139,518 research outputs found

    An Object-Oriented Programming Environment for Parallel Genetic Algorithms

    Get PDF
    This thesis investigates an object-oriented programming environment for building parallel applications based on genetic algorithms (GAs). It describes the design of the Genetic Algorithms Manipulation Environment (GAME), which focuses on three major software development requirements: flexibility, expandability and portability. Flexibility is provided by GAME through a set of libraries containing pre-defined and parameterised components such as genetic operators and algorithms. Expandability is offered by GAME'S object-oriented design. It allows applications, algorithms and genetic operators to be easily modified and adapted to satisfy diverse problem's requirements. Lastly, portability is achieved through the use of the standard C++ language, and by isolating machine and operating system dependencies into low-level modules, which are hidden from the application developer by GAME'S application programming interfaces. The development of GAME is central to the Programming Environment for Applications of PArallel GENetic Algorithms project (PAPAGENA). This is the principal European Community (ESPRIT III) funded parallel genetic algorithms project. It has two main goals: to provide a general-purpose tool kit, supporting the development and analysis of large-scale parallel genetic algorithms (PGAs) applications, and to demonstrate the potential of applying evolutionary computing in diverse problem domains. The research reported in this thesis is divided in two parts: i) the analysis of GA models and the study of existing GA programming environments from an application developer perspective; ii) the description of a general-purpose programming environment designed to help with the development of GA and PGA-based computer programs. The studies carried out in the first part provide the necessary understanding of GAs' structure and operation to outline the requirements for the development of complex computer programs. The second part presents GAME as the result of combining development requirements, relevant features of existing environments and innovative ideas, into a powerful programming environment. The system is described in terms of its abstract data structures and sub-systems that allow the representation of problems independently of any particular GA model. GAME's programming model is also presented as general-purpose object-oriented framework for programming coarse-grained parallel applications. GAME has a modular architecture comprising five modules: the Virtual Machine, the Parallel Execution Module, the Genetic Libraries, the Monitoring Control Module, and the Graphic User Interface. GAME's genetic-oriented abstract data structures, and the Virtual Machine, isolates genetic operators and algorithms from low-level operations such as memory management, exception handling, etc. The Parallel Execution Module supports GAME's object- oriented parallel programming model. It defines an application programming interface and a runtime library that allow the same parallel application, created within the environment, to run on different hardware and operating system platforms. The Genetic Libraries outline a hierarchy of components implemented as parameterised versions of standard and custom genetic operators, algorithms and applications. The Monitoring Control Module supports dynamic control and monitoring of simulations, whereas the Graphic User Interface defines a basic framework and graphic 'widgets' for displaying and entering data. This thesis describes the design philosophy and rationale behind these modules, covering in more detail the Virtual Machine, the Parallel Execution Module and the Genetic Libraries. The assessment discusses the system's ability to satisfy the main requirements of GA and PGA software development, as well as the features that distinguish GAME from other programming environments

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure
    • …
    corecore