324 research outputs found

    Guidance, navigation and control of multirotors

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 31 de desembre de 2021This thesis presents contributions to the Guidance, Navigation and Control (GNC) systems for multirotor vehicles by applying and developing diverse control techniques and machine learning theory with innovative results. The aim of the thesis is to obtain a GNC system able to make the vehicle follow predefined paths while avoiding obstacles in the vehicle's route. The system must be adaptable to different paths, situations and missions, reducing the tuning effort and parametrisation of the proposed approaches. The multirotor platform, formed by the Asctec Hummingbird quadrotor vehicle, is studied and described in detail. A complete mathematical model is obtained and a freely available and open simulation platform is built. Furthermore, an autopilot controller is designed and implemented in the real platform. The control part is focused on the path following problem. That is, following a predefined path in space without any time constraint. Diverse control-oriented and geometrical algorithms are studied, implemented and compared. Then, the geometrical algorithms are improved by obtaining adaptive approaches that do not need any parameter tuning. The adaptive geometrical approaches are developed by means of Neural Networks. To end up, a deep reinforcement learning approach is developed to solve the path following problem. This approach implements the Deep Deterministic Policy Gradient algorithm. The resulting approach is trained in a realistic multirotor simulator and tested in real experiments with success. The proposed approach is able to accurately follow a path while adapting the vehicle's velocity depending on the path's shape. In the navigation part, an obstacle detection system based on the use of a LIDAR sensor is implemented. A model of the sensor is derived and included in the simulator. Moreover, an approach for treating the sensor data to eliminate the possible ground detections is developed. The guidance part is focused on the reactive path planning problem. That is, a path planning algorithm that is able to re-plan the trajectory online if an unexpected event, such as detecting an obstacle in the vehicle's route, occurs. A deep reinforcement learning approach for the reactive obstacle avoidance problem is developed. This approach implements the Deep Deterministic Policy Gradient algorithm. The developed deep reinforcement learning agent is trained and tested in the realistic simulation platform. This agent is combined with the path following agent and the rest of the elements developed in the thesis obtaining a GNC system that is able to follow different types of paths while avoiding obstacle in the vehicle's route.Aquesta tesi doctoral presenta diverses contribucions relaciones amb els sistemes de Guiat, Navegació i Control (GNC) per a vehicles multirrotor, aplicant i desenvolupant diverses tècniques de control i de machine learning amb resultats innovadors. L'objectiu principal de la tesi és obtenir un sistema de GNC capaç de dirigir el vehicle perquè segueixi una trajectòria predefinida mentre evita els obstacles que puguin aparèixer en el recorregut del vehicle. El sistema ha de ser adaptable a diferents trajectòries, situacions i missions, reduint l'esforç realitzat en l'ajust i la parametrització dels mètodes proposats. La plataforma experimental, formada pel cuadricòpter Asctec Hummingbird, s'estudia i es descriu en detall. S'obté un model matemàtic complet de la plataforma i es desenvolupa una eina de simulació, la qual és de codi lliure. A més, es dissenya un controlador autopilot i s'implementa en la plataforma real. La part de control està enfocada al problema de path following. En aquest problema, el vehicle ha de seguir una trajectòria predefinida en l'espai sense cap tipus de restricció temporal. S'estudien, s'implementen i es comparen diversos algoritmes de control i geomètrics de path following. Després, es milloren els algoritmes geomètrics usant xarxes neuronals per convertirlos en algoritmes adaptatius. Per finalitzar, es desenvolupa un mètode de path following basat en tècniques d'aprenentatge per reforç profund (deep Reinforcement learning). Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent intel. ligent resultant és entrenat en un simulador realista de multirotors i validat en la plataforma experimental real amb èxit. Els resultats mostren que l'agent és capaç de seguir de forma precisa la trajectòria de referència adaptant la velocitat del vehicle segons la curvatura del recorregut. A la part de navegació, s'implementa un sistema de detecció d'obstacles basat en l'ús d'un sensor LIDAR. Es deriva un model del sensor i aquest s'inclou en el simulador. A més, es desenvolupa un mètode per tractar les mesures del sensor per eliminar les possibles deteccions del terra. Pel que fa a la part de guiatge, aquesta està focalitzada en el problema de reactive path planning. És a dir, un algoritme de planificació de trajectòria que és capaç de re-planejar el recorregut del vehicle a l'instant si algun esdeveniment inesperat ocorre, com ho és la detecció d'un obstacle en el recorregut del vehicle. Es desenvolupa un mètode basat en aprenentatge per reforç profund per l'evasió d'obstacles. Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent d'aprenentatge per reforç s'entrena i valida en un simulador de multirotors realista. Aquest agent es combina amb l'agent de path following i la resta d'elements desenvolupats en la tesi per obtenir un sistema GNC capaç de seguir diferents tipus de trajectòries, evadint els obstacles que estiguin en el recorregut del vehicle.Esta tesis doctoral presenta varias contribuciones relacionas con los sistemas de Guiado, Navegación y Control (GNC) para vehículos multirotor, aplicando y desarrollando diversas técnicas de control y de machine learning con resultados innovadores. El objetivo principal de la tesis es obtener un sistema de GNC capaz de dirigir el vehículo para que siga una trayectoria predefinida mientras evita los obstáculos que puedan aparecer en el recorrido del vehículo. El sistema debe ser adaptable a diferentes trayectorias, situaciones y misiones, reduciendo el esfuerzo realizado en el ajuste y la parametrización de los métodos propuestos. La plataforma experimental, formada por el cuadricoptero Asctec Hummingbird, se estudia y describe en detalle. Se obtiene un modelo matemático completo de la plataforma y se desarrolla una herramienta de simulación, la cual es de código libre. Además, se diseña un controlador autopilot, el cual es implementado en la plataforma real. La parte de control está enfocada en el problema de path following. En este problema, el vehículo debe seguir una trayectoria predefinida en el espacio tridimensional sin ninguna restricción temporal Se estudian, implementan y comparan varios algoritmos de control y geométricos de path following. Luego, se mejoran los algoritmos geométricos usando redes neuronales para convertirlos en algoritmos adaptativos. Para finalizar, se desarrolla un método de path following basado en técnicas de aprendizaje por refuerzo profundo (deep reinforcement learning). Este método implementa el algoritmo Deep Deterministic Policy Gradient. El agente inteligente resultante es entrenado en un simulador realista de multirotores y validado en la plataforma experimental real con éxito. Los resultados muestran que el agente es capaz de seguir de forma precisa la trayectoria de referencia adaptando la velocidad del vehículo según la curvatura del recorrido. En la parte de navegación se implementa un sistema de detección de obstáculos basado en el uso de un sensor LIDAR. Se deriva un modelo del sensor y este se incluye en el simulador. Además, se desarrolla un método para tratar las medidas del sensor para eliminar las posibles detecciones del suelo. En cuanto a la parte de guiado, está focalizada en el problema de reactive path planning. Es decir, un algoritmo de planificación de trayectoria que es capaz de re-planear el recorrido del vehículo al instante si ocurre algún evento inesperado, como lo es la detección de un obstáculo en el recorrido del vehículo. Se desarrolla un método basado en aprendizaje por refuerzo profundo para la evasión de obstáculos. Este implementa el algoritmo Deep Deterministic Policy Gradient. El agente de aprendizaje por refuerzo se entrena y valida en un simulador de multirotors realista. Este agente se combina con el agente de path following y el resto de elementos desarrollados en la tesis para obtener un sistema GNC capaz de seguir diferentes tipos de trayectorias evadiendo los obstáculos que estén en el recorrido del vehículo.Postprint (published version

    Safer UAV Piloting: A Robust Sense-and-Avoid Solution for Remotely Piloted Quadrotor UAVs in Complex Environments

    Get PDF
    Current commercial UAVs are to a large extent remotely piloted by amateur human pilots. Due to lack of teleoperation experience or skills, they often drive the UAVs into collision. Therefore, in order to ensure safety of the UAV as well as its surroundings, it is necessary for the UAV to boast the capability of detecting emergency situation and acting on its own when facing imminent threat. However, the majority of UAVs currently available in the market are not equipped with such capability. To fill in the gap, in this paper we present a complete sense-and-avoid solution for assisting unskilled pilots in ensuring a safe flight. Particularly, we propose a novel nonlinear vehicle control system which takes into account of sensor characteristics, an emergency evaluation policy and a novel optimization-based avoidance control strategy. The effectiveness of the proposed approach is demonstrated and validated in simulation with multiple moving objects

    A Survey of Offline and Online Learning-Based Algorithms for Multirotor UAVs

    Full text link
    Multirotor UAVs are used for a wide spectrum of civilian and public domain applications. Navigation controllers endowed with different attributes and onboard sensor suites enable multirotor autonomous or semi-autonomous, safe flight, operation, and functionality under nominal and detrimental conditions and external disturbances, even when flying in uncertain and dynamically changing environments. During the last decade, given the faster-than-exponential increase of available computational power, different learning-based algorithms have been derived, implemented, and tested to navigate and control, among other systems, multirotor UAVs. Learning algorithms have been, and are used to derive data-driven based models, to identify parameters, to track objects, to develop navigation controllers, and to learn the environment in which multirotors operate. Learning algorithms combined with model-based control techniques have been proven beneficial when applied to multirotors. This survey summarizes published research since 2015, dividing algorithms, techniques, and methodologies into offline and online learning categories, and then, further classifying them into machine learning, deep learning, and reinforcement learning sub-categories. An integral part and focus of this survey are on online learning algorithms as applied to multirotors with the aim to register the type of learning techniques that are either hard or almost hard real-time implementable, as well as to understand what information is learned, why, and how, and how fast. The outcome of the survey offers a clear understanding of the recent state-of-the-art and of the type and kind of learning-based algorithms that may be implemented, tested, and executed in real-time.Comment: 26 pages, 6 figures, 4 tables, Survey Pape

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Visual Servoing Approach for Autonomous UAV Landing on a Moving Vehicle

    Full text link
    We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle with a circular (or elliptical) pattern on the top. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. It does not rely on additional external setup, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only a minimal set of hardware and localization sensors. The videos and source codes can be accessed from http://theairlab.org/landing-on-vehicle.Comment: 24 page

    Collision avoidance control for Unmanned Autonomous Vehicles (UAV): Recent advancements and future prospects

    Get PDF
    The recent advances in collision avoidance technologies for unmanned vehicles such as UAVs, AUVs, AGVs, and USVs have greatly advanced the industry. Their lower cost and acceptability of high-risk missions have enabled the development of collision avoidance controllers for autonomous vehicles. These low-maintenance gadgets are also portable, need low maintenance, and enable continuous monitoring to occur near real-time. This may be said; however it would be incorrect, because collision avoidance controllers have been related with compromises that affect data dependability. Research on collision avoidance controls is quickly developing; therefore it is distributed throughout multiple papers, projects, and grey literature. This report critically reviews the recent relevant research on creating collision avoidance systems for autonomous vehicles. Typically, the assessment measures are dependent on the algorithm's use case and the platform's capabilities. The full evaluation of the benefits and drawbacks of the most prevalent approaches in the present state of the art is provided based on 7 metrics which are complexity, communication dependence, pre-mission planning, robustness, 3D compatibility, real-time performance and escape trajectories

    Collision avoidance control for Unmanned Autonomous Vehicles (UAV): Recent advancements and future prospects

    Get PDF
    873-883The recent advances in collision avoidance technologies for unmanned vehicles such as UAVs, AUVs, AGVs, and USVs have greatly advanced the industry. Their lower cost and acceptability of high-risk missions have enabled the development of collision avoidance controllers for autonomous vehicles. These low-maintenance gadgets are also portable, need low maintenance, and enable continuous monitoring to occur near real-time. This may be said; however it would be incorrect, because collision avoidance controllers have been related with compromises that affect data dependability. Research on collision avoidance controls is quickly developing; therefore it is distributed throughout multiple papers, projects, and grey literature. This report critically reviews the recent relevant research on creating collision avoidance systems for autonomous vehicles. Typically, the assessment measures are dependent on the algorithm's use case and the platform's capabilities. The full evaluation of the benefits and drawbacks of the most prevalent approaches in the present state of the art is provided based on 7 metrics which are complexity, communication dependence, pre-mission planning, robustness, 3D compatibility, real-time performance and escape trajectories

    Vision Based Collaborative Localization and Path Planning for Micro Aerial Vehicles

    Get PDF
    Autonomous micro aerial vehicles (MAV) have gained immense popularity in both the commercial and research worlds over the last few years. Due to their small size and agility, MAVs are considered to have great potential for civil and industrial tasks such as photography, search and rescue, exploration, inspection and surveillance. Autonomy on MAVs usually involves solving the major problems of localization and path planning. While GPS is a popular choice for localization for many MAV platforms today, it suffers from issues such as inaccurate estimation around large structures, and complete unavailability in remote areas/indoor scenarios. From the alternative sensing mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the richness of information captured, along with small size and inexpensiveness. Another consideration that comes into picture for micro aerial vehicles is the fact that these small platforms suffer from inability to fly for long amounts of time or carry heavy payload, scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a task than just one. Collaboration between multiple vehicles allows for better accuracy of estimation, task distribution and mission efficiency. Combining these rationales, this dissertation presents collaborative vision based localization and path planning frameworks. Although these were created as two separate steps, the ideal application would contain both of them as a loosely coupled localization and planning algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole sensor for computing pose estimates. With this minimal setup, this dissertation first investigates methods to perform feature-based localization, with the possibility of fusing two types of localization data: one that is computed onboard each MAV, and the other that comes from relative measurements between the vehicles. Feature based methods were preferred over direct methods for vision because of the relative ease with which tangible data packets can be transferred between vehicles, and because feature data allows for minimal data transfer compared to large images. Inspired by techniques from multiple view geometry and structure from motion, this localization algorithm presents a decentralized full 6-degree of freedom pose estimation method complete with a consistent fusion methodology to obtain robust estimates only at discrete instants, thus not requiring constant communication between vehicles. This method was validated on image data obtained from high fidelity simulations as well as real life MAV tests. These vision based collaborative constraints were also applied to the problem of path planning with a focus on performing uncertainty-aware planning, where the algorithm is responsible for generating not only a valid, collision-free path, but also making sure that this path allows for successful localization throughout. As joint multi-robot planning can be a computationally intractable problem, planning was divided into two steps from a vision-aware perspective. As the first step for improving localization performance is having access to a better map of features, a next-best-multi-view algorithm was developed which can compute the best viewpoints for multiple vehicles that can improve an existing sparse reconstruction. This algorithm contains a cost function containing vision-based heuristics that determines the quality of expected images from any set of viewpoints; which is minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption (CMA-ES) that can handle very high dimensional sample spaces. In the second step, a sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes similar vision heuristics in an information gain based framework in order to drive individual vehicles towards areas that can benefit feature tracking and thus localization. Both steps of the planning framework were tested and validated using results from simulation
    corecore