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The recent advances in collision avoidance technologies for unmanned vehicles such as UAVs, AUVs, AGVs, and USVs 

have greatly advanced the industry. Their lower cost and acceptability of high-risk missions have enabled the development of 

collision avoidance controllers for autonomous vehicles. These low-maintenance gadgets are also portable, need low maintenance, 

and enable continuous monitoring to occur near real-time. This may be said; however it would be incorrect, because collision 

avoidance controllers have been related with compromises that affect data dependability. Research on collision avoidance controls 

is quickly developing; therefore it is distributed throughout multiple papers, projects, and grey literature. This report critically 

reviews the recent relevant research on creating collision avoidance systems for autonomous vehicles. Typically, the assessment 

measures are dependent on the algorithm's use case and the platform's capabilities. The full evaluation of the benefits and 

drawbacks of the most prevalent approaches in the present state of the art is provided based on 7 metrics which are complexity, 

communication dependence, pre-mission planning, robustness, 3D compatibility, real-time performance and escape trajectories. 

[Keywords: Collision avoidance control; Performance comparison, Recent advancements, Unmanned autonomous vehicle] 

Introduction 

Unmanned Autonomous Vehicles (UAVs) are 

increasingly used in military and civilian applications 

due to their increased capabilities and reduced labor
1
. 

These include search and rescue, weather forecasting, 

border patrol, firefighting, disaster response, precision 

farming and commercial fisheries as well as scientific 

study and aerial photography
2
. The proliferation of 

UAVs, particularly in civilian uses, has raised worries 

about their safe integration into national airspace. The 

ability to avoid emergency circumstances is critical to 

UAV safety and reliability. However, present methods 

cannot appropriately combine high-level controls with 

low-level directives, resulting in mission failure. 

Reducing the risk of failure and catastrophe by solving 

high-level problems in a systematic way
3
. Furthermore, 

four main UAVs kinds exist: Automatic Guided 

Vehicle (AGV), Unmanned Aerial Vehicle (UAV), 

Autonomous Underwater Vehicle (AUV), Unmanned 

Surface Vehicle (USV), as shown in Figure 1. 

It is one of the major technologies in the marine 

vessel intelligence research. After decades of research 

and development, USV intelligent obstacle avoidance 

has advanced. Wang et al.
4
 developed a global path 

planning algorithm for USVs that reduces planning 

time and improves planning precision. Campbell  

et al.
5
 explored unmanned ship course planning using 

COLREGS. Tong et al.
6
 proposed a dynamic obstacle 

avoidance approach for USVs based on the speed 

obstacle concept. A dynamic USV collision avoidance 

approach based on speed adjustment was developed
7
. 

Decentralization in AGV control architectures has 

been pioneered recently by Monostori et al.
8
, Baffo  

et al.
9
 and Esmaeilian et al.

10
. Future manufacturing 

systems may use holonic, fractal, and random, 

biological, and multi-agent techniques to create more 

decentralized control architecture. Ma et al.
11

 propose 

‘Anarchic Manufacturing' based on distributed 

control. This is an extreme kind of decentralization 

where all decision-making authority and autonomy is 

delegated to system parts at the lowest level
11

. Some 

of these methods can be used to specific domains like 

self-driving cars, unmanned aerial vehicles, and 

automated guided vehicles. 
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Modern Autonomous Underwater Vehicle (AUV) 

real-time obstacle avoidance systems incorporate 

clever obstacle avoidance algorithms. AUV intelligent 

obstacle avoidance algorithms use fuzzy logic, neural 

networks, and reinforcement learning. The fuzzy logic 

approach accepts as inputs the distance and 

orientation of obstacles relative to the AUV
12

. Li  

et al.
13

 suggested a three-input fuzzy logic technique 

to avoid AUV-moving obstacle collisions. The 

method uses the AUV-obstacle distance change as 

input and achieves dynamic obstacle avoidance in two 

dimensions
13

. However, this strategy assumes the 

AUV and obstacle velocities remain constant. Fuzzy 

logic-based reactive obstacle avoidance system 

proposed by Galarza et al.
14

. The system uses the 

AUV's real forward speed as an input and outputs 

forward speed and yaw angle. It reduces the impact of 

AUV speed on obstacle avoidance while increasing 

calculation volume and complexity
14

. 

UAVs' current and future interest and autonomy 

are steadily increasing as part of the IR 4.0. An aerial 

vehicle which is capable of prolonged flight by a pilot 

from a distance is considered to be a UAV
15

. In 

addition, because of the vast range of drones, the low 

maintenance cost, quick deployment, high portability, 

and ability to hover, UAVs are both military and 

civilian/commercial
16

. The usage of UAVs for border 

security surveillance, reconnaissance, and target 

removal may be seen in the military. Also, civilian 

and business purposes such as search and rescue, 

parcel delivery, precision horticulture, and 

pharmaceutical transfer all employ unmanned aerial 

vehicles. Furthermore, four main drone kinds exist: 

multi-rotor drones, fixed-wing drones, single-rotor 

helicopters, and fixed-wing VTOLs. 

This document summarizes current collision 

avoidance research in autonomous systems. Collision 

avoidance concepts are summarized and classified into 

various approaches. Figure 2 depicts two basic 

classifications: hardware device and action. In Figure 2, 

collision avoidance is implemented from top to bottom, 

first the hardware, then the movement. The hardware 

device is the first step in any collision avoidance 

system, especially UAV obstacle detection. During this 

phase, the UAV design contains sensors capable of 

identifying obstacles. Based on performance, 

unmanned aerial vehicles (UAVs) can be categorized 

as AGV, UAV, AUV and USV. Collision avoidance 

comprises seven broad strategies that all aim to avoid 

collisions: a) Sense and avoid
17-19

; b) Conflict 

resolution
20-22

; c) Model predictive control
23-25

; d) 

Artificial neural network
26-28

; e) Potential field 

 
 

Fig. 1 — Types of autonomous vehicle 
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function
29-31

; f) Geometric guidance
32-34

; and g) 

Optimization based
35-37

. These controller comparisons 

are based on the 7 metrics which are complexity, 

communication dependence, pre-mission planning, 

robustness, 3D compatibility, real-time performance 

and escape trajectories. 
 

From alerting the driver via collision avoidance 

systems by Huang et al.
38

, the author using fully or 

partially guiding the system to avoid a collision. 

Actuators can apply brakes or direct the car when 

steering clear of obstacles. Initially, field study 

focused on roadways built on ground vehicles  

(a suitable foundation for other vehicles like aircraft 

and ground), which eventually influenced ground 

vehicles
39,40

. Mujumdar & Padhi
41

 described defining 

collision avoidance as a global or local path planning 

problem. Traditional path planning responds to 

changes in the environment, whereas global path 

planning considers the totality. When no collisions are 

expected, avoidance manoeuvres are performed to 

restore the vehicle to its original course
41

. 
 

These systems are required for completely 

autonomous navigation and obstacle detection
42

. UAV 

swarms are gaining popularity due to their ability to 

work together. Multiple UAVs outperform single 

UAV systems. This device is in demand in many 

industries, including military, commercial, search and 

rescue, traffic monitoring, border security, and 

atmospheric research
43-45

. In a dynamic environment, 

UAVs struggle to accomplish tasks due to limited on-

board payload (sensors, batteries), poor visibility 

(rain, dust), and challenges in remote monitoring. To 

ensure the robots' performance and safety, robotics 

experts are searching for technologies that are more 

suitable for the environments in which they will 

operate
46,47

. It is crucial for autonomous vehicles to 

recognise and avoid barriers in dynamic situations 

with many UAVs and moving impediments
38,48-50

. 
 

Collision avoidance control 

Collision avoidance control systems use reactive and 

deliberate planning. It gathers information about its 

environment from onboard sensors and acts accordingly. 

This approach enables for fast environmental changes. 

However, reactive control might become imprisoned, 

needing a new type of navigation as in Figure 3. An 

environmental map can be used to experience and 

update the environment, as seen in Figure 4. The map is 

updated first, followed by a goal-oriented trip plan. An 

accurate map of the surroundings is essential for the 

operation. The method fails in dynamic situations where 

variables change often. Especially using a hybrid 

technique that can adjust to the environment's needs. 

 
 

Fig. 2 — Collision avoidance controller modules 
 

 
 

Fig. 3 — Reactive collision avoidance 
 

 
 

Fig. 4 — Deliberative collision avoidance 
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Collision avoidance algorithms can be categorized 

into seven methods already listed in introduction and 

summarized in Figure 2. These methods will be 

further elaborated in the following subsections. 
 

A. Sense and avoid 

Most sense-and-avoid approaches employ simpler 

methods, such as short response times, to limit the 

computing resources required to accomplish collision 

avoidance, as well as improving drone stability by 

using individual detection and avoidance of objects to 

steer the swarm. Formations contain set locations for 

each drone, and an avoidance procedure incorporates 

individual path planning to steer clear of both drone-

to-drone collisions and collisions with exterior 

obstructions. Rapid collision avoidance, which 

responds rapidly to oncoming objects, is a suitable 

approach for dynamic situations. In this method, a 

robot or agent has sensors such as sonar, radar, and 

LiDAR. 

2D LiDAR-based approach, Zheng et al.
17

 

proposed utilized RPLIDAR A2 to locate the UAV's 

position through the scanning of the point cloud. 

RPLIDAR A2 has a detection range of 8 m, a weight 

of 190 g, a scanning frequency of 10 Hz, a resolution 

angle of 1°, and produces a scan sequence that has 

360 points. In order to determine the LiDAR's 

position while it scans each point, a polynomial-based 

velocity estimation approach is applied to determine 

the position of the LiDAR after it corrects the 

distorted point cloud. To achieve better results using 

clusters, a method based on relative distance and 

density (CBRDD) is applied. The experimental 

findings suggest that the strategy proposed in this 

study can address the offset of the point cloud and 

ensuring even distribution in point cloud clusters. A 

lightweight and inexpensive obstacle detection system 

has been proven to have a good effect on UAVs.  

The work proposed by Ma et al.
18

, which brings 

together an unmanned two-wheeled robot with a laser-

based avoidance system, is all about laser-based 

avoidance for autonomous guided vehicles. This 

system can swiftly collect obstacle information and use 

it to avoid barriers and afterwards choose a new path.  

By using a 2D laser, Faria et al.
19

 was able to 

achieve 3D exploration with reduced cost and weight. 

In order to put the sensor optimally, exploration must 

find the Next Best View (NBV) solution. The author 

devised a modular design that employs both local and 

global levels of the frontier algorithm, broadening the 

concept of a frontier surface to include a surface 

neighborhood. The Lazy Theta* method generates 

safe routes during the mission by utilizing the popular 

A* algorithm. The UAV can cover 93 % of the search 

environment within 30 minutes, exploring and 

constructing a path that adjusts to varying spaces, 

which include indoor locations, irregular structures, 

and barriers that are not completely flat. 
 

B. Conflict resolution 

The purpose of the conflict resolution system is to 

anticipate conflict in the future, notify an operator of 

the dispute, and aid in conflict resolution as 

appropriate. It is possible to structure these three 

primary processes into multiple stages or constituent 

pieces. Involving dangers other than another aircraft 

in a decision-making process can be simplified to the 

same basic process. 

The approach developed by Zhao & Wang
20

 is 

applicable to the collision avoidance problem with 

static and dynamic impediments in fixed-wing AUVs. 

An emergency control algorithm is created to ensure 

that the UAVs can be operated in a hazardous 

environment without jeopardizing their safe return to 

a safe place. In order to prevent frequent state 

switches in which the UAV enters “safe mode” only 

to instantly exit it, an additional conflict buffer is also 

implemented for the resolution of conflicts and a 

seamless transition between the two states. The 

sufficient criteria apply not just to static and dynamic 

impediments but also to internal vehicle collisions. 

The conclusions drawn from these results reveal that 

UAVs perform better when avoiding both static and 

dynamic impediments. The three UAVs use relative 

position speed to select the flight trajectory. 

Chauffaut & Burlion
21

 suggested a new technique 

known as the method of Output to Input Saturation 

Technique (OIST) for MAVs. To assure collision 

avoidance for a formation of up to three MAVs, this 

technique is extended. The goal of this technique is to 

find out if many vehicle operators may be controlled 

by one operator. In order to be able to effectively 

focus on the supervision of an unmanned aerial 

vehicle fleet, it is imperative that both basic 

formations maintaining procedures and specifically 

collision avoidance capabilities be available (MAVs). 

In contrast to previously reported experimental 

results, the data reveal that the minimum distance 

between MAVs is respected globally during the 

formation of the fleet. 

Rodionova et al.
22

 proposed a decentralized, on-

demand aerial collision avoidance system for several 
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UAS was presented in the article, Learning-to-Fly 

(L2F). Mixed Integer Linear Programming (MILP) is 

used to address the issue of enabling UAS to avoid 

collision without impacting the goals of the mission 

(MILP). However, there is no easy way to tackle this 

problem on the internet. Rather, we have created L2F, 

a learning-based approach for making decisions and a 

distributed, linear programming-based UAS control 

system. Through extensive simulations, we 

demonstrate that our method is completely real-time, 

offering 6000 fewer simulation cycles than the MILP 

approach and resolving 100 % of collisions even 

given abundant space for movement. As well, we 

exhibit an implementation on quad-rotor robots when 

comparing L2F to two other approaches. 
 

C. Model predictive control 

MPC is a novel way to controlling processes. 

Power system balancing models and power 

electronics are current examples. Model predictive 

controllers use dynamic models, such as linear 

empirical models developed from system 

identification. Using the MPC algorithm allows us to 

alter the current time slot while considering future 

time slots. The Linear-Quadratic Regulator is attained 

by carefully considering a limited time horizon, then 

implementing a time slot and fine-tuning again 

(LQR). MPC can also predict future events and 

implement appropriate management actions. PID 

controllers cannot provide accurate predictions. Most 

MPC systems are digital, however some analogue 

hardware has been built for faster response. 

Kamel et al.
23

 proposes a nonlinear model 

predictive control for multi-MAV collision avoidance. 

A decentralized system of trajectory monitoring and 

collision avoidance was employed to optimize 

movement. The global planner's trajectory does not 

need to be modified before sending it to the tracking 

controller; the local avoidance controller must deliver 

it there. The prediction horizon propagates the state 

estimator's uncertainty, reducing collisions. If the 

prediction horizon is long enough, a stringent distance 

constraint between agents ensures collision-free 

navigation. This method has been tested with six 

simulated MAVs and two real-world MAVs. This 

study demonstrated how to perform quick and 

dynamic avoidance maneuvers while maintaining 

system stability at a low cost. 

Lindqvist et al.
24

 developed a revolutionary path-

planning and obstacle avoidance system in which they 

used a Novel Nonlinear Model Predictive Control 

(NMPC) architecture that is capable of handling 

dynamic obstacles. A system for classifying different 

kinds of trajectories was also used to anticipate future 

obstacle positions. The findings demonstrate that for 

the two oncoming obstacles, the distance between the 

avoiding UAV and the approaching UAV is 0.45 m, 

and that of the obstacles, 0.42 m. Like the single-

obstacle example, the avoidance maneuver starts as 

soon as the obstacle-UAV starts moving, and solver 

time is 35 ms, peaking at that point. 

Ille & Namerikawa
25

 featured two multi-UAV 

teams, each starting from a different location and 

travelling to a different destination. The leaders 

measure the obstacles positions and use a Kalman 

Filter model to anticipate their future positions and 

calculate their movement. To calculate their reference 

trajectories, each agent knows the positions of the 

others. The leader estimates a route to transport the 

troop to the destination. This method tracks each 

agent's reference trajectory and applies MPC to each 

individual trajectory. Inability of UAVs to link has led 

to this method. They can't agree on where to go, 

therefore they must avoid each other. Both teams 

move sideways as though colliding. The fact that the 

formations hold even when the teams deviate from 

them shows that the teams follow the formation 

without colliding. 
 

D. Artificial neural network 

Artificial Neural Network (ANN) describes a type 

of simulation that involves creating a computer 

system that imitates human intelligence, along with 

human-like behavior. For machines to be considered 

conscious, they must demonstrate features of human 

intelligence, including learning and problem solving. 

Computer vision-based drones are used mostly for  

AI-based purposes. This technology makes it possible 

for drones to scan the environment while in flight and 

to collect data on the ground. 

The use of unmanned aerial vehicles has proven 

beneficial to several plants. Balkanized undeveloped 

agricultural lands are a major flight safety concern. 

Wang et al.
26

 created a Task Control System (TCS) 

that included object identification and picture 

processing. A UAV may detect and identify obstacles 

while also observing depth information including 

category, shape, and 3D spatial position using the 

suggested solution's deep learning algorithms. Its 

obstacle avoidance and ambient sensing skills are 

tested in experiments. On average, the CNN model 

detects 75.4 percent of images with a processing time 
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of 53.33 ms. The item's distance from the depth 

camera is also important. There are 0.53 m errors in 

depth, breadth, and height. In order to avoid obstacles, 

the UAV might create a flight route with the shortest 

distance between waypoints using the RGB-D 

findings of RGB-fusion. 

Bin et al.
27

 introduced a framework for multi-UAV 

collision avoidance, known as multi-UAV 

cooperative collision avoidance, based on multi-UAV 

cooperative collision avoidance (our elements of state 

space, action space, the environment model, and 

returned value). Two collision avoidance control 

strategies based on UAVs (drone systems) were 

introduced, after which a matrix for classifying 

collisions was implemented, and based on a new 

collision avoidance control strategy using 

reinforcement learning method, a new cooperative 

multi-UAV collision avoidance control algorithm was 

proposed. The experiment showed that the algorithm 

is capable of effectively utilizing multi-UAV 

coordination for collision avoidance, resulting in 

collision avoidance with control decisions completed 

in 100 milliseconds. 

The technique described by Yang et al.
28

 uses a 

lightweight probabilistic CNN (pCNN) for real-time 

monocular depth prediction and obstacle avoidance. 

The suggested pCNN can forecast the depth map and 

confidence for each video frame. The proposed pCNN 

benefits greatly from using visual odometry to assist 

dense depth and confidence inference. It is then 

turned into Ego Dynamic Space (EDS) by adding 

dynamic motion limitations and relative degrees of 

confidence to the map. EDS uses control inputs to 

compute automatically traversable waypoints. 

Extensive testing on public datasets showed that our 

method achieves 12Hz with a 1050Ti GPU and 45Hz 

with a TX2 GPU, which is 1.8 – 5.6 times faster than 

existing techniques and improves depth estimate 

accuracy. 
 

E. Potential field function 

Repelling an agent/robot from an obstruction with 

the use of a repulsive or attracting force field is 

known as force-field methods, which is also known as 

potential field methods. This approach focuses on the 

motion and geometry of the robot and the obstacles. 

These characteristics of the obstacles are unknown in 

advance in dynamic situations. 

Sun et al.
29

 proposed an optimized artificial 

potential field (APF) algorithm for multi-UAV 

operation. The APF method has been shown to only 

be able to support single UAV trajectory planning, 

and the lack of collision avoidance is a common 

failure. A solution is proposed with a distance factor 

and leap strategy to prevent impediments from the 

UAV from colliding, even unreachable objectives. 

The method takes into consideration the dynamic 

impediments presented by UAV companions when 

preparing for collaborative flight path planning. 

Dynamic step adjustment is used to mitigate the jitter 

issue. Several possible resolutions are presented 

below. Quantitative simulation models showed that 

the process worked satisfactorily in a simulated 

metropolitan context. 

Zhang et al.
30

 uses the artificial potential field 

method to solve the problem of many unmanned 

aerial vehicles (UAVs) accidentally flying into each 

other while avoiding an obstacle. This technology 

allows UAVs to avoid each other in 3-D space. My 

method depicts the state of the virtual structure in 3-D 

space and the “leader-follower” control approach for 

successfully steering a vessel around a barrier. The 

artificial potential field force is used to guide the three 

UAVs and the virtual leader in keeping the regular 

triangle configuration while driving toward the 

destination. A repulsive artificial potential field can 

separate the UAVs from each other while still 

preventing a collision between the UAV and the 

barrier. 

Verginis et al.
31

 describes the difficulties faced by 

2
nd

 order nonlinear multi-agent systems while 

building a class of such systems in a 3D workspace 

with obstacles. To complete the problem-solving part 

of the overall aim, the author proposed a potential 

function-based decentralized control protocol that can 

solve a broader class of problems involving multiple 

rigid bodies subject to Lagrangian dynamics, with 

guarantees that every instance of a collision is 

avoided. The strategy assumes that the originally 

linked agents are guaranteed to remain connected 

permanently. Also, inter-agent collision avoidance 

can be performed using particular distance limits. The 

simulations showed that the goal function decayed 

toward zero, whereas the obstacle function remained 

at a positive value. 
 

F. Geometric guidance 

The use of geometric techniques uses geometry to 

ensure that set minimum distances, like UAVs, are 

not exceeded. This is performed by using the 

distances between the UAVs and their velocities to 

compute time to collision. 
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Seo et al.
32

 suggested strategies to avoid pop-ups 

by using line-of-sight vector data to help navigate. It 

can eliminate the iterative and/or offline method used 

by each UAV to find the collision avoidance direction 

by solving this problem. A large UAV formation was 

formed to avoid obstacles. The proposed collision 

avoidance guiding legislation was predicted using 

Lyapunov's theory. The movement of the UAVs was 

considered in the study of the envelope for collision 

avoidance. The system will adopt a sense-and-avoid 

method, which is more suited to drone flying 

operations where we need to avoid shifting obstacles. 

Depending on the application, collision avoidance 

algorithms work with single or several drones. As a 

result, the approach may benefit actual drone 

operations. 
 

Behjat et al.
33

 created a revolutionary concept 

called TRACE (Training, Risk-Reduction, and 

Collision-Avoidance Notion for Quadrotor UAVs) to 

apply this concept. An approach for optimizing 

mutually coherent (speed or direction change) 

operations was created to avoid drone collisions 

(subject to flight-dynamics constraints). An optimal 

reciprocal action can be learned in seconds rather than 

minutes. In the end, the more effective DC actions 

were found to be present across a wider range of 

angles, but the consumption difference was less than 

2.5 %. In 425 unknown cases, the classifier exhibited 

an error rate of roughly 87.5 % in both training and 

testing. Additional performance investigation over 

unexplored scenarios resulted in 95.3 percent 

successful collision avoidance. 
 

A 3D velocity obstacle technique for multi-UAV 

systems was developed by Tan et al.
34

 to avoid 

collisions with static objects while navigating a 

dynamic and changeable obstacle environment. So, 

the multi-UAV system can do its job without 

interfering with other aircraft or ground impediments. 

The author is working on a three-dimensional 

collision avoidance system to keep the vehicles safe. 

As a result, the author proposed the 3-D VO method 

for computing 3-D velocity barriers. Also, the 

suggested collision avoidance algorithm leverages the 

pyramid cone approach, which works well with static 

obstructions. So, the UAV achieved its goal and flew 

around the obstruction. It avoids collisions and 

achieves its goal effortlessly. As shown in the 

trajectory, the UAV avoided the static obstacle. The 

UAV's closest point to an obstacle is 0.3521 meters 

distant. 

G. Optimization based 

Geographical information plays a critical role in 

the determination of the avoidance trajectory in the 

context of optimization-based approaches. To create 

an optimized search region, probabilistic search 

algorithms use ambiguous information to decide 

where to focus their efforts. Computational 

complexity of these algorithms presents several 

optimization challenges, which several optimization 

approaches are created to address. All these 

techniques are included here; one should review these 

examples to gain a better understanding of the field. 
 

Zhang
35

 described a method for configuring 

multiple UAVs' flight and collision avoidance. With 

UAVs' high speed and unstructured environments, 

they developed a modified tentacle strategy to reduce 

the detrimental impact. The modified Tentacle 

technique reduces calculation time and increases data 

retrieval accuracy, solving a previously challenging 

data calculating challenge. Its tentacles are being 

redesigned to fit several unmanned aerial vehicles 

(UAVs). When time is limited, the study prefers 

iterative route optimization over iterative tentacle 

optimization. The method is indeed viable and 

successful in simulation. Multiple UAVs can 

overcome the threats provided by other UAVs while 

present, as well as other UAVs in formation and 

unknown objects. 
 

Perez-Carabaza suggested a Minimum Time 

Search (MTS) planner, which combines 

communication and collision avoidance requirements, 

based on ant colony optimization
36

. Search missions 

employing MTS algorithms enable to provide search 

trajectories that reduce the time required to find the 

objective. A primary goal is to have a multi-hop 

connection to the GCS while avoiding collisions 

amongst UAVs. CEO and GA outcomes are superior 

to those of the other MTS techniques, as shown by the 

suggested algorithm. It might be anywhere from 2.16 

to 49.10 % for CEO, and 4.00 to 47.05 % for GA. 
 

Hu et al.
37

 proposed a distributed velocity-aware 

algorithm and collision avoidance approach for 

numerous UAVs. Because UAVs are aware of their 

surroundings, they have a good grasp of the network, 

making it difficult to obtain information about other 

UAVs. UAVs can malfunction at any time, so they 

prepare for the worst. The paper presented the 

velocity-aware A* algorithm, the collision prediction 

strategy, and the collision avoidance algorithm. In this 

situation, despite the higher practical path length and 



INDIAN J GEO-MAR SCI, VOL 50, NO 11, NOVEMBER 2021 

 

 

880 

time cost, the provided approach has a high success 

rate. This depends on the situation, in particular the 

actual location of departure and arrival. More UAVs 

and a larger map increase path complexity and 

construction time. Due to these processes, the average 

UAV velocity is around 0.65, with variability due to 

accelerations and decelerations. 

 

Discussion and Conclusion 

We provided a more in-depth analysis of collision 

avoidance systems and tactics utilized for autonomous 

vehicles in the previous sections. To understand how 

collision avoidance systems are built, the different 

types that are relevant to unmanned autonomous 

vehicles (UAV) were categorized based on AGV, 

UAV, AUV and USV. Following a careful 

assessment, the research team separated collision 

avoidance systems into seven key categories: sense 

and avoid, conflict resolution, model predictive 

control, artificial neural network, potential field 

function, geometric guiding, and optimization based 

methods. Class approaches have some advantages and 

trade-offs, as illustrated in Table 1. 

Computed approaches to avoiding collisions can be 

assessed using multiple frameworks and metrics. 

Typically, the assessment measures are dependent on 

the algorithm's use case and the platform's 

capabilities. When looking at collision avoidance 

algorithms, it is important to consider which metrics 

are used to evaluate the various algorithms, as each 

has its own pros and downsides. When a full 

evaluation of the benefits and drawbacks of the most 

prevalent approaches in the present state of the art is 

provided, this is demonstrated in Table 1 to exemplify 

a comparative examination of several algorithms, we 

created a table with ten metrics and described each as 

follows. 

The first metric is complexity: The complexity 

meter for the various approaches is derived from the 

design of algorithms. The geometric, model predictive 

control, conflict resolution, and force-field approaches 

have the highest algorithm design complexity 

(computational cost). As far as complexity is 

concerned, artificial neural networks and 

optimization-based approaches are similar, while 

sense and avoid approaches are quite simple. 

The second metric is communication dependence: 

In contrast to cooperative methods that share 

information, sense and avoid methods do not require 

on any communication to function since they deal 

with everything locally and take decisions on their 

own without talking with other UAVs or systems. In 

the few studies that used force-field methods, most 

research did not, indicating that force-field 

approaches rely less on communication reliance. 

Some additional systems, however, are based on 

UAVs contacting other nodes or other UAVs. The 

third metric is pre-mission planning: Pre-mission path 

planning is not required for the development of either 

Sense & Avoid, conflict resolution, or artificial neural 

network. The collision zone and the velocity obstacle 

serve as points of reference in geometric path 

planning. Pre-mission path planning is required in 

order to utilize optimization and force-field 

approaches. 

The fourth metric is robustness: All mentioned 

approaches are capable of being robust depending on 

the way they are implemented. 

The fifth metric is 3D compatibility: Sense and 

avoid, geometric, artificial neural network, and 

optimization algorithms all have a significant amount 

of work to do when dealing with three-dimensional 

surroundings. However, a significant number of 

scholars are examining the viability of utilizing force-

field methods, model predictive control, and conflict 

resolution in three-dimensional dynamic systems. 

The sixth metric is real-time performance. The 

real-time performance of sense and avoid, geometric, 

artificial neural network, and model predictive control 

methods is superior to that of force-field, conflict 

Table 1 — Performance comparison between state-of-the-art collision avoidance approaches 

CA approach Complexity Communication 

dependence 

Pre-mission 

planning 

Robustness 3D  

compatibility 

Real-time 

performance 

 Escape  

 trajectories 

Sense & Avoid Low ꭕ ꭕ √ 3D √  Local/Run-time 

Conflict Resolution High √ ꭕ √ 2D √  Negotiation protocol 

Model Predictive Control High √ √ √ 2D √  Hybrid system 

Artificial Neural Network Medium √ ꭕ √ 3D √  Optimized 

Potential Field Function High ꭕ √ √ 2D √  Force-field based 

Geometric Guidance High √ √ √ 3D √  Protocol based 

Optimization Based Medium √ √ √ 3D √  Pre-defined 
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resolution, and optimization methods, as sense and 

avoid do not require excessive processing to avoid 

changes in the environment, such as approaching 

obstacles. Additionally, geometric approaches are 

quick and computationally efficient. However, the 

disadvantage of geometric approaches over sense and 

avoid is that the time required to compute and the 

complexity of the algorithm are greatly reliant on the 

algorithm implementation. 
 

The seventh metric is escape trajectories: The 

escape trajectories offered by various approaches can 

be summarized as follows: sense and avoidance offer 

escape trajectories at run-time and locally, conflict 

resolution offer escape trajectories based on the 

negotiation protocol, model predictive control using 

hybrid systems for escape trajectories, artificial neural 

network offers optimized escape trajectories, escape 

trajectories for optimization.  
 

A clear trade-off exists between computing time, 

complexity, optimal solutions, pre-mission path 

planning, and the ability to respond to static/dynamic 

situations. The appropriate algorithm must be chosen 

based on operational requirements, or alternatively, 

various collision avoidance strategies (or two-layered 

collision avoidance method) may be combined to 

meet needs
51

. Additionally, to ensure the safety of 

UAVs, the deployment of sense and avoid methods is 

a safe choice in all sorts of situations. These 

approaches are the simplest and most robust, with the 

least data overhead and reaction times. But it needs a 

better path planning algorithm to avoid local minima 

and reach the destination without colliding. The sense 

and avoid strategy can also be utilized as a 

failsafe/standalone approach to assure the UAVs' 

safety, particularly in highly dynamic environments 

where situations might change rapidly and a great 

degree of adaptivitiy is necessary. 
 

Unpublished research on optimizing UAV system 

parameters utilizing LIDAR data for identifying and 

avoiding collisions while in flight mode appears to be 

rare. Yiao et al.
52

 builds an obstacle identification and 

intrusion detection algorithm (ALORID) using 

LiDAR scanning data. In another example, Ponte et 

al.
53

 employs input parameters from a LiDAR sensor 

combined with Kalman Filter estimation to maneuver 

the drone in hazardous conditions, identify 

obstructions or intruders, and perform precise 

hovering and landing procedures. However, the 

LiDAR sensor data has not been optimized to fully 

autonomous obstacle detection and avoidance based 

on LiDAR distance measurements. As a result, their 

method may perform poorly, causing ambiguity about 

the UAV's position and path. As a result, our research 

will focus on optimizing and adapting sense and avoid 

collision avoidance controllers for real-time 

applications. Using a LiDAR-based UAV collision 

avoidance controller could dramatically improve 

autonomous flight and collision avoidance. A higher 

level of collision avoidance may be achieved by 

combining detect and avoid systems with sensor 

fusion optimization. 
 

For future development, further research and 

development can be directed on the extension  

and validation of the developed algorithms in  

3-dimensional environments with dynamic constraints 

bringing the simulations closer to real world 

environments and moving towards the real-time 

testing. For instance, the hybrid system using sense & 

avoid method combine with optimization based on the 

real-time data from various sensor equipped by the 

UAV. Therefore, it is required to propose hybrid 

system to realize collision avoidance under different 

scenarios with high real-time performance, scale 

scalability and overall safety and efficiency.  
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