12,965 research outputs found

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    Analysis of urban sprawl at mega city Cairo, Egypt using multisensoral remote sensing data, landscape metrics and gradient analysis

    Get PDF
    This paper is intended to highlight the capabilities of synergistic usage of remote sensing, landscape metrics and gradient analysis. We aim to improve the understanding of spatial characteristics and effects of urbanization on city level. Multisensoral and multitemporal remotely sensed data sets from the Landsat and TerraSAR-X sensor enable monitoring a long time period with area-wide information on the spatial urban expansion over time. Landscape metrics aim to quantify patterns on urban footprint level complemented by gradient analysis giving insight into the spatial developing of spatial parameters from the urban center to the periphery. The results paint a characteristic picture of the emerging spatial urban patterns at mega city Cairo, Egypt since the 1970s

    Dynamics and Spatial Distribution of Global Nighttime Lights

    Get PDF
    Using open source data, we observe the fascinating dynamics of nighttime light. Following a global economic regime shift, the planetary center of light can be seen moving eastwards at a pace of about 60 km per year. Introducing spatial light Gini coefficients, we find a universal pattern of human settlements across different countries and see a global centralization of light. Observing 160 different countries we document the expansion of developing countries, the growth of new agglomerations, the regression in countries suffering from demographic decline and the success of light pollution abatement programs in western countries

    Rice monitoring using ENVISAT-ASAR data: preliminary results of a case study in the Mekong River Delta, Vietnam

    Get PDF
    Vietnam is one of the world’s largest rice exporting countries, and the fertile Mekong River Delta at the southern tip of Vietnam accounts for more than half of the country’s rice production. Unfortunately, a large part of rice crop growing time coincides with a rainy season, resulting in a limited number of cloud-free optical remote sensing images for rice monitoring. Synthetic aperture radar (SAR) data allows for observations independent of weather conditions and solar illumination, and is potentially well suited for rice crop monitoring. The aim of the study was to apply new generation Envisat ASAR data with dual polarization (HH and VV) to rice cropping system mapping and monitoring in An Giang province, Mekong River Delta. Several sample areas were established on the ground, where selected rice parameters (e.g. rice height and biomass) are periodically being measured over a period of 12 months. A correlation analysis of rice parameters and radar imagery values is then being conducted to determine the significance and magnitude of the relationships. This paper describes a review of the previous research studies on rice monitoring using SAR data, the context of this on-going study, and some preliminary results that provide insights on how ASAR imagery could be useful for rice crop monitoring. More work is being done to develop algorithms for mapping and monitoring rice cropping systems, and to validate a rice yield prediction model for one year cycle using time-series SAR imagery

    Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation

    Get PDF
    In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications
    corecore