336 research outputs found

    Oceanic Challenges to Technological Solutions : A Review of Autonomous Underwater Vehicle Path Technologies in Biomimicry, Control, Navigation, and Sensing

    Get PDF
    Autonomous Underwater Vehicles (AUVs) epitomize a revolutionary stride in underwater exploration, seamlessly assuming tasks once exclusive to manned vehicles. Their collaborative prowess within joint missions has inaugurated a new epoch of intricate applications in underwater domains. This study’s primary aim is to scrutinize recent technological advancements in AUVs and their role in navigating the complexities of underwater environments. Through a meticulous review of literature and empirical studies, this review synthesizes recent technological strides, spotlighting developments in biomimicry models, cutting-edge control systems, adaptive navigation algorithms, and pivotal sensor arrays crucial for exploring and mapping the ocean floor. The article meticulously delineates the profound impact of AUVs on underwater robotics, offering a comprehensive panorama of advancements and illustrating their far-reaching implications for underwater exploration and mapping. This review furnishes a holistic comprehension of the current landscape of AUV technology. This condensed overview furnishes a swift comparative analysis, aiding in discerning the focal points of each study while spotlighting gaps and intersections within the existing body of knowledge. It efficiently steers researchers toward complementary sources, enabling a focused examination and judicious allocation of time to the most pertinent studies. Furthermore, it functions as a blueprint for comprehensive studies within the AUV domain, pinpointing areas where amalgamating multiple sources would yield a more comprehensive understanding. By elucidating the purpose, employing a robust methodology, and anticipating comprehensive results, this study endeavors to serve as a cornerstone resource that not only encapsulates recent technological strides but also provides actionable insights and directions for advancing the field of underwater robotics.© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    Soft Robots for Ocean Exploration and Offshore Operations: A Perspective

    Get PDF
    The ocean and human activities related to the sea are under increasing pressure due to climate change, widespread pollution, and growth of the offshore energy sector. Data, in under-sampled regions of the ocean and in the offshore patches where the industrial expansion is taking place, are fundamental to manage successfully a sustainable development and to mitigate climate change. Existing technology cannot cope with the vast and harsh environments that need monitoring and sampling the most. The limiting factors are, among others, the spatial scales of the physical domain, the high pressure, and the strong hydrodynamic perturbations, which require vehicles with a combination of persistent autonomy, augmented efficiency, extreme robustness, and advanced control. In light of the most recent developments in soft robotics technologies, we propose that the use of soft robots may aid in addressing the challenges posed by abyssal and wave-dominated environments. Nevertheless, soft robots also allow for fast and low-cost manufacturing, presenting a new potential problem: marine pollution from ubiquitous soft sampling devices. In this study, the technological and scientific gaps are widely discussed, as they represent the driving factors for the development of soft robotics. Offshore industry supports increasing energy demand and the employment of robots on marine assets is growing. Such expansion needs to be sustained by the knowledge of the oceanic environment, where large remote areas are yet to be explored and adequately sampled. We offer our perspective on the development of sustainable soft systems, indicating the characteristics of the existing soft robots that promote underwater maneuverability, locomotion, and sampling. This perspective encourages an interdisciplinary approach to the design of aquatic soft robots and invites a discussion about the industrial and oceanographic needs that call for their application

    Amphibious NDT Robots

    Get PDF
    Oil, petrochemical, and food processing industries worldwide store their raw materials and product in tens of thousands of storage tanks. The tanks are mostly constructed using welded steel plates and therefore subject to corrosion and weld cracking. Testing the structural integrity of these storage tanks with non-destructive testing (NDT) techniques is an expensive and time consuming activity. The walls of a large tank can usually be tested manually (for corrosion thinning and weld defects using ultrasonic techniques) from outside the tank. Access to most areas of a wall is obtained by constructing scaffolding or abseiling down from the top. However, erecting scaffolding is expensive and the inspection is tedious and slow. These costs can be reduced and the inspection speeded up by using climbing robots that deploy ultrasonic probes with scanning arms

    Controlling swimming and crawling in a fish robot using a central pattern generator

    Get PDF
    Online trajectory generation for robots with multiple degrees of freedom is still a difficult and unsolved problem, in particular for non-steady state locomotion, that is, when the robot has to move in a complex environment with continuous variations of the speed, direction, and type of locomotor behavior. In this article we address the problem of controlling the non-steady state swimming and crawling of a novel fish robot. For this, we have designed a control architecture based on a central pattern generator (CPG) implemented as a system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. To test our controller, we designed BoxyBot, a simple fish robot with three actuated fins capable of swimming in water and crawling on firm ground. Using the CPG model, the robot is capable of performing and switching between a variety of different locomotor behaviors such as swimming forwards, swimming backwards, turning, rolling, moving upwards/downwards, and crawling. These behaviors are triggered and modulated by sensory input provided by light, water, and touch sensors. Results are presented demonstrating the agility of the robot and interesting properties of a CPG-based control approach such as stability of the rhythmic patterns due to limit cycle behavior, and the production of smooth trajectories despite abrupt changes of control parameters. The robot is currently used in a temporary 20-month long exhibition at the EPFL. We present the hardware setup that was designed for the exhibition, and the type of interactions with the control system that allow visitors to influence the behavior of the robot. The exhibition is useful to test the robustness of the robot for long term use, and to demonstrate the suitability of the CPG-based approach for interactive control with a human in the loop. This article is an extended version of an article presented at BioRob2006 the first IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronic
    corecore