24 research outputs found

    Magnetic Resonance Imaging Compatibility of the Polymer-based Cochlear Implant

    Get PDF
    ObjectivesIn this study, we compared the magnetic resonance (MR) image artifacts caused by a conventional metal-based cochlear implant and a newly developed liquid crystal polymer (LCP)-based device.MethodsThe metal-based cochlear implant system (Nurobiosys Co.) was attached to side of the head of a subject and the LCP-based device was attached to opposite side. In both devices, alignment magnets were removed for safety. Magnetic resonance imaging (MRI) was performed on a widely used 3.0 T and an ultra-high 7.0 T MRI machine. 3.0 and 7.0 T MR images were acquired using T1- and T2*-weighted gradient echo sequences, respectively.ResultsIn the 3.0 T images, the metal-based device on the left side generated the significant amount of artifacts. The MR images in the proximity of the metal package were obscured by the artifacts in both axial and sagittal views. On the other hand, the MR images near the LCP-based device were relatively free from the artifacts and clearly showed the brain structures. 7.0 T MR images showed the more severe distortion in the both sides but the metal-based cochlear implant system caused a much larger obscure area than the LCP-based system.ConclusionThe novel LCP-based cochlear implant provides a good MRI compatibility beyond present-day cochlear implants. Thus, MR images can be obtained from the subjects even with the implanted LCP-based neural prosthetic systems providing useful diagnostic information. Furthermore, it will be also useful for functional MRI studies of the auditory perception mechanism after cochlear implantations as well as for positron emission tomography-MRI hybrid imaging

    ์•ก์ •ํด๋ฆฌ๋จธ๋ฅผ ๊ธฐ๋ฐ˜์˜ ์†Œํ˜•, ์•ˆ๊ตฌ๋ฐ€์ฐฉํ˜•, ์žฅ๊ธฐ์•ˆ์ •์ ์ธ ์ธ๊ณต๋ง๋ง‰์žฅ์น˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊น€์„ฑ์ค€.A novel retinal prosthetic device was developed using liquid crystal polymer (LCP) to address the problems associated with conventional metal- and polymer-based devices: the hermetic metal package is bulky, heavy and labor-intensive, whereas a thin, flexible and MEMS-compatible polymer-based system is not durable enough for chronic implantation. Exploiting the advantageous properties of LCP such as a low moisture absorption rate, thermo-bonding and thermo-forming, a small, light-weight, long-term reliable retinal prosthesis was fabricated that can be conformally attached on the eye-surface. A LCP fabrication process using monolithic integration and conformal deformation was established enabling miniaturization and a batch manufacturing process as well as eliminating the need for feed-through technology. The fabricated 16-channels LCP-based retinal implant had 14 mm-diameter with the maximum thickness of 1.4 mm and weight of 0.4 g and could be operated wirelessly up to 16 mm of distance in the air. The long-term reliability of the all-LCP retinal device was evaluated in vitro as well as in vivo. Because an all-polymer implant introduces intrinsic gas permeation for which the traditional helium leak test for metallic packages was not designed to quantify, a new set of reliability tests were designed and carried out specifically for all-polymer implants. Moisture ingress through various pathways were classified into polymer surface, polymer-polymer and polymer-metal adhesions each of which were quantitatively investigated by analytic calculation, in vitro aging test of electrode part and package part, respectively. The functionality and long-term implantation stability of the device was verified through in vivo animal experiments by measuring the cortical potential and monitoring implanted dummy devices for more than a year, respectively. Samples of the LCP electrodes array failed after 114 days in 87ยฐC salin as a result of water penetration through the LCP-metal interface. An eye-confirmable LCP package survived more than 35 days in an accelerated condition at 87ยฐC. The in vivo results confirmed that no adverse effects around the retina were observed after implantation of the device for more than a year.ABSTRACT i Contents iv List of Figures xi List of Tables xxi Chapter 1 : Introduction 1 1.1. Neuroprosthetic devices 1 1.2. Retinal prosthesis 2 1.2.1. Concept 2 1.2.2. Three approaches 3 1.2.3. Camera vs. Photodiode 4 1.3. Conventional devices 5 1.4. Liquid Crystal Polymer (LCP) 7 1.4.1. Low moisture absorption and permeability 9 1.4.2. Thermoplastic property 9 1.4.3. Compatibility with MEMS technologies 10 1.4.4. RF characteristics 10 1.5. LCP-based retinal prosthesis 11 1.6. Long-term reliability 12 1.7. Dissertation outline 14 Chapter 2: Methods 16 2.1. System Overview 16 2.2. Microfabrication on LCP 18 2.2.1. Limitations of the previous microfabrication technique on LCP 19 2.2.2. Improved LCP-based microfabrication 22 2.2.2.1. Electroplated micro-patterning 23 2.2.2.2. Laser-thinning for higher flexibility 24 2.2.2.3. Laser-ablation for site opening 25 2.3. All-LCP Monolithic Fabrication 26 2.3.1. Multilayered integration 29 2.3.1.1. Electrical components 29 2.3.1.2. Thermal lamination 32 2.3.1.3. Layer configuration 34 2.3.2. Thermal deformation 35 2.3.2.1. Deformation process 35 2.3.2.2. Wavy lines for stretchability 36 2.3.2.3. Electrical properties of the deformed coil 40 2.3.3. Circuit Assembly 40 2.3.3.1. Stimulation ASIC 40 2.3.3.2. Surrounding circuitries 41 2.3.4. Packaging 43 2.3.5. Laser Machining 44 2.4. Device characterization 44 2.4.1. Transmitter Circuit and Wireless Operation 45 2.4.1.1. Transmitter circuit 45 2.4.1.2. Transmitter coil 46 2.4.1.3. Wireless operation test 46 2.4.2. Electrochemical measurements 48 2.5. Long-term reliability tests in vitro 49 2.5.1. Failure mechanisms of an all-LCP device 49 2.5.2. Analytic calculation 51 2.5.3. Long-term reliability tests in accelerated environment 55 2.5.3.1. Long-term reliability of electrode array 55 2.5.3.2. Long-term reliability of package 57 2.5.3.3. Long-term reliability of complete device 58 2.5.4. Long-term electrochemical stability 59 2.6. Acute and Chronic Evaluation in vivo 60 2.6.1. Surgical implantation 60 2.6.2. Acute functionality test 62 2.6.3. Long-term implantation stability 63 Chapter 3: Results 64 3.1. Microfabrication on LCP 64 3.1.1. Electroplated micro-patterning 64 3.1.2. Laser-ablation for site opening 67 3.1.3. Laser-thinning for higher flexibility 69 3.2. All-LCP Monolithic fabrication 71 3.2.1. Multilayered integration 71 3.2.2. Thermal deformation 73 3.2.2.1. Deformation results 73 3.2.2.2. Wavy lines for stretchability 74 3.2.2.3. Effect on the electrical properties 74 3.2.3. Circuit assembly 76 3.2.4. Packaging 77 3.2.5. Laser machining 79 3.3. Device Characterization 80 3.3.1. General specifications 81 3.3.2. Transmitter circuit and coil 83 3.3.3. Wireless operation 83 3.3.4. Electrochemical measurements 84 3.4. Long-term reliability tests in vitro 86 3.4.1. Analytic calculation 87 3.4.2. Long-term reliability tests in accelerated condition 90 3.4.2.1. Long-term reliability of electrode arrays 90 3.4.2.2. Long-term reliability of package 92 3.4.2.3. Long-term reliability of complete device 93 3.4.3. Long-term Electrochemical stability 93 3.5. Acute and chronic evaluation in vivo 95 3.5.1. Surgical implantation 95 3.5.2. Acute functionality test 96 3.5.3. Long-term implantation stability 97 Chapter 4: Discussion 100 4.1. Comparison with conventional devices 100 4.2. Potential applications 102 4.3. Opportunities for further improvements 102 4.4. Long-term reliability 104 Chapter 5: Conclusion 108 Reference 110 ๊ตญ๋ฌธ์ดˆ๋ก 118 ๊ฐ์‚ฌ์˜ ๊ธ€ 121Docto

    A Fully Implantable Miniaturized Liquid Crystal Polymer (LCP)-Based Spinal Cord Stimulator for Pain Control

    Get PDF
    Spinal cord stimulation is a therapy to treat the severe neuropathic pain by suppressing the pain signal via electrical stimulation of the spinal cord. The conventional metal packaged and battery-operated implantable pulse generator (IPG) produces electrical pulses to stimulate the spinal cord. Despite its stable operation after implantation, the implantation site is limited due to its bulky size and heavy weight. Wireless communications including wireless power charging is also restricted, which is mainly attributed to the electromagnetic shielding of the metal package. To overcome these limitations, here, we developed a fully implantable miniaturized spinal cord stimulator based on a biocompatible liquid crystal polymer (LCP). The fabrication of electrode arrays in the LCP substrate and monolithically encapsulating the circuitries using LCP packaging reduces the weight (0.4 g) and the size (the width, length, and thickness are 25.3, 9.3, and 1.9 mm, respectively). An inductive link was utilized to wirelessly transfer the power and the data to implanted circuitries to generate the stimulus pulse. Prior to implantation of the device, operation of the pulse generator was evaluated, and characteristics of stimulation electrode such as an electrochemical impedance spectroscopy (EIS) were measured. The LCP-based spinal cord stimulator was implanted into the spared nerve injury rat model. The degree of pain suppression upon spinal cord stimulation was assessed via the Von Frey test where the mechanical stimulation threshold was evaluated by monitoring the paw withdrawal responses. With no spinal cord stimulation, the mechanical stimulation threshold was observed as 1.47 ยฑ 0.623 g, whereas the stimulation threshold was increased to 12.7 ยฑ 4.00 g after spinal cord stimulation, confirming the efficacy of pain suppression via electrical stimulation of the spinal cord. This LCP-based spinal cord stimulator opens new avenues for the development of a miniaturized but still effective spinal cord stimulator.ope

    ์†Œํ˜•๋™๋ฌผ์˜ ๋‡Œ์‹ ๊ฒฝ ์ž๊ทน์„ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.In this study, a fully implantable neural stimulator that is designed to stimulate the brain in the small animal is described. Electrical stimulation of the small animal is applicable to pre-clinical study, and behavior study for neuroscience research, etc. Especially, behavior study of the freely moving animal is useful to observe the modulation of sensory and motor functions by the stimulation. It involves conditioning animal's movement response through directional neural stimulation on the region of interest. The main technique that enables such applications is the development of an implantable neural stimulator. Implantable neural stimulator is used to modulate the behavior of the animal, while it ensures the free movement of the animals. Therefore, stable operation in vivo and device size are important issues in the design of implantable neural stimulators. Conventional neural stimulators for brain stimulation of small animal are comprised of electrodes implanted in the brain and a pulse generation circuit mounted on the back of the animal. The electrical stimulation generated from the circuit is conveyed to the target region by the electrodes wire-connected with the circuit. The devices are powered by a large battery, and controlled by a microcontroller unit. While it represents a simple approach, it is subject to various potential risks including short operation time, infection at the wound, mechanical failure of the device, and animals being hindered to move naturally, etc. A neural stimulator that is miniaturized, fully implantable, low-powered, and capable of wireless communication is required. In this dissertation, a fully implantable stimulator with remote controllability, compact size, and minimal power consumption is suggested for freely moving animal application. The stimulator consists of modular units of surface-type and depth-type arrays for accessing target brain area, package for accommodating the stimulating electronics all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. The electronics in the package contains ZigBee telemetry for low-power wireless communication, inductive link for recharging lithium battery, and an ASIC that generates biphasic pulse for neural stimulation. A dual-mode power-saving scheme with a duty cycling was applied to minimize the power consumption. All modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. To evaluate the fabricated stimulator, wireless operation test was conducted. Signal-to-Noise Ratio (SNR) of the ZigBee telemetry were measured, and its communication range and data streaming capacity were tested. The amount of power delivered during the charging session depending on the coil distance was measured. After the evaluation of the device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional maze structure, by guiding the rats to navigate better in the maze. Finally, several aspects of the fabricated device were discussed further.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์†Œํ˜• ๋™๋ฌผ์˜ ๋‘๋‡Œ๋ฅผ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์†Œํ˜• ๋™๋ฌผ์˜ ์ „๊ธฐ์ž๊ทน์€ ์ „์ž„์ƒ ์—ฐ๊ตฌ, ์‹ ๊ฒฝ๊ณผํ•™ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ํ–‰๋™์—ฐ๊ตฌ ๋“ฑ์— ํ™œ์šฉ๋œ๋‹ค. ํŠนํžˆ, ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ์ž๊ทน์— ์˜ํ•œ ๊ฐ๊ฐ ๋ฐ ์šด๋™ ๊ธฐ๋Šฅ์˜ ์กฐ์ ˆ์„ ๊ด€์ฐฐํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋œ๋‹ค. ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ๋‘๋‡Œ์˜ ํŠน์ • ๊ด€์‹ฌ ์˜์—ญ์„ ์ง์ ‘์ ์œผ๋กœ ์ž๊ทนํ•˜์—ฌ ๋™๋ฌผ์˜ ํ–‰๋™๋ฐ˜์‘์„ ์กฐ๊ฑดํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์šฉ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ํ•ต์‹ฌ๊ธฐ์ˆ ์€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ๊ฐœ๋ฐœ์ด๋‹ค. ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋™๋ฌผ์˜ ์›€์ง์ž„์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ทธ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™๋ฌผ ๋‚ด์—์„œ์˜ ์•ˆ์ •์ ์ธ ๋™์ž‘๊ณผ ์žฅ์น˜์˜ ํฌ๊ธฐ๊ฐ€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ์„ค๊ณ„ํ•จ์— ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ธฐ์กด์˜ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋‘๋‡Œ์— ์ด์‹๋˜๋Š” ์ „๊ทน ๋ถ€๋ถ„๊ณผ, ๋™๋ฌผ์˜ ๋“ฑ ๋ถ€๋ถ„์— ์œ„์น˜ํ•œ ํšŒ๋กœ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํšŒ๋กœ์—์„œ ์ƒ์‚ฐ๋œ ์ „๊ธฐ์ž๊ทน์€ ํšŒ๋กœ์™€ ์ „์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ์ „๊ทน์„ ํ†ตํ•ด ๋ชฉํ‘œ ์ง€์ ์œผ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์žฅ์น˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ์— ์˜ํ•ด ๊ตฌ๋™๋˜๋ฉฐ, ๋‚ด์žฅ๋œ ๋งˆ์ดํฌ๋กœ ์ปจํŠธ๋กค๋Ÿฌ์— ์˜ํ•ด ์ œ์–ด๋œ๋‹ค. ์ด๋Š” ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ๋ฐฉ์‹์ด์ง€๋งŒ, ์งง์€ ๋™์ž‘์‹œ๊ฐ„, ์ด์‹๋ถ€์œ„์˜ ๊ฐ์—ผ์ด๋‚˜ ์žฅ์น˜์˜ ๊ธฐ๊ณ„์  ๊ฒฐํ•จ, ๊ทธ๋ฆฌ๊ณ  ๋™๋ฌผ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ๋ฐฉํ•ด ๋“ฑ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋ฌด์„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €์ „๋ ฅ, ์†Œํ˜•ํ™”๋œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ , ์†Œ๋ชจ์ „๋ ฅ์ด ์ตœ์†Œํ™”๋œ ์™„์ „์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์„ค๊ณ„๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋‘๋‡Œ ์˜์—ญ์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œ๋ฉดํ˜• ์ „๊ทน๊ณผ ํƒ์นจํ˜• ์ „๊ทน, ๊ทธ๋ฆฌ๊ณ  ์ž๊ทน ํŽ„์Šค ์ƒ์„ฑ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•˜๋Š” ํŒจํ‚ค์ง€ ๋“ฑ์˜ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์€ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์ž‘๋˜์–ด ๋™๋ฌผ์— ์ด์‹๋œ ๋’ค ์ผ€์ด๋ธ”๊ณผ ์ปค๋„ฅํ„ฐ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ํŒจํ‚ค์ง€ ๋‚ด๋ถ€์˜ ํšŒ๋กœ๋Š” ์ €์ „๋ ฅ ๋ฌด์„ ํ†ต์‹ ์„ ์œ„ํ•œ ์ง€๊ทธ๋น„ ํŠธ๋žœ์‹œ๋ฒ„, ๋ฆฌํŠฌ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์žฌ์ถฉ์ „์„ ์œ„ํ•œ ์ธ๋•ํ‹ฐ๋ธŒ ๋งํฌ, ๊ทธ๋ฆฌ๊ณ  ์‹ ๊ฒฝ์ž๊ทน์„ ์œ„ํ•œ ์ด์ƒ์„ฑ ์ž๊ทนํŒŒํ˜•์„ ์ƒ์„ฑํ•˜๋Š” ASIC์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ „๋ ฅ ์ ˆ๊ฐ์„ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ ๋ชจ๋“œ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ๋ฅ ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹์ด ์žฅ์น˜์— ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ๋ชจ๋“ˆ๋“ค์€ ์ด์‹ ํ›„์˜ ์ƒ๋ฌผํ•™์ , ํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด ์•ก์ • ํด๋ฆฌ๋จธ๋กœ ํŒจํ‚ค์ง•๋˜์—ˆ๋‹ค. ์ œ์ž‘๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๋™์ž‘ ํ…Œ์ŠคํŠธ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ง€๊ทธ๋น„ ํ†ต์‹ ์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ํ†ต์‹ ์˜ ๋™์ž‘๊ฑฐ๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆฌ๋ฐ ์„ฑ๋Šฅ์ด ๊ฒ€์‚ฌ๋˜์—ˆ๊ณ , ์žฅ์น˜์˜ ์ถฉ์ „์ด ์ˆ˜ํ–‰๋  ๋•Œ ์ฝ”์ผ๊ฐ„์˜ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ์ „์†ก๋˜๋Š” ์ „๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ์žฅ์น˜์˜ ํ‰๊ฐ€ ์ดํ›„, ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ์ฅ์— ์ด์‹๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋™๋ฌผ์€ ์ด์‹๋œ ์žฅ์น˜๋ฅผ ์ด์šฉํ•ด ๋ฐฉํ–ฅ ์‹ ํ˜ธ์— ๋”ฐ๋ผ ์ขŒ์šฐ๋กœ ์ด๋™ํ•˜๋„๋ก ํ›ˆ๋ จ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, 3์ฐจ์› ๋ฏธ๋กœ ๊ตฌ์กฐ์—์„œ ์ฅ์˜ ์ด๋™๋ฐฉํ–ฅ์„ ์œ ๋„ํ•˜๋Š” ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์žฅ์น˜์˜ ๊ธฐ๋Šฅ์„ฑ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์ž‘๋œ ์žฅ์น˜์˜ ํŠน์ง•์ด ์—ฌ๋Ÿฌ ์ธก๋ฉด์—์„œ ์‹ฌ์ธต์ ์œผ๋กœ ๋…ผ์˜๋˜์—ˆ๋‹ค.Chapter 1 : Introduction 1 1.1. Neural Interface 2 1.1.1. Concept 2 1.1.2. Major Approaches 3 1.2. Neural Stimulator for Animal Brain Stimulation 5 1.2.1. Concept 5 1.2.2. Neural Stimulator for Freely Moving Small Animal 7 1.3. Suggested Approaches 8 1.3.1. Wireless Communication 8 1.3.2. Power Management 9 1.3.2.1. Wireless Power Transmission 10 1.3.2.2. Energy Harvesting 11 1.3.3. Full implantation 14 1.3.3.1. Polymer Packaging 14 1.3.3.2. Modular Configuration 16 1.4. Objectives of This Dissertation 16 Chapter 2 : Methods 18 2.1. Overview 19 2.1.1. Circuit Description 20 2.1.1.1. Pulse Generator ASIC 21 2.1.1.2. ZigBee Transceiver 23 2.1.1.3. Inductive Link 24 2.1.1.4. Energy Harvester 25 2.1.1.5. Surrounding Circuitries 26 2.1.2. Software Description 27 2.2. Antenna Design 29 2.2.1. RF Antenna 30 2.2.1.1. Design of Monopole Antenna 31 2.2.1.2. FEM Simulation 31 2.2.2. Inductive Link 36 2.2.2.1. Design of Coil Antenna 36 2.2.2.2. FEM Simulation 38 2.3. Device Fabrication 41 2.3.1. Circuit Assembly 41 2.3.2. Packaging 42 2.3.3. Electrode, Feedthrough, Cable, and Connector 43 2.4. Evaluations 45 2.4.1. Wireless Operation Test 46 2.4.1.1. Signal-to-Noise Ratio (SNR) Measurement 46 2.4.1.2. Communication Range Test 47 2.4.1.3. Device Operation Monitoring Test 48 2.4.2. Wireless Power Transmission 49 2.4.3. Electrochemical Measurements In Vitro 50 2.4.4. Animal Testing In Vivo 52 Chapter 3 : Results 57 3.1. Fabricated System 58 3.2. Wireless Operation Test 59 3.2.1. Signal-to-Noise Ratio Measurement 59 3.2.2. Communication Range Test 61 3.2.3. Device Operation Monitoring Test 62 3.3. Wireless Power Transmission 64 3.4. Electrochemical Measurements In Vitro 65 3.5. Animal Testing In Vivo 67 Chapter 4 : Discussion 73 4.1. Comparison with Conventional Devices 74 4.2. Safety of Device Operation 76 4.2.1. Safe Electrical Stimulation 76 4.2.2. Safe Wireless Power Transmission 80 4.3. Potential Applications 84 4.4. Opportunities for Further Improvements 86 4.4.1. Weight and Size 86 4.4.2. Long-Term Reliability 93 Chapter 5 : Conclusion 96 Reference 98 Appendix - Liquid Crystal Polymer (LCP) -Based Spinal Cord Stimulator 107 ๊ตญ๋ฌธ ์ดˆ๋ก 138 ๊ฐ์‚ฌ์˜ ๊ธ€ 140Docto

    ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.A visual prosthetic system typically consists of a neural stimulator, which is a surgically implantable device for electrical stimulation intended to restore the partial vision of blind patients, and peripheral external devices including an image sensor, a controller, and a processor. Although several visual prosthetic systems, such as retinal prostheses or retinal implants, have already been commercialized, there are still many issues on them (e.g., substrate materials for implantable units, electrode configurations, the use of external hardware, power supply and data transmission methods, design and fabrication approaches, etc.) to be dealt with for an improved visual prosthetic system. In this dissertation, a totally implantable visual prosthetic system is suggested with four motivations, which are thought to be important, as in the following: 1) simple fabrication of implantable parts, such as micro-sized electrodes and a case, for a neural stimulator based on polymer without semiconductor techniques, 2) multi-polar stimulation for virtual channel generation to overcome a limited number of physical electrodes in a confined space, 3) a new image acquisition strategy using an implantable camera, and 4) power supply as well as data transmission to a neural stimulator without hindering patients various activities. First, polymer materials have been widely used to develop various implantable devices for visual prosthetic systems because of their outstanding advantages including flexibility and applicability to microfabrication, compared with metal, silicon, or ceramic. Most polymer-based implantable devices have been fabricated by the semiconductor technology based on metal deposition and photolithography. This technology provides high accuracy and precision for metal patterning on a polymer substrate. However, the technology is also complicated and time-consuming as it requires masks for photolithography and vacuum for metal deposition as well as huge fabrication facilities. This is the reason why biocompatible cyclic olefin polymer (COP) with low water absorption (<0.01 %) and high light transmission (92 %) was chosen as a new substrate material of an implantable device in this study. Based on COP, simple fabrication process of an implantable device was developed without masks, vacuum, and huge fabrication facilities. COP is characterized by strong adhesion to gold and high ultraviolet (UV) transparency as well. Because of such adhesion and UV transparency, a gold thin film can be thermally laminated on a COP substrate with no adhesion layer and micromachined by a UV laser without damaging the substrate. Using the developed COP-based process, a depth-type microprobe was fabricated first, and its electrochemical and mechanical properties as well as functionality were evaluated by impedance measurements, buckling tests, and in vivo neural signal recording, respectively. Furthermore, the long-term reliability of COP encapsulation formed by the developed process was estimated through leakage current measurements during accelerated aging in saline solution, to show the feasibility of the encapsulation using COP as well. Second, even if stimulation electrodes become sufficiently small, it is demanding to arrange them for precise stimulation on individual neurons due to electrical crosstalk, which is the spatial superposition of electric fields generated by simultaneous stimuli. Hence, an adequate spacing between adjacent electrodes is required, and this causes a limited number of physical electrodes in a confined space such as in the brain or in the retina. To overcome this limitation, many researchers have proposed stimulation strategies using virtual channels, which are intermediate areas with large magnitudes of electric fields between physical electrodes. Such virtual channels can be created by multi-polar stimulation that can combine stimuli output from two or more electrodes at the same time. To produce more delicate stimulation patterns using virtual channels herein, penta-polar stimulation with a grid-shaped arrangement of electrodes was leveraged specially to generate them in two dimensions. This penta-polar stimulation was realized using a custom-designed integrated circuit with five different current sources and surface-type electrodes fabricated by the developed COP-based process. The effectiveness of the penta-polar stimulation was firstly evaluated by focusing electric fields in comparison to mono-polar stimulation. In addition, the distribution of electric fields changed by the penta-polar stimulation, which indicated virtual channel generation, was estimated in accordance with an amplitude ratio between stimuli of the two adjacent electrodes and a distance from them, through both finite element analysis and in vitro evaluation. Third, an implantable camera is herein proposed as a new image acquisition approach capturing real-time images while implanted in the eye, to construct a totally implantable visual prosthetic system. This implantable camera has distinct advantages in that it can provide blind patients with benefits to perform several ordinary activities, such as sleep, shower, or running, while focusing on objects in accordance with natural eye movements. These advantages are impossible to be achieved using a wearing unit such as a glasses-mounted camera used in a conventional partially implantable visual prosthetic system. Moreover, the implantable camera also has a merit of garnering a variety of image information using the complete structure of a camera, compared with a micro-photodiode array of a retinal implant. To fulfill these advantageous features, after having been coated with a biocompatible epoxy to prevent moisture penetration and sealed using a medical-grade silicone elastomer to gain biocompatibility as well as flexibility, the implantable camera was fabricated enough to be inserted into the eye. Its operation was assessed by wireless image acquisition that displayed a processed black and white image. In addition, to estimate reliable wireless communication ranges of the implantable camera in the body, signal-to-noise ratio measurements were conducted while it was covered by an 8-mm-thick biological medium that mimicked an in vivo environment. Lastly, external hardware attached on the body has been generally used in conventional visual prosthetic systems to stably deliver power and data to implanted units and to acquire image signals outside the body. However, there are common problems caused by this external hardware, including functional failure due to external damages, unavailability during sleep, in the shower, or while running or swimming, and cosmetic issues. Especially, an external coil for power and data transmission in a conventional visual prosthetic system is connected to a controller and processor through a wire, which makes the coil more vulnerable to the problems. To solve this issue, a totally implantable neural stimulation system controlled by a handheld remote controller is presented. This handheld remote controller can control a totally implantable stimulator powered by a rechargeable battery through low-power but relatively long-range ZigBee wireless communication. Moreover, two more functions can be performed by the handheld controller for expanded applications; one is percutaneous stimulation, and the other is inductive charging of the rechargeable battery. Additionally, simple switches on the handheld controller enable users to modulate parameters of stimuli like a gamepad. These handheld and user-friendly interfaces can make it easy to use the controller under various circumstances. The functionality of the controller was evaluated in vivo, through percutaneous stimulation and remote control especially for avian navigation, as well as in vitro. Results of both in vivo experiments were compared in order to verify the feasibility of remote control of neural stimulation using the controller. In conclusion, several discussions on results of this study, including the COP-based simple fabrication process, the penta-polar stimulation, the implantable camera, and the multi-functional handheld remote controller, are addressed. Based on these findings and discussions, how the researches in this thesis can be applied to the realization of a totally implantable visual prosthetic system is elucidated at the end of this dissertation.์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์‹ค๋ช… ํ™˜์ž๋“ค์˜ ๋ถ€๋ถ„ ์‹œ๋ ฅ์„ ์ „๊ธฐ ์ž๊ทน์œผ๋กœ ํšŒ๋ณต์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์ˆ ์ ์œผ๋กœ ์ด์‹๋  ์ˆ˜ ์žˆ๋Š” ์žฅ์น˜์ธ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์™€ ์ด๋ฏธ์ง€ ์„ผ์„œ ๋˜๋Š” ์ปจํŠธ๋กค๋Ÿฌ, ํ”„๋กœ์„ธ์„œ๋ฅผ ํฌํ•จํ•˜๋Š” ์™ธ๋ถ€์˜ ์ฃผ๋ณ€ ์žฅ์น˜๋“ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ง๋ง‰ ๋ณด์ฒ  ์žฅ์น˜ ๋˜๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์™€ ๊ฐ™์ด ๋ช‡๋ช‡ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ด๋ฏธ ์ƒ์šฉํ™” ๋˜์—ˆ์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋” ๋‚˜์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•˜์—ฌ ๋‹ค๋ค„์ ธ์•ผ ํ•  ๋งŽ์€ ์ด์Šˆ๋“ค (์˜ˆ๋ฅผ ๋“ค์–ด, ์ด์‹ํ˜• ์žฅ์น˜์˜ ๊ธฐํŒ ๋ฌผ์งˆ, ์ „๊ทน์˜ ๋ฐฐ์—ด, ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด์˜ ์‚ฌ์šฉ, ์ „๋ ฅ ๊ณต๊ธ‰ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•, ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ ๋ฐฉ์‹ ๋“ฑ)์ด ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์ด ๋„ค ๊ฐ€์ง€์˜ ์ด์Šˆ๋“ค๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ๋‹ค๋ฃฌ๋‹ค. 1) ํด๋ฆฌ๋จธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์˜ ๋ฏธ์„ธ ์ „๊ทน ๋ฐ ํŒจํ‚ค์ง€์™€ ๊ฐ™์€ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„์„ ๋ฐ˜๋„์ฒด ๊ธฐ์ˆ  ์—†์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ 2) ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์ƒ ์ฑ„๋„์„ ํ˜•์„ฑํ•˜๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน ๋ฐฉ์‹, 3) ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ์ „๋žต, 4) ํ™˜์ž์˜ ๋‹ค์–‘ํ•œ ํ™œ๋™์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์— ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•˜๋Š” ๋ฐฉ๋ฒ•. ์ฒซ์งธ๋กœ, ๊ธˆ์†์ด๋‚˜ ์‹ค๋ฆฌ์ฝ˜, ์„ธ๋ผ๋ฏน์— ๋น„ํ•˜์—ฌ ํด๋ฆฌ๋จธ๋Š” ์œ ์—ฐ์„ฑ ๋ฐ ๋ฏธ์„ธ ์ œ์ž‘์—์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํฌํ•จํ•˜๋Š” ๋‘๋“œ๋Ÿฌ์ง„ ์ด์ ๋“ค์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„๋“ค์— ๋„๋ฆฌ ์ด์šฉ๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ํด๋ฆฌ๋จธ ๊ธฐ๋ฐ˜ ์ด์‹ํ˜• ์žฅ์น˜๋“ค์€ ๊ธˆ์† ์ฆ์ฐฉ๊ณผ ์‚ฌ์ง„ ์‹๊ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋ฐ˜๋„์ฒด ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๊ณต์ •์€ ํด๋ฆฌ๋จธ ๊ธฐํŒ ์œ„์— ๊ธˆ์†์„ ํŒจํ„ฐ๋‹ ํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ ๋†’์€ ์ •ํ™•์„ฑ๊ณผ ์ •๋ฐ€๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ๊ณต์ •์€ ๋˜ํ•œ, ์‚ฌ์ง„ ์‹๊ฐ์— ์“ฐ์ด๋Š” ๋งˆ์Šคํฌ์™€ ๊ธˆ์† ์ฆ์ฐฉ์„ ์œ„ํ•œ ์ง„๊ณต๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์•„์ฃผ ํฐ ๊ณต์ • ์„ค๋น„๋ฅผ ์š”๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ์‹ฌํ•˜๊ณ  ๋ณต์žกํ•˜๋‹ค. ์ด๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‚ฎ์€ ์ˆ˜๋ถ„ ํก์ˆ˜ (<0.01 %)์™€ ๋†’์€ ๋น› ํˆฌ๊ณผ (92 %)๋ฅผ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ์ƒ์ฒด์ ํ•ฉํ•œ ๊ณ ๋ฆฌํ˜• ์˜ฌ๋ ˆํ•€ ํด๋ฆฌ๋จธ (cyclic olefin polymer, COP)๊ฐ€ ์ด์‹ํ˜• ์žฅ์น˜๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐํŒ ๋ฌผ์งˆ๋กœ์จ ์„ ํƒ๋œ ์ด์œ ์ด๋‹ค. COP๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ, ๋งˆ์Šคํฌ์™€ ์ง„๊ณต, ํฐ ๊ณต์ • ์„ค๋น„๊ฐ€ ํ•„์š” ์—†์ด ์ด์‹ ๊ฐ€๋Šฅํ•œ ์žฅ์น˜๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๊ณต์ •์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. COP๋Š” ๊ธˆ๊ณผ์˜ ๊ฐ•ํ•œ ์ ‘ํ•ฉ๊ณผ ์ž์™ธ์„ ์— ๋Œ€ํ•œ ๋†’์€ ํˆฌ๋ช…์„ฑ์„ ๋˜ ๋‹ค๋ฅธ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ ‘ํ•ฉ ํŠน์„ฑ๊ณผ ์ž์™ธ์„  ํˆฌ๋ช…์„ฑ ๋•๋ถ„์—, ๊ธˆ๋ฐ•์€ COP ๊ธฐํŒ์— ๋ณ„๋„์˜ ์ ‘ํ•ฉ์ธต ์—†์ด ์—ด๋กœ ์ ‘ํ•ฉ๋  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ทธ ๊ธฐํŒ์— ์†์ƒ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ ์ž์™ธ์„  ๋ ˆ์ด์ €๋ฅผ ํ†ตํ•˜์—ฌ ๋ฏธ์„ธํ•˜๊ฒŒ ๊ฐ€๊ณต๋  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜์˜ ๊ณต์ •์„ ์ฒ˜์Œ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์นจ์Šตํ˜• ๋ฏธ์„ธ ํ”„๋กœ๋ธŒ๊ฐ€ ์ œ์ž‘๋˜์—ˆ๊ณ , ๊ทธ ์ „๊ธฐํ™”ํ•™์ , ๊ธฐ๊ณ„์  ํŠน์„ฑ๊ณผ ๊ธฐ๋Šฅ์„ฑ์ด ๊ฐ๊ฐ ์ž„ํ”ผ๋˜์Šค ์ธก์ •๊ณผ ๋ฒ„ํด๋ง ํ…Œ์ŠคํŠธ, ์ƒ์ฒด ๋‚ด ์‹ ๊ฒฝ์‹ ํ˜ธ ๊ธฐ๋ก์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  COP๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐ€๋ด‰์˜ ๊ฐ€๋Šฅ์„ฑ๋„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ๊ณต์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜•์„ฑ๋œ COP ๋ฐ€๋ด‰์˜ ์žฅ๊ธฐ ์•ˆ์ •์„ฑ์ด ์ƒ๋ฆฌ์‹์—ผ์ˆ˜์—์„œ์˜ ๊ฐ€์† ๋…ธํ™” ์ค‘ ๋ˆ„์„ค ์ „๋ฅ˜ ์ธก์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋˜์—ˆ๋‹ค. ๋‘˜์งธ๋กœ, ์ž๊ทน ์ „๊ทน์˜ ํฌ๊ธฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์•„์ง„๋‹ค๊ณ  ํ•˜๋”๋ผ๋„, ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน์— ์˜ํ•ด ํ˜•์„ฑ๋˜๋Š” ์ „๊ธฐ์žฅ์˜ ์ค‘์ฒฉ์ธ ํฌ๋กœ์Šค ํ† ํฌ ๋•Œ๋ฌธ์— ๊ฐœ๊ฐœ์˜ ์‹ ๊ฒฝ์„ธํฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ „๊ทน์„ ๋ฐฐ์—ดํ•˜๋Š” ๊ฒƒ์€ ์•„์ฃผ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ธ์ ‘ํ•œ ์ „๊ทน ์‚ฌ์ด์— ์ ๋‹นํ•œ ๊ฐ„๊ฒฉ์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋Š” ํŠนํžˆ ๋‡Œ ๋˜๋Š” ๋ง๋ง‰๊ณผ ๊ฐ™์€ ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์ „๊ทน ์‚ฌ์ด์—์„œ ํฐ ์ „๊ธฐ์žฅ ์„ธ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ค‘๊ฐ„ ์˜์—ญ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•œ ์ž๊ทน ์ „๋žต์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ƒ ์ฑ„๋„์€ ๋‘˜ ์ด์ƒ์˜ ์ „๊ทน์—์„œ ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน ํŒŒํ˜•์„ ํ•ฉ์น  ์ˆ˜ ์žˆ๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน์— ์˜ํ•˜์—ฌ ํ˜•์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•˜์—ฌ ๋” ์ •๊ตํ•œ ์ž๊ทน ํŒจํ„ด์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•˜์—ฌ, ํŠนํžˆ 2์ฐจ์›์—์„œ์˜ ๊ฐ€์ƒ ์ฑ„๋„์„ ์ƒ์„ฑํ•˜๊ณ ์ž ๊ฒฉ์žํ˜• ๋ฐฐ์—ด์˜ ์ „๊ทน๊ณผ ํ•จ๊ป˜ 5๊ทน์„ฑ ์ž๊ทน์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ด 5๊ทน์„ฑ ์ž๊ทน์€ ๋‹ค์„ฏ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ „๋ฅ˜์›์„ ๊ฐ–๋„๋ก ๋งž์ถค ์„ค๊ณ„๋œ ์ง‘์ ํšŒ๋กœ์™€ ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜ ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋œ ํ‰๋ฉดํ˜• ์ „๊ทน์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ๋จผ์ €, 5๊ทน์„ฑ ์ž๊ทน์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ์ด ์ž๊ทน์œผ๋กœ ์ „๊ธฐ์žฅ์„ ํ•œ ๊ณณ์— ๋” ์ง‘์ค‘๋œ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ์ด ๋‹จ๊ทน์„ฑ ์ž๊ทน๊ณผ์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€ ๋‘˜ ๋ชจ๋‘๋ฅผ ํ†ตํ•˜์—ฌ, 5๊ทน์„ฑ ์ž๊ทน์œผ๋กœ ์ธํ•œ ๊ฐ€์ƒ ์ฑ„๋„ ํ˜•์„ฑ์„ ๋œปํ•˜๋Š” ์ „๊ธฐ์žฅ ๋ถ„ํฌ๊ฐ€ ์ธ์ ‘ํ•œ ๋‘ ์ „๊ทน์—์„œ ๋‚˜์˜ค๋Š” ์ž๊ทน์˜ ์ง„ํญ๋น„์™€ ๊ทธ ์ „๊ทน์œผ๋กœ๋ถ€ํ„ฐ ๋–จ์–ด์ง„ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ๋ณ€ํ™”๋จ์ด ์ถ”์ •๋˜์—ˆ๋‹ค. ์…‹์งธ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ˆˆ์— ์ด์‹๋œ ์ฑ„๋กœ ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€๋ฅผ ์–ป์Œ์œผ๋กœ์จ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ๋ฐฉ์‹์œผ๋กœ์จ ์ œ์•ˆํ•œ๋‹ค. ์ด ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์‹ค๋ช… ํ™˜์ž๋“ค์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ˆˆ์˜ ์›€์ง์ž„์„ ๋”ฐ๋ผ์„œ ๋ฌผ์ฒด๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ž ์ด๋‚˜ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ์™€ ๊ฐ™์€ ์ผ์ƒ์ ์ธ ํ™œ๋™๋“ค์„ ๋ฐฉํ•ด ๋ฐ›์ง€ ์•Š๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š”๋‹ค๋Š” ์ ์—์„œ ๋…ํŠนํ•œ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์“ฐ์ด๋Š” ์•ˆ๊ฒฝ ๋ถ€์ฐฉํ˜• ์นด๋ฉ”๋ผ์™€ ๊ฐ™์€ ์ฐฉ์šฉ ์žฅ๋น„๋กœ๋Š” ์ด๋Ÿฌํ•œ ์žฅ์ ๋“ค์„ ์–ป์„ ์ˆ˜ ์—†๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์˜ ๋ฏธ์„ธ ํฌํ† ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์™€ ๋‹ฌ๋ฆฌ ์™„์ „ํ•œ ์นด๋ฉ”๋ผ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์ •๋ณด๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ ๋“ค์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์ˆ˜๋ถ„ ์นจํˆฌ๋ฅผ ๋ง‰๊ณ ์ž ์ƒ์ฒด์ ํ•ฉํ•œ ์—ํญ์‹œ๋กœ ์ฝ”ํŒ…๋˜์—ˆ๊ณ  ์ƒ์ฒด์ ํ•ฉ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์„ ์–ป๊ธฐ ์œ„ํ•˜์—ฌ ์˜๋ฃŒ์šฉ ์‹ค๋ฆฌ์ฝ˜ ์—˜๋ผ์Šคํ† ๋จธ๋กœ ๋ฐ€๋ด‰๋œ ํ›„์— ๋ˆˆ์— ์ถฉ๋ถ„ํžˆ ์‚ฝ์ž…๋  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ ๋ฐ ํฌ๊ธฐ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ์žฅ์น˜์˜ ๋™์ž‘์€ ํ‘๋ฐฑ์œผ๋กœ ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ํ‘œ์‹œํ•˜๋Š” ๋ฌด์„  ์ด๋ฏธ์ง€ ํš๋“์œผ๋กœ ์‹œํ—˜๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชธ ์•ˆ์—์„œ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ ๊ฐ–๋Š” ์•ˆ์ •์ ์ธ ํ†ต์‹  ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์žฅ์น˜๊ฐ€ ์ƒ์ฒด ๋‚ด ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ 8 mm ๋‘๊ป˜์˜ ์ƒ์ฒด ๋ฌผ์งˆ๋กœ ๋ฎ์ธ ์ƒํƒœ์—์„œ ๊ทธ ์žฅ์น˜์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ธฐ์กด์˜ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ๋ชธ์— ๋ถ€์ฐฉ๋œ ํ˜•ํƒœ์˜ ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด๋Š” ์ด์‹๋œ ์žฅ์น˜์— ์ „๋ ฅ๊ณผ ๋ฐ์ดํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ „๋‹ฌํ•˜๊ณ  ์ด๋ฏธ์ง€ ์‹ ํ˜ธ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ํ•˜๋“œ์›จ์–ด๋Š” ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ์†์ƒ์œผ๋กœ ์ธํ•œ ๊ธฐ๋Šฅ์ ์ธ ๊ฒฐํ•จ๊ณผ ์ˆ˜๋ฉด ๋ฐ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ, ์ˆ˜์˜ ํ™œ๋™ ์ค‘ ์ด์šฉ ๋ถˆ๊ฐ€๋Šฅ์„ฑ, ์™ธํ˜•์ ์ธ ์ด์Šˆ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๊ณตํ†ต์ ์ธ ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ์ „๋ ฅ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก์„ ์œ„ํ•œ ์™ธ๋ถ€ ์ฝ”์ผ์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์ปจํŠธ๋กค๋Ÿฌ์™€ ํ”„๋กœ์„ธ์„œ์— ์œ ์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜๊ณ , ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ์€ ๊ทธ ์ฝ”์ผ์ด ์•ž์„œ ์–ธ๊ธ‰๋œ ๋ฌธ์ œ๋“ค์— ํŠนํžˆ ์ทจ์•ฝํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋กœ ์ œ์–ด๋˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ ์ž๊ทน ์‹œ์Šคํ…œ์ด ์ œ์•ˆ๋œ๋‹ค. ์ด ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋Š” ์ €์ „๋ ฅ์ด์ง€๋งŒ ๋น„๊ต์  ์žฅ๊ฑฐ๋ฆฌ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ง๋น„ (ZigBee) ๋ฌด์„  ํ†ต์‹ ์„ ํ†ตํ•˜์—ฌ ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ๋กœ ๋™์ž‘ํ•˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์™ธ์—๋„, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํญ๋„“์€ ์‘์šฉ์„ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์œ ๋„ ์ถฉ์ „ ๊ธฐ๋Šฅ์ด๋‹ค. ๋˜ํ•œ, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ฐ„๋‹จํ•œ ์Šค์œ„์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์‚ฌ์šฉ์ž๋Š” ๊ฒŒ์ž„ํŒจ๋“œ์™€ ๊ฐ™์ด ์ž๊ทน ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‰ฝ๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํœด๋Œ€ ๊ฐ€๋Šฅํ•˜๊ณ  ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์—์„œ ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ธฐ๋Šฅ์€ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์กฐ๋ฅ˜์˜ ์›€์ง์ž„ ์ œ์–ด๋ฅผ ์œ„ํ•œ ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน ๋ฐ ์›๊ฒฉ ์ œ์–ด๋ฅผ ํ†ตํ•ด ์ƒ์ฒด ๋‚ด์—์„œ๋„ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์‹ ๊ฒฝ ์ž๊ทน ์ œ์–ด์˜ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‘ ์ƒ์ฒด ๋‚ด ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๊ฐ€ ์„œ๋กœ ๋น„๊ต๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, COP ๊ธฐ๋ฐ˜์˜ ๊ฐ„๋‹จํ•œ ์ œ์ž‘ ๊ณต์ •๊ณผ 5๊ทน์„ฑ ์ž๊ทน, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ, ํœด๋Œ€์šฉ ๋‹ค๊ธฐ๋Šฅ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์—ฌ๋Ÿฌ ๋…ผ์˜๊ฐ€ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์™€ ๊ณ ์ฐฐ์— ๊ธฐ์ดˆํ•˜์—ฌ, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๊ฐ€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์˜ ๊ตฌํ˜„์— ์–ด๋–ป๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ง€๊ฐ€ ์ด ๋…ผ๋ฌธ์˜ ๋์—์„œ ์ƒ์„ธํžˆ ์„ค๋ช…๋œ๋‹ค.Abstract ------------------------------------------------------------------ i Contents ---------------------------------------------------------------- vi List of Figures ---------------------------------------------------------- xi List of Tables ----------------------------------------------------------- xx List of Abbreviations ------------------------------------------------ xxii Chapter 1. Introduction --------------------------------------------- 1 1.1. Visual Prosthetic System --------------------------------------- 2 1.1.1. Current Issues ------------------------------------------------- 2 1.1.1.1. Substrate Materials ---------------------------------------- 3 1.1.1.2. Electrode Configurations --------------------------------- 5 1.1.1.3. External Hardware ----------------------------------------- 6 1.1.1.4. Other Issues ------------------------------------------------- 7 1.2. Suggested Visual Prosthetic System ------------------------ 8 1.3. Four Motivations ---------------------------------------------- 10 1.4. Proposed Approaches ---------------------------------------- 11 1.4.1. Cyclic Olefin Polymer (COP) ------------------------------ 11 1.4.2. Penta-Polar Stimulation ----------------------------------- 13 1.4.3. Implantable Camera --------------------------------------- 16 1.4.4. Handheld Remote Controller ---------------------------- 18 1.5. Objectives of this Dissertation ------------------------------ 20 Chapter 2. Materials and Methods ----------------------------- 23 2.1. COP-Based Fabrication and Encapsulation -------------- 24 2.1.1. Overview ----------------------------------------------------- 24 2.1.2. Simple Fabrication Process ------------------------------- 24 2.1.3. Depth-Type Microprobe ---------------------------------- 26 2.1.3.1. Design ----------------------------------------------------- 26 2.1.3.2. Characterization ----------------------------------------- 27 2.1.3.3. In Vivo Neural Signal Recording ---------------------- 30 2.1.4. COP Encapsulation ---------------------------------------- 31 2.1.4.1. In Vitro Reliability Test ---------------------------------- 33 2.2. Penta-Polar Stimulation ------------------------------------- 34 2.2.1. Overview ---------------------------------------------------- 34 2.2.2. Design and Fabrication ----------------------------------- 35 2.2.2.1. Integrated Circuit (IC) Design ------------------------- 35 2.2.2.2. Surface-Type Electrode Fabrication ------------------ 38 2.2.3. Evaluations -------------------------------------------------- 39 2.2.3.1. Focused Electric Field Measurement ---------------- 42 2.2.3.2. Steered Electric Field Measurement ----------------- 42 2.3. Implantable Camera ----------------------------------------- 43 2.3.1. Overview ---------------------------------------------------- 43 2.3.2. Design and Fabrication ----------------------------------- 43 2.3.2.1. Circuit Design -------------------------------------------- 43 2.3.2.2. Wireless Communication Program ------------------ 46 2.3.2.3. Epoxy Coating and Elastomer Sealing -------------- 47 2.3.3. Evaluations ------------------------------------------------- 50 2.3.3.1. Wireless Image Acquisition --------------------------- 50 2.3.3.2. Signal-to-Noise Ratio (SNR) Measurement -------- 52 2.4. Multi-Functional Handheld Remote Controller --------- 53 2.4.1. Overview ---------------------------------------------------- 53 2.4.2. Design and Fabrication ----------------------------------- 53 2.4.2.1. Hardware Description ---------------------------------- 53 2.4.2.2. Software Description ----------------------------------- 57 2.4.3. Evaluations -------------------------------------------------- 57 2.4.3.1. In Vitro Evaluation -------------------------------------- 57 2.4.3.2. In Vivo Evaluation --------------------------------------- 59 Chapter 3. Results ------------------------------------------------- 61 3.1. COP-Based Fabrication and Encapsulation ------------- 62 3.1.1. Fabricated Depth-Type Microprobe ------------------- 62 3.1.1.1. Electrochemical Impedance -------------------------- 63 3.1.1.2. Mechanical Characteristics --------------------------- 64 3.1.1.3. In Vivo Neural Signal Recording --------------------- 66 3.1.2. COP Encapsulation --------------------------------------- 68 3.1.2.1. In Vitro Reliability Test --------------------------------- 68 3.2. Penta-Polar Stimulation ------------------------------------ 70 3.2.1. Fabricated IC and Surface-Type Electrodes ---------- 70 3.2.2. Evaluations ------------------------------------------------- 73 3.2.2.1. Focused Electric Field Measurement --------------- 73 3.2.2.2. Steered Electric Field Measurement ---------------- 75 3.3. Implantable Camera ---------------------------------------- 76 3.3.1. Fabricated Implantable Camera ----------------------- 76 3.3.2. Evaluations ------------------------------------------------ 77 3.3.2.1. Wireless Image Acquisition -------------------------- 77 3.3.2.2. SNR Measurement ------------------------------------ 78 3.4. Multi-Functional Handheld Remote Controller ------- 80 3.4.1. Fabricated Remote Controller ------------------------- 80 3.4.2. Evaluations ------------------------------------------------ 81 3.4.2.1. In Vitro Evaluation ------------------------------------ 81 3.4.2.2. In Vivo Evaluation ------------------------------------- 83 Chapter 4. Discussions ------------------------------------------ 86 4.1. COP-Based Fabrication and Encapsulation ------------ 87 4.1.1. Fabrication Process and Fabricated Devices -------- 87 4.1.2. Encapsulation and Optical Transparency ------------ 89 4.2. Penta-Polar Stimulation------------------------------------ 99 4.2.1. Designed IC and Electrode Configurations --------- 99 4.2.2. Virtual Channels in Two Dimensions ---------------- 101 4.3. Implantable Camera -------------------------------------- 102 4.3.1. Enhanced Reliability by Epoxy Coating ------------- 106 4.4. Multi-Functional Handheld Remote Controller ------ 107 4.4.1. Brief Discussions of the Two Extra Functions ------ 108 4.5. Totally Implantable Visual Prosthetic System --------- 113 Chapter 5. Conclusion ------------------------------------------ 117 References -------------------------------------------------------- 121 Supplements ------------------------------------------------------ 133 ๊ตญ๋ฌธ ์ดˆ๋ก ----------------------------------------------------------- 143Docto

    A Study on Low-Cost, Effective, and Reliable Liquid Crystal Polymer-Based Cochlear Implant System

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊น€์„ฑ์ค€.The pace of technological change in implantable devices such as cochlear implants, artificial retinas, and deep brain stimulators has been relatively slow compared to that in other areas, such as memory and mobile phones. Most implantable devices, including cochlear implants, still use bulky titanium electronic packages with complex fabrication processes and wire-based electrodes which are manually fabricated by skilled workers. As a result, the cost of these devices is very high and the widespread use of these devices is limited in low- and middle income countries. Innovative approaches are essential to make implantable devices as affordable as possible while not sacrificing their performance metrics. In this study, we adopt high-performance liquid crystal polymer (LCP) as a backbone for a novel polymer-based cochlear implant. As a material for cochlear implants, LCP enables new capabilities such as miniaturization, a simpler manufacturing process, better long-term reliability, and MRI compatibility, all of which are distinct from the properties of conventional cochlear implants. Moreover, LCP also enables an extremely low-cost device based on mass production with low materials and labor costs. In this study, we report a fabrication method for the creation of a LCP-based cochlear implant system. Specifically, LCP-based electronics and packaging techniques are addressed in detail. Previous studies of LCP-based packaging use a thermally deformed package cover to secure the electronics cavity and additional laser-cut LCP bonding layers with lower melting temperatures. This method, however, requires additional metal jigs to deform the package cover, and it requires a cavity-filling material such as PDMS. We applied a recessed cavity for the electronics with the stacking of laser-cut LCP multilayers. All packaging layers are composed of the same LCP films, which have a low melting temperature. Thus, the stacked multilayer structure itself acts as a bonding layer. This packaging technology enables the device packaging with a thin credit-card shape for miniaturized, simply fabricated and less invasive devices. Implantable electronics components were also fabricated using copper-clad LCP films with PCB technology. A patterned planar coil was integrated into an LCP electronics board to replace the thick platinum coil of the conventional implant, which is located outside of the metal package. Thus, we can reduce the device dimensions and realize a more efficient receiving coil with greater uniformity. Our group has developed an atraumatic 16-channel LCP-based cochlear electrode array using MEMS technology. This electrode array was used to develop the first functional prototype of an all-LCP-based cochlear implant system. We also evaluated the effectiveness of the developed LCP-based cochlear implant. The device was implanted into an animal model and the electrically evoked auditory brainstem response was successfully measured. We also verified the MRI compatibility of the LCP-based device compared to a metal-based implant, showing that the developed device has greatly superior MRI compatibility compared to a conventional metal-based device in a 3.0-T and an ultra-high 7.0-T MRI machine. In order to enhance the long-term reliability of the LCP-based device, we developed novel leak-barrier structures which have a nanoporous surface and microscale barriers with an anti-trapezoidal cross-sectional shape. This structure increases the water leakage path length and improves the mechanical interlocking force between the polymer and the metal layer. The reliability of the leak-barrier structure was determined by accelerated lifetime soak tests (110, 95, 75 ยฐC). Preliminary results show that both the nanoporous surface and microscale barriers make significant contributions to improving the lifetime of the polymer-based electrode array. Lastly, we conducted a manufacturing cost analysis of the developed LCP-based cochlear implant system for a better understanding of the detailed cost structure and to determine if the cost could be reduced further. Our group also has experience in the development of cochlear implant systems, including titanium packages and wire-based electrode arrays similar to those in conventional devices, and the system developed by our group had been approved by the Korean FDA. The manufacturing costs of devices developed in the past were also analyzed for a comparison with the cost of an LCP-based device. The analysis revealed that the developed LCP-based cochlear implant has a significantly lower cost with regard to the materials. Also, the manufacturing cost per unit is approximately 10 % of the cost of a titanium-based cochlear implant. Also, the LCP-based device is a batch-processable product that therefore requires less labor. Thus, the manufacturing cost is greatly reduced in proportion to the overall production. This reduction in the manufacturing cost enables disruptive opportunities with regard to the use of cochlear implants in developing countries.Abstract Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Overview of Cochlear Implants 1.2 Review of Cochlear Implant Research 1.3 Challenges for Future Cochlear Implant Systems 1.4 Proposed Cochlear Implant System 1.5 Objectives of the Dissertation Chapter 2 Materials and Methods 2.1 System Description 2.1.1 External Speech Processor 2.1.1.1 Hardware Design and Implementation based on Traditional Approach 2.1.1.2 Speech Processing Strategy for Cochlear Stimulation 2.1.1.3 Novel Speech Processor using Smartphone 2.2 Liquid Crystal Polymer (LCP)-Based Implantable Cochlear Implant System 2.2.1 Implantable Electronic Module for the LCP-based Cochlear Implant 2.2.1.1 Electronics Design 2.2.1.2 Electronics Fabrication and Assembly 2.2.2 Electronics Packaging for the LCP-based Cochlear Implant 2.2.3 LCP-based Thin-Film Cochlear Electrode Array 2.3 System Evaluation 2.3.1 Bench-Top Tests of the Fabricated LCP-based Cochlear Implant System 2.3.2 Preliminary In Vivo Animal Study 2.3.2.1 Animal Preparation 2.3.2.2 Experimental Setup and Protocol 2.3.3 In Vivo Animal Study 2.3.3.1 Animal Preparation 2.3.3.2 Improved Experimental Setup and Protocol 2.3.4 Magnetic Resonance Imaging Compatibility Tests 2.4 Leak-Free LCP-based Neural Electrode using Multiple Barrier Structures 2.4.1 Test Devices and Sample Categorization 2.4.2 Fabrication Methods 2.4.3 Electrochemical Characterization of the Electrode 2.4.4 Long-Term Reliability Test of the Leak-Free LCP-Based Neural Electrode 2.5 Manufacturing Cost Analysis 2.5.1 Overview of the Cost Structure 2.5.2 Comparative Analysis of the Manufacturing Cost of the LCP- and Titanium-Based Cochlear Implants Chapter 3 Results 3.1 Fabricated System 3.1.1 External Speech Processor 3.1.2 LCP-based Cochlear Implant 3.1.2.1 Packaging Process 3.1.2.2 Fabricated LCP-based Cochlear Implant 3.1.2.3 Bench-Top Test of the LCP-based Cochlear Implant 3.2 In Vivo Animal Study 3.3 Magnetic Resonance Imaging Compatibility 3.4 Leak-Free LCP-based Neural Electrode using Multiple Barrier Structures 3.4.1 Fabricated Electrode 3.4.2 Characterization of the Electrode 3.4.3 Long-Term Reliability 3.5 Comparative Analysis of the Manufacturing Cost of the LCP- and Titanium-based Cochlear Implants Chapter 4 Discussion 4.1 LCP-based Electronics Packaging 4.2 Comparison of LCP-Based Cochlear Implant to Conventional Metal-Based Cochlear Implant 4.3 Effectiveness of the LCP-Based Cochlear Implant 4.4 Reliability of the Titanium- and LCP-Based Neural Prostheses 4.5 MRI Compatibility 4.6 Manufacturing Cost Analysis Chapter 5 Conclusion References Abstract in Korean 162 ๊ฐ์‚ฌ์˜ ๊ธ€ 166Docto

    ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๊ธฐ๋ฐ˜ ์ธ๊ณต ๋ง๋ง‰ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ €์ „๋ ฅ ์„ค๊ณ„ ๋ฐ LCP ํŒจํ‚ค์ง•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ๊น€์„ฑ์ค€.The retinal prosthesis is an implantable electronic device that delivers electrical stimuli containing visual information to the retina for the visual restoration of the blinds. The currently available retinal prostheses have several problems in the number of pixels. They are limited in the number of pixels, which restricts the amount of visual information they can deliver. Many research groups are trying to improve their device in this aspect. In order to achieve a significant number of pixels, retinal prosthesis needs large stimulus power dissipation. A typical device consumes more than 20 mW of power to drive 1000 channels. Some of this power can lead to temperature rise which is a safety issue. As the power dissipation scales up with the increase in the number of channels, it is desired to minimize the power per channel as much as possible. Another problem is the absence of a suitable packaging material for the long-term reliable optical window. Due to the curved and narrow implant space available for this kind of device, as well as the transparency required for the incoming wavelengths of lights, it is quite difficult to choose a material that satisfies all requirements of long-term hermetic packaging with optically transparent window. Sapphire glass with titanium metal package are too bulky and rigid, and flexible transparent polymers such as polyimide and parylene-C have high moisture absorption for the implant. This dissertation proposes strategies and methods to solve the problems mentioned above. Two stimulation strategies are proposed. One strategy is to confine the stimulus level with a threshold that cell is activated. Thus we coin it as thresholding strategy.' The other strategy is to reduce the number of stimulation channels by using only outlines of images (outline extraction strategy). Prototype ICs were designed and fabricated for the verification of the effects of these strategies. The simulation and the measurement agree to show that retinal implant with the thresholding and outline extraction strategies consumes below one-third of the stimulus power of the conventional photodiode-based devices. Area-efficient designs of the voltage-controlled current source are also adopted to increase the number of channels. The unit pixel area of the fabricated prototype IC was 0.0072 mm2, expanding up to 1200-channels in the macular area. Liquid crystal polymer (LCP) is proposed as the long-term implantable packaging material with an optical window. It is an inert, biocompatible, and flexible polymer material that has a moisture absorption rate similar to Pyrex glass. We showed that an LCP film with a thickness less than 10 ฮผm allows transmission of the lights in the visible wavelengths by more than 10 %, as the rate increases with thinner films. Thus a thinning process was developed. O2 DRIE was shown effective in reducing the roughness of the film, and the corresponding light scattering. The spatial resolution of LCP with 8.28 ฮผm thickness showed a minimum distinguishable pitch of 90 ฮผm, allowing a 1200 channel integration within a macular area.Chapter 1: Introduction 1 1.1. Retinal Prosthesis โ€“ State of the Arts 2 1.1.1. Retinal Prosthesis with External Camera 3 1.1.2. Retinal Prosthesis with Internal Photodiode Array 5 1.2. Photodiode-based Retinal Prosthesis 8 1.2.1. Problems 8 1.2.2. Possible Solutions 12 Chapter 2: Methods 17 2.1. Thresholding 17 2.1.1. Concept 17 2.1.2. Circuit Descriptions 19 2.2. Outline Extraction 28 2.2.1. Concept 28 2.2.2. Circuit Descriptions 30 2.3. Average Stimulus Power Estimation 40 2.3.1. Stimulus Patterns Generation of Conventional and Proposed Strategies 40 2.3.2. Minimum Distinguishable Channels to Recognize 41 2.4. Virtual Channel 43 2.4.1. Concept 43 2.4.2. Circuit Descriptions 44 2.5. Polymer Packaging 51 2.5.1. LCP as a Long-term Reliable Packaging Material 51 2.5.2. Test Methods 53 Chapter 3: Results 58 3.1. Thresholding 58 3.1.1. Fabricated IC 58 3.1.2. Test Setup 60 3.1.3. Test Results 61 3.2. Outline Extraction 65 3.2.1. Simulation Results 65 3.2.2. Fabricated IC 67 3.2.3. Test Setup 68 3.2.4. Test Results 72 3.3. Average Stimulus Power Estimation 76 3.4. Virtual Channels 79 3.4.1. Fabricated IC 79 3.4.2. Test Setup 80 3.4.3. Test Results 81 3.4.4. Two-dimensional Virtual Channel Generatorโ€“ Test setup and Its Result 84 3.5. Polymer Packaging 87 3.5.1. Light Transmittance according to LCP Thickness 87 3.5.2. Thickness Control of LCP 89 3.5.3. Spatial Resolution of LCP 89 Chapter 4: Discussion 92 4.1. Average Stimulus Power 92 4.2. Visual Acuity 95 4.3. Hermeticity of the Thinned LCP Film 97 Chapter 5: Conclusion and Future Directions 99 References 103 Appendix โ€“ Generated Stimulus Patterns of Various the Number of Channels 112 ๊ตญ ๋ฌธ ์ดˆ ๋ก 139Docto

    ์•ก์ •ํด๋ฆฌ๋จธ๊ธฐ๋ฐ˜์˜ ์‹ ๊ฒฝ ์ „๊ทน์˜ ์ œ์ž‘๊ณผ ์„ฑ๊ณผ: ์‚ฌ๋ฉด ์ „๊ทน๊ณผ ์˜ตํŠธ๋กœ๋“œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ๊น€์„ฑ์ค€.A novel liquid-crystal polymer (LCP)-based neural probe with four-sided electrode sites is developed. Ideally, neural probes should have channels with a three-dimensional (3-D) configuration to record 3-D neural circuits. Many types of three-dimensional neural probes have been developedhowever, most of them were formulated as an array of multiple shanks with electrode sites located along one side of the shanks. The proposed LCP-based neural probe has electrode sites on four sides of the shank, i.e., the front, back and two side walls. To generate the suggested configuration of the electrode sites, a thermal lamination process involving LCP films and laser micromachining are used. Using the proposed novel four-sided neural probe, in vivo multichannel neural recording is successfully performed in the mouse primary somatosensory cortex. The multichannel neural recording shows that the proposed four-sided neural probe can record spiking activities from a diverse neuronal population compared to neural probes with single-sided electrodes. This is confirmed by a pair-wise Pearson correlation coefficient (Pearson's r) analysis and a cross- correlation analysis. This study also presents the development of LCP-based depth-type stimulation electrodes with a high charge storage capacity using electrodeposited iridium oxide film (EIROF). On the electrode sites, iridium oxide is electrodeposited to increase the charge storage capacity for facilitating neural stimulation. After electrodeposition using different numbers of rectangular voltage pulses and triangular waveforms, the iridium oxide electrodes are characterized in terms of charge storage capacity and electrochemical impedance. And the surfaces of EIROFs are examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, the elementary composition of the EIROF surfaces is quantitatively determined using X-ray photoelectron spectroscopy (XPS). The in vivo neural experiments verified the feasibility of the proposed LCP-based depth-type stimulation electrode. Additionally, LCP-based optrode is suggested for optical stimulation and electrical recording. The suggested neural probes have four contacts at the tip of the electrode shank. After thermally laminating the LCP films, the four tip electrodes are made by cut-exposing the thickness of the electroplated metals. The four tip electrodes have enough contact areas and electrochemical impedance to ensure good quality of neural signal recordings. After the laser cutting process, an optic fiber is integrated to the neural probes. To demonstrate optical stimulation and electrical recording capability of the fabricated LCP-based optrode, in vivo experiments are done. Spontaneous activity and light-evoked activity are successfully recorded from the cortex and the deep brain area.Chapter 1 Introduction 1 1.1 Neural Probes 2 1.1.1 Recording Probes 2 1.1.2 Stimulation Electrodes 3 1.1.3 Optrodes 6 1.2 Proposed Neural Probes 7 1.2.1 Recording Probes 7 1.2.2 Depth-type Stimulation Electrode 8 1.2.3 Optrode 8 1.3 Dissertation Outlines 9 Chapter 2 Materials and Methods 11 2.1 Liquid Crystal Polymer (LCP) 12 2.2 Electrode Configuration 13 2.2.1 Recording Probes 13 2.2.1.1 Four-sided Neural Probe 13 2.2.1.2 Single-sided Neural Probe 15 2.2.1.3 Tetrode 15 2.2.2 Depth-type Stimulation Electrode 16 2.2.3 Optrode 17 2.3 Fabrication Processes 18 2.4 Electrochemical characterization 26 2.5 Electrodeposited Iridium Oxide Film (EIROF) 27 2.5.1 Electrodeposition of Iridium Oxide Film 27 2.5.2 Electrochemical Measurements 29 2.5.3 Surface Morphology and Mechanical Stability 30 2.6 In vivo Experiments 31 2.6.1 In vivo Neural Signal Recording Experiments 31 2.6.2 In vivo Electrical Stimulation Experiments 32 2.6.3 In vivo Optical Stimulation and Electrical Recording Experiment 35 Chapter 3 Results 38 3.1 Neural Probes 39 3.1.1 Recording Probes 39 3.1.1.1 Four-sided Neural Probe 39 3.1.1.2 Single-sided Neural Probe 39 3.1.1.3 Tetrode 41 3.1.2 Depth-type Stimulation Electrode 41 3.1.3 Optrode 42 3.2 Electrochemical Characterization 43 3.3 Electrodeposited Iridium Oxide Film 45 3.3.1 Electrochemical Measurements - 45 3.3.2 Surface Morphology and Mechanical Stability 51 3.4 In vivo Experiments 57 3.4.1 In vivo Neural Signal Recording Experiments 57 3.4.2 In vivo Electrical Stimulation Experiments 62 3.4.3 In vivo Optical Stimulation and Electrical Recording Experiment 64 Chapter 4 Discussion 72 4.1 LCP-based Recording Probes 73 4.2 LCP-based Depth-type Stimulation Electrode 82 4.3 LCP-based Optrode 86 Chapter 5 Conclusion 88 References 92 Abstract in Korean 103Docto

    ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ํ†ต์ฆ ์กฐ์ ˆ์„ ์œ„ํ•œ ๋‡Œ ๊ตญ์†Œ์ „์œ„ ๊ธฐ๋ฐ˜์˜ ํํšŒ๋กœ ์‹ฌ๋ถ€ ๋‡Œ ์ž๊ทน ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊น€์„ฑ์ค€.์‹ฌ๋ถ€ ๋‡Œ ์ž๊ทน์ˆ ์€ ๋‡Œ์˜ ํŠน์ • ๋ถ€์œ„๋ฅผ ์ „๊ธฐ์ ์œผ๋กœ ์ž๊ทนํ•จ์œผ๋กœ์จ ๊ด€๋ จ ์‹ ๊ฒฝ์งˆํ™˜๋“ค์„ ์น˜๋ฃŒํ•˜๋Š” ์‹ ๊ฒฝ์™ธ๊ณผ์  ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ ์‹์•ฝ์ฒ˜(FDA)์˜ ์Šน์ธ์„ ๋ฐ›์•„ ํŒŒํ‚จ์Šจ์”จ ๋ณ‘, ๊ฒฝ์ง์žฅ์• , ์šฐ์šธ์ฆ, ๊ฐ•๋ฐ•์žฅ์•  ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์งˆํ™˜ ์น˜๋ฃŒ์— ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ˜„ ์‹œ์Šคํ…œ์€ ๊ฐœํšŒ๋กœ(้–‹ๅ›ž่ทฏ, open-loop)๊ตฌ์กฐ๋กœ, ํ™˜์ž์˜ ์ฆ์ƒ ๊ฒฝ์ค‘ ์—ฌ๋ถ€์™€ ๋ฌด๊ด€ํ•œ ๋™์ผ ์ž๊ทน์กฐ๊ฑด ์ „๊ธฐ์‹ ํ˜ธ๋ฅผ ์ธ๊ฐ€ํ•จ์œผ๋กœ์จ, ์กฐ์ง์— ๋ฌด๋ฆฌ๋ฅผ ์ฃผ๊ฑฐ๋‚˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์งˆํ™˜์น˜๋ฃŒํšจ๊ณผ๊ฐ€ ๊ฒฝ๊ฐ๋˜๋Š” ๋“ฑ์˜ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ์ง€์†์ ์ธ ์ „๊ธฐ์ž๊ทนํŒŒํ˜•์„ ๋ฐœ์ƒ์‹œํ‚ด์œผ๋กœ์จ ์ž๊ทน๊ธฐ ๋‚ด์˜ ๋ฐฐํ„ฐ๋ฆฌ์ˆ˜๋ช…์ด ๋‹จ์ถ•๋˜์–ด, ์ž๊ทน๊ธฐ ๊ต์ฒด์ˆ˜์ˆ ์˜ ์ฃผ๊ธฐ๊ฐ€ ๋‹จ์ถ•๋˜์–ด ํ™˜์ž์˜ ๋ถˆํŽธ์„ ์•ผ๊ธฐํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์ด์—, ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ํ†ต์ฆ์˜ ์ฆ์ƒ ๊ฒฝ์ค‘์— ๋”ฐ๋ผ ์ž๊ทน์กฐ๊ฑด์„ ์กฐ์ •ํ•˜๋Š” ํํšŒ๋กœ (้–‰ๅ›ž่ทฏ, closed-loop) ์‹ฌ๋ถ€ ๋‡Œ ์ž๊ทน์‹œ์Šคํ…œ๊ณผ ๊ทธ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์ฑ„๋„ ์ „๊ทน๊ณผ ๋‡Œ ๊ตญ์†Œ ์ „์œ„ (Local field potential, LFP) ๊ธฐ๋ฐ˜์˜ ํํšŒ๋กœ ์‹ฌ๋ถ€ ๋‡Œ ์ž๊ทน์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ์ด์™€ ๊ด€๋ จ๋œ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ ๋“ค์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ €, ๋‹ค์ฑ„๋„ ์ „๊ทน์„ ์ง‘์ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์กด์˜ ์•ก์ •ํด๋ฆฌ๋จธ ๊ณต์ •์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ œ์ž‘๋œ ์•ก์ •ํด๋ฆฌ๋จธ ๊ธฐ๋ฐ˜์˜ ๋‹ค์ฑ„๋„ ์‹ฌ๋ถ€ ๋‡Œ ์ „๊ทน์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ž๊ทน ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ํ†ต์ฆ๋ชจ๋ธ ๋™๋ฌผ์˜ ํ–‰๋™๋ฐ˜์‘ ์‹คํ—˜๊ณผ ์‹ ๊ฒฝ์‹ ํ˜ธ์˜ ๋ณ€ํ™”๋“ค์„ ์ธก์ • ๋ฐ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ํ†ต์ฆ์—์˜ ํšจ๊ณผ์ ์ธ ์ž๊ทน์กฐ๊ฑด์„ ํš๋“ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘ ์‹คํ—˜๋ฐฉ๋ฒ•๋ก ์— ๋”ฐ๋ผ ์–ป์–ด์ง„ ๊ฒฐ๊ณผ๋“ค๊ฐ„ ์—ฐ๊ด€์„ฑ ๋ถ„์„ (Pearsons correlation analsys)์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๋‡Œ ๊ตญ์†Œ ์ „์œ„์˜ ํŠน์ • ์ฃผํŒŒ์ˆ˜์—์„œ์˜ ๋ณ€ํ™”๊ฐ€ ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ํ†ต์ฆ์˜ ์‹ ๊ฒฝ์‹ ํ˜ธ ์ง€ํ‘œ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๊ฐ๊ด€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ๋‡Œ ๊ตญ์†Œ ์ „์œ„ ๊ธฐ๋ฐ˜์˜ ํํšŒ๋กœ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ , ์ด๋ฅผ ์ ์šฉํ•œ ํ”„๋กœํ† ํƒ€์ž… ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ํํšŒ๋กœ ์‹œ์Šคํ…œ์˜ ํšจ๊ณผ์™€ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์‹œ์Šคํ…œ ๋™์ž‘์„ฑ ์‹œํ—˜๊ณผ ํ•จ๊ป˜ ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ๋™๋ฌผ ๋ชจ๋ธ์— ์ ์šฉํ•˜๋Š” ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์ด ํ†ต์ฆ ๊ด€๋ จ ๋‡Œ ๊ตญ์†Œ ์ „์œ„ ์‹ ํ˜ธ์˜ ๋ฐœ์ƒ๊ณผ ๊ทธ ์ •๋„์— ๋”ฐ๋ผ ์ž๋™์ ์œผ๋กœ ์กฐ์ •๋œ ์‹ฌ๋ถ€ ๋‡Œ ์ž๊ทน์„ ์ธ๊ฐ€ํ•˜์—ฌ ์‹ ๊ฒฝ๋ณ‘์ฆ์„ฑ ํ†ต์ฆ์„ ์กฐ์ ˆํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Deep brain stimulation (DBS) is an effective therapy that can be used to alleviate symptoms of neuropathic disorders such as Parkinsons disease, essential tremor, dystonia, and neuropathic pain. Even though the method has matured for widespread implantation of the device worldwide, the therapeutic mechanisms of DBS are still unclear. Moreover, current DBS system is an open-loop system so a flexible and effective neuromodulation that depends on severity of patients symptoms is yet to be made available. The open-loop configuration also wastes power due to its continuous generation of stimulation current pulses, requiring frequent exchange of implanted battery. In this dissertation, we studied a local field potential-based closed-loop deep brain stimulation (CDBS) system and its use for controlling neuropathic pain. A multichannel DBS electrode was developed based on a novel LCP material using improved fabrication process. Stimulation parameters of the CDBS system were determined from preliminary experiments including behavioral tests and neural recordings. A correlation analysis was performed between changes in recorded local field potential (LFP) and changes in scored results of behavioral tests related to neuropathic pain proved to yield important information for the closed-loop strategy. Finally, a prototype CDBS system for neuropathic pain was developed and validated in vivo.Chapter 1. Introduction 1.1 Biological background 1.1.1 Neuropathic pain 1.1.2 Neural pathway of neuropathic pain and current treating methods 1.1.3 Anatomical characteristics of ventral posterior lateral nucleus 1.2 Overview of brain stimulation 1.2.1 Brain stimulation 1.2.2 Mechanisms and stimulation condition of DBS 1.2.3 Deep brain stimulation for neuropathic pain 1.3 Closed-loop deep brain stimulation system 1.3.1 Current deep brain stimulation system: Open-loop system 1.3.2 Closed-loop concept for neural prosthetic devices 1.3.3 Requirements for closed-loop deep brain stimulation system 1.4 Objectives of this dissertation 2. Materials and methods 2.1 Multichannel deep brain stimulation electrode 2.1.1 Liquid crystal polymer (LCP) 2.1.2 Electrode design 2.1.3 Volume of tissue activated (VTA) simulation 2.1.4 Surgical process design: Electrode implantation 2.1.5 Fabrication process 2.1.6 Characteristics measurements 2.2 Preliminary experiments 2.2.1 TST neuropathic modeling 2.2.2 Electrode implantation 2.2.3 Deep brain stimulation (DBS) 2.2.4 Behavioral tests (von Frey test and duration test) 2.2.5 Neural recording 2.2.6 Signal processing 2.2.7 Correlation analysis 2.3 Closed-loop stimulator 2.3.1 Overview of closed-loop DBS system for neuropathic pain 2.3.2 Closed-loop deep brain stimulation strategy for neuropathic pain 2.3.3 Prototype implementation 2.3.4 Prototype measurements: performance test 2.3.5 Animal experiments: in vivo application 3. Results 3.1 Multichannel deep brain stimulation electrode 3.1.1 Results of VTA simulation 3.1.2 Fabrication process 3.1.3 Developed electrode 3.1.4 Results of characteristics measurements 3.2 Results of preliminary experiments 3.2.1 Results of behavioral tests (von Frey tests and duration tests) 3.2.2 Results of neural recording (Local field potential, LFP) 3.2.3 Results of correlation analysis 3.2.4 Results of histological study 3.3 Closed-loop stimulator 3.3.1 Developed closed-loop deep brain stimulation strategy 3.3.2 Developed prototype closed-loop stimulator 3.3.3 Results of performance measurements 3.3.4 Results of in vivo experiments 4. Discussion 4.1 Improved LCP process for multiple LCP layers 4.2 Volume of tissue activated (VTA) issues 4.3 Correlation analysis 4.4 Closed-loop stimulator 4.4.1 Correction method based on neural spikes 4.4.2 Power consumption 4.4.3 Size of the system 4.4.4 Response time of closed-loop control 4.5 Gliosis 5. Conclusion References Acknowledgement Abstract in KoreanDocto
    corecore