4 research outputs found

    Development of a Data Driven Multiple Observer and Causal Graph Approach for Fault Diagnosis of Nuclear Power Plant Sensors and Field Devices

    Get PDF
    Data driven multiple observer and causal graph approach to fault detection and isolation is developed for nuclear power plant sensors and actuators. It can be integrated into the advanced instrumentation and control system for the next generation nuclear power plants. The developed approach is based on analytical redundancy principle of fault diagnosis. Some analytical models are built to generate the residuals between measured values and expected values. Any significant residuals are used for fault detection and the residual patterns are analyzed for fault isolation. Advanced data driven modeling methods such as Principal Component Analysis and Adaptive Network Fuzzy Inference System are used to achieve on-line accurate and consistent models. As compared with most current data-driven modeling, it is emphasized that the best choice of model structure should be obtained from physical study on a system. Multiple observer approach realizes strong fault isolation through designing appropriate residual structures. Even if one of the residuals is corrupted, the approach is able to indicate an unknown fault instead of a misleading fault. Multiple observers are designed through making full use of the redundant relationships implied in a process when predicting one variable. Data-driven causal graph is developed as a generic approach to fault diagnosis for nuclear power plants where limited fault information is available. It has the potential of combining the reasoning capability of qualitative diagnostic method and the strength of quantitative diagnostic method in fault resolution. A data-driven causal graph consists of individual nodes representing plant variables connected with adaptive quantitative models. With the causal graph, fault detection is fulfilled by monitoring the residual of each model. Fault isolation is achieved by testing the possible assumptions involved in each model. Conservatism is implied in the approach since a faulty sensor or a fault actuator signal is isolated only when their reconstructions can fully explain all the abnormal behavior of the system. The developed approaches have been applied to nuclear steam generator system of a pressurized water reactor and a simulation code has been developed to show its performance. The results show that both single and dual sensor faults and actuator faults can be detected and isolated correctly independent of fault magnitudes and initial power level during early fault transient

    An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems

    Get PDF
    In this dissertation an integrated framework of process performance monitoring and fault diagnosis was developed for nuclear power systems using robust data driven model based methods, which comprises thermal hydraulic simulation, data driven modeling, identification of model uncertainty, and robust residual generator design for fault detection and isolation. In the applications to nuclear power systems, on the one hand, historical data are often not able to characterize the relationships among process variables because operating setpoints may change and thermal fluid components such as steam generators and heat exchangers may experience degradation. On the other hand, first-principle models always have uncertainty and are often too complicated in terms of model structure to design residual generators for fault diagnosis. Therefore, a realistic fault diagnosis method needs to combine the strength of first principle models in modeling a wide range of anticipated operation conditions and the strength of data driven modeling in feature extraction. In the developed robust data driven model-based approach, the changes in operation conditions are simulated using the first principle models and the model uncertainty is extracted from plant operation data such that the fault effects on process variables can be decoupled from model uncertainty and normal operation changes. It was found that the developed robust fault diagnosis method was able to eliminate false alarms due to model uncertainty and deal with changes in operating conditions throughout the lifetime of nuclear power systems. Multiple methods of robust data driven model based fault diagnosis were developed in this dissertation. A complete procedure based on causal graph theory and data reconciliation method was developed to investigate the causal relationships and the quantitative sensitivities among variables so that sensor placement could be optimized for fault diagnosis in the design phase. Reconstruction based Principal Component Analysis (PCA) approach was applied to deal with both simple faults and complex faults for steady state diagnosis in the context of operation scheduling and maintenance management. A robust PCA model-based method was developed to distinguish the differences between fault effects and model uncertainties. In order to improve the sensitivity of fault detection, a hybrid PCA model based approach was developed to incorporate system knowledge into data driven modeling. Subspace identification was proposed to extract state space models from thermal hydraulic simulations and a robust dynamic residual generator design algorithm was developed for fault diagnosis for the purpose of fault tolerant control and extension to reactor startup and load following operation conditions. The developed robust dynamic residual generator design algorithm is unique in that explicit identification of model uncertainty is not necessary. Finally, it was demonstrated that the developed new methods for the IRIS Helical Coil Steam Generator (HCSG) system. A simulation model was first developed for this system. It was revealed through steady state simulation that the primary coolant temperature profile could be used to indicate the water inventory inside the HCSG tubes. The performance monitoring and fault diagnosis module was then developed to monitor sensor faults, flow distribution abnormality, and heat performance degradation for both steady state and dynamic operation conditions. This dissertation bridges the gap between the theoretical research on computational intelligence and the engineering design in performance monitoring and fault diagnosis for nuclear power systems. The new algorithms have the potential of being integrated into the Generation III and Generation IV nuclear reactor I&C design after they are tested on current nuclear power plants or Generation IV prototype reactors

    Event-Oriented Dynamic Adaptation of Workflows: Model, Architecture and Implementation

    Get PDF
    Workflow management is widely accepted as a core technology to support long-term business processes in heterogeneous and distributed environments. However, conventional workflow management systems do not provide sufficient flexibility support to cope with the broad range of failure situations that may occur during workflow execution. In particular, most systems do not allow to dynamically adapt a workflow due to a failure situation, e.g., to dynamically drop or insert execution steps. As a contribution to overcome these limitations, this dissertation introduces the agent-based workflow management system AgentWork. AgentWork supports the definition, the execution and, as its main contribution, the event-oriented and semi-automated dynamic adaptation of workflows. Two strategies for automatic workflow adaptation are provided. Predictive adaptation adapts workflow parts affected by a failure in advance (predictively), typically as soon as the failure is detected. This is advantageous in many situations and gives enough time to meet organizational constraints for adapted workflow parts. Reactive adaptation is typically performed when predictive adaptation is not possible. In this case, adaptation is performed when the affected workflow part is to be executed, e.g., before an activity is executed it is checked whether it is subject to a workflow adaptation such as dropping, postponement or replacement. In particular, the following contributions are provided by AgentWork: A Formal Model for Workflow Definition, Execution, and Estimation: In this context, AgentWork first provides an object-oriented workflow definition language. This language allows for the definition of a workflow\u92s control and data flow. Furthermore, a workflow\u92s cooperation with other workflows or workflow systems can be specified. Second, AgentWork provides a precise workflow execution model. This is necessary, as a running workflow usually is a complex collection of concurrent activities and data flow processes, and as failure situations and dynamic adaptations affect running workflows. Furthermore, mechanisms for the estimation of a workflow\u92s future execution behavior are provided. These mechanisms are of particular importance for predictive adaptation. Mechanisms for Determining and Processing Failure Events and Failure Actions: AgentWork provides mechanisms to decide whether an event constitutes a failure situation and what has to be done to cope with this failure. This is formally achieved by evaluating event-condition-action rules where the event-condition part describes under which condition an event has to be viewed as a failure event. The action part represents the necessary actions needed to cope with the failure. To support the temporal dimension of events and actions, this dissertation provides a novel event-condition-action model based on a temporal object-oriented logic. Mechanisms for the Adaptation of Affected Workflows: In case of failure situations it has to be decided how an affected workflow has to be dynamically adapted on the node and edge level. AgentWork provides a novel approach that combines the two principal strategies reactive adaptation and predictive adaptation. Depending on the context of the failure, the appropriate strategy is selected. Furthermore, control flow adaptation operators are provided which translate failure actions into structural control flow adaptations. Data flow operators adapt the data flow after a control flow adaptation, if necessary. Mechanisms for the Handling of Inter-Workflow Implications of Failure Situations: AgentWork provides novel mechanisms to decide whether a failure situation occurring to a workflow affects other workflows that communicate and cooperate with this workflow. In particular, AgentWork derives the temporal implications of a dynamic adaptation by estimating the duration that will be needed to process the changed workflow definition (in comparison with the original definition). Furthermore, qualitative implications of the dynamic change are determined. For this purpose, so-called quality measuring objects are introduced. All mechanisms provided by AgentWork include that users may interact during the failure handling process. In particular, the user has the possibility to reject or modify suggested workflow adaptations. A Prototypical Implementation: Finally, a prototypical Corba-based implementation of AgentWork is described. This implementation supports the integration of AgentWork into the distributed and heterogeneous environments of real-world organizations such as hospitals or insurance business enterprises

    NERI PROJECT 99-119. TASK 2. DATA-DRIVEN PREDICTION OF PROCESS VARIABLES. FINAL REPORT

    Full text link
    corecore