ∈ (0, 1),

it holds

slopeĥK
(z) = 1 +

K∑

k=1

(
2
[
BK

(⌊
z · 2K

⌋)]
K−k+1

− 1
)
2−k

= 2−K + 2
K∑

k=1

[
BK

(⌊
z · 2K

⌋)]
K−k+1

2K−k

2K

= 2−K + 2

⌊
z · 2K

⌋

2K

≤ 2z + 2−K .

In combination with 2 being a natural upper bound of slopeĥK
and rescaling by 1/2,

(Eq. C.43) holds true. The lower bound (Eq. C.44) is a consequence of (Eq. C.34). We

have

slope
ĥK

(z) = 1 +
K∑

k=1

(
2
[
BK

(⌈
z · 2K

⌉
− 1
)]

K−k+1
− 1
)
2−k

192

= 2−K + 2
K∑

k=1

[
BK

(⌈
z · 2K

⌉
− 1
)]

K−k+1
2K−k

2K

= 2−K + 2

⌈
z · 2K

⌉
− 1

2K

≥ 2z − 2−K .

Combining with 0 being a natural lower bound of slope
ĥK

, we establish (Eq. C.44). To this

end, (Eq. C.43) and (Eq. C.44) together yield

sup
a<x<1

limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

≤ sup
a<x<1

1

2
slopeĥK

(
x+ a

2

)
− 1

2
slope

ĥK

(
x− a

2

)

≤ sup
a<x<1

min

{
x+ a

2
+

1

2K+1
, 1

}
−max

{
x− a

2
− 1

2K+1
, 0

}

= min

{
a+

1

2K
, 1

}
. (C.45)

⋆ (Case 2) When 0 < x ≤ a, the analysis is similar. We have ×̂(x, a) = ĥK
(
x+a
2

)
−

ĥK
(
a−x
2

)
, and derive

limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

= limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
a−x−∆

2

)
− ĥK

(
x+a
2

)
+ ĥK

(
a−x
2

)

∆

= limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)
+
[
ĥK
(
a−x
2

)
− ĥK

(
a−x−∆

2

)]

∆

= limsup
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)

∆
+
ĥK
(
a−x
2

)
− ĥK

(
a−x−∆

2

)

∆
.

We also notice that ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)
and ĥK

(
a−x
2

)
− ĥK

(
a−x−∆

2

)
have the same

sign depending on ∆. In the case of ∆ > 0, we have

lim
∆→0+

×̂(x+∆, a)− ×̂(x, a)

∆
=

1

2
slopeĥK

(
x+ a

2

)
+

1

2
slope

ĥK

(
a− x

2

)
.

193

Using (Eq. C.33) and (Eq. C.34), we derive

slopeĥK

(
x+ a

2

)
+ slope

ĥK

(
a− x

2

)

= 2−K + 2

⌊
(x+ a) · 2K−1

⌋

2K
+ 2−K + 2

⌈
(a− x) · 2K−1

⌉
− 1

2K

=

⌊
(x+ a) · 2K−1

⌋
+
⌈
(a− x) · 2K−1

⌉

2K−1

≤ (x+ a) · 2K−1 + (a− x) · 2K−1 + 1

2K−1

= 2a+ 2−K+1,

which implies lim∆→0+
×̂(x+∆,a)−×̂(x,a)

∆
≤ a + 2−K for any 0 < x ≤ a. In the case of

∆ < 0, we have

lim
∆→0−

×̂(x+∆, a)− ×̂(x, a)

∆
=

1

2
slope

ĥK

(
x+ a

2

)
+

1

2
slopeĥK

(
a− x

2

)

=

⌈
(a+ x) · 2K−1

⌉
+
⌊
(a− x) · 2K−1

⌋

2K−1

≤ (a+ x) · 2K−1 + 1 + (a− x) · 2K−1

2K−1

= 2a+ 2−K+1,

which implies lim∆→0−
×̂(x+∆,a)−×̂(x,a)

∆
≤ a + 2−K for any 0 < x ≤ a. Combining both

∆ > 0 and ∆ < 0 cases, we conclude

sup
0<x≤a

limsup
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆
≤ a+ 2−K . (C.46)

Putting (Eq. C.45) and (Eq. C.46) together, we deduce

SteepSlope
(
×̂(·, a)

)
≤ a+

1

2K
.

• Flattest slope. We also discuss two cases, i.e., 0 < x ≤ a, a < x < 1.

194

⋆ (Case 1) When a < x < 1, following the same computation for the steepest slope, we

have

liminf
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

≥ liminf
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)

∆
− limsup

∆→0

ĥK
(
x+∆−a

2

)
− ĥK

(
x−a
2

)

∆

=
1

2
slope

ĥK

(
x+ a

2

)
− 1

2
slopeĥK

(
x− a

2

)

(i)

≥ max

{
x+ a

2
− 1

2K+1
, 0

}
−min

{
x− a

2
+

1

2K+1
, 1

}

(ii)

≥ max

{
a− 1

2K
, 0

}
, (C.47)

where inequality (i) invokes (Eq. C.43) and (Eq. C.44), and inequality (ii) uses the natural

lower bound slope
ĥK

(
x+a
2

)
− slopeĥK

(
x−a
2

)
≥ 0 since x+ a > x− a.

⋆ (Case 2) When 0 < x ≤ a, we derive

liminf
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆

= liminf
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)
+
[
ĥK
(
a−x
2

)
− ĥK

(
a−x−∆

2

)]

∆

= liminf
∆→0

ĥK
(
x+∆+a

2

)
− ĥK

(
x+a
2

)

∆
+
ĥK
(
a−x
2

)
− ĥK

(
a−x−∆

2

)

∆
.

We distinguish the limit depending on ∆ being positive or negative. If ∆ > 0, we have

lim
∆→0+

×̂(x+∆, a)− ×̂(x, a)

∆

=
1

2
slopeĥK

(
x+ a

2

)
+

1

2
slope

ĥK

(
a− x

2

)

=
1

2

(
2−K + 2

⌊
(x+ a) · 2K−1

⌋

2K
+ 2−K + 2

⌈
(a− x) · 2K−1

⌉
− 1

2K

)

=

⌊
(x+ a) · 2K−1

⌋
+
⌈
(a− x) · 2K−1

⌉

2K
(i)

≥ max

{
(a+ x) · 2K−1 − 1 + (a− x) · 2K−1

2K
, 0

}

195

= max

{
a− 1

2K
, 0

}
,

where inequality (i) uses 0 being a natural lower bound of slopeĥK

(
x+a
2

)
and slope

ĥK

(
a−x
2

)
.

If ∆ < 0, we have

lim
∆→0−

×̂(x+∆, a)− ×̂(x, a)

∆

=
1

2
slope

ĥK

(
x+ a

2

)
+

1

2
slopeĥK

(
a− x

2

)

=

⌈
(a+ x) · 2K−1

⌉
+
⌊
(a− x) · 2K−1

⌋

2K

≥ max

{
(a+ x) · 2K−1 + (a− x) · 2K−1 − 1

2K
, 0

}

= max
{
a− 2−K , 0

}
.

Combining both ∆ > 0 and ∆ < 0, we deduce

sup
0<x≤a

liminf
∆→0

×̂(x+∆, a)− ×̂(x, a)

∆
≥ max{a− 2−K , 0}. (C.48)

Putting (Eq. C.47) and (Eq. C.48) together, we deduce

FlatSlope
(
×̂(·, a)

)
≥ max

{
a− 1

2K
, 0

}
.

To complete the proof, we observe that ξ̂m is a composition of q approximate product

operations ×̂. For x = [x1, . . . , xi, . . . , xq]
⊤ and x′ = [x1, . . . , x

′
i, . . . , xq]

⊤ only differing

in the i-th coordinate, recursively applyling (Eq. C.41) and (Eq. C.42), we derive

3N
∏

j ̸=i

max

{
ϕ(3N(xj −mj/N))− 1

2K
, 0

}
|xi − x′i| ≤

∣∣∣ξ̂m(x)− ξ̂m(x
′)
∣∣∣

≤ 3N
∏

j ̸=i

(
ϕ(3N(xj −mj/N)) +

1

2K

)
|xi − x′i|.

196

The proof is complete.

C.4 Proof of Lemma 5.2

Proof. The compactness of Y follows from X being compact and A being a continuous

transformation. To see Y is also convex, we consider y1, y2 ∈ Y and any λ ∈ (0, 1). Since

Y = A⊤X , we have x1, x2 ∈ X such that A⊤x1 = y1 and A⊤x2 = y2. Then we have

λy1 + (1− λ)y2 = A⊤(λx1 + (1− λ)x2) ∈ A⊤X = Y .

Therefore, Y is convex.

To check AY = X , we show AY ⊂ X and X ⊂ AY hold true simultaneously. Let

y ∈ Y , then there exists x ∈ X such that y = A⊤x. Due to Assumption 5.4, we write

x ∈ X as x = Az. As a result, we derive Ay = AA⊤x = AA⊤Az = Az = x ∈ X .

Thus, AY ⊂ X . On the other hand, any x ∈ X can be written as x = Az, which implies

A⊤x = z ∈ Y , since A has orthonormal columns. Therefore, X ⊂ AY . Combining two

arguments together, we deduce X = AY .

197

APPENDIX D

OMITTED PROOFS IN CHAPTER 6

D.1 Doubly Robust Policy Learning using Neural Networks without Uniformly Bounded

Weight Parameters

We prove statistical guarantees of doubly robust policy learning using neural networks

without the uniform boundedness condition on weight parameters. To ease the presentation,

we focus on the discrete-action setting. The network architecture can now be determined

by three parameters, width, depth, and output range:

F̃(L, p,R) ={f | f has the form of (Eq. 2.2) with L layers and width bounded by p, ∥f∥∞ ≤ R}.

We assume the expected reward and propensity score functions are Cs(M) (s-order con-

tinuously differentiable) for some positive integer s, which can be embedded in Hölder

Hs+1(M). A formal statement is given in the following assumption.

Assumption C.4. For a given integer s > 0, we assume µAj
(x) ∈ Cs(M) and eAj

(x) ∈

Cs(M) for j = 1, . . . , |A|. Moreover, for a fixed C∞ atlas of M, there exists M2 > 0 such

that

max
j

∥∥µAj

∥∥
Cs ≤M2 and max

j
∥ log eAj

∥Cs ≤M2.

Assumption C.4 can be viewed as a special case of Assumption 6.A.3, as Cs(M) is a

subspace of Hs1(M) for any real number s1 with s1 > s.

We reload the network architectures for estimating µAj
’s and eAj

’s as

FNN = F̃(L1, p1, R1) and GNN = F̃(L2, p2, R2), respectively. (D.1)

198

Using the doubly robust method, in Stage 1, we can show an analogy of Lemma 6.1, when

FNN and GNN are properly chosen.

Lemma D.1. Suppose Assumption 3.1, 3.2, 6.1, 6.A.2, and C.4 hold. We choose

L1 = O(L̃1 log L̃1), p1 = O(p̃1 log p̃1), R1 =M, with L̃1p̃1 = O
(
(ηn1)

d
2(d+2s)

)

(D.2)

for FNN in (Eq. D.1) and

L2 = O(L̃2 log L̃2), p2 = O(|A|p̃2 log p̃2), R2 =M, with L̃2p̃2 = O

(
|A| 3s

2s+dn
d

2(d+2s)

1

)

(D.3)

for GNN in (Eq. D.1). Then for any j = 1, . . . , |A|, we have

ES1

[∥∥µ̂Aj
− µAj

∥∥2
L2

]
≤ C1(M

2 + σ2)(ηn1)
− 2s

2s+d log6(ηn1),

ES1

[∥∥êAj
− eAj

∥∥2
L2

]
≤ C2M

2|A| 8s+d
2s+dn

− 2s
2s+d

1 log6 n1,

where C1, C2 depend on logD, B, τ and the surface area of M.

Compared to Lemma 6.1, Lemma D.1 attains the same rate of convergence (if α is an

integer in Lemma 6.1) up to some logarithmic factor dependent on sample size n1. More

interestingly, (Eq. D.2) and (Eq. D.3) suggest that Lemma D.1 holds for arbitrarily chosen

width and depth for FNN and GNN, as long as the product of width and depth satisfies

certain requirement. In contrast, Lemma 6.1 requires a fixed ratio between network width

and depth.

Lemma D.1 can be proved using the same analytical framework of Lemma 6.1, in

combination of a new approximation guarantee of weight unbounded networks for approx-

imating Cs(M) functions. Besides, we need a new analysis on the statistical complexity of

weight unbounded networks.

199

Proof of Lemma D.1. We successively present the three steps in proving Lemma D.1.

• Step 1: Cs(M) function approximation using F̃ . We begin with a universal function

approximation theory of F̃ .

Lemma D.2. Suppose Assumption 3.1 and 3.2 hold. For any integers L̃, p̃ > 0 and f ∈

Cs(M) with ∥f∥Cs ≤M , there exists a network architecture F̃(L, p,R) with

L = O(L̃ log L̃), p = O(p̃ log p̃), and R =M,

giving rise to a network f̃ satisfying

∥f̃ − f∥∞ ≤ C
(
L̃p̃
)− 2s

d
, (D.4)

where C is a constant depending on s, d,M,B, τ , and the surface area of M.

We emphasize that Lemma D.2 allows arbitrary choice of width L and depth p, and the

approximation error is purely dependent on the product of width and depth.

Lemma D.2 is a generalization of Lemma 17 in [223]. To prove Lemma D.2, we repeat

the argument in the proof of Lemma 17 in [223]. In particular, we only need to invoke

Theorem 1.1 in [224] in replacement of Lemma 8 in the proof of Lemma 17 in [223].

• Step 2: Statistical estimation guarantees of µAj
’s. Given the approximation guarantee

of F̃ for implementing Cs(M) functions, we prove statistical estimation error bound of

estimating expected reward function µAj
’s.

Lemma D.3. Suppose Assumption 3.1, 3.2, 6.1, 6.A.2, and C.4 hold. There exists a network

architecture FNN = F̃(L, p,R) satisfying

L = O(L̃ log L̃), p = O(p̃ log p̃), R =M with L̃p̃ = O
(
(nAj

)
d

2(d+2s)

)
,

200

such that for each j = 1, . . . , |A|, the empirical risk minimizer µ̂Aj
in (Eq. 6.4) satisfies

E
[∥∥µ̂Aj

− µAj

∥∥2
L2

]
≤ C1(M

2 + σ2)n
− 2s

2s+d

1 log6 n1,

where C1 depends on logD, B, τ and the surface area of M.

Lemma D.3 is obtained by a bias-variance tradeoff. Specifically, Lemma D.2 already

characterizes the bias term. The remaining task is to bound the variance term. A difficulty

arises as F̃ can have unbounded weight parameters. However, we observe that the ReLU

activation is positive homogeneous. Therefore, we can rescale layers in F̃ while maintain-

ing the output unchanged. Combining with the output range bound, we can still bound the

complexity of F̃ (A precise argument can be found in [223, Lemma 11–12]). The full proof

can be found in the proof of Theorem 2 in [223], except we replace Lemma 8 in the proof

of [223, Theorem 2] by Lemma D.2.

• Step 3: Statistical estimation guarantees of eAj
’s. The estimation error of propensity

scores can be obtained very similar to Step 2. By repeating the argument in the proof of

Lemma 6.1, with a replacement of Theorem 2 in [214] by Lemma D.2.

With estimation guarantees on µAj
and eAj

for j = 1, . . . , |A|, we proceed to Stage

2 of the doubly robust method, where we choose proper policy network class for policy

learning. Suppose we are competing with Cℓ oracle policies. That is, we denote π∗
ℓ as

π∗
ℓ = argmax

π∈ΠCℓ

E[Q(π(x))],

where ΠCℓ consists of policies

ΠCℓ =
{

Softmax[ν1(x), . . . , ν|A|(x)]
⊤ : νj ∈ Cℓ(M) and ∥νj∥Cℓ(M) ≤M for j = 1, . . . , |A|

}
.

201

With a slight abuse of notation, we reload the policy network Π
|A|
NN by

Π
|A|
NN =

{
Softmax(f) with f = [f1, . . . , f|A|]

⊤ such that fk : M → R ∈ F̃(LΠ, pΠ, RΠ)
}
.

(D.5)

Recall π̂DR is the optimal policy learned from Π
|A|
NN using the doubly robust method. We

establish the following Theorem Theorem 6.1 bounding its regret.

Theorem D.1. Suppose Assumption 3.1, 3.2, 6.1, 6.A.2, and C.4 hold. Under the setup in

Lemma D.1, if the network parameters of Π|A|
NN are chosen with

LΠ̃ = O(L̃ log L̃), pΠ̃ = O
(
|A|p̃ log p̃

)
, RΠ =M for L̃p̃ = O

(
n

d
2(d+2ℓ)

)
,

then with probability no less than 1−C1|A|n− ℓ
2ℓ+d over the randomness of data S1 and S2,

the following bound holds

R(π∗
ℓ , π̂DR) ≤ C|A|2n− ℓ

2ℓ+d log3 n

+ η−1|A|

√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
êAj

(xi)− eAj
(xi)

)2
,

where C1 > 0 is an absolute constant and C depends on logD, d, B, M , τ , η, ζ , and the

surface area of M.

Combining Theorem D.1 and Lemma D.1, we obtain the following corollary providing

a concrete convergence of π̂DR to π∗
ℓ .

Corollary D.1. Suppose Assumption 3.1, 3.2, 6.1, 6.A.2, and C.4 hold. If the network

structures are chosen as in Lemma D.1 and Theorem D.1, the following regret bound holds

with probability no less than 1− C1n
− s∧ℓ

2(s∧ℓ)+d log6 n,

R(π∗
ℓ , π̂DR) ≤ C|A|

20s+7d
2(2s+d)n− s∧ℓ

2(s∧ℓ)+d log3 n

202

where C1 is an absolute constant, and C depends on logD, d, B, M , σ, τ , η, s, ζ , and the

surface area of M.

In comparison with Corollary 6.1, we conclude that removing the uniform boundedness

condition of weight parameters in neural networks does not deteriorate the performance of

doubly robust policy learning method. In particular, the learned policy attains the same rate

of convergence (up to a log factor) compared to the optimal policy in a constrained oracle

class (Cℓ policies).

We would like to point out that extensions to learning unconstrained policies as well

as continuous-action settings are both plausible, using networks with unbounded weights.

The analysis is almost identical, expect we invoke the approximation theory Lemma D.2

and statistical estimation theory Lemma D.3. On the other hand, we suspect the analysis

can be extended to general Hölder regularity, i.e., Hα(M) for any α ≥ 1. Specifically, we

can show Lemma D.2 and D.3 hold for any f ∈ Hα(M) with α ∈ (0, 1] [225, Theorem

1.1]. Then for any Hölder class Hα(M), we decompose it into C⌊α⌋(M) and Hα−⌊α⌋(M),

where we can apply Lemma D.2 and D.3 separately. Integrating together yields a result for

general Hα(M) regularity. However, detailed analysis can be tedious and a bit involved.

We omit here for simplicity.

Proof of Theorem D.1. We rely on the analytical framework in the proof of Theorem 6.1.

We first follow (Eq. D.16) to decompose the regret into (I1) and (II2). We then discuss

necessary modifications in the proof of Theorem 6.1 in order to prove Theorem D.1.

• Bounding (I1). To bound (I1), instead of using [207], we use Lemma D.2 and deduce that

for any ϵ ∈ (0, 1) and integers L̃, p̃ satisfying L̃p̃ = ϵ−
d
2ℓ , there exists a network architecture

F̃(L, p,R) with

L = O
(
L̃ log L̃

)
, p = O (p̃ log p̃) , R =M, (D.6)

203

such that for each µ∗
Aj

∈ Hℓ(M), there exists µ̃Aj
∈ F̃(L, p,R) satisfying

∥µ̃Aj
− µ∗

Aj
∥∞ ≤ ϵ. (D.7)

We denote π̃ = Softmax([µ̃A1 , . . . , µ̃A|A|]
⊤) ∈ R|A|, which implies π̃ ∈ Π

|A|
NN with

LΠ = L, pΠ = |A|p, RΠ = R (D.8)

for L, p,R defined in (Eq. D.6). We can then deduce

∥π̃ − π∗
β∥∞ ≤ ϵ,

where ∥π̃ − π∗
β∥∞ = supx∈Mmaxj |[π̃(x)− π∗

β(x)]j|, and

(I1) = Q(π∗
β)−Q(π̂∗) ≤ Q(π∗

β)−Q(π̃) = E
[〈
[µA1(x), . . . , µA|A|(x)]

⊤, π∗(x)− π̃(x)
〉]

≤M |A|ϵ. (D.9)

• Bounding (II1). The bound of (II2) can be derived by exactly following the derivation

in the proof of Theorem 6.1, except Π|A|
NN is defined as in (Eq. D.5).

• Putting (I1) and (II1) together. Putting the upper bound of (I1) in (Eq. D.9) and the

upper bound of (II1) in (Eq. D.40) together, we can get the same bound as in (Eq. D.41).

We next derive an upper bound of the covering number N (θ,Π
|A|
NN, ∥ ·∥Γ) using the concept

of uniform covering number. Define a cover with respect to samples as

Definition D.1 (Cover with respect to samples). Let F be a class of functions from Rd1 to

Rd2 . Given a set of samples X = {xk}mk=1 ⊂ Rd1 , for any δ > 0, a function set Sf (X) is a

δ-cover of F with respect to X if for any f ∈ F , there exists f ∗ ∈ Sf (X) such that

∥f(xk)− f ∗(xk)∥∞ ≤ δ, ∀1 ≤ k ≤ m.

204

The uniform covering is defined as

Definition D.2 (Uniform covering number, Section 10.2 of [226]). Let F be a class of

functions from Rd to R. For any set of samples X = {xk}mk=1 ⊂ Rd, denote

F|X = {(f(x1), ..., f(xm)) : f ∈ F} .

For any δ > 0, the uniform covering number of F with m samples is defined as

N (δ,F ,m) = max
X⊂Rd,|X|=m

min
Sf (X)

{|Sf (X)| : Sf (X) is a δ-cover of F with respect to X}.

(D.10)

Note that the metric ∥ · ∥Γ depends on the set {xi}ni=n1+1. We can follow the proof of

Lemma D.5 to show that

N (θ,Π
|A|
NN, ∥·∥Γ) ≤ N

(
θ/(|A|M + 2M/η),Π

|A|
NN, n2

)
. (D.11)

In the proof, we modify the construction of π(1), π(2) so that |µ(1)
Aj
(xi) − µ

(2)
Aj
(xi)| ≤ θ for

any j = 1, ..., |A| and i = n1 + 1, ..., n.

According to [223, Lemma 11–12], we have

logN (θ,Π
|A|
NN, ∥ · ∥Γ) ≤ C|A|p2ΠL2

Π log(p2ΠLΠ)(logRΠ + log θ−1 + log n), (D.12)

and thus

logN (θ,Π
|A|
NN, ∥·∥Γ) ≤ C|A|p2ΠL2

Π log(p2ΠLΠ)(logRΠ + log θ−1 + log n). (D.13)

Substituting the choice of the network architecture (Eq. D.8) into (Eq. D.13) gives rise to

logN (θ,Π
|A|
NN, ∥·∥Γ) ≤ C|A|ϵ− d

ℓ log5
1

ϵ

(
log

1

θ
+ log n

)
. (D.14)

205

Following the derivation of (Eq. D.45), we can prove Theorem D.1 by substituting (Eq. D.14)

and (Eq. D.43) into (Eq. D.41), and setting ϵ = δ = λ = n
− ℓ

2ℓ+d

2 .

D.2 Proof of Regret Bound

For readability, we present a proof sketch of Theorem 6.1, Theorem 6.2, Theorem 6.3 first

and leave all the technical proofs to Appendix D.3.

D.2.1 Proof of Learning Hölder Policy

Proof of Theorem 6.1. We denote

π̂∗ = argmax
π∈Π|A|

NN

Q(π), (D.15)

which is the optimal policy given by the neural network class Π
|A|
NN defined in (Eq. 6.19).

The regret can be decomposed as

R(π∗
β, π̂DR) = Q(π∗

β)−Q(π̂∗)︸ ︷︷ ︸
(I1)

+Q(π̂∗)−Q(π̂DR)︸ ︷︷ ︸
(II1)

. (D.16)

In (Eq. D.16), (I1) is the approximation error (bias) of the optimal Hölder policy π∗
β by the

neural network class Π|A|
NN, and (II1) represents the variance of the estimated policy in Π

|A|
NN.

We next derive the bounds for both terms.

• Bounding (I1). Recall that π∗
β is the Hölder continuous optimal policy in ΠHβ . By

defnintion, we can write π∗
β = Softmax([µ∗

A1
, . . . , µ∗

A|A|
]⊤) ∈ R|A| where µ∗

Aj
∈ Hβ(M),

for j = 1, . . . , |A|. According to [214], Hölder functions can be uniformly approximated

by a neural network class, if the network parameters are properly chosen. For any ϵ ∈ (0, 1)

206

there exists a network architecture F(L, p,K, κ,R) with

L = O

(
log

1

ϵ

)
, p = O

(
ϵ−

d
β

)
, K = O

(
ϵ−

d
β log

1

ϵ

)
, κ = max{B,M,

√
d, τ 2}, R =M,

(D.17)

such that for each µ∗
Aj

∈ Hβ(M), there exists µ̃Aj
∈ F(L, p,K, κ,R) satisfying

∥µ̃Aj
− µ∗

Aj
∥∞ ≤ ϵ. (D.18)

The constants hidden in O(·) depend on logD, d, B, M , τ , β, and the surface area of M.

We denote π̃ = Softmax([µ̃A1 , . . . , µ̃A|A|]
⊤) ∈ R|A|, which implies π̃ ∈ Π

|A|
NN with

LΠ = L, pΠ = |A|p, KΠ = |A|K, κΠ = κ, RΠ = R (D.19)

for L, p,K, κ,R defined in (Eq. D.17). Based on (Eq. D.18) and the Lipschitz continuity

of the Softmax function, we have

∥π̃ − π∗
β∥∞ ≤ ϵ,

where ∥π̃ − π∗
β∥∞ = supx∈M maxj |[π̃(x) − π∗

β(x)]j| with [π̃(x) − π∗
β(x)]j denoting the

j-th element of π̃(x)− π∗
β(x). Therefore we bound I1 as

(I1) = Q(π∗
β)−Q(π̂∗) ≤ Q(π∗

β)−Q(π̃)

= E
[〈
[µA1(x), . . . , µA|A|(x)]

⊤, π∗(x)− π̃(x)
〉]

≤M |A|ϵ. (D.20)

• Bounding (II1). We introduce an intermediate reward function Q̃ to decompose the

207

variance term (II1). Define

Q̃(π) =
1

n2

n∑

i=n1+1

〈
Γ̃i, π(xi)

〉

with Γ̃i =
yi − µai

(xi)

eai
(xi)

· ai + [µA1(xi), . . . , µA|A|(xi)]
⊤ ∈ R|A|. (D.21)

Note that Q̃ has the same form as Q̂ while the estimated propensity score êa and expected

reward µ̂a are replaced by their ground truth ea and µa, respectively.

We decompose (II1) as

(II1) = Q(π̂∗)−Q(π̂DR)

= Q̂(π̂∗)− Q̂(π̂DR) +Q(π̂∗)− Q̂(π̂∗) + Q̂(π̂DR)−Q(π̂DR)

≤ Q(π̂∗)−Q(π̂DR) + Q̂(π̂DR)− Q̂(π̂∗)

≤ sup
π1,π2∈Π|A|

NN

Q(π1)−Q(π2)−
(
Q̃(π1)− Q̃(π2)

)

+ sup
π1,π2∈Π|A|

NN

Q̃(π1)− Q̃(π2)−
(
Q̂(π1)− Q̂(π2)

)

≤ sup
π1,π2∈Π|A|

NN

∆(π1, π2)− ∆̃(π1, π2)

︸ ︷︷ ︸
E1

+ sup
π1,π2∈Π|A|

NN

∆̃(π1, π2)− ∆̂(π1, π2)

︸ ︷︷ ︸
E2

, (D.22)

where ∆(π1, π2) = Q(π1)−Q(π2), ∆̃(π1, π2) = Q̃(π1)−Q̃(π2) and ∆̂(π1, π2) = Q̂(π1)−

Q̂(π2). The first inequality in (Eq. D.22) come from (Eq. D.15) which implies Q̂(π̂DR) ≤

Q̂(π̂∗). In this decomposition, E1 corresponds to the difference betweenQ and Q̃which can

be bounded using the metric entropy argument, since Q̃ is unbiased, i.e. E[Q̃(π)] = Q(π).

The second term E2 corresponds to the error between Q̃ and Q̂, which can be bounded in

terms of the estimation errors of the eAj
’s and the µAj

’s.

Bounding E1. We first show that E
[
Q̃(π)

]
= Q(π):

E
[
Q̃(π)

]
= E

[〈
E
[
y − µa(x)

ea(x)
a
∣∣∣x
]
, π(x)

〉
+
〈
[µA1(x), . . . , µA|A|(x)]

⊤, π(x)
〉]

208

= E
[〈

[µA1(x), . . . , µA|A|(x)]
⊤, π(x)

〉]
= E[Y (π(x))] = Q(π), (D.23)

which further implies E
[
∆̃(π1, π2)

]
= ∆(π1, π2). In (Eq. D.23), the second equality holds

since

E
[
y − µa(x)

ea(x)
a
∣∣∣x
]
=

E[y|x]− µa(x)

ea(x)
E[a|x] = 0

by Assumption 6.1. Therefore we can write

E1 = sup
π1,π2∈Π|A|

NN

∆̃(π1, π2)− E[∆̃(π1, π2)] (D.24)

with

∆̃ =
1

n2

n∑

i=n1+1

〈
Γ̃i, π1(xi)

〉
− 1

n2

n∑

i=n1+1

〈
Γ̃i, π2(xi)

〉
.

We derive a bound of E1 using the following lemma which is be proved by symmetrization

and Dudley’s entropy integral [227, 221] in Appendix D.3.3:

Lemma D.4. Let Π : M → R|A| be a policy space on |A| actions such that any π ∈ Π

maps a covariate x ∈ M to π(x) in the simplex of R|A|, and Sn = {(xi, yi)}ni=1 be a set of

i.i.d. samples, where xi is sampled from a probability distribution P supported on M and

yi ∈ R. For any (x, y), we define Γ̊(x, y) ∈ R|A| as a function of the sample (x, y). Assume

that there exists a constant J ≥ 0, such that

sup
(x,y)∈M×R

|̊Γ(x, y)| ≤ J. (D.25)

For any policies π1, π2 ∈ Π, define

∆̊(π1, π2) =
1

n

n∑

i=1

〈
Γ̊i, π1(xi)

〉
− 1

n

n∑

i=1

〈
Γ̊i, π2(xi)

〉
and (D.26)

209

D(Π) = sup
π1,π2∈Π

∆̊(π1, π2)− E[∆̊(π1, π2)] (D.27)

with the shorthand Γ̊i = Γ̊(xi, yi). Then the following bound holds

D(Π) ≤ inf
λ

4λ+
96√
n

∫ max
π∈Π

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ + 12J

√
log 1/δ

2n
(D.28)

with probability no less than 1− 2δ over Sn, where ∥π∥Γ =
√

1
n

∑n
i=1⟨̊Γi, π(xi)⟩2.

A key observation is that when taking Γ̊ = Γ̃ defined in (Eq. D.21) and Π = Π
|A|
NN, we

have E1 = D(Π) in (Eq. D.24). To apply Lemma D.4 for bounding E1, we only need to

verify the assertion (Eq. D.25). In fact, due to Assumption 6.A.2, we see that y, µAj
(x),

and eAj
(x) are all bounded. A simple calculation yields sup(x,y)∈M×R |̊Γ(x, y)| ≤ J =

2M/η +M . Therefore, we bound E1 as

E1 ≤ inf
λ

4λ+
96√
n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π

|A|
NN, ∥·∥Γ)dθ + (24M/η + 12M)

√
log 1/δ

2n2

(D.29)

with probability no less than 1− 2δ.

Bounding E2. The E2 term depends on the difference between Γ̃i and Γ̂i, where Γ̃i and Γ̂i

are defined in (Eq. D.21) and (Eq. 6.7), respectively. In E2, we have

∆̃(π1, π2)− ∆̂(π1, π2) =
1

n2

n∑

i=n1+1

〈
π1(xi)− π2(xi), Γ̃i − Γ̂i

〉

=

|A|∑

j=1

1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))
(
Γ̃i,j − Γ̂i,j

)
,

where πk,j and Γ̃i,j denote the j-th element of πk and Γ̃i, respectively. Define

Λj(π1, π2) =
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))
(
Γ̃i,j − Γ̂i,j

)
∈ R, for j = 1, . . . , |A|.

210

Then we can write ∆̃(π1, π2)− ∆̂(π1, π2) as

∆̃(π1, π2)− ∆̂(π1, π2) =

|A|∑

j=1

Λj(π1, π2). (D.30)

The error term Γ̃i,j − Γ̂i,j in Λj(π1, π2) depends on the estimation error of µ̂Aj
and êAj

.

Based on the source of the error, we decompose each Λj(π1, π2) into three terms:

Λj(π1, π2) =
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))

[(
yi − µAj

(xi)

eAj
(xi)

1{ai=Aj}+µAj
(xi)

)

−
(
yi − µ̂Aj

(xi)

êAj
(xi)

1{ai=Aj}+µ̂Aj
(xi)

)]

=
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))
(
µAj

(xi)− µ̂Aj
(xi)

)

+
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))1{ai=Aj}

(
yi − µAj

(xi)

eAj
(xi)

− yi − µ̂Aj
(xi)

êAj
(xi)

)

= S
(1)
j (π1,j, π2,j) + S

(2)
j (π1,j, π2,j) + S

(3)
j (π1,j, π2,j), (D.31)

where

S
(1)
j (π1,j, π2,j) =

1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))
(
µAj

(xi)− µ̂Aj
(xi)

)(
1− 1{ai=Aj}

eAj
(xi)

)
,

S
(2)
j (π1,j, π2,j) =

1

n2

∑

{n1+1≤i≤n|ai=Aj}

(π1,j(xi)− π2,j(xi))
(
yi − µAj

(xi)
)(1

eAj
(xi)

− 1

êAj
(xi)

)
,

S
(3)
j (π1,j, π2,j) =

1

n2

∑

{n1+1≤i≤n|ai=Aj}

(π1,j(xi)− π2,j(xi))
(
µ̂Aj

(xi)− µAj
(xi)

)(1

êAj
(xi)

− 1

eAj
(xi)

)
.

Here S(1)
j (π1,j, π2,j) and S(2)

j (π1,j, π2,j) can be bounded using Lemma D.4. S(3)
j (π1,j, π2,j)

contains the product of the estimation error of µ̂Aj
and êAj

, which gives the doubly robust

211

property. According to (Eq. D.30) and (Eq. D.31),

E2 = sup
π1,π2∈Π|A|

NN

|A|∑

j=1

S
(1)
j (π1,j, π2,j) + S

(2)
j (π1,j, π2,j) + S

(3)
j (π1,j, π2,j)

≤
|A|∑

j=1

sup
π1,π2∈Π|A|

NN

S
(1)
j (π1,j, π2,j) + sup

π1,π2∈Π|A|
NN

S
(2)
j (π1,j, π2,j) + sup

π1,π2∈Π|A|
NN

S
(3)
j (π1,j, π2,j).

(D.32)

In the rest of the proof, when there is no ambiguity, we omit the dependency on (π1,j, π2,j)

and use the notations S(1)
j , S(2)

j and S(3)
j . We next derive the bounds for the S(1)

j , S(2)
j and

S
(3)
j terms in the right hand side of (Eq. D.32) respectively.

Bounding sup
π1,π2∈Π|A|

NN
S
(1)
j : For S(1)

j , one can show that E[S(1)
j] = 0:

E[S(1)
j]

= E

[
1

n2

n∑

i=n1+1

E
[
(π1,j(xi)− π2,j(xi))

(
µAj

(xi)− µ̂Aj
(xi)

)(
1− 1{ai=Aj}

eAj
(xi)

) ∣∣∣∣xi

]]

= E

[
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi))
(
µAj

(xi)− µ̂Aj
(xi)

)
E
[
1− 1{ai=Aj}

eAj
(xi)

∣∣∣∣xi

]]
= 0.

Denote

Γ̄(1,j)(xi) =
(
µAj

(xi)− µ̂Aj
(xi)

)(
1− 1{ai=Aj}

eAj
(xi)

)
∈ R,

then we have

sup
π1,π2∈Π|A|

NN

S
(1)
j = sup

π1,π2∈Π|A|
NN

S
(1)
j − E

[
S
(1)
j

]

= sup
π1,π2∈Π|A|

NN

1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi)) Γ̄
(1,j)(xi)

− E

[
1

n2

n∑

i=n1+1

(π1,j(xi)− π2,j(xi)) Γ̄
(1,j)(xi)

]
. (D.33)

212

The expression in (Eq. D.33) resembles the same form as D in (Eq. D.27) with Γ̊ =

Γ̄(1,j)(x) and Π = Π
|A|
NN. Therefore, we can estimate sup

π1,π2∈Π|A|
NN
S
(1)
j using Lemma

D.4. Due to Assumption 6.A.2, for any x ∈ M, we have |Γ̄(1,j)(x)| ≤ 2M/η. After

substituting J = 2M/η in Lemma D.4, we have

sup
π1,π2∈Π|A|

NN

S
(1)
j ≤ inf

λ
4λ+

96√
n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ

+ (24M/η)

√
log 1/δ

2n2

(D.34)

with probability no less than 1− 2δ.

Bounding sup
π1,π2∈Π|A|

NN
S
(2)
j : Similarly, one can show E

[
S
(2)
j

]
= 0. Denote

Γ̄(2,j)(xi, yi) =
(
yi − µAj

(xi)
)(1

eAj
(xi)

− 1

êAj
(xi)

)
1{ai=Aj} ∈ R.

We follow the same calculation in (Eq. D.33) to express sup
π1,π2∈Π|A|

NN
S
(2)
j in the same

form as D in (Eq. D.27) with Γ̊ = Γ̄(2,j) and Π = Π
|A|
NN.

An upper bound of sup(x,y) |Γ̄(2,j)(x)| can be derived as follows. With GNN chosen in

(Eq. 6.15), its output is bounded by M , which implies êAj
≥ (|A|e2M)−1. Thus

∣∣∣∣
1

eAj
(xi)

− 1

êAj
(xi)

∣∣∣∣ ≤ |A|e2M ,

since M ≥ − log η by (Eq. 6.12). By Assumption 6.A.2 and (Eq. 6.12), we have

supx,y |y − µAj
(x)| ≤ 2M hold for any j = 1, . . . , |A|. Therefore, we have

sup
(x,y)∈M×R

|Γ(2,j)(x)| ≤ 2|A|e2MM. (D.35)

213

Using Lemma D.4 and substituting J = 2|A|e2MM give rise to

sup
π1,π2∈Π|A|

NN

S
(2)
j ≤ inf

λ
4λ+

96√
n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ

+ (24|A|e2MM)

√
log 1/δ

2n2

(D.36)

with probability no less than 1− 2δ.

Bounding sup
π1,π2∈Π|A|

NN
S
(3)
j : We next derive an upper bound of sup

π1,π2∈Π|A|
NN
S
(3)
j as the

product of the estimation errors of the µ̂Aj
’s and the êAj

’s:

sup
π1,π2∈Π|A|

NN

S
(3)
j

=
1

n2

sup
π1,π2∈Π|A|

NN

∑

{n1+1≤i≤n|ai=Aj}

(π1,j(xi)− π2,j(xi))
(
µ̂Aj

(xi)− µAj
(xi)

)(1

êAj
(xi)

− 1

eAj
(xi)

)

≤ 1

n2

n∑

i=n1+1

∣∣µ̂Aj
(xi)− µAj

(xi)
∣∣
∣∣∣∣

1

êAj
(xi)

− 1

eAj
(xi)

∣∣∣∣

(since |π1,j(xi)− π2,j(xi)| ≤ 1)

≤

√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
1

êAj
(xi)

− 1

eAj
(xi)

)2

(by Cauchy-Schwarz)

≤ η−1|A|e2M
√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
êAj

(xi)− eAj
(xi)

)2
,

(D.37)

where the last inequality holds since eAj
≥ η by Assumption 6.A.2 and êAj

≥

214

(|A|e2M)−1. We denote

ωj = η−1|A|e2M
√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
êAj

(xi)− eAj
(xi)

)2
,

(D.38)

and write sup
π1,π2∈Π|A|

NN
S
(3)
j ≤ ωj .

Putting the S(1)
j , S(2)

j and S
(3)
j terms together: Combining (Eq. D.34), (Eq. D.36),

(Eq. D.37) gives rise to

sup
π1,π2∈Π|A|

NN

Λj(π1, π2) ≤ sup
π1,π2∈Π|A|

NN

S
(1)
j + sup

π1,π2∈Π|A|
NN

S
(2)
j + sup

π1,π2∈Π|A|
NN

S
(3)
j

≤ inf
λ

8λ+
192√
n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π

|A|
NN, ∥·∥Γ)dθ + 48|A|e2MM

√
log 1/δ

2n2

+ ωj

with probability no less than 1−4δ where we used e2M ≥ η−1 according to (Eq. 6.12).

According to (Eq. D.32), we can apply the union probability bound for j = 1, . . . , |A|

and obtain

E2 = sup
π1,π2∈Π|A|

NN

∆̃(π1, π2)− ∆̂(π1, π2)

≤ inf
λ

8|A|λ+
192|A|√

n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π

|A|
NN, ∥·∥Γ)dθ

+ 48|A|2e2MM
√

log 1/δ

2n2

+

|A|∑

j=1

ωj (D.39)

with probability no less than 1− 4|A|δ.

Combining (Eq. D.29) and (Eq. D.39), we have

(II1) ≤ inf
λ

(8|A|+ 4)λ+
192|A|+ 96√

n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π

|A|
NN, ∥·∥Γ)dθ

215

+

|A|∑

j=1

ωj +
(
72|A|2e2MM + 12M

)
√

log 1/δ

2n2

(D.40)

with probability at least 1− 6|A|δ.

• Putting (I1), (II1) together. Putting our estimates of (I1) in (Eq. D.20) and (II1) in

(Eq. D.40) together, we get

R(π∗
β, π̂DR) ≤ |A|Mϵ+ inf

λ
(8|A|+ 4)λ+

192|A|+ 96√
n2

∫ max
π∈Π

|A|
NN

∥π∥Γ

λ

√
logN (θ,Π

|A|
NN, ∥·∥Γ)dθ

+

|A|∑

j=1

ωj + 84|A|2e2MM
√

log 1/δ

2n2

(D.41)

with probability at least 1 − 6|A|δ. The upper bound in (Eq. D.41) depends on the cov-

ering number N (θ,Π
|A|
NN, ∥·∥Γ) and the integral upper limit max

π∈Π|A|
NN

∥π∥Γ which can be

estimated by the following lemmas (see the proofs in Appendix D.3.4 and Appendix D.3.5

respectively):

Lemma D.5. Suppose Assumption 6.A.2 and 6.A.3 hold and define Π
|A|
NN according to

(Eq. 6.19). Then

N (θ,Π
|A|
NN, ∥ · ∥Γ) ≤

(
2(|A|M + 2M/η)L2

Π(pΠR/|A|+ 2)κLΠ(pΠ/|A|)LΠ+1

θ

)KΠ

.

(D.42)

Lemma D.6. Suppose Assumptions 6.A.2 and 6.A.3 hold. For any π ∈ Π
|A|
NN, the following

holds

∥π∥2Γ ≤ (2M/η + |A|M)2. (D.43)

Setting the network parameter as in (Eq. D.19) and using (Eq. D.42), we have

logN (θ,Π
|A|
NN, ∥ · ∥Γ) ≤ C1|A|ϵ− d

β log
1

ϵ

(
log2

1

ϵ
+ log

1

θ

)
(D.44)

216

with C1 depending on logD, d, B, τ , η, β, and the surface area of M.

Substituting (Eq. D.44) and (Eq. D.43) into (Eq. D.41) gives

R(π∗
β, π̂DR) ≤ |A|Mϵ+

|A|∑

j=1

ωj + 84|A|2e2MM
√

log 1/δ

2n2

+ inf
λ

12|A|λ+
288|A|√

n2

∫ |A|M+2M/η

λ

√
C1|A|ϵ− d

β log
1

ϵ

(
log2

1

ϵ
+ log

1

θ

)
dθ

≤ |A|Mϵ+

|A|∑

j=1

ωj + 84|A|2e2MM
√

log 1/δ

2n2

+ inf
λ

12|A|λ

+ C2
288|A|3/2√

n2

Mη−1ϵ−
d
2β

√
log

1

ϵ

(
log2

1

ϵ
+ log

1

λ

)
(D.45)

with probability no less than 1 − 6|A|δ and C2 depending on logD, d, B, τ , η, β, and the

surface area of M. Setting ϵ = n
− β

2β+d

2 , δ = n
− β

2β+d

2 , λ = n
− β

2β+d

2 implies (Eq. 6.20) and

(Eq. 6.21) in Theorem 6.1.

D.2.2 Proof of Corollary 6.1

Proof. Corollary 6.1 is proved based on Theorem 6.1 and Lemma 6.1. We first derive an

upper bound of the ωj’s using Lemma 6.1. Taking an expectation on the both sides of

(Eq. D.38) gives rise to

E[ωj] ≤ η−1|A|e2ME

√√√√ 1

n2

n∑

i=n1+1

(
µ̂Aj

(xi)− µAj
(xi)

)2
√√√√ 1

n2

n∑

i=n1+1

(
êAj

(xi)− eAj
(xi)

)2

≤ η−1|A|e2M
√

E
[
∥µ̂Aj

− µAj
∥2L2

]√
E
[
∥eAj

− êAj
∥2L2

]

≤ C1e
2M(M + σ)η−

3α+d
2α+d |A|

8α+3d
2(2α+d)n

− 2α
2α+d

1 log3 n1,

where the second inequality is due to Jensen’s inequality and the unconfoundedness con-

dition in Assumption 6.1, the last inequality is due to Lemma 6.1, and C1 is a constant

217

depending on logD, d,B, τ, α and the surface area of M.

By Markov’s inequality, for any δ > 0,

P (ωj > δ) ≤ E [ωj]

δ
≤ 1

δ
C1G1n

− 2α
2α+d

1 log3 n1, (D.46)

where G1 = e2M(M + σ)η−
3α+d
2α+d |A|

8α+3d
2(2α+d) . Applying a union probability bound gives rise

to

P

|A|∑

j=1

ωj > |A|δ

 ≤ C1

δ
|A|G1n

− 2α
2α+d

1 log3 n1. (D.47)

Substituting (Eq. D.47) into (Eq. 6.21) and setting δ = C1|A|G1n
− α

2α+d

1 , we get

R(π∗
β, π̂DR) ≤ C2e

2M |A|2(M + σ)n
− β

2β+d

2 log3/2 n2 + C1|A|2G1n
− α

2α+d

1

≤ C3e
2M |A|

16α+7d
2(2α+d) (M + σ)n− α∧β

2(α∧β)+d log3/2 n

with probability no less than 1 − C4n
− α∧β

2(α∧β)+d log3 n, where C4 is an absolute constant,

C2, C3 are constants depending on logD, d,B, τ, α, β, η, and the surface area of M.

D.2.3 Proof of Learning Unconstrained Policy

Proof. Proof of Theorem Theorem 6.2.In Theorem 6.2, π∗ is the unconstrained optimal

policy. We prove Theorem 6.2 in a similar manner as we prove Theorem 6.1. We first

decompose the regret using an oracle inequality:

R(π∗, π̂DR) = Q(π∗)−Q(π̂∗)︸ ︷︷ ︸
(I2)

+Q(π̂∗)−Q(π̂DR)︸ ︷︷ ︸
(II2)

, (D.48)

where π̂∗ is the same as in (Eq. D.15). In (Eq. D.48), (I2) is the bias of approximating π∗ by

the policy class Π|A|
NN(H), and (II2) is the same as (II1) in (Eq. D.16) which can be bounded

218

similarly.

Following the proof of Theorem Theorem 6.1 and Corollary 6.1, we can derive that

(II2) ≤ C1e
2M |A|

16α+7d
2(2α+d) (M + σ)n− α

2α+d log3/2 n log1/2(1/H)

with probability no less than 1 − C2n
− α

2α+d log3 n where C2 is an absolute constant and

C1 depends on logD, d,B, τ, α, and the surface area of M. In addition, π̂DR ∈ Π
|A|
NN(H)

with LΠ, pΠ, KΠ, κΠ and RΠ given in (Eq. 6.20). It remains to show (I2) ≤ 2cMtq +

M |A|2 exp
[(

−Mt+ 2n− 2α
2α+d

)
/H
]

for any t ∈ (0, 1).

Bounding (I2). We estimate Q(π∗) − Q(π̂∗) on two regions. The first region is, for any

given t ∈ (0, 1),

χt =

{
x
∣∣ x ∈ M, µAj∗(x)(x)− max

j ̸=j∗(x)
µAj

(x) ≤Mt

}

with j∗(x) = argmaxj µAj
(x). On χt, the gap between µAj∗(x)(x), the reward of the

optimal action, and the reward of the second optimal action is smaller thanMt. Assumption

6.A.4 yields P(χt) ≤ ctq. The second region is

χ∁
t =

{
x
∣∣ x ∈ M, µAj∗(x)(x)− max

j ̸=j∗(x)
µAj

(x) > Mt

}

on which the gap between µAj∗ (x) and the reward of any other action is larger than Mt.

For any policy π, we have

Q(π) = E[Y (π(x))] =

∫

M
⟨µ(x), π(x)⟩ dP(x),

where µ(x) = [µA1(x), . . . , µA|A|(x)]
⊤. According to [214, Theorem 2], for any ϵ ∈ (0, 1),

there is a neural network architecture F(L, p,K, κ,R) with

L = O (log 1/ϵ) , p = O
(
ϵ−

d
α

)
, K = O

(
ϵ−

d
α log 1/ϵ

)
, κ = max{B,M,

√
d, τ 2}, R =M,

219

such that for each µAj
, there exists µ̃Aj

∈ F(L, p,K, κ,R) and ∥µ̃Aj
− µAj

∥∞ ≤ ϵ.

Define π̃ = SoftmaxH(µ̃A1 , . . . , µ̃A|A|). Since π̂∗ = argmax
π∈Π|A|

NN(H)

Q(π), π̃ ∈

Π
|A|
NN(H), and Q(π̂∗) ≥ Q(π̃), we have

Q(π∗)−Q(π̂∗) ≤ Q(π∗)−Q(π̃) =

∫

M
⟨µ(x), π∗(x)− π̃(x)⟩ dP(x)

=

∫

χt

⟨µ(x), π∗(x)− π̃(x)⟩ dP(x) +
∫

χ∁
t

⟨µ(x), π∗(x)− π̃(x)⟩ dP(x).

(D.49)

The first integral in (Eq. D.49) can be bounded as

∫

χt

⟨µ(x), π∗(x)− π̃(x)⟩ dP(x) ≤
∫

χt

∥µ(x)∥∞∥π∗(x)− π̃(x)∥1dP(x)

≤ 2M

∫

χt

1dP(x) ≤ 2cMtq, (D.50)

where ∥µ(x)∥∞ = maxj |µAj
(x)| and ∥π(x)∥1 =

∑|A|
j=1 |[π(x)]j|. For the second integral,

we first derive an upper bound of ∥π∗(x)− π̃(x)∥∞. Since π∗ is the unconstrained optimal

policy, represented by a one-hot vector π∗(x) = Aj∗(x), we deduce

[π∗(x)− π̃(x)]j =

− exp(µ̃Aj
(x)/H)∑

k exp(µ̃Ak
(x)/H)

if π∗(x) ̸= Aj,∑
k ̸=j exp(µ̃Ak

(x)/H)∑
k exp(µ̃Ak

(x)/H)
if π∗(x) = Aj,

|[π∗(x)− π̃(x)]j| ≤

maxk ̸=j∗ exp((µAk
(x)+ϵ)/H)

exp((µAj∗ (x)−ϵ)/H)
if j ̸= j∗(x),

|A|maxk ̸=j∗ exp((µAk
(x)+ϵ)/H)

exp((µAj∗ (x)−ϵ)/H)
if j = j∗(x).

Therefore ∥π∗(x)− π̃(x)∥∞ ≤ |A| exp
(
maxk ̸=j∗(x)

(
µAk

(x)− µAj∗ (x) + 2ϵ
)
/H
)
. Thus

∫

χ∁
t

⟨µ(x), π∗(x)− π̃(x)⟩ dP(x) ≤
∫

χ∁
t

∥µ(x)∥1∥(π∗(x)− π̃(x))∥∞dP(x)

220

≤
∫

χ∁
t

M |A|2 exp ((−Mt+ 2ϵ)/H) dP(x) ≤M |A|2 exp ((−Mt+ 2ϵ)/H) . (D.51)

Combining (Eq. D.50) and (Eq. D.51), and setting ϵ = n− α
2α+d give rise toQ(π∗)−Q(π̂∗) ≤

2cMtq +M |A|2 exp
(
(−Mt+ 2n− α

2α+d)/H
)

which completes the proof.

D.2.4 Proof of Policy Learning with Continuous Actions

Proof of Theorem Theorem 6.3. We denote

π̂∗ = argmax
π∈ΠV

NN(H)

Q(D)(π),

where Q(D)(π) is defined in (Eq. 6.28). The regret can be decomposed as

R(π∗
C, π̂C-DR) = Q(π∗

C)−Q(D)(π̂∗)︸ ︷︷ ︸
(I3)

+Q(D)(π̂∗)−Q(D)(π̂C−DR)︸ ︷︷ ︸
(II3)

+Q(D)(π̂C−DR)−Q(π̂C−DR)︸ ︷︷ ︸
(III3)

.

(D.52)

In (Eq. D.52), (I3) is the bias of approximating the optimal policy π∗
C using the neural

network policy class ΠV
NN(H) in the discretized setting. (II3) is the variance of the estimated

policy in ΠV
NN(H). (III3) characterizes the difference between the discretized policy reward

and the continuous policy reward of π̂C−DR. We next derive the bounds for each part.

Bounding (I3). By Assumption 6.B.3, µIj ∈ Hα(M). According to [214], Hölder func-

tions can be uniformly approximated by a neural network class if the network parameters

are properly chosen. For any ϵ ∈ (0, 1) there exists a network architecture F(L, p,K, κ,R)

with

L = O(log 1/ϵ), p = O
(
ϵ−

d
α

)
, K = O

(
ϵ−

d
α log 1/ϵ

)
, κ = max{B,M,

√
d, τ 2}, R =M,

(D.53)

221

such that if the weight parameters are properly chosen, we have µ̃Ij ∈ F(L, p,K, κ,R)

satisfying

∥µ̃Ij − µIj∥∞ ≤ ϵ.

We then define an intermediate policy

π̃ = SoftmaxH(µ̃I1 , . . . , µ̃IV).

Let A∗(x) = argmaxA∈[0,1] µ(x, A). Then π∗
C(x) = A∗(x). After defining µ(x) =

[µI1(x), . . . , µIV (x)]
⊤ ∈ RV , we can bound (I3) as

(I3) = Q(π∗
C)−Q(D)(π̂∗) ≤ Q(π∗

C)−Q(D)(π̃)

=

∫

M
µ(x, A∗(x))dP(x)−

∫

M
⟨µ(x), π̃(x)⟩dP(x)

=

∫

M
µ(x, A∗(x))dP(x)−

∫

M
⟨µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤⟩dP(x)
︸ ︷︷ ︸

T1

+

∫

M

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤〉 dP(x)−
∫

M
⟨µ(x), π̃(x)⟩dP(x)

︸ ︷︷ ︸
T2

.

(D.54)

If A∗(x) ∈ Ij , we denote j∗(x) = j and I∗(x) = Ij . According to Assumption 6.B.3 and

(Eq. 6.34), M is a Lipschitz constant of the function µ(x, ·) for any fixed x ∈ M. Since

A∗(x) ∈ I∗(x), |µ(x, A∗(x)) − µI∗(x)(x)| ≤ M/V for any x ∈ M. Hence T1 can be

bounded as

T1 =

∫

M
µ(x, A∗(x))− µI∗(x)(x)dP(x) ≤M/V. (D.55)

We then derive the bound for T2 on two regions. The first region is

χt,γ = {x|µ(x, A∗(x))− µ(x, A) ≤Mt given |A− A∗(x)| ≥ γ}

222

and the second region is χ∁
t,γ . According to Assumption 6.B.4, P(χt,γ) ≤ ctq(1− γ).

T2 is decomposed as

T2 =

∫

χt,γ

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤ − π̃(x)
〉
dP(x)

+

∫

χ∁
t,γ

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤ − π̃(x)
〉
dP(x). (D.56)

The first integral in (Eq. D.56) is bounded as

∫

χt,γ

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤ − π̃(x)
〉
dP(x) ≤ 2cMtq(1− γ). (D.57)

We then derive an upper bound of the second integral in (Eq. D.56) in a way similar to

the derivation of (Eq. D.51). Denote

Ξ(x) =

[
− exp(µ̃I1(x)/H)∑V

j=1 exp(µ̃Ij(x)/H)
, . . . ,

∑
j ̸=j∗(x) exp(µ̃Ij(x)/H)
∑V

j=1 exp(µ̃Ij(x)/H)
, . . . ,− exp(µ̃IV (x)/H)∑V

j=1 exp(µ̃Ij(x)/H)

]⊤
.

Similar to (Eq. D.51), we have

∫

χ∁
t,γ

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤ − π̃(x)
〉
dP(x) =

∫

χ∁
t,γ

⟨µ(x),Ξ(x)⟩ dP(x)

≤
∫

χ∁
t,γ

∥µ(x)∥1∥Ξ(x)∥∞dP(x) ≤ VM

∫

χ∁
t,γ

∥Ξ(x)∥∞dP(x). (D.58)

To derive an upper bound of ∥Ξ∥∞, we need a lower bound of µI∗(x)(x) − µIj(x) for

any 1 ≤ j ≤ V and j ̸= j∗(x). By Assumption 6.B.3, For any j and Ã ∈ Ij , one has

|µ(x, Ã)− µ(x, Aj)| ≤M/V,

and

|µIj(x)− µ(x, Aj)| ≤
1

|Ij|

∫

Ij

|µ(x, A)− µ(x, Aj)|dA ≤M/V

223

where |Ij| = 1/V represents the length of Ij .

As a result, on χ∁
t,γ , for any j ̸= j∗(x), we have

µI∗(x)(x)− µIj(x) ≥ µ(x, Aj∗(x))− µ(x, Aj)− 2M/V

≥ µ(x, A∗(x))− µ(x, Aj)− |µ(x, A∗(x))− µ(x, Aj∗(x))| − 2M/V ≥Mt− 3M/V,

where the last inequality holds for two reasons: (1) A∗(x) ∈ I∗(x) and Aj∗(x) ∈ I∗(x); (2)

We set V < 1/(2γ), and then j ̸= j∗(x) implies |Aj − A∗(x)| ≥ 1/(2V) ≥ γ. We then

deduce

∥Ξ∥∞ ≤ (V − 1) exp(−(Mt− 3M/V − 2ϵ)/H). (D.59)

Plugging (Eq. D.59) into (Eq. D.58), we have

∫

χ∁
t,γ

〈
µ(x), [1{A∗(x)∈I1}, . . . ,1{A∗(x)∈IV }]

⊤ − π̃(x)
〉
dP(x)

≤VM · (V − 1) exp(−(Mt− 3M/V − 2ϵ)/H) ≤MV 2 exp(−(Mt− 3M/V − 2ϵ)/H).

(D.60)

Substituting (Eq. D.55), (Eq. D.57) and (Eq. D.60) into (Eq. D.54), if V < 1/(2γ), we

have

(I3) ≤
M

V
+ 2cMtq(1− γ) +MV 2 exp (−(Mt− 3M/V − 2ϵ)/H) . (D.61)

Bounding (II3). (II3) has the same form as (II1) in (Eq. D.16). We derive the upper bound

by following the same procedure while |A| is replaced V . Besides, we need to express the

estimation error of µ̂Ij ’s and êIj ’s in terms of V . Note that eIj ≥ η/V . By Lemma 6.1, we

224

can find µ̂Ij ∈ F(L1, p1, K1, κ1, R1) with

L1 = O(log(ηn1/V)), p1 = O
(
(ηn1/V)

d
2α+d

)
, K1 = O

(
(ηn1/V)

d
2α+d log(ηn1/V)

)
,

κ1 = max{B,M,
√
d, τ 2}, R1 =M,

such that

E
[
∥µ̂Ij − µIj∥2L2

]
≤ C1(M

2 + σ2)(ηn1/V)−
2α

2α+d log3(ηn1/V) (D.62)

with C1 being a constant depending on logD,B, τ, α and the surface area of M. Similarly,

we can find ĝ ∈ F(L2, p2, K2, κ2, R2) with

L2 = O(log(n1/V)), p2 = O

(
V

2α
2α+dn

d
2α+d

1

)
, K2 = O

(
V

2α
2α+dn

d
2α+d

1 log(n1/V)

)
,

κ2 = max{B,M,
√
d, τ 2}, R2 =M,

such that

E[∥êIj − eIj∥2L2] ≤ C2M
2V

4α+d
2α+dn

− 2α
2α+d

1 log3 n1 (D.63)

with C2 depending on logD,B,M, α and the surface area of M.

Following the proof of Corollary 6.1 and using (Eq. D.62) and (Eq. D.63), we rewrite

(Eq. D.47) as

P

(
V∑

j=1

ωj ≥ V δ1

)
≤ C3G2

δ1
V

14α+5d
2(2α+d)n

− 2α
2α+d

1 log3 n1 (D.64)

with G2 = e2M(M + σ)η−
3α+d
2α+d and C3 being an constant depending on logD,B, τ, η, α

and the surface area of M.

By replacing |A| by V and η by η/V in E1 and E2 in the proof of Theorem 6.1, and

225

substituting (Eq. D.64), one derives

Q(D)(π̂∗)−Q(D)(π̂ C-DR) ≤ V δ1 + 84e2MV 2M

√
log 1/δ

2n2

+ inf
λ

12V λ

+
288V√
n2

∫ VM+2VM/η

λ

[
KΠ log

(
θ−1(VM + 2VM/η)×

L2
Π(pΠB/V + 2)max(κΠ, 1/H)LΠ(pΠ/V)LΠ+1

)]1/2
dθ

with probability no less than

1− 6V δ − C3G2

δ1
V

14α+5d
2(2α+d)n

− 2α
2α+d

1 log3 n1.

Here π̂ C-DR ∈ ΠV
NN(H) where the network class ΠV

NN(H) has the parameters

LΠ = L, pΠ = O(V p), KΠ = O(V K), κΠ = κ, RΠ = R

with L, p,K, κ and R defined in (Eq. D.53).

Setting ϵ = n− α
2α+d , δ = n− α

2α+d , δ1 = C3G2V
3
2n

− α
2α+d

1 and λ = V
3
2n

− α
2α+d

2 gives rise

to

LΠ = O(log n), pΠ = O
(
V n

d
2α+d

)
, KΠ = O

(
V n

d
2α+d log n

)
,

κΠ = max{B,M,
√
d, τ 2}, RΠ =M,

and

(II3) ≤ C4e
2M(M + σ)V

5
2n− α

2α+d log3/2 n log1/2(1/H) (D.65)

with probability no less than 1−C5V
4α+d
2α+dn− α

2α+d log3 n, where C4 is a constant depending

on logD,B, τ, η, α, and the surface area of M, C5 is an absolute constant.

226

Bounding (III3). According to Lemma 6.2,

(III3) = Q(D)(π̂ C-DR)−Q(π̂ C-DR) ≤M/V. (D.66)

Putting all ingredients together. Putting (Eq. D.61), (Eq. D.65) and (Eq. D.66) to-

gether and using ϵ = n− α
2α+d give rise to

R(π∗
C, π̂ C-DR) ≤

2M

V
+ C4e

2M(M + σ)V
5
2n− α

2α+d log3/2 n log1/2 1/H

+ 2cMtq(1− γ) +MV 2 exp
(
−
(
Mt− 3M/V − 2n− α

2α+d

)
/H
)

with probability no less than 1− C5V
4α+d
2α+dn− α

2α+d log3 n for any t and γ < 1/4V .

Setting V = n
2α

7(2α+d) , γ = 1
4V

and t > 2
V
+ 2ϵ/M , we get

R(π∗
C, π̂ C-DR) ≤ C4e

2M(M + σ)n− 2α
7(2α+d) log3/2 n log1/2 1/H

+ 2cMtq +Mn
4α

7(2α+d) exp
(
−
(
Mt− 4Mn− 2α

7(2α+d)

)
/H
)

for any t ∈ (2(1+ 1/M)n− 2α
7(2α+d) , 1) with probability no less than 1−C6n

− 6α2+5αd

7(2α+d)2 log3 n,

where C6 is an absolute constant. In addition, π̂ C-DR ∈ ΠV
NN(H) with LΠ, pΠ, KΠ, κΠ, RΠ

defined in (Eq. 6.37), µ̂Ij ∈ F(L1, p1, K1, κ1, R1) for j = 1, . . . , V with the parameters

defined in (Eq. 6.35), ĝ ∈ F(L2, p2, K2, κ2, R2) with the parameters defined in (Eq. 6.36).

227

D.3 Technical Proofs

D.3.1 Proof of Lemma 6.1

Proof. We first derive the error bound ∥µ̂Aj
−µAj

∥L2 for any j. Note that µ̂Aj
∈ F(L1, p1, K1, κ1, R1)

is the minimizer of (Eq. 6.4). If we choose

L1 = O(log nAj
), p1 = O

(
n

d
2α+d

Aj

)
, K1 = O

(
n

d
2α+d

Aj
log nAj

)
,

κ1 = max{B,M,
√
d, τ 2}, R1 =M, (D.67)

then according to [214, Theorem 1], for each j, we have

E
[
∥µ̂Aj

− µAj
∥2L2

]
≤ C1(M

2 + σ2)n
− 2α

2α+d

Aj
log3 nAj

, (D.68)

where nAj
=
∑n1

i=1 1{ai=Aj} and C1 is a constant only depending on logD,B, τ and the

surface area of M. In (Eq. D.68) the expectation is taken with respect to the randomness

of samples.

Next, we derive a high probability lower bound of nAj
for all j’s in terms of n1. By

Assumption 6.A.2(ii), E(nAj
/n1) ≥ η. By [228, Lemma 29], we have

P
(∣∣∣∣
nAj

n1

− E
(
nAj

n1

)∣∣∣∣ ≥
1

2
E
(
nAj

n1

))
≤ 2 exp

(
− 3

28
n1E

(
nAj

n1

))
.

Thus nAj
≥ ηn1/2 holds with probability at least 1 − 2 exp

(
− 3

28
ηn1

)
. Denote the event

E1 = {nAj
≥ ηn1/2} and its complement by E∁

1 . When n1 (so as n) is large enough, we

have

E
[
∥µ̂Aj

− µAj
∥2L2

]
= E

[
∥µ̂Aj

− µAj
∥2L2|E1

]
P (E1) + E

[
∥µ̂Aj

− µAj
∥2L2|E∁

1

]
P
(
E∁

1

)

≤ C1(M
2 + σ2)(ηn1)

− 2α
2α+d log3(ηn1) + 2C1(M

2 + σ2) exp

(
− 3

28
ηn1

)

228

≤ C2(M
2 + σ2)(ηn1)

− 2α
2α+d log3(ηn1),

where C2 is a constant depending on logD,B, τ and the surface area of M. Substituting

nAj
= ηn1 into (Eq. D.67) gives rise to µ̂Aj

∈ F(L1, p1, K1, κ1, R1) with L1, p1, K1, κ1, R1

in (Eq. 6.14).

To estimate E
[
∥êAj

− eAj
∥2L2

]
, we use Hα

|A|−1(M) to denote the space of the |A| − 1

dimensional vectors whose elements are in Hα(M). We denote g∗ =
[
gA1 , . . . , gA|A|−1

]⊤

with gAj
= log

eAj

eA|A|
. According to Assumption 6.A.3, gAj

= log eAj
− log eA|A| ∈ Hα,

∥gAj
∥Hα ≤ M and g∗ ∈ Hα

|A|−1(M). Let ĝ be the minimizer of (Eq. 6.5). From [229,

Corollary 4] and the proof of [206, Theorem 2], setting GNN = F(L, p,K, κ,R) gives rise

to

∥ĝ − g∗∥2L2

≤ C3M
2

(
|A|LK logK

n1

log n1 +
|A|(log log n1 + γ)

n1

+ |A| sup
g′∈Hα

|A|−1
(M)

inf
g∈GNN

∥g∗ − g′∥2∞

)

with probability at least 1− exp(−γ), where C3 is an absolute constant.

According to [214, Theorem 2], for any ϵ2 ∈ (0, 1), there exists a neural network

architecture F(L, p,K, κ,R) with

L = O

(
log

1

ϵ2

)
, p = O

(
|A|ϵ−

d
α

2

)
, K = O

(
|A|ϵ−

d
α

2 log
1

ϵ2

)
,

κ = max{B,M,
√
d, τ 2}, R =M

such that for any g ∈ Hα
|A|−1(M), there exists g̃ ∈ F(L, p,K, κ,R) with ∥g̃ − g∥∞ ≤ ϵ2,

where ∥g∥∞ = supx∈M maxj |gj(x)| . Setting ϵ2 = |A| α
2α+dn

− α
2α+d

1 , γ = |A|− d
2α+dn

d
2α+d

1

gives rise to GNN = F(L2, p2, K2, κ2, R2) with

L2 = O(log(n1/|A|)), p2 = O

(
|A| 2α

2α+dn
d

2α+d

1

)
, K2 = O

(
|A| 2α

2α+dn
d

2α+d

1 log(n1/|A|)
)
,

229

κ2 = max{B,M,
√
d, τ 2}, R2 =M (D.69)

which implies (Eq. 6.15).Then with probability no less than 1 − exp

(
−|A|− d

2α+dn
d

2α+d

1

)
,

we deduce

∥ĝ − g∗∥2L2 ≤ C4M
2|A| 4α+d

2α+dn
− 2α

2α+d

1 log3 n1

with C4 depending on logD,B, τ and the surface area of M. Denote the event

E2 =

{
∥ĝ − g∗∥2L2 ≤ C4M

2|A| 4α+d
2α+dn

− 2α
2α+d

1 log3 n1

}
.

When n1 (so as n) is large enough, we obtain

E[∥ĝ − g∗∥2L2] = E[∥ĝ − g∗∥2L2|E2]P(E2) + E[∥ĝ − g∗∥2L2|E∁
2]P(E∁

2)

≤ C4M
2|A| 4α+d

2α+dn
− 2α

2α+d

1 log3 n1 + 4(M2 + σ2) exp

(
−|A|− d

2α+dn
d

2α+d

1

)

≤ C5M
2|A| 4α+d

2α+dn
− 2α

2α+d

1 log3 n1

with C5 depending on logD,B, τ and the surface area of M.

Define rj(g) =
exp([g]j)

1+
∑|A|−1

k=1 exp([g]k)
for j = 1, . . . , |A| − 1. Since ∥∇rj∥∞ ≤ 1 for any j,

we have

E
[
∥êAj

− eAj
∥2L2

]
= E

[
∥rj(ĝ)− rj(g

∗)∥2L2

]

≤ E
[
(∥∇rj∥∞∥ĝ − g∗∥L2)2

]
≤ C5M

2|A| 4α+d
2α+dn

− 2α
2α+d

1 log3 n1.

Similarly, one can show E
[
∥êA|A| − eA|A|∥2L2

]
≤ C5M

2|A| 4α+d
2α+dn

− 2α
2α+d

1 log3 n1.

230

D.3.2 Proof of Lemma 6.2

Proof. Recall that

Q(D)(π) =

∫

M

〈
[µI1(x), . . . , µIV (x)]

⊤, π(x)
〉
dP(x),

Q(π) =

∫

M

〈
[µA1(x), . . . , µAV

(x)]⊤, π(x)
〉
dP(x).

Since Lµ is a uniform Lipschitz constant of µ(x, ·) for any x ∈ M, we derive

Q(D)(π)−Q(π) =

∫

M

〈
[µI1(x)− µ(x, A1), . . . , µIV (x)− µ(x, AV)]

⊤, π(x)
〉
dP(x) ≤ Lµ/V.

D.3.3 Proof of Lemma D.4

Proof. We first use McDiarmid’s inequality (Lemma D.11) to show D(Π) concentrates

around E[D(Π)] and then derive a bound of E[D(Π)]. To simplify the notation, we omit

the domain Π in D.

We denote {Γ̊′
i}ni=1 as the counterpart of {Γ̊}ni=1 when one sample (xk,Γk) is replaced

by (xk,Γ
′
k) for any k with 1 ≤ k ≤ n. ∆̊′(π1, π2) and D′ are defined analogously. We have

|D − D′| ≤ sup
π1,π2∈Π

∆̊(π1, π2)− ∆̊′(π1, π2) ≤ sup
π1,π2∈Π

1

n

〈
Γ̊k − Γ̊′

k, π1(xk)− π2(xk)
〉

≤ 1

n

∥∥∥Γ̊k − Γ̊′
k

∥∥∥
∞
∥π1(xk)− π2(xk)∥1 ≤

2

n

∥∥∥Γ̊k − Γ̊′
k

∥∥∥
∞

≤ 4

n
J, (D.70)

where ∥ · ∥∞ and ∥ · ∥1 stand for the ℓ∞ and ℓ1 norm for vectors. Applying Lemma D.11

with f = D, we have

P (D − E[D] ≥ t) ≤ exp
(
−2nt2/

(
16J2

))
. (D.71)

231

Setting t = 4J
√

log 1/δ
2n

gives rise to

D ≤ E[D] + 4J

√
log 1/δ

2n
(D.72)

with probability no less than 1− δ.

We next derive a bound of E[D] by symmetrization:

E[D] = E
[

sup
π1,π2∈Π

∆̊(π1, π2)− E
[
∆̊(π1, π2)

]]
≤ E

[
sup

π1,π2∈Π
∆̊(π1, π2)− ∆̊copy(π1, π2)

]

= EEξ

[
sup

π1,π2∈Π
ξ ⊙

(
∆̊(π1, π2)− ∆̊copy(π1, π2)

)]
= 2EEξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
,

where ∆̊copy denotes ∆̊ using independent copies of samples and ξ = [ξ1, . . . , ξn]
⊤ with

ξi’s being i.i.d. Rademacher variables which take value 1 or −1 with the same probability.

Here ξ ⊙ ∆̊ denotes the entry-wise product of ξ and ∆̊, i.e.,

ξ ⊙ ∆̊(π1, π2) :=
1

n

n∑

i=1

ξi

〈
Γ̊i, π1(xi)− π2(xi)

〉
.

We next apply Lemma D.11 with f = Eξ

[
supπ1,π2∈Π ξ ⊙ ∆̊(π1, π2)

]
. Again, we de-

note {Γ̊′
i}ni=1 as the counterpart of {Γ̊}ni=1 when one sample (xk, Γ̊k) is replaced by (x′

k, Γ̊
′
k)

for any k with 1 ≤ k ≤ n. ∆̊′(π1, π2) is defined analogously. We get

Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
− Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊′(π1, π2)

]

≤Eξ

[
sup

π1,π2∈Π

1

n
ξk

〈
Γ̊k − Γ̊′

k, π1(xk)− π2(xk)
〉]

≤ 1

n

∥∥∥Γ̊k − Γ̊′
k

∥∥∥
∞
∥π1(xk)− π2(xk)∥1 ≤

4

n
J. (D.73)

232

Applying Lemma D.11 with f = Eξ

[
supπ1,π2∈Π ξ ⊙ ∆̃(π1, π2)

]
gives rise to

P

(
EEξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
− Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
≥ t

)
≤ exp

(
−2nt2/

(
16J2

))
.

(D.74)

Setting t = 4J
√

log 1/δ
2n2

gives rise to

P

(
EEξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
− Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
≥ 4J

√
log 1/δ

2n

)
≤ δ.

(D.75)

The following lemma provides an upper bound of Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
(see a

proof in Appendix D.3.6):

Lemma D.7. Let ξ be a set of Rademacher random variable and ∆̊(π1, π2) defined in

(Eq. D.26). Then the following bound holds

Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
≤ inf

λ
2λ+

48√
n

∫ max
π∈Π

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ, (D.76)

where N (θ,Π
|A|
NN, ∥·∥Γ) is the θ-covering number (see Definition D.3) of Π with respect to

the measure ∥π∥Γ =
√

1
n

∑n
i=1⟨̊Γi, π(xi)⟩2.

Substituting (Eq. D.76) into (Eq. D.75) yields

E[D] ≤ inf
λ

4λ+
96√
n

∫ max
π∈Π

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ + 8J

√
log 1/δ

2n
(D.77)

with probability no less than 1− δ.

Substituting (Eq. D.77) into (Eq. D.72) give rise to

D ≤ inf
λ

4λ+
96√
n

∫ max
π∈Π

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ + 12J

√
log 1/δ

2n
(D.78)

233

with probability no less than 1− 2δ.

D.3.4 Proof of Lemma D.5

Proof. We derive the bound of the covering number N (θ,Π
|A|
NN, ∥·∥Γ) using the covering

number of the neural network class N (θ,F(L, p,K, κ,R), ∥·∥∞). Let π(1) = Softmax(µ
(1)
A1
, . . . , µ

(1)
A|A|

)

and π(2) = Softmax(µ
(2)
A1
, . . . , µ

(2)
A|A|

) be two policies in Π
|A|
NN(LΠ, pΠ, KΠ, κΠ, RΠ) such

that for each j, ∥µ(1)
Aj

− µ
(2)
Aj
∥∞ ≤ θ. By Assumption 6.A.2 and (Eq. 6.12), ∥Γ̃i∥1 ≤

2M/η + |A|M for any n1 ≤ i ≤ n. Therefore we have

∥∥π(1) − π(2)
∥∥2
Γ
=

1

n2

n∑

i=n1+1

〈
Γ̃i, (π

(1) − π(2))(xi)
〉2

≤ 1

n2

n∑

i=n1+1

∥∥∥Γ̃i

∥∥∥
2

1

∥∥(π(1) − π(2))(xi)
∥∥2
∞ ≤ (|A|M + 2M/η))2 θ2.

Thus we obtain

N (θ,Π
|A|
NN, ∥·∥Γ) ≤ N

(
θ/(|A|M + 2M/η),Π

|A|
NN, ∥·∥∞

)
. (D.79)

Since for every π ∈ Π
|A|
NN with LΠ = L, pΠ = |A|p,KΠ = |A|K,κΠ = κ,RΠ = R, it con-

tains |A| parallel ReLU networks in F(L, p,K, κ,R) with an additional softmax layer, we

have N (θ,Π
|A|
NN, ∥·∥∞) ≤ N (θ,F(L, p,K, κ,R), ∥·∥∞)|A|. From [214, Proof of Theorem

3.1], we have

N (θ,F(L, p,K, κ,R), ∥·∥∞) ≤
(
2L2(pR + 2)κLpL+1

θ

)K

.

We get

N (θ,ΠNN, ∥ · ∥∞) ≤
(
2L2(pR + 2)κLpL+1

θ

)|A|K

. (D.80)

Combining (Eq. D.79) and (Eq. D.80) proves Lemma D.5.

234

D.3.5 Proof of Lemma D.6

Proof. For any π ∈ Π
|A|
NN,

∥π∥2Γ ≤ 1

n2

n∑

i=n1+1

⟨Γ̃i, π(xi)⟩2 ≤
1

n2

n∑

i=n1+1

∥Γ̃i∥21∥π(xi)∥2∞ ≤ 1

n2

n∑

i=n1+1

∥Γ̃i∥21.

By Assumption 6.A.2 and (Eq. 6.12), ∥Γ̃i∥1 ≤ 2M/η + |A|M for any n1 ≤ i ≤ n.

Therefore we obtain

∥π∥2Γ ≤ (2M/η + |A|M)2.

D.3.6 Proof of Lemma D.7

We first define the covering number of a set.

Definition D.3. Let F be a set equipped with metric ρ. For any δ > 0, a δ-covering of F

is a set {f1, . . . , fN} ⊂ F such that for any f ∈ F , there exists fk for 1 ≤ k ≤ N with

ρ(fk, f) ≤ θ. The δ-covering number of F is defined as

N (δ,F , ρ) = inf{N : there exists {f1, . . . , fN} which is a θ-covering of F}. (D.81)

Proof of Lemma D.7. To bound Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
with respect to the measure ∥ ·

∥Γ, we construct a series of I coverings of Π with resolutions {δi}Ii=1 satisfying δi+1 =
1
2
δi.

The elements in the (i)-th covering are denoted as {π(i)
i }N(i)

i=1 , where the N (i)’s are to be

determined later. Thus for any π ∈ Π, there exists π(i) in the (i)-th covering such that

√√√√ 1

n

n∑

i=1

〈
Γ̊i, π(xi)− π(i)(xi)

〉2
≤ δi.

235

Let π(i)
1 denote the closest element of π1 in the (i)-th covering, and π

(i)
2 is defined

analogously. We now expand π1 − π2 using a telescoping sum:

π1 − π2 =

(
π1 − π

(I)
1 +

I−1∑

i=1

π
(i+1)
1 − π

(i)
1 + π

(1)
1

)
−
(
π2 − π

(I)
2 +

I−1∑

i=1

π
(i+1)
2 − π

(i)
2 + π

(1)
2

)
.

(D.82)

Substituting (Eq. D.82) into Eξ

[
sup

π1,π2∈Π
ξ ⊗ ∆̊(π1, π2)

]
, due to the bi-linearity of ∆̊, we

have

Eξ

[
sup

π1,π2∈Π
ξ ⊗ ∆̊(π1, π2)

]

≤Eξ

[
sup
π1∈Π

1

n

n∑

i=1

ξi

〈
Γ̊i,

(
π1 − π

(I)
1 +

I−1∑

i=1

π
(i+1)
1 − π

(i)
1 + π

(1)
1

)
(xi)

〉]

+ Eξ

[
sup
π2∈Π

1

n

n∑

i=1

ξi

〈
Γ̃i,

(
π2 − π

(I)
2 +

I−1∑

i=1

π
(i+1)
2 − π

(i)
2 + π

(1)
2

)
(xi)

〉]
. (D.83)

By the construction of the coverings, we immediately have

Eξ

[
sup
π1∈Π

1

n

n∑

i=1

ξi

〈
Γ̊i,
(
π1 − π

(I)
1

)
(xi)

〉]

≤Eξ

 sup

π1∈Π

1

n
∥ξ∥2

√√√√
n∑

i=1

〈
Γ̊i,
(
π1 − π

(I)
1

)
(xi)

〉2

 ≤ δI . (D.84)

We can also check

√√√√
n∑

i=1

〈
Γ̊i, π(i+1)(xi)− π(i)(xi)

〉2
=

√√√√
n∑

i=1

〈
Γ̊i, π(i+1)(xi)− π(xi) + π(xi)− π(i)(xi)

〉2

≤

√√√√2
n∑

i=1

〈
Γ̊i, π(i+1)(xi)− π(xi)

〉2
+ 2

n∑

i=1

〈
Γ̊i, π(xi)− π(i)(xi)

〉2

≤
√

2n(δ2i+1 + δ2i) ≤
√
2n(δi+1 + δi). (D.85)

236

Using Lemma D.12, we have

Eξ

[
sup
π1∈Π

1

n

n∑

i=1

ξi

〈
Γ̊i, π

(i+1)
1 (xi)− π

(i)
1 (xi)

〉]

≤2(δi+1 + δi)
√

log(N (δi,Π, ∥·∥Γ)N (δi+1,Π, ∥·∥Γ))√
n

≤ 4(δi+1 + δi)
√

logN (δi+1,Π, ∥·∥Γ)√
n

,

(D.86)

where the metric in the covering is ∥π∥Γ =

√
1
n

∑n
i=1

〈
Γ̊i, π(xi)

〉2
. Substituting (Eq. D.84),

(Eq. D.86) into (Eq. D.83), and invoking the identity δi+1 + δi = 6(δi+1 − δi+2) yield

Eξ

[
sup

π1,π2∈Π
ξ ⊗ ∆̊(π1, π2)

]
≤ 2δI +

I−1∑

i=1

8(δi+1 + δi)
√

logN (δi+1,Π, ∥·∥Γ)√
n

≤2δI +
48(δi+1 − δi+2)

√
logN (δi+1,Π, ∥·∥Γ)√
n

≤ 2δI +
48√
n

∫ δ1

δI

√
logN (τ,Π, ∥·∥Γ)dτ.

Choosing δ1 = maxπ∈Π ∥π∥Γ so that the first covering only consists of one element, we

derive

Eξ

[
sup

π1,π2∈Π
ξ ⊙ ∆̊(π1, π2)

]
≤ inf

λ
2λ+

48√
n

∫ max
π∈Π

∥π∥Γ

λ

√
logN (θ,Π, ∥·∥Γ)dθ.

D.4 Helper Lemmas

Lemma D.8. Let f(x, A) be any function defined on M×[0, 1]. Assume there existsM > 0

such that

sup
A∈[0,1]

∥f(·, A)∥Hα(M) ≤M and sup
x∈M

|f(x, A)− f(x, Ã)| ≤M |A− Ã|, ∀A, Ã ∈ [0, 1].

(D.87)

237

Then F (I) =
∫
I
f(x, A)dA ∈ Hα(M) satisfies ∥F (I)∥Hα(M) ≤ M |I| for any interval

I ⊂ [0, 1] where |I| is the length of I .

Proof of Lemma D.8. To show F (I) ∈ Hα(M), it is sufficient to show ∥F (I)∥Hα(U) < ∞

for any chart (U, ϕ) of M. For simplicity, we denote

F
(I)
ϕ (z) = F (I) ◦ ϕ−1(z), fϕ(z, A) = f(ϕ−1(z), A)

for z ∈ ϕ(U). Then F (I)
ϕ (z) =

∫
I
fϕ(z, A)dA.

We first consider 0 < α ≤ 1. In this case, we have

∥F (I)
ϕ ∥Hα(ϕ(U)) = sup

z ̸=y∈ϕ(U)

|F (I)
ϕ (z)− F

(I)
ϕ (y)|

∥z− y∥α2

≤ sup
z ̸=y∈ϕ(U)

∫

I

|fϕ(z, A)− fϕ(y, A)|
∥z− y∥α2

dA ≤M |I| <∞, (D.88)

which implies F (I) ∈ Hα(M).

Next we consider α > 1. We first show that ∂sF (I)
ϕ (z) =

∫
I
∂ s̃fϕ(z, A)dA for any

|s| ≤ ⌈α − 1⌉ where s̃ = [s⊤, 0]⊤. Let {hn}∞n=1 be any sequence converging to 0. When

|s| = 1, by definition, we have

∂sF
(I)
ϕ (z) = lim

n→∞

F
(I)
ϕ (z+ hns)− F

(I)
ϕ (z)

hn
= lim

n→∞

∫

I

fϕ(z+ hns, A)− fϕ(z, A)

hn
dA.

Since ∥fϕ(z, A)∥Hα(ϕ(U)) ≤M for any fixed A ∈ [0, 1], by the mean value theorem,

∣∣∣∣
fϕ(z+ hns, A)− fϕ(z, A)

hn

∣∣∣∣ ≤ max
z̃∈ϕ(U)

|∂ s̃fϕ(z̃, A)| ≤M.

Since

lim
n→∞

fϕ(z+ hns, A)− fϕ(z, A)

hn
= ∂ s̃fϕ(z, A) (D.89)

238

and by the dominated convergence theorem, we obtain

∂sF
(I)
ϕ (z) = lim

n→∞

F
(I)
ϕ (z+ hns)− F

(I)
ϕ (z)

hn

=

∫

I

lim
n→∞

fϕ(z+ hns, A)− fϕ(z, A)

hn
dA =

∫

I

∂ s̃fϕ(z, A)dA.

Similarly, for any |s| ≤ ⌈α − 1⌉, ∂ s̃f(x, A) can be expressed in the form similar to

(Eq. D.89) using the Taylor series. Following the same procedure, one can show

∂sF
(I)
ϕ (z) =

∫

I

∂ s̃fϕ(z, A)dA

for any |s| ≤ ⌈α− 1⌉. Therefore we have

max
|s|≤⌈α−1⌉

sup
z∈ϕ(U)

|∂sF (I)
ϕ | ≤M |I| <∞, (D.90)

where |I| represents the length of I .

On the other hand,

max
|s|=⌈α−1⌉

sup
z ̸=y∈ϕ(U)

|∂sF (I)
ϕ (z)− ∂sF

(I)
ϕ (y)|

∥z− y∥α−⌈α−1⌉
2

≤ max
|s|=⌈α−1⌉

sup
z ̸=y∈ϕ(U)

∫

I

|∂ s̃fϕ(z, A)− ∂ s̃fϕ(y, A)|
∥z− y∥α−⌈α−1⌉

2

dA ≤M |I| <∞. (D.91)

Combining (Eq. D.90) and (Eq. D.91) gives ∥F (I)∥Hα(U) < ∞ for any chart (U, ϕ) which

implies F (I) ∈ Hα(M).

Lemma D.9. Assume Assumption 3.1 and 3.2 hold. Let f, g ∈ Hα(M) with infx∈M g(x) ≥

η > 0. Let M > 0 be a constant such that ∥f∥Hα(M) ≤ M and ∥g∥Hα(M) ≤ M . Then we

have f/g ∈ Hα(M) with ∥f/g∥Hα(M) ≤ 2
5+⌈α−1⌉

2
⌈α−1⌉(M/η)2

⌈α⌉
(2B + 1).

Proof of Lemma D.9. It is sufficiently to show ∥f/g∥Hα(U) < ∞ for any chart (U, ϕ) of

239

M. For simplicity, denote

fϕ(z) = f ◦ ϕ−1(z), gϕ(z) = g ◦ ϕ−1(z)

for any z ∈ ϕ(U).

We first consider 0 < α ≤ 1. In this case,

∥f/g∥Hα(U) = sup
z ̸=y∈ϕ(U)

|(fϕ(z)/gϕ(z))− (fϕ(y)/gϕ(y))|
∥z− y∥α2

≤|fϕ(z)gϕ(y)− fϕ(z)gϕ(z) + fϕ(z)gϕ(z)− fϕ(y)gϕ(z)|
gϕ(y)gϕ(z)∥z− y∥α2

≤ 1

η2

(
M

|gϕ(y)− gϕ(z)|
∥z− y∥α2

+M
|fϕ(z)− fϕ(y)|

∥z− y∥α2

)
≤ 2M2/η2 <∞ (D.92)

which implies f/g ∈ Hα(M).

We next consider the case α > 1. We first show |∂s(fϕ(z)/gϕ(z))| < ∞ for |s| ≤

⌈α− 1⌉. When |s| = 1, we have

∣∣∣∣∂s
(
fϕ(z)

gϕ(z)

)∣∣∣∣ =
∣∣∣∣∣
∂sfϕ(z)gϕ(z)− fϕ(z)∂

sgϕ(z)

g2ϕ(z)

∣∣∣∣∣ ≤ 2M2/η2.

For any |s| ≤ ⌈α− 1⌉, following this process, one can show

∣∣∣∣∂s
(
fϕ(z)

gϕ(z)

)∣∣∣∣ =
∑2

1+|s|
2 |s|

i=1 Gi

g2
|s|

ϕ

≤ 2
1+|s|

2
|s|(M/η)2

|s|
<∞, (D.93)

where each Gi is the product of 2|s| terms from {∂ s̄fϕ, ∂ s̄fϕ||s̄| ≤ |s|}.

On the other hand, note that for any s with |s| = 1, we have

∣∣∣∣∂s
(
fϕ(z)

gϕ(z)

)
− ∂s

(
fϕ(y)

gϕ(y)

)∣∣∣∣

=

∣∣∣∣∣
∂sfϕ(z)gϕ(z)− fϕ(z)∂

sgϕ(z)

g2ϕ(z)
− ∂sfϕ(y)gϕ(y)− fϕ(y)∂

sgϕ(y)

g2ϕ(y)

∣∣∣∣∣

240

=

∣∣∣∣∣
g2ϕ(y)∂

sfϕ(z)gϕ(z)− g2ϕ(z)∂
sfϕ(y)gϕ(y)−

(
g2ϕ(y)fϕ(z)∂

sgϕ(z)− g2ϕ(z)f(y)∂
sgϕ(y)

)

g2ϕ(z)g
2
ϕ(y)

∣∣∣∣∣

≤ 1

η4

∣∣∣gϕ(y)gϕ(z) [∂sfϕ(z)gϕ(y)− ∂sfϕ(z)gϕ(z) + ∂sfϕ(z)gϕ(z)− ∂sfϕ(y)gϕ(z)]

+ g2ϕ(y)fϕ(z)∂
sgϕ(z)− g2ϕ(y)fϕ(z)∂

sgϕ(y) + g2ϕ(y)fϕ(z)∂
sgϕ(y)− g2ϕ(y)fϕ(y)∂

sgϕ(y)

+ g2ϕ(y)fϕ(y)∂
sgϕ(y)− gϕ(y)gϕ(z)fϕ(y)∂

sgϕ(y)

+ gϕ(y)gϕ(z)fϕ(y)∂
sgϕ(y)− g2ϕ(z)fϕ(y)∂

sgϕ(y)
∣∣∣

≤M
3

η4
[3|gϕ(z)− gϕ(y)|+ |fϕ(z)− fϕ(y)|+ |∂sgϕ(z)− ∂sgϕ(y)|+ |∂sfϕ(z)− ∂sfϕ(y)|]

≤M
3

η4
[4M∥z− y∥+ |∂sgϕ(z)− ∂sgϕ(y)|+ |∂sfϕ(z)− ∂sfϕ(y)|] .

Analogously, for any |s| ≤ ⌈α− 1⌉, one can show

∣∣∣∣∂s
(
fϕ(z)

gϕ(z)

)
− ∂s

(
fϕ(y)

gϕ(y)

)∣∣∣∣

≤(M/η)2
|s|+1−1 (C1M∥z− y∥+ C2|∂sgϕ(z)− ∂sgϕ(y)|+ C3|∂sfϕ(z)− ∂sfϕ(y)|)

for some absolute constants C1, C2, C3 such that C1+C2+C3 = 2
5+|s|

2
|s|. Thus we deduce

max
|s|≤⌈α−1⌉

sup
z ̸=y∈ϕ(U)

|∂s (fϕ(z)/gϕ(z))− ∂s (fϕ(y)/gϕ(y))|
∥z− y∥α−⌈α−1⌉

2

≤(M/η)2
⌈α−1⌉+1−1(2C1MB + (C2 + C3)M) < 2

5+⌈α−1⌉
2

⌈α−1⌉(M/η)2
⌈α⌉

(2B + 1) <∞.

(D.94)

Combining (Eq. D.93) and (Eq. D.94) yields

∥f/g∥Hα(U) < 2
5+⌈α−1⌉

2
⌈α−1⌉(M/η)2

⌈α⌉
(2B + 1) <∞ (D.95)

for any chart (U, ϕ) of M which implies f/g ∈ Hα(M).

Lemma D.10. Assume Assumption 3.1 and 3.2. Let f ∈ Hα(M) with α > 1 and f(x) ≥

241

η > 0. Let M > 0 be a constant such that ∥f∥Hα(M) ≤M . Then we have log f ∈ Hα(M)

with ∥ log f∥Hα(M) ≤ 2
5+⌈α−2⌉

2
⌈α−2⌉(M/η)2

⌈α−1⌉
(2B + 1).

Proof of Lemma D.10. It is sufficiently to show ∥ log f∥Hα(U) <∞ for any chart (U, ϕ) of

M. For simplicity, denote fϕ(z) = f ◦ϕ−1(z) for any z ∈ ϕ(U). We further denoteM > 0

such that ∥f∥Hα(U) ≤M .

For any |s| = 1, ∂s log fϕ(z) =
∂sfϕ(z)

fϕ(z)
. Note that ∂sfϕ(z) ∈ Hα−1(ϕ(U)). According

to Lemma D.9,

∂sfϕ
fϕ

∈ Hα−1(ϕ(U)) (D.96)

for any |s| = 1. Combining (Eq. D.96) and

max
|s|=1,z∈ϕ(U)

∣∣∣∣
∂sfϕ(z)

fϕ(z)

∣∣∣∣ ≤M/η,

we have ∥ log f∥Hα(U) <∞ with ∥ log f∥Hα(U) ≤ 2
5+⌈α−2⌉

2
⌈α−2⌉(M/η)2

⌈α−1⌉
(2B+1) which

proves Lemma D.10.

The following two lemmas are extensively used in the previous proofs.

Lemma D.11 (McDiarmid’s inequality ([230])). Let x1, . . . ,xn ∈ X be independent ran-

dom variables and f : X n → R be a map. If for any i and x1, . . . ,xn,x
′
i ∈ X , the

following holds

|f(x1, . . . ,xi−1,xi,xi+1, . . . ,xn)− f(x1, . . . ,xi−1,x
′
i,xi+1, . . . ,xn)| ≤ ci,

then for any t > 0,

P(|f(x1, . . . ,xn)− E[f] ≥ t|) ≤ exp

(−2t2∑n
i=1 c

2
i

)
.

242

Lemma D.12 (Massart’s lemma ([231, Lemma 5.2])). Let X be some finite set in Rm and

ϵ1, . . . , ϵm be independent Rademacher random variables. Then

E

[
sup
x∈X

1

m

m∑

i=1

ϵixi

]
≤ sup

x∈X
∥x∥

√
2 log |X |
m

.

243

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[2] I. Goodfellow et al., “Generative adversarial nets,” in Advances in neural informa-
tion processing systems, 2014, pp. 2672–2680.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Jun. 2015.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in 2013 IEEE international conference on acoustics, speech and
signal processing, IEEE, 2013, pp. 6645–6649.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[6] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning
based natural language processing,” IEEE Press Ser. Comput. Intell., vol. 13, no. 3,
pp. 55–75, 2018.

[7] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for
healthcare: Review, opportunities and challenges,” Brief Bioinform., vol. 19, no. 6,
pp. 1236–1246, 2017.

[8] F. Jiang et al., “Artificial intelligence in healthcare: Past, present and future,” Stroke
Vasc. Neurol., vol. 2, no. 4, pp. 230–243, 2017.

[9] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE inter-
national conference on robotics and automation (ICRA), IEEE, 2017, pp. 3389–
3396.

[10] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–
7141.

[11] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in english and
mandarin,” in International conference on machine learning, PMLR, 2016, pp. 173–
182.

244

[12] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An asr corpus
based on public domain audio books,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 5206–5210.

[13] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk, A distribution-free theory of non-
parametric regression. Springer Science & Business Media, 2006.

[14] A. B. Tsybakov, Introduction to nonparametric estimation, 1st. Springer Publishing
Company, Incorporated, 2008.

[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[16] S. Osher, Z. Shi, and W. Zhu, “Low dimensional manifold model for image pro-
cessing,” SIAM J. Imaging Sci., vol. 10, no. 4, pp. 1669–1690, 2017.

[17] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidipati,
“Hate speech detection with comment embeddings,” in Proceedings of the 24th
international conference on world wide web, ACM, 2015, pp. 29–30.

[18] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–
2323, 2000.

[19] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[20] R. R. Coifman et al., “Geometric diffusions as a tool for harmonic analysis and
structure definition of data: Diffusion maps,” Proc. Natl. Acad. Sci., vol. 102, no. 21,
pp. 7426–7431, 2005.

[21] W. K. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric methods for
data sets ii: Geometric multi-resolution analysis,” Appl. Comput. Harmon. Anal.,
vol. 32, no. 3, pp. 435–462, 2012.

[22] L. Tu, An introduction to manifolds, ser. Universitext. Springer New York, 2010,
ISBN: 9781441973993.

[23] J. M. Lee, Riemannian manifolds: an introduction to curvature. Springer Science
& Business Media, 2006, vol. 176.

[24] ——, Introduction to Riemannian manifolds. Springer, 2018.

[25] H. Federer, “Curvature measures,” Trans. Amer. Math. Soc., vol. 93, no. 3, pp. 418–
491, 1959.

245

[26] E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and L. Wasserman, “Esti-
mating the reach of a manifold,” Electron. J. Stat., vol. 13, no. 1, pp. 1359–1399,
2019.

[27] L. Slobodeckij, “Generalized sobolev spaces and their applications to boundary
value problems of partial differential equations, leningrad,” Gos. Ped. Inst. Ucep.
Zap, vol. 197, pp. 54–112, 1958.

[28] R. A. DeVore and G. G. Lorentz, Constructive Approximation. Springer Science &
Business Media, 1993, vol. 303.

[29] H. Triebel, Theory of function spaces II, ser. Monographs in Mathematics. Birkhäuser
Basel, 1992.

[30] B. Irie and S. Miyake, “Capabilities of three-layered perceptrons,” in IEEE Inter-
national Conference on Neural Networks, vol. 1, 1988, p. 218.

[31] K.-I. Funahashi, “On the approximate realization of continuous mappings by neural
networks,” Neural networks, vol. 2, no. 3, pp. 183–192, 1989.

[32] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math.
Control Signals Systems, vol. 2, no. 4, pp. 303–314, 1989.

[33] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neu-
ral Networks, vol. 4, no. 2, pp. 251–257, 1991.

[34] C. K. Chui and X. Li, “Approximation by ridge functions and neural networks with
one hidden layer,” J. Approx. Theory, vol. 70, no. 2, pp. 131–141, 1992.

[35] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function,”
Neural Networks, vol. 6, no. 6, pp. 861–867, 1993.

[36] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal
function,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 930–945, 1993.

[37] H. N. Mhaskar, “Neural networks for optimal approximation of smooth and ana-
lytic functions,” Neural Comput., vol. 8, no. 1, pp. 164–177, 1996.

[38] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of neural net-
works: A view from the width,” in Advances in Neural Information Processing
Systems, 2017, pp. 6231–6239.

[39] B. Hanin, “Universal function approximation by deep neural nets with bounded
width and relu activations,” arXiv preprint arXiv:1708.02691, 2017.

246

[40] D. Yarotsky, “Error bounds for approximations with deep relu networks,” Neural
Networks, vol. 94, pp. 103–114, 2017.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[42] P. J. Bickel, B. Li, et al., “Local polynomial regression on unknown manifolds,” in
Complex datasets and inverse problems, Institute of Mathematical Statistics, 2007,
pp. 177–186.

[43] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon.
Anal., vol. 21, no. 1, pp. 53–94, 2006.

[44] C. K. Chui and H. N. Mhaskar, “Deep nets for local manifold learning,” arXiv
preprint arXiv:1607.07110, 2016.

[45] U. Shaham, A. Cloninger, and R. R. Coifman, “Provable approximation properties
for deep neural networks,” Appl. Comput. Harmon. Anal., vol. 44, no. 3, pp. 537–
557, 2018.

[46] R. A. DeVore, R. Howard, and C. Micchelli, “Optimal nonlinear approximation,”
Manuscripta Math., vol. 63, no. 4, pp. 469–478, 1989.

[47] P. Niyogi, S. Smale, and S. Weinberger, “Finding the homology of submanifolds
with high confidence from random samples,” Discrete Comput. Geom., vol. 39,
no. 1-3, pp. 419–441, 2008.

[48] J. H. Conway, N. J. A. Sloane, and E. Bannai, Sphere-packings, lattices, and groups.
Berlin, Heidelberg: Springer-Verlag, 1987, ISBN: 0-387-96617-X.

[49] H. Liu, M. Chen, T. Zhao, and W. Liao, “Besov function approximation and bi-
nary classification on low-dimensional manifolds using convolutional residual net-
works,” in International Conference on Machine Learning, PMLR, 2021, pp. 6770–
6780.

[50] T. Suzuki, “Adaptivity of deep reLU network for learning in besov and mixed
smooth besov spaces: Optimal rate and curse of dimensionality,” in International
Conference on Learning Representations, 2019.

[51] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

247

[53] T. B. Brown et al., “Language models are few-shot learners,” arXiv preprint arXiv:2005.14165,
2020.

[54] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[55] S. Bubeck and M. Sellke, “A universal law of robustness via isoperimetry,” arXiv
preprint arXiv:2105.12806, 2021.

[56] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an un-
known mapping and its derivatives using multilayer feedforward networks,” Neural
networks, vol. 3, no. 5, pp. 551–560, 1990.

[57] P. Cardaliaguet and G. Euvrard, “Approximation of a function and its derivative
with a neural network,” Neural networks, vol. 5, no. 2, pp. 207–220, 1992.

[58] I. Gühring, G. Kutyniok, and P. Petersen, “Error bounds for approximations with
deep relu neural networks in w s, p norms,” Analysis and Applications, vol. 18,
no. 05, pp. 803–859, 2020.

[59] S. Hon and H. Yang, “Simultaneous neural network approximations in sobolev
spaces,” arXiv preprint arXiv:2109.00161, 2021.

[60] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adver-
sarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[61] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of a clas-
sifier against adversarial manipulation,” arXiv preprint arXiv:1705.08475, 2017.

[62] T.-W. Weng et al., “Evaluating the robustness of neural networks: An extreme value
theory approach,” arXiv preprint arXiv:1801.10578, 2018.

[63] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: A
regularization method for supervised and semi-supervised learning,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1979–1993,
2018.

[64] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[65] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically
principled trade-off between robustness and accuracy,” in International Conference
on Machine Learning, 2019.

248

[66] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146,
2016.

[67] B. Wu, J. Chen, D. Cai, X. He, and Q. Gu, “Do wider neural networks really help
adversarial robustness?” arXiv preprint arXiv:2010.01279, 2020.

[68] H. Liu, M. Chen, S. Er, W. Liao, T. Zhang, and T. Zhao, “Benefits of overparame-
terized convolutional residual networks: Function approximation under smoothness
constraint,” arXiv preprint arXiv:2206.04569, 2022.

[69] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[70] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 315–323.

[71] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss land-
scape of neural nets,” in Advances in Neural Information Processing Systems, 2018,
pp. 6389–6399.

[72] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” arXiv preprint arXiv:1611.03530, 2016.

[73] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep networks: Implicit
acceleration by overparameterization,” arXiv preprint arXiv:1802.06509, 2018.

[74] L. Wasserman, All of nonparametric statistics. Springer Science & Business Media,
2006.

[75] G. Wahba, Spline models for observational data. Siam, 1990, vol. 59.

[76] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric re-
gression,” Amer. Statist., vol. 46, no. 3, pp. 175–185, 1992.

[77] J. Fan and I. Gijbels, Local polynomial modelling and its applications, ser. Mono-
graphs on statistics and applied probability series. Chapman & Hall, 1996.

[78] A. R. Barron, “Complexity regularization with application to artificial neural net-
works,” in Nonparametric functional estimation and related topics, Springer, 1991,
pp. 561–576.

[79] D. F. McCaffrey and A. R. Gallant, “Convergence rates for single hidden layer
feedforward networks,” Neural Networks, vol. 7, no. 1, pp. 147–158, 1994.

249

[80] M. Hamers and M. Kohler, “Nonasymptotic bounds on the L2 error of neural net-
work regression estimates,” Ann. Inst. Statist. Math., vol. 58, no. 1, pp. 131–151,
2006.

[81] M. Kohler and A. Krzyżak, “Adaptive regression estimation with multilayer feed-
forward neural networks,” J. Nonparametr. Stat., vol. 17, no. 8, pp. 891–913, 2005.

[82] ——, “Nonparametric regression based on hierarchical interaction models,” IEEE
Trans. Inform. Theory, vol. 63, no. 3, pp. 1620–1630, 2016.

[83] M. Kohler and J. Mehnert, “Analysis of the rate of convergence of least squares
neural network regression estimates in case of measurement errors,” Neural Net-
works, vol. 24, no. 3, pp. 273–279, 2011.

[84] J. Schmidt-Hieber, “Nonparametric regression using deep neural networks with
relu activation function,” arXiv preprint arXiv:1708.06633, 2017.

[85] Y. Kim, I. Ohn, and D. Kim, “Fast convergence rates of deep neural networks for
classification,” arXiv preprint arXiv:1812.03599, 2018.

[86] I. Ohn and Y. Kim, “Smooth function approximation by deep neural networks with
general activation functions,” Entropy, vol. 21, no. 7, p. 627, 2019.

[87] P. J. Bickel and B. Li, “Local polynomial regression on unknown manifolds,” Lec-
ture Notes-Monograph Series, vol. 54, pp. 177–186, 2007.

[88] M.-Y. Cheng and H.-t. Wu, “Local linear regression on manifolds and its geometric
interpretation,” J. Amer. Statist. Assoc., vol. 108, no. 504, pp. 1421–1434, 2013.

[89] W. Liao, M. Maggioni, and S. Vigogna, “Multiscale regression on unknown mani-
folds,” arXiv preprint arXiv:2101.05119, 2021.

[90] S. Kpotufe, “k-NN regression adapts to local intrinsic dimension,” in Advances in
Neural Information Processing Systems, 2011, pp. 729–737.

[91] S. Kpotufe and V. K. Garg, “Adaptivity to local smoothness and dimension in
kernel regression,” in Advances in Neural Information Processing Systems, 2013,
pp. 3075–3083.

[92] Y. Yang, S. T. Tokdar, et al., “Minimax-optimal nonparametric regression in high
dimensions,” Ann. Statist., vol. 43, no. 2, pp. 652–674, 2015.

[93] J. Schmidt-Hieber, “Deep relu network approximation of functions on a manifold,”
arXiv preprint arXiv:1908.00695, 2019.

250

[94] R. Nakada and M. Imaizumi, “Adaptive approximation and generalization of deep
neural network with intrinsic dimensionality,” J. Mach. Learn. Res., vol. 21, no. 174,
pp. 1–38, 2020.

[95] A. Cloninger and T. Klock, “Relu nets adapt to intrinsic dimensionality beyond the
target domain,” arXiv preprint arXiv:2008.02545, 2020.

[96] A. van der Vaart and J. Wellner, Weak convergence and empirical processes: with
applications to statistics, ser. Springer Series in Statistics. Springer, 1996.

[97] T. Hu, Z. Shang, and G. Cheng, “Sharp rate of convergence for deep neural network
classifiers under the teacher-student setting,” arXiv preprint arXiv:2001.06892, 2020.

[98] M. Kohler, A. Krzyzak, and B. Walter, “On the rate of convergence of image clas-
sifiers based on convolutional neural networks,” arXiv preprint arXiv:2003.01526,
2020.

[99] M. Kohler and S. Langer, “Statistical theory for image classification using deep
convolutional neural networks with cross-entropy loss,” arXiv preprint arXiv:2011.13602,
2020.

[100] A. Nitanda and T. Suzuki, “Functional gradient boosting based on residual network
perception,” in International Conference on Machine Learning, 2018, pp. 3819–
3828.

[101] F. Huang, J. Ash, J. Langford, and R. Schapire, “Learning deep resnet blocks se-
quentially using boosting theory,” in International Conference on Machine Learn-
ing, 2018, pp. 2058–2067.

[102] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative
adversarial text to image synthesis,” arXiv preprint arXiv:1605.05396, 2016.

[103] C. Ledig et al., “Photo-realistic single image super-resolution using a generative
adversarial network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4681–4690.

[104] K. Schawinski, C. Zhang, H. Zhang, L. Fowler, and G. K. Santhanam, “Generative
adversarial networks recover features in astrophysical images of galaxies beyond
the deconvolution limit,” Monthly Notices of the Royal Astronomical Society: Let-
ters, vol. 467, no. 1, pp. L110–L114, 2017.

[105] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity
natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

251

[106] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving mario
levels in the latent space of a deep convolutional generative adversarial network,”
in Proceedings of the Genetic and Evolutionary Computation Conference, 2018,
pp. 221–228.

[107] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[108] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” in Advances in neural information pro-
cessing systems, 2016, pp. 2234–2242.

[109] A. Müller, “Integral probability metrics and their generating classes of functions,”
Adv. Appl. Prob., vol. 29, no. 2, pp. 429–443, 1997.

[110] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibrium
in generative adversarial nets (gans),” arXiv preprint arXiv:1703.00573, 2017.

[111] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in International conference on machine learning, 2010, pp. 807–814.

[112] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, 2013, p. 3.

[113] Y. Bai, T. Ma, and A. Risteski, “Approximability of discriminators implies diversity
in gans,” arXiv preprint arXiv:1806.10586, 2018.

[114] T. Liang, “On how well generative adversarial networks learn densities: Nonpara-
metric and parametric results,” arXiv preprint arXiv:1811.03179, 2018.

[115] N. Schreuder, V.-E. Brunel, and A. Dalalyan, “Statistical guarantees for genera-
tive models without domination,” in Algorithmic Learning Theory, PMLR, 2021,
pp. 1051–1071.

[116] A. Block, Z. Jia, Y. Polyanskiy, and A. Rakhlin, “Intrinsic dimension estimation,”
arXiv preprint arXiv:2106.04018, 2021.

[117] C. Villani, Optimal transport: old and new. New York, NY, USA: Springer Science
& Business Media, 2008, vol. 338.

[118] F. Santambrogio, “Models and applications of optimal transport in economics, traf-
fic and urban planning,” arXiv preprint arXiv:1009.3857, 2010.

252

[119] A. Galichon, A survey of some recent applications of optimal transport methods to
econometrics, 2017.

[120] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-
tion,” arXiv preprint arXiv:1409.7495, 2014.

[121] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal transport for do-
main adaptation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 9, pp. 1853–1865, 2016.

[122] G. Monge, Mémoire sur le calcul intégral des équations aux différences partielles.
Paris, France: Imprimerie royale, 1784.

[123] L. A. Caffarelli, “The regularity of mappings with a convex potential,” Journal of
the American Mathematical Society, vol. 5, no. 1, pp. 99–104, 1992.

[124] ——, “Boundary regularity of maps with convex potentials,” Communications on
pure and applied mathematics, vol. 45, no. 9, pp. 1141–1151, 1992.

[125] ——, “Boundary regularity of maps with convex potentials–ii,” Annals of mathe-
matics, pp. 453–496, 1996.

[126] J. I. Urbas, “Regularity of generalized solutions of monge-ampere equations,” Math-
ematische Zeitschrift, vol. 197, no. 3, pp. 365–393, 1988.

[127] J. Urbas, “On the second boundary value problem for equations of monge-ampere
type,” Journal fur die Reine und Angewandte Mathematik, vol. 487, pp. 115–124,
1997.

[128] J. Moser, “On the volume elements on a manifold,” Transactions of the American
Mathematical Society, vol. 120, no. 2, pp. 286–294, 1965.

[129] R. Tang and Y. Yang, “Minimax rate of distribution estimation on unknown sub-
manifold under adversarial losses,” arXiv preprint arXiv:2202.09030, 2022.

[130] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein, “The intrinsic
dimension of images and its impact on learning,” arXiv preprint arXiv:2104.08894,
2021.

[131] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural networks: Analy-
sis and efficient estimation,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

253

[132] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training robust neural
networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–
126, 2021.

[133] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural net-
works by enforcing lipschitz continuity,” Machine Learning, vol. 110, no. 2, pp. 393–
416, 2021.

[134] J. Wang, R. Gao, and Y. Xie, “Two-sample test using projected wasserstein dis-
tance: Breaking the curse of dimensionality,” arXiv preprint arXiv:2010.11970,
2020.

[135] J. Wang, M. Chen, T. Zhao, W. Liao, and Y. Xie, “A manifold two-sample test
study: Integral probability metric with neural networks,” arXiv preprint arXiv:2205.02043,
2022.

[136] S. Park, C. Yun, J. Lee, and J. Shin, “Minimum width for universal approximation,”
arXiv preprint arXiv:2006.08859, 2020.

[137] Y. Lu and J. Lu, “A universal approximation theorem of deep neural networks for
expressing probability distributions,” Advances in neural information processing
systems, vol. 33, pp. 3094–3105, 2020.

[138] J. Huang, Y. Jiao, Z. Li, S. Liu, Y. Wang, and Y. Yang, “An error analysis of gener-
ative adversarial networks for learning distributions,” Journal of Machine Learning
Research, vol. 23, no. 116, pp. 1–43, 2022.

[139] P. Zhang, Q. Liu, D. Zhou, T. Xu, and X. He, “On the discrimination-generalization
tradeoff in gans,” arXiv preprint arXiv:1711.02771, 2017.

[140] H. Jiang, Z. Chen, M. Chen, F. Liu, D. Wang, and T. Zhao, “On computation and
generalization of gans with spectrum control,” arXiv preprint arXiv:1812.10912,
2018.

[141] T. Liang, “How well can generative adversarial networks learn densities: A non-
parametric view,” arXiv preprint arXiv:1712.08244, 2017.

[142] G. Luise, M. Pontil, and C. Ciliberto, “Generalization properties of optimal trans-
port gans with latent distribution learning,” arXiv preprint arXiv:2007.14641, 2020.

[143] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin
bounds for neural networks,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 6240–6249.

254

[144] M. Chae, D. Kim, Y. Kim, and L. Lin, “A likelihood approach to nonparametric
estimation of a singular distribution using deep generative models,” arXiv preprint
arXiv:2105.04046, 2021.

[145] S. Singh, A. Uppal, B. Li, C.-L. Li, M. Zaheer, and B. Póczos, “Nonparametric
density estimation under adversarial losses,” in Advances in Neural Information
Processing Systems, 2018, pp. 10 225–10 236.

[146] A. Uppal, S. Singh, and B. Póczos, “Nonparametric density estimation & conver-
gence of gans under besov ipm losses,” arXiv preprint arXiv:1902.03511, 2019.

[147] R. Nickl and B. M. Pötscher, “Bracketing metric entropy rates and empirical central
limit theorems for function classes of besov-and sobolev-type,” Journal of Theoret-
ical Probability, vol. 20, no. 2, pp. 177–199, 2007.

[148] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision, Springer, 2014, pp. 818–833.

[149] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting deep visual representa-
tions via network dissection,” IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 9, pp. 2131–2145, 2018.

[150] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized generative
adversarial networks,” arXiv preprint arXiv:1612.02136, 2016.

[151] Y. Cao, G. W. Ding, K. Y.-C. Lui, and R. Huang, “Improving gan training via bina-
rized representation entropy (bre) regularization,” arXiv preprint arXiv:1805.03644,
2018.

[152] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and
generalization in neural networks,” in Advances in neural information processing
systems, 2018, pp. 8571–8580.

[153] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global
minima of deep neural networks,” arXiv preprint arXiv:1811.03804, 2018.

[154] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learning via
over-parameterization,” arXiv preprint arXiv:1811.03962, 2018.

[155] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably optimizes
over-parameterized neural networks,” arXiv preprint arXiv:1810.02054, 2018.

[156] Y. Li and Y. Liang, “Learning overparameterized neural networks via stochastic
gradient descent on structured data,” in Advances in Neural Information Processing
Systems, 2018, pp. 8157–8166.

255

[157] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of optimiza-
tion and generalization for overparameterized two-layer neural networks,” arXiv
preprint arXiv:1901.08584, 2019.

[158] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in overparameter-
ized neural networks, going beyond two layers,” in Advances in neural information
processing systems, 2019, pp. 6155–6166.

[159] S. S. Du and W. Hu, “Width provably matters in optimization for deep linear neural
networks,” arXiv preprint arXiv:1901.08572, 2019.

[160] E. S. Kim et al., “The battle trial: Personalizing therapy for lung cancer,” Cancer
discovery, vol. 1, no. 1, pp. 44–53, 2011.

[161] J. K. Lunceford and M. Davidian, “Stratification and weighting via the propensity
score in estimation of causal treatment effects: A comparative study,” Statistics in
medicine, vol. 23, no. 19, pp. 2937–2960, 2004.

[162] V. F. Farias and A. A. Li, “Learning preferences with side information,” Manage-
ment Science, vol. 65, no. 7, pp. 3131–3149, 2019.

[163] A. Sharma, J. M. Hofman, and D. J. Watts, “Estimating the causal impact of recom-
mendation systems from observational data,” in Proceedings of the Sixteenth ACM
Conference on Economics and Computation, 2015, pp. 453–470.

[164] J. J. Heckman and E. J. Vytlacil, “Econometric evaluation of social programs, part
I: Causal models, structural models and econometric policy evaluation,” Handbook
of econometrics, vol. 6, pp. 4779–4874, 2007.

[165] D. B. Rubin, “Estimating causal effects of treatments in randomized and nonran-
domized studies.,” Journal of Educational Psychology, vol. 66, no. 5, p. 688, 1974.

[166] J. J. Heckman, “Sample selection bias as a specification error (with an applica-
tion to the estimation of labor supply functions),” National Bureau of Economic
Research, Tech. Rep., 1977.

[167] W. Cao, A. A. Tsiatis, and M. Davidian, “Improving efficiency and robustness of
the doubly robust estimator for a population mean with incomplete data,” Biometrika,
vol. 96, no. 3, pp. 723–734, 2009.

[168] J. M. Robins, A. Rotnitzky, and L. P. Zhao, “Estimation of regression coefficients
when some regressors are not always observed,” Journal of the American statistical
Association, vol. 89, no. 427, pp. 846–866, 1994.

256

[169] T. Kitagawa and A. Tetenov, “Who should be treated? Empirical welfare maxi-
mization methods for treatment choice,” Econometrica, vol. 86, no. 2, pp. 591–
616, 2018.

[170] J. L. Hill, “Bayesian nonparametric modeling for causal inference,” Journal of
Computational and Graphical Statistics, vol. 20, no. 1, pp. 217–240, 2011.

[171] Y.-Q. Zhao, D. Zeng, E. B. Laber, R. Song, M. Yuan, and M. R. Kosorok, “Dou-
bly robust learning for estimating individualized treatment with censored data,”
Biometrika, vol. 102, no. 1, pp. 151–168, 2015.

[172] E. H. Kennedy, Z. Ma, M. D. McHugh, and D. S. Small, “Non-parametric methods
for doubly robust estimation of continuous treatment effects,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 79, no. 4, pp. 1229–
1245, 2017.

[173] A. Richardson, M. G. Hudgens, P. B. Gilbert, and J. P. Fine, “Nonparametric bounds
and sensitivity analysis of treatment effects,” Statistical Science: A Review Journal
of the Institute of Mathematical Statistics, vol. 29, no. 4, p. 596, 2014.

[174] K. C. G. Chan, S. C. P. Yam, and Z. Zhang, “Globally efficient non-parametric in-
ference of average treatment effects by empirical balancing calibration weighting,”
Journal of the Royal Statistical Society. Series B, Statistical methodology, vol. 78,
no. 3, p. 673, 2016.

[175] M. Frölich, M. Huber, and M. Wiesenfarth, “The finite sample performance of
semi-and non-parametric estimators for treatment effects and policy evaluation,”
Computational Statistics & Data Analysis, vol. 115, pp. 91–102, 2017.

[176] E. H. Kennedy, “Optimal doubly robust estimation of heterogeneous causal ef-
fects,” arXiv preprint arXiv:2004.14497, 2020.

[177] Y. Lee, E. Kennedy, and N. Mitra, “Doubly robust nonparametric instrumental vari-
able estimators for survival outcomes,” arXiv preprint arXiv:2007.12973, 2020.

[178] R. K. Crump, V. J. Hotz, G. W. Imbens, and O. A. Mitnik, “Nonparametric tests for
treatment effect heterogeneity,” The Review of Economics and Statistics, vol. 90,
no. 3, pp. 389–405, 2008.

[179] D. Benkeser, M. Carone, M. V. D. Laan, and P. Gilbert, “Doubly robust non-
parametric inference on the average treatment effect,” Biometrika, vol. 104, no. 4,
pp. 863–880, 2017.

257

[180] D. Lopez-Paz, R. Nishihara, S. Chintala, B. Scholkopf, and L. Bottou, “Discovering
causal signals in images,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 6979–6987.

[181] T. T. Pham and Y. Shen, “A deep causal inference approach to measuring the effects
of forming group loans in online non-profit microfinance platform,” arXiv preprint
arXiv:1706.02795, 2017.

[182] K. Chalupka, P. Perona, and F. Eberhardt, “Visual causal feature learning,” arXiv
preprint arXiv:1412.2309, 2014.

[183] W. van Amsterdam, J. Verhoeff, P. de Jong, T. Leiner, and M. Eijkemans, “Elim-
inating biasing signals in lung cancer images for prognosis predictions with deep
learning,” npj Digital Medicine, vol. 2, no. 1, pp. 1–6, 2019.

[184] F. Johansson, U. Shalit, and D. Sontag, “Learning representations for counterfac-
tual inference,” in International Conference on Machine Learning, 2016, pp. 3020–
3029.

[185] J. Hartford, G. Lewis, K. Leyton-Brown, and M. Taddy, “Deep IV: A flexible ap-
proach for counterfactual prediction,” in Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 1414–1423.

[186] B. Lim, “Forecasting treatment responses over time using recurrent marginal struc-
tural networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 7483–7493.

[187] Z. Gao and Y. Han, “Minimax optimal nonparametric estimation of heterogeneous
treatment effects,” arXiv preprint arXiv:2002.06471, 2020.

[188] A. Beygelzimer and J. Langford, “The offset tree for learning with partial labels,”
in Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 129–138.

[189] D. G. Horvitz and D. J. Thompson, “A generalization of sampling without re-
placement from a finite universe,” Journal of the American Statistical Association,
vol. 47, no. 260, pp. 663–685, 1952.

[190] C. M. Cassel, C. E. Särndal, and J. H. Wretman, “Some results on generalized
difference estimation and generalized regression estimation for finite populations,”
Biometrika, vol. 63, no. 3, pp. 615–620, 1976.

[191] M. Dudı́k, J. Langford, and L. Li, “Doubly robust policy evaluation and learning,”
arXiv preprint arXiv:1103.4601, 2011.

258

[192] S. Athey and S. Wager, “Efficient policy learning,” arXiv preprint arXiv:1702.02896,
2017.

[193] Z. Zhou, S. Athey, and S. Wager, “Offline multi-action policy learning: General-
ization and optimization,” arXiv preprint arXiv:1810.04778, 2018.

[194] N. Kallus, “Balanced policy evaluation and learning,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 8895–8906.

[195] B. Zhang, A. A. Tsiatis, M. Davidian, M. Zhang, and E. Laber, “Estimating optimal
treatment regimes from a classification perspective,” Stat, vol. 1, no. 1, pp. 103–
114, 2012.

[196] Y. Zhao, D. Zeng, A. J. Rush, and M. R. Kosorok, “Estimating individualized treat-
ment rules using outcome weighted learning,” Journal of the American Statistical
Association, vol. 107, no. 499, pp. 1106–1118, 2012.

[197] N. Kallus, “More efficient policy learning via optimal retargeting,” Journal of the
American Statistical Association, pp. 1–13, 2020.

[198] A. Ward, Z. Zhou, N. Bambos, E. Wang, and D. Scheinker, “Anesthesiologist
surgery assignments using policy learning,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC), IEEE, 2019, pp. 1–6.

[199] A. Bennett and N. Kallus, “Efficient policy learning from surrogate-loss classifica-
tion reductions,” arXiv preprint arXiv:2002.05153, 2020.

[200] N. Kallus and A. Zhou, “Policy evaluation and optimization with continuous treat-
ments,” in International Conference on Artificial Intelligence and Statistics, 2018,
pp. 1243–1251.

[201] M. Demirer, V. Syrgkanis, G. Lewis, and V. Chernozhukov, “Semi-parametric ef-
ficient policy learning with continuous actions,” arXiv preprint arXiv:1905.10116,
2019.

[202] N. Kallus and M. Santacatterina, “Kernel optimal orthogonality weighting: A bal-
ancing approach to estimating effects of continuous treatments,” arXiv preprint
arXiv:1910.11972, 2019.

[203] K. Colangelo and Y.-Y. Lee, “Double debiased machine learning nonparametric
inference with continuous treatments,” arXiv preprint arXiv:2004.03036, 2020.

[204] D. J. Foster and V. Syrgkanis, “Orthogonal statistical learning,” arXiv preprint
arXiv:1901.09036, 2019.

259

[205] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer
Science & Business Media, 2013.

[206] M. H. Farrell, T. Liang, and S. Misra, “Deep neural networks for estimation and
inference: Application to causal effects and other semiparametric estimands,” arXiv
preprint arXiv:1809.09953, 2018.

[207] M. Chen, H. Jiang, W. Liao, and T. Zhao, “Nonparametric regression on low-
dimensional manifolds using deep relu networks: Function approximation and sta-
tistical recovery,” arXiv preprint arXiv:1908.01842, 2019.

[208] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[209] T. Van Laarhoven, “L2 regularization versus batch and weight normalization,” arXiv
preprint arXiv:1706.05350, 2017.

[210] A. B. Tsybakov et al., “Optimal aggregation of classifiers in statistical learning,”
The Annals of Statistics, vol. 32, no. 1, pp. 135–166, 2004.

[211] Y. Wang and A. Singh, “Noise-adaptive margin-based active learning and lower
bounds under tsybakov noise condition,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[212] D. E. Koulouriotis and A. Xanthopoulos, “Reinforcement learning and evolutionary
algorithms for non-stationary multi-armed bandit problems,” Applied Mathematics
and Computation, vol. 196, no. 2, pp. 913–922, 2008.

[213] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems,” arXiv
preprint arXiv:1402.6028, 2014.

[214] M. Chen, H. Jiang, W. Liao, and T. Zhao, “Efficient approximation of deep relu
networks for functions on low dimensional manifolds,” in Advances in Neural In-
formation Processing Systems, 2019, pp. 8172–8182.

[215] V. Chernozhukov, D. Chetverikov, and K. Kato, “Gaussian approximations and
multiplier bootstrap for maxima of sums of high-dimensional random vectors,” The
Annals of Statistics, vol. 41, no. 6, pp. 2786–2819, 2013.

[216] L. Wasserman, “Stein’s method and the bootstrap in low and high dimensions: A
tutorial,” 2014.

260

[217] M. Chen, L. Yang, M. Wang, and T. Zhao, “Dimensionality reduction for stationary
time series via stochastic nonconvex optimization,” Advances in Neural Informa-
tion Processing Systems, 2018.

[218] T. Liu, M. Chen, M. Zhou, S. S. Du, E. Zhou, and T. Zhao, “Towards understanding
the importance of shortcut connections in residual networks,” Advances in Neural
Information Processing Systems, 2019.

[219] Y. Wang, M. Chen, T. Zhao, and M. Tao, “Large learning rate tames homogeneity:
Convergence and balancing effect,” arXiv preprint arXiv:2110.03677, 2021.

[220] M. Chen, Y. Li, E. Wang, Z. Yang, Z. Wang, and T. Zhao, “Pessimism meets invari-
ance: Provably efficient offline mean-field multi-agent RL,” Advances in Neural
Information Processing Systems, 2021.

[221] R. M. Dudley, “The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes,” Journal of Functional Analysis, vol. 1, no. 3, pp. 290–330,
1967.

[222] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning.
Cambridge, MA, USA: MIT press, 2018.

[223] H. Liu, H. Yang, M. Chen, T. Zhao, and W. Liao, “Deep nonparametric estimation
of operators between infinite dimensional spaces,” arXiv preprint arXiv:2201.00217,
2022.

[224] J. Lu, Z. Shen, H. Yang, and S. Zhang, “Deep network approximation for smooth
functions,” SIAM Journal on Mathematical Analysis, vol. 53, no. 5, pp. 5465–5506,
2021.

[225] Z. Shen, H. Yang, and S. Zhang, “Deep network approximation characterized by
number of neurons,” arXiv preprint arXiv:1906.05497, 2019.

[226] M. Anthony and P. Bartlett, Neural network learning: Theoretical foundations.
cambridge university press, 1999.

[227] M. J. Wainwright, High-dimensional Statistics: A Non-asymptotic Viewpoint. Cam-
bridge University Press, 2019, vol. 48.

[228] W. Liao and M. Maggioni, “Adaptive geometric multiscale approximations for in-
trinsically low-dimensional data,” Journal of Machine Learning Research, vol. 20,
no. 98, pp. 1–63, 2019.

261

[229] A. Maurer, “A vector-contraction inequality for rademacher complexities,” in In-
ternational Conference on Algorithmic Learning Theory, Springer, 2016, pp. 3–
17.

[230] C. McDiarmid, “On the method of bounded differences,” Surveys in Combina-
torics, vol. 141, no. 1, pp. 148–188, 1989.

[231] P. Massart, “Some applications of concentration inequalities to statistics,” in An-
nales de la Faculté des sciences de Toulouse: Mathématiques, vol. 9, 2000, pp. 245–
303.

262

VITA

Minshuo Chen obtained his Bechelor’s degree in 2015 from Zhejiang University, with

honor from Chu Kochen Honor’s College (advanced class of engineering education). Af-

terwards, he finished a Master’s degree at UCLA in 2017 and joined Georgia Tech as a

Ph.D. student with the Machine Learning program. In the past five years, he was working

under the supervision of Dr. Tuo Zhao and Dr. Wenjing Liao.

263

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	List of Notations

	2 | Preliminary
	Riemannian Manifold
	Function Space
	Neural Network Architecture

	3 | Representation Theory of Neural Networks
	Efficient Approximation of Feedforward Neural Networks
	Efficient Approximation of ConvResNets
	Approximation with Smoothness Constraints
	Conclusion and Discussion

	4 | Nonparametric Regression/classification using Neural Networks
	Nonparametric Regression
	Nonparametric Classification
	Conclusion

	5 | Distribution Estimation of Generative Adversarial Networks
	Results in A Nutshell
	IPM and Optimal Transport
	Distribution Estimation in Euclidean Space
	Distribution Estimation in Low-dimensional Linear Subspace
	Comparison with Existing Literature
	Proof Outline
	Conclusion and Discussion

	6 | Offline Doubly-robust Policy Learning using Neural Networks
	Personalized Offline Policy Learning
	Doubly-robust Learning Framework
	Policy Regret Bound
	Conclusion and Discussion

	7 | Concluding Remarks
	Future Directions

	Appendices
	A | Omitted Proofs in Chapter 3
	B | Omitted Proofs in Chapter 4
	C | Omitted Proofs in Chapter 5
	D | Omitted Proofs in Chapter 6

	References
	Vita

