
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2002

Development of a Data Driven Multiple Observer and Causal Development of a Data Driven Multiple Observer and Causal

Graph Approach for Fault Diagnosis of Nuclear Power Plant Graph Approach for Fault Diagnosis of Nuclear Power Plant

Sensors and Field Devices Sensors and Field Devices

Ke Zhao
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Nuclear Engineering Commons

Recommended Citation Recommended Citation
Zhao, Ke, "Development of a Data Driven Multiple Observer and Causal Graph Approach for Fault
Diagnosis of Nuclear Power Plant Sensors and Field Devices. " Master's Thesis, University of Tennessee,
2002.
https://trace.tennessee.edu/utk_gradthes/2071

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Ke Zhao entitled "Development of a Data Driven

Multiple Observer and Causal Graph Approach for Fault Diagnosis of Nuclear Power Plant

Sensors and Field Devices." I have examined the final electronic copy of this thesis for form and

content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Nuclear Engineering.

Belle R. Upadhyaya, Major Professor

We have read this thesis and recommend its acceptance:

J. Wesley Hines, Laurence F. Miller

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Ke Zhao entitled “Development of a Data

Driven Multiple Observer and Causal Graph Approach for Fault Diagnosis of Nuclear

Power Plant Sensors and Field Devices.” I have examined the final electronic copy of

this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Master of Science, with a major in Nuclear

Engineering.

Belle R. Upadhyaya

Major Professor

We have read this thesis and

recommend its acceptance:

J. Wesley Hines

Laurence F. Miller

 Accepted for the Council:

Anne Mayhew

 Vice Provost and Dean of

 Graduate Studies

(Original signatures are on file with official student records.)

Development of a Data Driven Multiple Observer and
Causal Graph Approach for Fault Diagnosis

of Nuclear Power Plant Sensors and Field Devices

A Thesis

Presented for the Master of Science Degree

The University of Tennessee, Knoxville

Ke Zhao

December 2002

 ii

Dedication

This thesis is dedicated to my parents and my wife for their always inspiring me

and encouraging me to reach higher in my career.

 iii

Acknowledgments

I thank all those who helped me in completing the Master of Science degree in

Nuclear Engineering. I thank Dr. B. R. Upadhyaya for his invaluable guidance all

through the research work. I thank Dr. J. W. Hines for introducing me to statistical

modeling and adaptive network fuzzy inference modeling. I thank Dr. L. F. Miller for

serving on my committee.

Dr. H. L Dodds and Dr. B. R. Upadhyaya of the Nuclear Engineering Department

of the University of Tennessee are especially appreciated for providing the research

assistantship.

 iv

Abstract

Data driven multiple observer and causal graph approach to fault detection and

isolation is developed for nuclear power plant sensors and actuators. It can be integrated

into the advanced instrumentation and control system for the next generation nuclear

power plants.

The developed approach is based on analytical redundancy principle of fault

diagnosis. Some analytical models are built to generate the residuals between measured

values and expected values. Any significant residuals are used for fault detection and the

residual patterns are analyzed for fault isolation.

Advanced data driven modeling methods such as Principal Component Analysis

and Adaptive Network Fuzzy Inference System are used to achieve on-line accurate and

consistent models. As compared with most current data-driven modeling, it is

emphasized that the best choice of model structure should be obtained from physical

study on a system.

Multiple observer approach realizes strong fault isolation through designing

appropriate residual structures. Even if one of the residuals is corrupted, the approach is

able to indicate an unknown fault instead of a misleading fault. Multiple observers are

designed through making full use of the redundant relationships implied in a process

when predicting one variable.

Data-driven causal graph is developed as a generic approach to fault diagnosis for

nuclear power plants where limited fault information is available. It has the potential of

combining the reasoning capability of qualitative diagnostic method and the strength of

quantitative diagnostic method in fault resolution. A data-driven causal graph consists of

individual nodes representing plant variables connected with adaptive quantitative

models. With the causal graph, fault detection is fulfilled by monitoring the residual of

each model. Fault isolation is achieved by testing the possible assumptions involved in

each model. Conservatism is implied in the approach since a faulty sensor or a fault

actuator signal is isolated only when their reconstructions can fully explain all the

abnormal behavior of the system.

 v

The developed approaches have been applied to nuclear steam generator system

of a pressurized water reactor and a simulation code has been developed to show its

performance. The results show that both single and dual sensor faults and actuator faults

can be detected and isolated correctly independent of fault magnitudes and initial power

level during early fault transient.

 vi

Table of Contents

1. INTRODUCTION ..1
1.1 BACKGROUND AND MOTIVATION .. 1
1.2 STATEMENT OF THE PROBLEM ... 4

1.2.1 Multi-operational regimes... 5
1.2.2 Dynamic process behavior.. 5
1.2.3 Controller feedback effects ... 6
1.2.4 Complexity of fault natures .. 6
1.2.5 Multiple faults... 7
1.2.6 Complex systems .. 7

1.3 CURRENT SOLUTION .. 8
1.3.1 Hardware redundancy ... 8
1.3.2 Reactor spectral analysis... 8
1.3.3 Analytical redundancy analysis .. 9

1.4 TECHNICAL APPROACH AND TASK DEFINITION ... 10
1.5 CONTRIBUTIONS OF THE THESIS... 14
1.6 ORGANIZATION OF THE THESIS .. 16

2. LITERATURE REVIEW ...18
2.1 DATA RECONCILIATION ... 18
2.2 MODEL BASED APPROACH... 19

2.2.1 Parity space approach ... 19
2.2.2 State estimation approach ... 21
2.2.3 Parameter estimation approach ... 22

2.3 PATTERN RECOGNITION... 23
2.4 SIGN DIRECTED GRAPH ... 24
2.5 BOND GRAPH... 25

3. GENERAL DESIGN FOR NUCLEAR SG SYSTEM................27
3.1 DESCRIPTION OF NUCLEAR SG SYSTEM ... 27
3.2 AVAILABLE MEASUREMENTS .. 29
3.3 ENUMERATION OF SINGLE FAULTS .. 29
3.4 ENUMERATION OF SIMULTANEOUS FAULTS... 29
3.5 SCOPE OF THE STUDIED FAULTS .. 33
3.6 DATA PREPARATION FOR MODELING... 34
3.7 FAULT RESPONSE ANALYSIS.. 36

3.7.1 Feed water flow meter positive offset fault .. 36
3.7.2 Steam water flow meter positive offset fault .. 37
3.7.3 Steam generator pressure sensor offset fault .. 38
3.7.4 Feed water control valve position fault... 38
3.7.5 SG narrow range level sensor fault... 39

 vii

4. PRINCIPAL COMPONENT ANALYSIS FOR FAULT
DIAGNOSIS...42

4.1 PCA ALGORITHMS .. 42
4.2 PCA FOR FAULT DETECTION ... 44

4.2.1 2T statistics ... 44
4.2.2 Q statistics... 45

4.3 PCA FOR FAULT IDENTIFICATION.. 46
4.4 PCA FAULT ISOLATION VERSUS PARITY SPACE APPROACH 47
4.5 PCA FAULT ISOLATION BASED ON FAULT DIRECTION 48
4.6 DETERMINATION OF THE NUMBER OF CONSTRAINTS ... 50
4.7 RECOMMENDED PCA BASED FDI PROCEDURE ... 50
4.8 APPLICATION TO NUCLEAR PLANT SG SYSTEM .. 51

4.8.1 Development of PCA model... 51
4.8.2 Fault detection... 57
4.8.3 Fault identification .. 61
4.8.4 Fault isolation.. 61

4.9 DISCUSSIONS ... 72

5. ADAPTIVE FUZZY INFERENCE SYSTEM FOR FAULT
DIAGNOSIS...73

5.1 ANFIS ARCHITECTURE ... 73
5.2 ANFIS LEARNING RULE.. 76
5.3 STRUCTURED RESIDUAL DESIGN APPROACH ... 81
5.4 APPLICATION TO NUCLEAR PLANT SG SYSTEM .. 81

5.4.1 Dedicated residual design for dual faults.. 85
5.4.2 ANFIS modeling for SG system... 87
5.4.3 Model testing and validation... 87
5.4.4 FDI Results ... 92

5.5 DISCUSSIONS ... 99

6. DATA DRIVEN MODEL CAUSAL GRAPH FOR FAULT
DIAGNOSIS.. 101

6.1 INTRODUCTION .. 101
6.2 CAUSE EFFECT REASONING USING MODEL CAUSAL GRAPH 101
6.3 EXTENDED MODEL CAUSAL GRAPH .. 105

6.3.1 Multi-model causal graph ... 105
6.3.2 Model causal graph with hidden nodes... 107

6.4 MODEL CAUSAL GRAPH APPROACH WITH FUZZY INFERENCE MODELING....... 108
6.5 PROCEDURES OF MODEL CAUSAL GRAPH APPROACH 109
6.6 APPLICATION TO NUCLEAR SG SYSTEM.. 110
6.7 COMPARISON WITH OTHER APPROACHES .. 120

7. PICASSO USER INTERFACE DESIGN 124
7.1 INTRODUCTION .. 124

 viii

7.2 PICASSO DEVELOPMENT ENVIRONMENT.. 125
7.3 APPLICATION PROCESS DESIGN ... 127
7.4 DESCRIPTIONS OF THE MAJOR FUNCTIONS .. 129
7.5 USER INTERFACE DESIGN .. 131

8. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
FOR FUTURE WORK .. 138

8.1 SUMMARY.. 138
8.2 CONCLUSIONS.. 139
8.3 RECOMMENDATIONS FOR FUTURE WORK .. 140

REFERENCES ... 143
APPENDIX.. 148

APPENDIX A MATLAB CODE FOR PCA FAULT DETECTION.. 149
APPENDIX B MATLAB CODE FOR PCA FAULT ISOLATION ... 154
APPENDIX C MATLAB CODE FOR ANFIS MODEL BASED FAULT ISOLATION 159
APPENDIX D C++ CODE FOR USER INTERFACE.. 162

VITA .. 179

 ix

List of Figures

Figure 1.1. A proposed schematic of on-line incipient fault detection and isolation
(FDI) for nuclear power plants (NPPs). .. 3

Figure 1.2. Schematic diagram of the overall technical approach. 13
Figure 3.1. SG water level control system... 28
Figure 3.2. SDG graph of nuclear SG system.. 32
Figure 3.3. SG Level measurement responding to SG NR level sensor fault................ 41
Figure 4.1. Fractions of the variance explained by different PC components. 54
Figure 4.2. Comparison between the predicted SG NR level and the actual values...... 54
Figure 4.3. T square statistics for the normal data. .. 58
Figure 4.4. Q statistics for the normal data.. 58
Figure 4.5. T square statistics to detect steam flow meter and feed water flow meter

drift faults. .. 59
Figure 4.6. Q statistics for steam flow meter drift fault and steam flow meter drift fault.

.. 59
Figure 4.7. Contribution plot in the model space for feed water flow meter fault. 62
Figure 4.8. Contribution plot in the residual space for feed water flow meter fault...... 62
Figure 4.9. Fault direction for feed water flow meter offset fault and SG NR level

sensor offset fault without using SG WR level signal. .. 64
Figure 4.10. Fault direction for feed water flow meter offset fault. 64
Figure 4.11. Fault direction for steam flow meter offset fault... 66
Figure 4.12. Fault direction for feed water flow meter offset fault and steam flow meter

offset fault. ... 66
Figure 4.13. Fault direction for feed water flow meter offset fault and SG NR level

sensor offset fault. .. 67
Figure 4.14. Fault direction for steam flow meter offset fault and SG NR level sensor

offset fault. ... 67
Figure 4.15. Fault direction for SG pressure sensor offset fault. 68
Figure 4.16. Fault direction for feed water flow meter offset fault and SG pressure sensor

offset fault. ... 68
Figure 4.17. Fault direction for feed water flow meter offset fault and FCV position

offset fault. ... 69
Figure 4.18. Fault direction for steam flow meter offset fault and FCV position offset

fault... 69
Figure 4.19. Fault direction for FCV position offset fault... 70
Figure 4.20. Fault direction for SG level sensor offset fault and SG pressure sensor offset

fault... 70
Figure 4.21. Fault direction for SG level sensor offset fault. .. 71
Figure 4.22. Fault direction for steam flow meter offset fault and SG pressure sensor

offset fault. ... 71
Figure 5.1. Schematic for Sugeno-type ANFIS System. ... 77
Figure 5.2. Membership for the two inputs to predict feed water flow rate using ANFIS.

.. 88

 x

Figure 5.3. Transient simulation of SG NR level using ANFIS model. 90
Figure 5.4. Transient simulation of steam flow rate using ANFIS model. 90
Figure 5.5. Transient simulation of FCV flow rate using ANFIS model. 91
Figure 5.6. Transient simulation of FCV position using ANFIS model........................ 91
Figure 5.7. Unstable residual of SG level for SG pressure and steam flow meter fault.93
Figure 5.8. Stable residual of SG level for SG pressure and steam flow meter fault. ... 93
Figure 5.9. Structured residual pattern using ANFIS models(100% Power, -1% offset

fault). .. 95
Figure 5.10. Structured residual pattern using ANFIS models(100% Power, -2% offset

fault). .. 95
Figure 5.11. Structured residual pattern using ANFIS models(100% Power, -3% offset

fault). .. 96
Figure 5.12. Structured residual pattern using ANFIS models(100% Power, 1% offset

fault). .. 96
Figure 5.13. Structured residual pattern using ANFIS models(100% Power, 2% offset

fault). .. 97
Figure 5.14. Structured residual pattern using ANFIS models(100% Power, 3% offset

fault). .. 97
Figure 5.15. Structured residual pattern using ANFIS models(80% Power, -1% offset

fault). .. 98
Figure 6.1. A simple example of model causal graph.. 103
Figure 6.2. Dynamic model causal graph representation of a feedback control loop.. 104
Figure 6.3. Multiple models to isolate output faults. ... 106
Figure 6.4. Multiple models to isolate input faults. ... 106
Figure 6.5. An example of multiple-model causal graph... 107
Figure 6.6. Model Causal Graph with hidden nodes. .. 108
Figure 6.7. Model Causal Graph of nuclear SG system. ... 111
Figure 6.8. Controller output for controller gain offset fault. 113
Figure 6.9. Controller output for feed water flow meter sensor fault. 113
Figure 6.10. Change of valve position for valve position fault. 114
Figure 6.11. Change of valve position for feed water flow meter sensor fault.............. 114
Figure 6.12. Model causal graph of feed water flow rate. ... 115
Figure 6.13. Model causal graph approach to isolate feed water flow meter sensor fault.

.. 115
Figure 6.14. Model causal graph approach to isolate SG pressure sensor fault using feed

water flow rate model... 116
Figure 6.15. Model causal graph approach to isolate steam flow meter sensor fault. ... 118
Figure 6.16. Model causal graph approach to isolate feed water flow meter sensor fault.

.. 118
Figure 6.17. Model causal graph approach to isolate SG pressure sensor using steam

flow rate model... 119
Figure 6.18. Model causal graph of SG level measurement. ... 119
Figure 6.19. Model causal graph approach to isolate SG level sensor fault. 121
Figure 6.20. Model causal graph approach to isolate feed water flow meter sensor fault

and SG pressure sensor fault. ... 121

 xi

Figure 6.21. Model causal graph approach to isolate SG pressure sensor fault and feed
water flow meter sensor fault. .. 122

Figure 7.1. Schematic of Picasso-3 system.. 126
Figure 7.2. The flowchart of Picasso application process. .. 128
Figure 7.3. The main window of the graphic user interface. 132
Figure 7.4. Fault creation window to change fault related parameters. 134
Figure 7.5. Steady State FDI diagnostic window. ... 136
Figure 7.6. FDI simulation window... 137

 xii

List of Tables

Table 3.1. Available measured variables for the FDI of nuclear SG system........30
Table 3.2. Summary of the steady state responses to the single faults41
Table 4.1. Measured variables used to develop PCA model53
Table 5.1. Structured residual design for weak fault isolation82
Table 5.2. Structured residual design for strong fault isolation............................82
Table 5.3. Consistency checking using natural redundant relations.....................84
Table 5.4. Dedicated residual structure for SG system...94

 xiii

Acronyms

ANFIS Adaptive network fuzzy inference system

API Application program interface

DOF Degree of fulfillment

FDI Fault detection and isolation

FCV Feed water control valve

GED Graphic editor

GMDH Group method of data handling

GUI Graphic user interface

NPP Nuclear power plant

NR Narrow range

Picasso A user interface development software

PCA Principal component analysis

PLS Partial least square

PWR Pressurized water reactor

RTM Real time management

SDG Sign directed graph

SG Steam generator

SimPWR Code name for PWR system simulation

TCV Turbine control valve

UIMS User interface management system

UTSG U-tube steam generator

WR Wide range

 1

Chapter 1

Introduction

1.1 Background and Motivation

Fault Detection and Isolation (FDI) has been considered as an important strategy

to improve operational performance in a variety of industries for a long time. A fault in a

process is defined as any malfunction of sensors, controllers and field devices at the

initial stage, which may ultimately affect the operational performance. The most

important objectives of fault detection and isolation are to prevent a sudden equipment

failure, collect information on malfunctions, improve maintenance planning, and have a

better plant control such that optimal operational performance can be achieved

(Himmelblau, 1978). It brings about significant benefits through minimizing the

downtime, enhancing the safety and reducing the manufacturing cost (Upadhyaya, 1999).

In nuclear power plants (NPPs), FDI becomes increasingly emphasized with the

strategic development of advanced plant instrumentation and control. Owing to the

revolution of digitization, the abundant available measurements have provided the

opportunity to automate FDI. The incorporation of FDI as an indispensable part of

modern instrumentation and control system has begun to be further speeded up.

In current nuclear power plants, some major deficiencies of plant instrumentation

and control design which are affecting the economic performance and safety features, are

as follows (White, 1994):

• Unscheduled plant trips are not rare due to component failures.

• Important indications of abnormal conditions are masked by many less important

alarms during some transients.

• Operators face difficulties to determine which alarms are due to an important

initiating event and which alarms are due to operation action such as out-of-service

components undergoing maintenance.

• Due to fault propagation, the fault alarms may occur in an order different from that

the fault occurs.

 2

In order to overcome these problems, the advanced instrumentation and control

system has been defined with the following features (EPRI, 1994):

• Fault-tolerant systems should be introduced to avoid misinformation.

• Digital systems should enable the plant to have self-diagnostics and on-line

replacement. Failed equipment can be replaced and fixed on non-outage time.

• “Adaptive tuning, drift-free operation, and nonlinear compensation" should be

achieved to avoid human errors.

 In fact, the automation of FDI has become an important measure to differ

advanced instrumentation and control system from a traditional one in nuclear power

plants. Figure 1.1 illustrates the interface between FDI system and the advanced

instrumentation and control system. On the one hand, the FDI system is able to provide

fault information to either an operator support system or a plant surveillance system.

This information assists operators in making optimal maintenance planning and fault

management. On the other hand, the FDI system provides inputs to some software driven

protection logic and software driven control algorithms either to compensate for fault

effects or to implement safeguard.

The overall objective of the thesis is to develop some FDI algorithms that can be

integrated into the advanced instrumentation and control system. Because the algorithms

aim at on-line implementation for a nuclear power plant, the following performances

must be satisfied:

• The fault detection module can detect an incipient fault but will not trigger a false

alarm during any normal plant transients.

• A fault can be correctly diagnosed regardless of its fault magnitude and the initial

plant condition when the fault occurs.

• If one of the fault signatures is corrupted or degenerated due to process noise or

measurement noise, the algorithm will indicate an unknown fault instead of being

misdiagnosed as another fault.

• A fault must be detected and isolated during its fault transient rather than after a new

steady state has arrived in order to overcome the problem with controller

compensation.

 3

Figure 1.1. A proposed schematic of on-line incipient fault detection and isolation (FDI)
for nuclear power plants (NPPs).

Operator Support
System

Data
Acquisition

Process
Fault

Controller
Fault

Sensor
Fault Software Driven

Control
Algorithm

Plant Surveillance
System

(Risk monitor)

Fault
Detection

Fault
Isolation

Software Driven
Protection Logic

Fault Recovery

 4

• In order to facilitate modularization in implementation, a decision should be made

only based on local evidences.

Since a large safety critical system is being dealt with, the following constraints

are imposed on the development:

• The possible faults may not be enumerable.

• The fault signatures can be obtained only from limited amount of fault data.

 In order to achieve the FDI algorithm with the above technical specification under

the above constraints advanced statistical inference based modeling such as Principal

Component Analysis (PCA) and artificial intelligence methods such as Adaptive Network

Fuzzy Inference System (ANFIS) are studied in order for adaptive modeling. As

compared with most current data-driven modeling, the best choice of model structure is

obtained from physical study on a system. After a systematic reviewing on the available

FDI methods in other industries and the implementation of PCA based approach and

ANFIS model based approach, data driven model causal graph is proposed as a general

approach to automatic FDI for nuclear power plants. This approach can naturally arrive

at efficient data driven modeling. The fault isolation is based on cause effect analysis on

model residuals. Therefore, it is unnecessary to enumerate faults and define the

associated fault signatures for fault isolation. Moreover, it also enables to isolate

simultaneous faults thanks to its excellent reasoning capability. In addition, since fault

isolation is considered as a process of confirming which fault candidate can fully explain

all the observed abnormal fault symptoms, the decision logic is inherent with

conservatism. It is concluded that the data driven model causal graph approach is

applicable to be integrated into the advanced instrumentation and control system for

nuclear power plants.

1.2 Statement of the Problem

Although many researches on FDI have been performed in other industries, some

special issues must be seriously addressed when those experiences are applied to nuclear

systems (Kaistha and Upadhyaya, 2001).

 5

1.2.1 Multi-operational regimes

A nuclear power plant may operate at numerous operational points such as start-

up operation, the change in power demand, the evolution of fuel cycle, performance

change of components throughout its lifetime, the change in system configuration to meet

safety requirements, etc. The designed FDI system must be adaptable to all these

operational regimes. For instance, the FDI system should be able to correctly isolate a

fault under all these operational conditions. A normal operational transient such as a

power change, a chemical-volume-control-system startup or shutdown, a steam generator

blow-down system startup or shutdown, will not trigger a false alarm. This requires that

the developed FDI system be able to adaptively adjust its models at all the operational

points.

1.2.2 Dynamic process behavior

A nuclear power plant always experiences some internal disturbances such as the

vibration of machinery components and turbulence induced fluctuation, and some

external disturbances such as the change in power demand. Therefore, all the state

variables and/or the measured variables are random variables due to measurement

disturbances or process disturbances.

Unlike a process dynamics, an electric circuit exhibits static behavior. Once an

electrical circuit is around its operation point, a set of algebraic equations can always be

found to characterize the relationship of the voltage, the current and the resistance among

certain nodes. By systematically checking the consistency of all the algebraic equations,

it is not difficult to detect a faulty component and isolate it within the circuit.

For a dynamic process, a set of algebraic equations may not be able to

characterize the relationship among process variables. Different initial conditions may

result in different sets of relationships. A set of differential equations may usually be

required to characterize a dynamic system.

Non-linearity results in additional difficulties in modeling the behavior of a

dynamic system especially for a nuclear power plant where many nonlinear components

such as valves, pumps, and controllers with dead band and saturation limits are utilized.

 6

The existence of non-linearity will also weaken certain good features of many FDI design

schemes.

1.2.3 Controller feedback effects

Many distributed feedback controllers are present in a nuclear power plant in

order to maintain the operation within the designed operation regimes. Power regulating

system controls the reactor power such that the power generation from the core matches

the desired power output of the plant. Steam generator (SG) water level control system

controls the feed water control valve position such that SG level is maintained at the set

point level. Pressurizer level and pressure control system manipulates the power of

electric heaters and spray flow rate such that the level and pressure is maintained at the

set point level.

Because of feedback controller, a sensor fault or an actuator fault will propagate

throughout the system. The fault propagation would create challenges to designing an

effective FDI system as described below (Dash and Venkatasubramanian, 2000):

• Data reconciliation approach is not applicable.

• A minor fault is harder to be detected and isolated.

• A fault may propagate from one subsystem to another subsystem through a control

system bridging them.

• A comparison between set points and measured values after a new steady state

cannot reveal the occurrence of a sensor fault that is involved in the feedback control

loop.

1.2.4 Complexity of fault natures

In a large system such as a nuclear plant, the natures of possible faults are very

complicated because many different components may be involved. From the FDI

methodology point of view, these components may be categorized as sensor fault,

actuator fault, controller fault, and process fault. With regard to fault effects on the

measurements, a fault can be classified as additive fault and multiplicative fault. The

 7

time dependence of fault magnitude allows categorizing a fault as abrupt fault, drift fault

and intermittent fault. None of the available FDI approaches has acceptable performance

for all the different types of faults.

1.2.5 Multiple faults

The importance of multiple fault diagnosis should not be underestimated simply

because its probability is much lower than single faults. In practice, in a facility such as

nuclear power plants where safety is always placed at the top, multiple fault diagnosis

plays a role as important as single fault diagnosis because the risk contribution due to

multiple faults is much higher than single faults. A good example that simultaneous

faults may have significant consequence is the Three-Mile-Island accident. One of the

major reasons for multiple faults is a common cause failure.

Multiple fault diagnostics is challenging because of the interacting nature of most

faults (Dash and Venkatasubramanian, 2000). In a complex process, the interaction of

different faults through a closed control loop would make the fault symptoms more

difficult to delineate. System non-linearity makes it even harder to develop analytical

methods to infer multiple faults simply based on the information contained in single

faults.

1.2.6 Complex systems

When most FDI techniques are applied to a complex system such as a nuclear

power plant, some serious difficulties may occur. These difficulties are:

• Many input variables may be involved in a model such that its accuracy may

deteriorate significantly.

• Faults in many subsystems may have the same symptoms.

• The system interaction or controller interaction among the subsystems may make the

causal-effect relation very complicated.

 8

1.3 Current Solution

1.3.1 Hardware redundancy

Serious consequences of a failure in an instrument system have resulted in great

conservatism in the design of nuclear power plants. Hardware redundancy is the

traditional design scheme to achieve this conservatism. When an instrument

measurement is used for system control, a voting logic based on several redundant

sensors is used to detect and isolate a faulty sensor. More conservatism has been

imposed upon the reactor protection systems. The designed safety-critical control system

must satisfy:

• Adequate redundancy.

• Adequate independence.

• Physical isolation.

Adequate redundancy means that multiple sensors or instrumentation channels

should be used. Adequate independence means the measurements should be performed

based upon multiple different principles. Physical isolation means that the sensors or

instrumentation channels should be physically isolated. The second and the third criteria

aim at defending common cause and common mode failures.

Hardware redundancy is the most effective way to detect and isolate an

instrument fault. However, it is too expensive to extend the philosophy to the whole

plant including all the auxiliary systems of a nuclear plant.

1.3.2 Reactor spectral analysis

Reactor spectral analysis is a widely used signal processing technology to detect

and isolate a fault at the component level.

“Reactor spectral analysis is basically a statistical technique for extracting

information on reactor system dynamics from the fluctuations of measured

instrumentation signals during steady state operation. The small fluctuations of

measurable process signals are the results of stochastic effects inherent in physical

process such as heat transfer, boiling, coolant flow turbulence, fission process, structural

 9

vibrations and pressure oscillations. Reactor noise analysis can monitor and assess the

conditions of technological processes and the instrumentation in the nuclear reactor in a

non-intrusive, passive way” (Glockler and Tublett, 1995).

Some successful applications of reactor spectral analysis are summarized as

follows:

• Detection of abnormal operation of an instrument or an actuator.

• On-line monitoring of slowly changing parameters such as fuel-to-coolant heat

transfer coefficient, sensor degradation.

• Monitoring reactor stability and stability margin.

• Vibration analysis of reactor internals and components.

• Sensor response monitoring and failure detection.

Reactor spectral analysis is successful in detecting a sensor fault or an actuator

fault at the component level. Frequency spectrum analysis assumes that plant

measurements have a standard frequency spectrum under normal operations and any

deviation from the standard spectrum indicates an abnormal condition. One drawback of

reactor spectral analysis technique is the difficulty in its extension to the level of a system

or a plant. For example, if the steam generator water level control system is to be

monitored, an individual signal-processing unit must be designed for each signal.

Another drawback of reactor spectral analysis is that the signal characteristics and its

dependence on operation conditions of the system must be known for the faults of

concern.

Modern FDI technique, with analytical redundancy being the representative, has a

significant feature that the fault signature for a fault is not dependent on system operation

states. There would be long-term benefits to the operation of nuclear plants if modern

FDI technologies can be combined with the traditional reactor spectral analysis.

1.3.3 Analytical redundancy analysis

Analytical redundancy analysis is the foundation of modern FDI. It borrows the

idea from hardware redundancy. It takes advantage of the redundant information

 10

inherent in a physical system. First-principle or data-driven models of fault-free systems

are built to relate different measurements. These models can function as soft sensors

providing an additional redundancy to the measurement systems if none of the model

inputs is corrupted. In general, if the relations are violated, a conclusion can be drawn

that either the process or the measurements are not correct. This information can be used

as an indicator to fault detection. The deviation pattern can further be analyzed for fault

isolation.

Analytical redundancy based FDI approaches have some incomparable

advantages as compared with the traditional methods:

• The fault signature is independent of fault magnitudes.

• The fault signature is independent of the operation conditions when a fault occurs.

Therefore, the fault signature collected once for a fault is sufficient to characterize

the fault so that it can be isolated. The application of FDI technology has been

significantly speeded up since the analytical redundancy was introduced. It is evident

that FDI approaches dependent on large amounts of fault data to characterize a fault have

little value in engineering application.

However, as a principle, analytical redundancy does not give information about

how to generate and analyze fault signatures for fault detection and isolation. Depending

on the form of system knowledge available and the technical specification of the

designed FDI system, a variety of implementation strategies exist. A detailed description

of these approaches is given in Chapter 2. In the thesis, the difficulties of utilizing the

principle on FDI for nuclear power plants are addressed and engineering applicable

implementation strategies are pursued.

1.4 Technical Approach and Task Definition

The FDI process aims at inferring the root causes from the symptoms observed in

the measurements. These symptoms are the basis for an operator to make fault diagnosis.

The concept of an automatic FDI follows the same logic as a human being in making a

decision feature extraction, fault detection and fault isolation. Feature extraction

 11

compresses fault symptoms into a low dimensional space. Fault detection detects any

changes in the feature space. Fault isolation classifies the fault signatures into separate

fault classes.

Fault symptoms are observed in many measured variables. They can be

represented in three ways. The first one is the values of individual measurements. They

can be compared with certain set points dependent on operation conditions. The second

one is the change of measurements before and after a fault. A third one, the most

sophisticated one, is the residuals between measured values and the expected values

based on some analytical models. The analytical models can take advantage of the

redundancy of measurements inherent in a process such as energy conservation,

momentum conservation, mass conservation, etc. These models can be considered as

additional soft sensors available for checking consistency. In the thesis, the third

representation is used.

Analytical redundancy approach is used as the basis to develop FDI methods for

nuclear power plants. Plant models are built to characterize the relationship among plant

variables. Fault signatures are generated as deviations from the models. Different

modeling methods and different approaches to defining fault signatures have been studied

for fault detection and fault isolation.

A successful FDI system depends on accurate modeling. Accurate modeling

implies that the developed model is able to characterize a system with high accuracy.

However, because a nuclear power plant is so complicated, the available first principle

models are usually not accurate enough for FDI. For this reason, data driven modeling

method needs to be used which is able to learn a model from data. Many data driven

modeling techniques have been developed such as time series models, Kalman filtering

algorithms, Principal Component Analysis (PCA), Partial Least Squares (PLS) models,

Group Method of Data Handling (GMDH) and Artificial Neural Network. Different

modeling methods have their own advantages and disadvantages. In the thesis, PCA and

ANFIS are utilized.

Appropriate choice of model structure is essential to building data-driven models.

For example, if many input variables are involved in a neural network model, it is very

 12

difficult to train it. Moreover, more input variables need more measurements for training,

which may cause a delay in fault detection. In addition, the co-linearity contained in the

inputs may result in model instability. In the thesis, it is emphasized to take advantage of

the available system knowledge so that the most parsimonious model structure can be

obtained.

Three different types of simultaneous faults exist (Lee, 1999). Independent dual

faults result in symptoms on different variables. The effects of either fault will be

different on different variables. For masked dual faults, the fault symptoms of one of the

dual faults are a subset of the symptoms of another fault. For dependent dual faults, one

of the dual faults competes with the other. The resulting symptom is unpredictable

depending on which fault dominates the process. In this case, neither of the dual faults

can explain all the symptoms because of mutual amplification and diminution.

The challenge to multiple fault diagnosis is to appropriately select fault signatures

in order to avoid fault masking. For a dual fault whose fault symptom masks one of its

elemental faults, the only possibility that they can be distinguished is to derive some new

fault signatures to avoid the fault masking. Otherwise, the dual fault cannot be isolated

from its element faults.

Figure 1.2 shows the overall technical approach taken in this thesis. Data driven

modeling such as ANFIS and PCA is used to obtain system models. The system

knowledge is used to define model structures. The plant measurements are used to

parameterize the models. The process of fault diagnosis involves residual generation and

residual analysis. The physical residual is defined as the difference between the

measured values and their true values. Based on the available physical models, the

physical residuals can be approximated as the difference between the measured values

and the predicted values. A significant residual can be used to detect a fault. Three

methods are used for residual analysis. If the possible faults and their associated fault

signatures are known, residual direction and residual structure can be defined to

characterize a fault for fault isolation. In the more general case when possible faults are

not known and their associated fault signatures are not available, cause graph approach

based on the cause effect analysis on the residuals can be used for fault isolation.

 13

Figure 1.2. Schematic diagram of the overall technical approach.

Plant Measurements System Knowledge

PCA Modeling ANFIS Modeling

Fault Direction
Approach

Causal Graph
Approach

Structured Residual
Approach

Fault
Isolation

Fault Detection Fault Detection

 14

To accomplish the objectives of the thesis based on the technical approach

discussed above, the following tasks, demonstrating the independent work performed for

the thesis research are completed:

• Review modern FDI techniques for process monitoring.

• Study data driven modeling for a linear static system using PCA.

• Study data driven modeling for a nonlinear dynamic system using ANFIS.

• Analyze the fault responses of sensor and actuator faults for PWR steam generator

system.

• Implement PCA based FDI to detect and isolate the faults for PWR SG system.

• Implement structured residual design approach for PWR SG system using ANFIS

models.

• Develop data driven model causal graph approach to fault detection and isolation for

nuclear power plants and apply it to PWR SG system.

• Design a user interface to demonstrate the efficiency of the designed FDI system.

1.5 Contributions of the Thesis

The contributions of the thesis are as follows:

a) A detailed review of the modern approaches to fault detection and isolation.

Qualitative model based approaches such as Sign Directed Graph (SDG) and

bond graph approach, and quantitative model based approaches such as parity space

approach, state space approach, parameter estimation approach, and pattern recognition

approach are reviewed. Some comparison study is then performed.

b) Implementation of PCA based FDI algorithm.

A statistical inference method such as PCA algorithm is implemented for fault

detection and isolation. This approach is shown to have inherent connection with parity

space approach. The linear relationship among measured variables implying analytical

redundancy can be consistently represented by the eigenvectors corresponding to the

 15

trivial components. Any deviation in either model space or residual space indicates a

fault. The fault direction jointly defined both in the model space and in the residual space

provides better fault isolability. When applied to nuclear plant steam generator system, it

is able to detect and isolate the selected thirteen single and dual faults.

c) Implementation of ANFIS based FDI algorithm.

Given that the possible faults are known for the plant based on engineering

judgment, a set of ANFIS models can be built to characterize the nonlinear relationship

among plant measurements. Through appropriate choice of model structures, structured

residuals can be achieved for fault isolation. When applied to nuclear plant steam

generator system, it is able to detect and isolate the selected thirteen single and dual

faults.

d) Development of data driven model causal graph based FDI algorithms

Data driven model causal graph is proposed as a generic approach to fault

diagnosis for nuclear power plants. This approach is able to combine the reasoning

capability of qualitative model based method and the strength in fault resolution of

quantitative model based method. The causal graph consists of individual nodes

representing plant variables connected with quantitative models. To facilitate on-line

implementation, ANFIS is used as an adaptive modeling tool. Fault detection is fulfilled

by monitoring the residual of each model. Fault isolation is achieved by cause effect

analysis on the residuals. The developed approach is demonstrated using data obtained

from a simulation code for a Pressurized Water Reactor (PWR) (Doster, 2000). The

developed approach is able to detect and isolate single faults and dual faults with fault

propagation regardless of fault magnitudes and initial power level during early fault

transient.

 16

e) Development of a real time demonstration system for FDI

In order to show the effectiveness of the developed FDI methods for nuclear

power plants, a graphic user interface is developed under the environment of Picasso-3, a

user interface management system. The software is able to (1) create a fault by changing

the fault characteristic parameters; (2) display key parameters on the schematic of a

reactor system; (3) exhibit residual patterns specific to a fault; (4) trend process variables

relevant to a fault; and (5) echo FDI results. The software has integrated SimPWR, a

reactor system analysis code in FORTRAN, and the FDI code in Matlab, and the C++

code to control the GUI.

1.6 Organization of the Thesis

The overall objective of the research is to develop an approach to automated FDI

for nuclear power plant systems.

In Chapter 2, major modern FDI techniques under the principle of analytical

redundancy are described. Qualitative model based approaches such as SDG and bond

graph, and quantitative model based approaches such as parity space approach, state

space approach, parameter estimation approach, and pattern recognition approach are

reviewed. Some comparison studies in their applications are also made.

In Chapter 3, the nuclear steam generator system and the available measurements

are described for a PWR reactor. Some discussions about how to enumerate faults are

also made. Some considerations on preparing data for building models are then described.

Finally, the system responses to these faults are analyzed.

In Chapter 4, linear PCA algorithms and the relationships between PCA and

parity space approach for FDI are described. The PCA algorithm is then implemented to

detect and isolate the faults for a PWR nuclear steam generator system. The 2T statistics

and Q statistics are used for fault detection. Fault direction is used as fault signatures for

fault isolation.

 17

In Chapter 5, ANFIS is introduced as an advanced tool for modeling nonlinear

systems. Its structure and learning algorithm are discussed. ANFIS model based FDI is

implemented to isolate the selected faults for the steam generator water level system.

Structured residual design approach proves to be an efficient method for fault isolation.

The approaches to structured residuals are studied.

In Chapter 6, data driven model causal graph is developed as a generic approach

to fault detection and isolation for nuclear power plants. The structure of a model causal

graph is described. The reasoning algorithms are then described in order to achieve fault

isolation. It has also been shown that the causal graph is in full agreement with efficient

data driven modeling. The developed approach is successful when applied to nuclear

steam generator system.

Chapter 7 describes a graphical user interface and its design to demonstrate the

efficiency of the designed FDI system.

Concluding remarks and recommendations for future work are presented in

Chapter 8.

 18

Chapter 2

Literature Review

This chapter describes the principles of fault detection and isolation through a

systematic literature review.

The FDI approaches differ in what kind of knowledge is used and how the

knowledge is used. In broad sense, FDI approaches can be quantitative knowledge based

or qualitative knowledge based. Depending on how to develop models, FDI approaches

can be first-principle model based or historical data driven model based. In terms of how

to use the knowledge, many FDI approaches exist. The major approaches are reviewed in

this chapter.

2.1 Data Reconciliation

Data reconciliation is a technique used for detecting and isolating a measurement

error or a process fault that results in measurements inconsistent with energy balance

equations, mass balance equations, and other balance equations. Its goal is to reconstruct

the measurements so that the balance equations are not violated. This approach provides

an efficient way to handle a large system (Albuquerque and Biegler, 1996).

For a given system under fault conditions, the measurement vector y can be

represented as a function of the actual values of some system variables denoted by the

vector z , which is given by:

 yzfy ∆+=)(
where

y∆ = measurement error and fault error.

 The actual values of the system variables satisfy certain constraint relationship,

which is given by:

 0),(=zcg
where
c = some other system variables.

 19

Data reconciliation aims at determining a vector *z such that

)(())((*)(1 zfyRzfyzJ −−= −
is minimized on condition that

 0*),(=zcg
where

R = a weighting matrix reflecting the accuracy of different measurements.

The reconstructed measurements can then be obtained by:

)(zfy =
Therefore, *yy − can be used as fault signatures for fault detection and isolation.

Data reconciliation approach is powerful in solving a large system with co-

linearity. However, it is only applicable for steady state conditions since the involved

optimization may become unmanageable during transient process. Therefore, there might

be some undesirable time lag for fault detection and isolation. In addition, for nuclear

power plants where many controllers are involved, the steady state information may not

be enough to isolate some faults.

2.2 Model Based Approach

The foundation of model-based approach is analytical redundancy. It assumes

that first principle or data-driven models can be used to represent the relationships among

plant variables during fault free conditions. These models provide the same function as

some redundant soft sensors. The physical residuals can then be approximated as the

difference between the measured values and the model prediction. A significant residual

can be used to detect a fault and the residuals can be analyzed for fault isolation. Model

based approaches differ in how to generate and analyze residuals.

2.2.1 Parity space approach

For a given system, the relationship between the measurement vector y and the

state vector x is given by:

 yCxy ∆+=

where

 20

y∆ = measurement error.

C = system matrix.

xxx ∆+= *

x∆ = disturbance of state variables.

Parity space approach (Chow and Willsky 1984, and Frank, 1990) aims at

generating a residual vector that is influenced only by measurement error. The physical

residual o(t) of the system has this property, which is given by:
*o(t) Cxy −=

This physical residual is not directly available. Therefore, a parity vector must be

introduced. The parity vector p(t) is obtained through a linear transformation TV of the

physical residuals given by:

)()(xCyVtoVp TT ∆+∆== (2.1)
The parity vector will not depend on the disturbance of the state variables if the

following constraint is imposed:

 0=CxV T
Consequently,

 0=∆xCV T
Therefore,

 yVp T ∆=
Hence, the parity vector p is influenced only by the measurement error. It is

defined in the parity space that is usually smaller than the original measurement space. A

nonzero component of the parity vector indicates a faulty measurement.

For example, a system has five measurements and three state variables. The

dimension of the measurement vector y is 5 by 1, the dimension of the measurement

matrix C is 5 by 3, and the dimension of the parity vector will be 2 by 1 since the system

has two linear dependent relationships among the measurements if the rank of the matrix

is three. Therefore, two of the five measurements can be derived from the other

measurements. Correspondingly, the dimension of the matrix V is 5 by 2.

Such a FDI approach has a great advantage in its robustness to disturbances.

However, the linear transformation approach is not applicable for a non-linear system.

 21

2.2.2 State estimation approach

State estimation approach is considered as a more general approach than parity

space approach. When the residuals are generated for fault detection and isolation, the

simplest model to estimate a measured signal is identical to the plant model functioning

as a simulator in parallel without using the information of the system outputs. However,

because the simulator type of model is an open loop system, the solution may not be

stable or convergent if the plant operates beyond its designed region.

In order to overcome the problem, the state space model is introduced in the FDI.

The linear state space model of a system is defined as follows:

Cx(t)y(t)

Bu(t)Ax(t)1)x(t
=

+=+
 (2.2)

For fault free condition, a state observer with feedback matrix H can be designed

as follows (Simani, 2000):

(t)x̂C-y(t)e(t)

He(t)Bu(t)(t)x̂A1)(tx̂
=

++=+
 (2.3)

such that:

 (t)x̂-x(t)(t) =ε approaches zero asymptotically.

 (t)HC)-(A1)(t εε =+ approaches zero asymptotically.

where

)(te = output estimation error.

)(tε = state estimation error.

If an additive fault)(tf occurs in the system, the dynamic behavior of the system

can be characterized by:

)(D(t)x̂Cy(t)

f(t)DBu(t)(t)x̂A1)(tx̂

2

1

tf+=
++=+

 (2.4)

Then the output error is given by:

)()()(2 tfDtCte += ε

Both state estimation error and the output error are not zero and show dynamic

behavior after a fault occurs. Both can be used for fault detection. To generate stable

 22

and sensitive residuals, the feedback matrix H must be carefully designed. State

estimation error vectors can also be designed with directional characteristics for fault

isolation (Jones, 1973).

Because the dynamic behavior of state estimation error and the output error are

different from)(1 tfD and)(2 tfD if the signals are affected by additional noise, it is a

challenging task to design the feedback matrix such that the estimation error is sensitive

to a fault and insensitive to noise.

2.2.3 Parameter estimation approach

Some process parameters can be estimated using some input variables and/or

some output variables. The difference between the normal process parameters and the

estimated parameters can then be used for fault detection and diagnosis (Chen and Patton,

1993).

Given a single input single output (SISO) system of order n defined in the matrix

form as follows:

 θ')(xty = (2.5)
where

θ = parameters related to the linear model.

)](),...1(),(),...1([' ntutuntytyx −−−−=

The least square estimate of θ can be computed as:

 yxx 1)'(−=θ (2.6)
If the knowledge is known about what is the mapping between a fault and the

parameter θ , the values found from the measurements through system identification can

then be used for fault isolation.

Parameter estimation is a powerful approach to detecting and isolating a process

fault for a linear system. However, for a nonlinear system, it may be very difficult to

estimate the parameters with enough accuracy and define a one-to-one relationship

between a parameter change and a fault in the physical process.

 23

2.3 Pattern Recognition

Statistical inference and neural network are two major applications of pattern

recognition techniques in fault detection and isolation. The task of pattern recognition is

to extract some features and set up a mapping between a class of objects and their

features. This is in conformance with the task of fault diagnosis. If appropriate fault

signatures can be obtained to characterize fault symptoms, they can then be used as

features to infer the fault.

Mathematically, the principle of fault detection and isolation based on pattern

recognition can be described by Bayes's rule:

∑

=
)()(
)|()()|(

i

ii
i FPSP

FSPFPSFP (2.7)

where

)|(SFP i = the probability that a fault with symptoms S is Fi.

)(iFP = the prior probability of Fi.

)|(iFSP = the conditional probability of symptom S given fault Fi.

Each fault defines a specific region in the feature space. For a given observation,

the likelihood of the observation falling into each region corresponding to all the possible

faults in the feature space can be computed. The observation is assigned to the fault class

that gives the largest likelihood.

Quite a few statistical methods such as PCA, PLS, multivariate auto-regression

modeling can be used to capture the features. The critical point to feature extraction is to

compress the information describing the relationship among variables in a reduced

dimensional space without significant loss of information.

Artificial neural network is another powerful technique to perform pattern

recognition. It is trained such that all the fault patterns are memorized. When a new fault

comes, the network is then able to classify its pattern into correct fault class.

Pattern recognition based FDI has the advantage in its possibility of on-line

implementation. However, a large amount of training data is needed in order to

characterize the features of the possible faults. For nuclear power plants where many

 24

components are involved, it is unrealistic to collect such data and define fault

characteristics for the possible faults of interest.

2.4 Sign Directed Graph

A signed directed graph (SDG) is a graphic representation of the causal

relationship among plant variables. In a SDG, these variables are individual nodes and

some directed arcs are used to represent the causal relations between the nodes. A node

can take qualitative values, denoted as 0, +, and –, which correspond to nominal, high and

low, respectively. The directed arc signs may take + or – depending on whether the

causal relation is in the same direction or in the opposite direction. A root node is linked

with at least one effect node but is not connected to any causal node. The process of fault

diagnosis using SDG is to find a single path from a root node to all the abnormal

measurement nodes, which satisfies the qualitative constraints defined by the signed

directed arcs for the system (Lee, 1999).

The process of single fault diagnosis using the SDG method can be summarized

as the following steps (Vedam and Venkatasubramanian, 1995):

• Identify all the fault candidates by tracking consistent arcs from the effect nodes to

the causal nodes starting from all the abnormal measurement nodes.

• For each of the fault candidates, check if an effective causal path exists to explain the

observed abnormal measurements.

• A fault candidate is confirmed to be the fault origin if reasonable causal paths can be

defined to interpret all the abnormal measurements.

The SDG method has a distinct feature in fault diagnosis in finding out all the

possible root causes capable of explaining all the abnormal measurements.

In order to represent explicitly the knowledge of the system behavior contained in

SDG, a rule based SDG approach to FDI has been developed (Kramer and Palowitch,

1987). The rule base variation is more concise and can be easily incorporated into an

expert diagnostic system.

Recently fuzzy-SDG has been developed (Zakarian and Kusiak, 2000). A node of

fuzzy-SDG is a variable that may take several fuzzy values such as low, medium low,

 25

normal, medium high and high. A branch represents the causal-effect direction and

strength. The connection strength)(1 jj xxe →+ from 1+jx to jx is determined by:

j

j
jjj Rx

Rx
Sx 1

1,1j)e(x +
++ =→ (2.8)

where

1+jRx , jRx = the value range of node 1+jx and jx .

1, +jjS = the sensitivity coefficient.

1
1,

+
+ ∂

∂
=

j

j
jj x

x
S

The architecture of fuzzy-SDG not only has the good features of traditional SDG

methods but also has the learning capability from data.

2.5 Bond Graph

When a fault happens, the system may involve some dynamic behavior because of

external disturbances and control changes. In most cases, a model developed under fault

free conditions may not be able to track the model changes caused by faults. However,

the transient behavior caused by faults contains rich information for fault isolation. In

order to make most use of this information, a diagnosis inference method, bond graph

approach has been proposed to model the dynamic behavior, reason about the temporal

attributes of system parameters and relate behavior changes to component parameters

(Mosterman and Biswas, 1997):

Bond graph is a causal behavior graph developed for qualitative modeling

(Amsterdam, 1992). In a bond graph, the individual nodes represent effort variables in

the system. The directed arcs represent the relations between flow and effort variables.

The characterization of the relationship is achieved in analogy to some electrical element.

For a resistance element, the relationship is characterized with the inverse of its electric

resistance. For a capacity element, the relationship is characterized with the inverse of the

time integral of its capacity. Because a bond graph model makes it possible to keep track

of the magnitude change and change rates of all the measured variables, the temporal

 26

response of a fault manifested in measurements can then be used as fault signatures for

fault isolation during transients.

The diagnostic procedure using bond graph is summarized as follows (Mosterman

and Biswas, 1997):

• Generate fault candidates by propagating the observed values backward to some root

node.

• Predict the fault behavior for each fault candidate and make a comparison between

the predicted values and measured values.

• If all the measurements are consistent with the predicted values, the candidate fault is

chosen as the true fault. Otherwise, the candidate fault is rejected.

This chapter has reviewed the major modern approaches to fault detection and

isolation developed in other industries. Analytical redundancy has been recognized as

the foundation of modern FDI approaches. Under this principle, qualitative model and

quantitative model based approaches can be derived. Data reconciliation approach,

model based approach and pattern recognition approach are quantitative model based

approaches. Sign directed graph approach and bond graph approach are qualitative

model based approach. The former approach has better resolution in fault isolation and

the latter has better reasoning capability. In the thesis, accurate models required by

quantitative model based approach will be achieved by data driven modeling such as

PCA and ANFIS. Furthermore, in order to organically combine the reasoning capability

of qualitative model based approaches and the good resolution of quantitative model

based approaches, data driven model causal graph will be developed as a generic

approach to fault diagnosis for nuclear power plants.

 27

Chapter 3

General FDI Design for Nuclear SG System

The U-tube steam generator (UTSG) water level control system of a typical four

loop PWR is selected to study the FDI methods.

3.1 Description of nuclear SG system

The SG water level control system in PWR has a three-element controller to

control the water level in the steam generator as is shown in Figure 3.1. The three

elements are steam flow, feed water flow, and steam generator water level. The reference

water level is a function of the turbine load and the steam dump rate through steam dump

valves. The SG level error signal is the measured level minus the reference level. The

flow mismatch error is the fractional steam flow rate minus the fractional feed water flow

rate. The combination of the SG level error and the flow mismatch error is used as the

input to the controller. The controller output is used to manipulate the feed water control

valve position. Because the main control purpose of the SG level control system is to

control the water level, the level error has been multiplied by a gain in order to dominate

the flow mismatch error signal. In addition, feed water temperature is used to take into

account its effect on SG level.

Another control system involved in the nuclear SG system is the control over the

speed of the main feed water pump. The objective of this control system is to maintain

the feed water control valve position approximately at its midpoint so that the best control

performance can be achieved. The system obtains the collected steam flow rate from all

the steam generators and generates a reference pressure difference. The error signal is

generated from the difference between the reference pressure difference and the actual

pressure difference between the collected steam line and the collected feed water line.

The error signal is used to control the pump speed. The pressure on the feed water line is

 28

Figure 3.1. SG water level control system.

Turbine
header

pressure

Reference
level

Measured
level Feed water

temperature

-

PID
controller

Measured
steam flow

rate

Measured
feed water
flow rate

-

Feed water control valve
position

Steam dump
signal

Set point of
PID gain

 29

measured at the upstream of feed water control valve. The pressure on the steam line is

measured at the downstream of the main steam isolation valve.

3.2 Available Measurements

Table 3.1 shows the major available measurements relevant to the FDI task for the

steam generator system of a nuclear power plant.

3.3 Enumeration of Single Faults

For a large system where thousands of components may be involved, it is usually

difficult to know all the possible faults and incorporate them into a fault dictionary.

However, in nuclear power plants, the sophisticated reliability analysis can provide rich

information about the possible faults from engineering point view at a specified operation

lifetime. In addition, probabilistic risk assessment can provide detailed information about

the faults of safety concern under different operation conditions. Therefore, it is still of

great value to develop FDI methods with the assumption that the faults can be

enumerable. In the thesis, the approaches described in Chapter 4 and Chapter 5 deal with

the situation where the possible faults are known. Data-driven model causal graph

approach developed in Chapter 6 deals with the situation where the possible faults are

unknown.

3.4 Enumeration of Simultaneous Faults

 Even when the possible single faults are known, their combination will generate

many possible simultaneous faults. To keep the number of possible simultaneous faults

manageable, a common approach is to ignore those simultaneous faults with very low

probability based on engineering experiences. However, these engineering practices are

usually very subjective and even so there still might remain a very large number of

possible simultaneous faults.

 30

Table 3.1. Available measured variables for the FDI of nuclear SG system

1 Thermal power 23 FCV1 position
2 Reference temperature 24 FCV1 controller output
3 Programmed reference

temperature
25 SG1 WR indicator

4 Primary pressure 26 SG 1 NR indicator
4 Cold leg 1 temperature 27 FCV2 position
5 Cold leg 2 temperature 28 FCV2 controller output

6 Hot leg 1 temperature 29 SG NR reference
7 Hot leg 2 temperature 30 SG2 WR indicator
8 Pressurizer pressure 31 SG2 NR indicator
9 Pressurizer heater output 32 SG1 temperature
10 Pressurizer level 33 SG2 temperature
11 Pressurizer reference level 34 TCV1 position
12 Pressurizer spray flow rate 35 TCV1 flow rate
13 Charging flow are 36 TCV2 position
14 Letdown flow rate 37 TCV2 flow rate
15 Surging flow rate 38 TCV3 position
16 SG1 pressure 39 TCV3 flow rate
17 SG2 pressure 40 TCV4 position
18 Feed water temperature 41 TCV4 flow rate
19 SG1 steam flow rate 42 Turbine header pressure
20 SG2 steam flow rate 43 Turbine output
21 Feed water flow rate to SG1 44 Turbine load
22 Feed water flow rate to SG2 45 Turbine RPM

 31

In the thesis, qualitative knowledge based FDI is proposed to limit the number of

possible simultaneous faults. For an online FDI system, the qualitative knowledge based

FDI module is used to generate only a few fault candidates and their reference fault

signatures are generated on-line using a simulator in parallel with the plants. In fact, only

one simulation is required to generate data so as to characterize a fault if analytical

redundancy based FDI approach instead of pattern recognition method is used.

Qualitative knowledge based FDI needs to have certain system knowledge in

order to obtain system causal graph. However, this is not a major problem for nuclear

power plants, where the system responses to significant faults can be available from a

variety of sources such as system design manual, system operation manual or standard

safety analysis report.

The following section shows an example on how to use sign directed graph, a

typical qualitative knowledge based approach to generate the reasonable combination of

simultaneous faults for the steam generator system.

Figure 3.2 shows the sign directed graph for the steam generator system in which

three single faults, feed water flow meter offset fault, SG level sensor offset fault, and

steam flow meter offset fault, are considered. Correspondingly, only three root nodes

(node 1, node 8 and node 11) and the other eight process nodes are involved. In the

graph, the cause effect relationships between variables are represented by the positive and

the negative directional connections. Because a feedback control loop is involved, the

directional variation of the effect variable during the transients induced by a disturbance

on the causal variable is used to represent the cause effect relationship.

The fault candidates can be identified simply by tracking consistent arcs from the

effect nodes to the causal nodes starting from all the abnormal measurement nodes. As

an example, if the observed symptom is that the feed water flow indicator is low and the

SG narrow range level indicator is high, node 2 takes a negative value and node 7 takes a

positive value. If the negative value of node 2 is back propagated immediately to node 1,

a negative feed water flow meter offset fault can be identified as a possible root cause.

 32

• Node 1: Feed water flow meter offset
• Node 2: Feed water flow indicator
• Node 3: FCV position
• Node 4: Feed water flow rate
• Node 5: SG mass
• Node 6: SG level
• Node 7: SG level indicator
• Node 8: SG level sensor offset
• Node 9: SG steam flow
• Node 10: SG steam flow indicator
• Node 11: SG steam flow meter offset
• Positive connection: in red arrows
• Negative connection: in blue arrows

1

10

2

7

9 5

3 4

6

8

11

Figure 3.2. SDG graph of nuclear SG system.

 33

If the negative value of node 2 is back propagated to the root node 11 along node

4, node 3, the node 10, a negative steam flow meter offset can be identified as a possible

root cause. If the negative value of node 2 is back propagated to node 8 along the node 4,

the node 3, the node 7, a positive steam generator level sensor offset fault can be

identified as a possible root cause.

If the positive value of node 7 is back propagated immediately to the root node 8,

a positive steam generator level sensor offset fault can be identified as a possible root

cause. If it is back propagated to the root node 11 along node 6, node 5, node 4, node 3,

and node 10, a positive steam flow meter offset fault can be identified as a possible root

cause.

In the sign directed graph method, fault localization is a process of determining

one or several root nodes whose predicted fault symptoms are in agreement with the

measured fault symptoms. In the example, after the possible fault candidates have been

identified, the fault symptoms can then be predicted by propagating forward from the root

nodes to the measured or the unmeasured nodes. If there is only single fault in the

system, a positive SG level offset fault will be isolated as the fault origin since it is able

to fully explain the observed fault symptoms. However, if dual faults are considered, the

possibility of a negative feed water flow meter offset fault cannot be excluded since its

combination with a positive steam generator level sensor offset may also cause the same

symptoms.

From this example, it can be seen that the number of possible simultaneous faults

can be significantly reduced based on a preliminary SDG analysis. In fact, three single

faults and three simultaneous faults need to be considered without SDG analysis.

3.5 Scope of the Studied Faults

Although SDG can be introduced to generate fault candidates for both single and

dual faults, the focus of the thesis is on how to detect and isolate these single faults and

dual faults.

To design a FDI algorithm that is able to deal with simultaneous faults, the

number of the faults has to be manageable from research point of view. Only those

 34

simultaneous faults with meaningful probability in engineering sense have been taken

into account. For instance, triple faults occur with much lower probability than dual

faults. It is usually enough to incorporate only dual faults. Moreover, inappropriate

inclusion of simultaneous faults may degrade the performance of a designed FDI system

since not all the possible simultaneous faults can be isolated. Raich and Cinar, 1996

reported that a random variation fault is highly likely to mask with another random fault

or another step fault or a ramp fault. Therefore, random variation fault is not taken into

account in order to avoid fault masking due to inadequate information.

The following single faults and dual faults are defined in the FDI design for the

steam generator system:

• Feed water flow meter offset fault.

• Steam flow meter offset fault.

• Feed water flow meter offset fault and steam flow meter offset fault.

• Feed water flow meter offset fault and SG level sensor offset fault.

• Steam flow meter offset fault and SG level sensor offset fault.

• SG pressure sensor offset fault.

• Feed water flow meter offset fault and SG pressure sensor offset fault.

• Feed water flow meter offset fault and FCV offset fault.

• Steam flow meter offset fault and FCV position offset fault.

• Feed water control valve position offset fault.

• SG pressure sensor offset fault and SG level sensor offset fault.

• SG level sensor offset fault.

• Steam flow meter offset fault and SG pressure sensor offset fault.

3.6 Data Preparation for Modeling

In order to develop appropriate data driven models with enough accuracy for fault

detection and isolation, the quality of data preparation is very important. The collected

data must cover the entire normal operation range and the entire faulty operation range.

 35

Otherwise, the data driven models will perform extrapolation and the prediction will be

unreliable.

The following operation conditions are considered in order to prepare the data for

SG modeling:

• Slow power transients at forty power levels beginning from 20% to 100% at an

interval of 2% power increase.

• Large power transients from 20% to 100% power level.

• Large power transients from 100% to 20% power level.

The data are collected during slow transient conditions because such data are

appropriate to build dynamic models. For a system with feed back control loop, the static

information may not enough to detect some faults within the control loop. In addition, it

is difficult to generate sufficient amount of data to build data driven models if only steady

state data are used. The data collected during large power transients are used to build

data driven models to predict the controller output and the control valve position.

When a FDI system is developed for a real application, more process conditions

need to be covered. Some of the conditions may be different stages of the reactor life

cycle, different ranges of heat transfer rate from the primary side to the secondary side,

etc.

A short sampling interval makes it possible to detect a fault faster, but it may

bring some high frequency noises into the data and result in time dependence between

adjacent observations. This dependence may result in a more complex model to

characterize the system behavior. The sampling time is chosen to be 1 second.

The fault data are generated for all the considered faults at 100% power level

under the following conditions:

• Drift faults with drift rate at 1%/hr, 2%/hr, 3%/hr, -1%/hr, -2%/hr, -3%/hr.

• Bias faults with offset at 1%, 2%, 3%, -1%, -2%, -3%.

For both the drift faults and the bias fault, the data set for only one fault

magnitude is used to provide reference fault signatures and all the other data sets are used

to test the reliability of the developed FDI approaches. Although most of the test cases

 36

are based on 100% full power, one special test case is designed to show the performance

of the developed FDI algorithm in dealing with a fault at another power level 80%.

3.7 Fault Response Analysis

Before a FDI system is designed, it is necessary to have some qualitative fault

response analysis. This analysis facilitates to determine the structure of the models to be

developed. The value range of the affected variables can also be examined after the

faults of interest occur so that the developed data driven models have reliable

generalization capability. In addition, the analysis can help to examine the effects of

controller feedback.

3.7.1 Feed water flow meter positive offset fault

When the feed water flow meter has a positive offset fault, the initial responses

are as follows:

• The indicated feed water flow meter increases.

• The FCV valve position decreases.

• The SG water level decreases.

• The SG pressure does not change.

• The steam flow rate has a very slight increase.

The reason why steam flow rate does not change significantly is that the steam

flow rate is mainly determined by the power demand.

When a new steady state is reached, the system responses are as follows:

• The indicated feed water flow rate increases.

• The FCV position returns to its initial level.

• The SG water level decreases.

• The SG pressure does not change.

• The steam flow rate returns to its initial value.

 After the new steady state, the steam flow rate is equal to the actual feed water

flow rate instead of the measured feed water flow rate. The error signal to the controller

 37

becomes zero. This is achieved by the fact that the SG water level has decreased

although the indicated feed water flow rate has increased. To maintain the constant

reactor power output during the fault, the steam flow does not change.

 In the process, the indicated feed water flow rate will be consistently higher than

the true value. A model capable of calculating the true value of feed water flow rate can

be used to isolate the feed water flow meter fault.

3.7.2 Steam water flow meter positive offset fault

When the steam flow meter has a positive offset fault, the initial responses are as

follows:

• The feed water flow meter increases.

• The FCV valve position increases.

• The SG water level increases.

• The SG pressure does not change.

• The indicated steam flow rate increases.

When a new steady state is reached, the system responses are as follows:

• The feed water flow rate returns to its initial level.

• The FCV valve position returns to its initial level.

• The SG water level increases.

• The SG pressure does not change.

• The indicated steam flow rate increases.

 After the new steady state, the actual steam flow rate instead of the indicated

steam flow rate is equal to the feed water flow rate. The error signal to the controller

becomes zero. This is achieved by the fact that the SG water level increases although the

indicated steam water flow rate has increased.

 In the process, the indicated steam flow rate will be consistently higher than the

actual value. A model capable of calculating the actual value of the steam flow rate can

be used to isolate the steam flow meter fault.

 38

3.7.3 Steam generator pressure sensor offset fault

When the steam generator pressure sensor has a positive offset fault, the speed of

the main feed water pump will change. The proportional integral controller of main feed

water pump uses the pressure difference between the steam line and the feed water line as

input to control the valve position of feed water control valve approximately at its

midpoint. The initial response to SG pressure sensor positive offset fault is that the feed

water flow rate will increase due to the increase in the feed water pump speed. To be

followed is that the SG water level will increase. After a new steady state is reached, the

feed water flow rate will go back to its initial level. The steam flow rate does not have

significant changes. The SG level will go back to its initial level after the new steady

state is reached.

3.7.4 Feed water control valve position fault

When the feed water control valve has a positive offset fault during its actuation

when a command is received from the controller output, the initial responses are as

follows:

• The feed water flow meter increases.

• The FCV valve position increases.

• The SG water level increases.

• The SG pressure decreases.

• The steam flow rate doe not change.

When a new steady state is reached, the system responses are as follows:

• The feed water flow rate does not change.

• The actual FCV valve position returns to its initial value.

• The SG water level increases.

• The SG pressure does not change.

• The steam flow rate does not change.

 39

When the feed water control valve has a positive offset fault, the initial response

is that the feed water flow rate increases. The controller will then reduce the open-width

of the feed water control valve using the mismatch signal between the FCV flow rate and

the SG steam flow rate. To be followed is that the SG water level increases and the FCV

controller will reduce the open-width of FCV valve position again. In the end, the FCV

flow rate and the FCV valve position return to their initial levels.

The SG level changes as the integral effect of the change of the FCV flow rate

during the fault progression. The SG final level is greater than the initial level.

Because the command has a positive bias, the controller output will be negative so

that the actual actuation of the feed water control valve is zero because the SG water level

has increased when a new steady state is reached.

3.7.5 SG narrow range level sensor fault

When the SG narrow range level sensor has a positive offset fault, the initial

responses are as follows:

• The feed water flow meter decreases.

• The FCV valve position decreases.

• The indicated SG water level increases.

• The SG pressure has a slight decrease since the actual water level decreases.

• The steam flow rate has a very slight increase.

When a new steady state is reached, the system responses are as follows:

• The feed water flow rate returns approximately to its initial level.

• The FCV valve position returns approximately to its initial level.

• The indicated SG water level returns to its initial level.

• The SG pressure has a slight decrease.

• The steam flow rate returns approximately to its initial level.

When the steam generator level sensor has a positive offset fault, the initial action

of the controller is to reduce the open-width of the feed water control valve. The feed

 40

water flow rate decreases at the beginning and tends to go back to its initial level in the

end.

The steam generator indicated level would go back approximately to its initial

level after steady state is reached. However, the SG true level would be lower than its

initial level with an offset equal to the magnitude of the sensor bias as is shown in Figure

3.3. In the fault process, the reactor power load does not change and nor does the SG

narrow range reference level. After the new steady state, the steam flow rate is equal to

the feed water flow rate.

Table 3.2 summarizes the fault responses to the five single faults. Based on the

table, if only steady state information is used, controller output signal must be used in

order to detect FCV position fault. Process redundancy is not sufficient in order to detect

SG narrow range level sensor fault. Instead, measurement redundancy should be taken

into account.

 41

Figure 3.3. SG Level measurement responding to SG NR level sensor fault.

Table 3.2. Summary of the steady state responses to the single faults

 Feed water
flow rate

SG level Steam flow rate SG
pressure

Controller
output

Feed water flow
meter positive
offset fault

↑

↓

0

0

0

Steam flow
meter positive
offset fault

0

↑

↑

0

0

SG pressure
sensor positive
offset fault

0

0

0

↑

0

FCV position
positive offset
fault

0

↑

0

0

↓

SG narrow
range level
sensor positive
offset fault

0

0

0

0

0

0 100 200 300 400 500 600 700 800 900 63

64

65

66

67

68

69

70

Sample

SG
 T

ru
e

 L
ev

el
 a

nd
 In

di
ca

te
d

Le
ve

l

-----True Level ____ Indicated Level

 42

Chapter 4

Principal Component Analysis for Fault Diagnosis

4.1 PCA Algorithms

From the point of view of data, PCA is a dimensional reduction method. The

original data can be represented in a lower dimensional space without significant loss of

the variability. From the modeling point of view, PCA transforms correlated variables

into uncorrelated ones and determines the linear combinations with large and low

variability (Flury, 1988).

Before the original data are transformed into a lower dimensional space, they are

mean centered because only the variability of the data is of interest. The data are

standardized with unit variance so that equal weights are given to all the variables as far

as their variability is concerned.

For the original data matrix X associated with n observations and m measured

variables, the first principal component is obtained by finding out a linear transformation

column vector 1P such that the scores 1t of the original data along this component has

maximized variance. In mathematical term, this is given by:

 11 XPt =
 1111111 ''')var()var(PPXPXPXPtE Σ==== is maximized.
where

SnXX)1(' −==Σ

)'(
1

1 XX
n

S
−

=

=S sample covariance matrix.

 An additional constraint on the transformation column vector is to normalize its

length.

 In order to maximize the variance of 1t with the above constraints, we can set the

derivative of 1E to zero and include a Lagrange multiplier 1λ to ensure the constraint is

satisfied as well:

 43

02)'())'((1111111
1

=−Σ+Σ=−+
∂
∂ PPPPIE
P

λλ

Therefore,
 111 PP λ=Σ (4.1)
In the above derivation, we have used the formula for the derivative of a matrix with

respect to a vector:

')(

)'()'(

yyx
x

xAAAxx
x

=
∂
∂

+=
∂
∂

The variance of the original data along the first principal component is then given by:

 111111 ')var(λλ === PPtE (4.2)

Equation (4.1) and Equation (4.2) show that the transformation vector to obtain

the first principal component is actually the eigenvector of XX ' corresponding to its

maximum eigenvalue.

In order to obtain the thj principal component, the following constraints must be

satisfied (Jackson, 1991):

kkkk PPtE Σ== ')var(is maximized
1' =kk PP

kXP is orthogonal to jXP for 1....2,1 −= kj
 In order to maximize kE with the above constraints, we can set the derivative of

kE to zero, include a Lagrange multiplier kλ to ensure 1' =jk PP and 1−j Lagrange

multipliers jφ to ensure kXP is orthogonal to jXP for 1....2,1 −= kj :

 02)'()'0()'((
1

1

1

1
=+−Σ+Σ=−+−+

∂
∂ ∑∑

−

=

−

=

k

j
jjkkk

k

j
kjjkkkk

k

PXPPPPXPPIE
P

φλφλ (4.3)

If we left-multiply Equation (4.3) by 'jP for 1....2,1 −= kj and notice the orthogonal

property of jP , then we have:

0=jφ for 1,.......2,1 −= kj

kkk PP λ=Σ

kkE λ=
If the score vectors are combined, then we have:

 44

XPT =
The matrix P is constructed by the columns of the eigenvectors of XX ' whose

left-columns correspond to larger eigenvalues than the right columns. The matrix P is

called loading matrix in the sense that the original data can be loaded to a lower

dimensional if its dimension is chosen to be fewer than the number of variables in the

original data.

The loading matrix can be used to reconstruct the original data without loss of

much information given by:

 'TPX = (4.4)
From the equation, it can be seen that all the information contained in the original

data set has been compressed into the loading matrix. If the loading matrix is known, the

original data can then be reconstructed.

4.2 PCA for Fault Detection

During normal operation, the sample covariance of the measured data is governed

by the physics in the process. Its structure will change if a fault occurs in the process. If

a PCA model is used to describe the covariance structure of the measured data for the

fault free condition, a fault can be detected when the model cannot explain the new

observed data. Two cases may make the PCA model fail to explain the new data. The

first case is that the new observation deviates from the mean of the normal operation

defined by the effective region of the PCA model in the score space. The other case is

that the residual of the model has changed significantly. The model residual represents

the noise and the redundant information of a system. If a fault occurs, the characteristics

of the noise and the redundancy are expected to change.

4.2.1 2T statistics

If the score of a new observation is significantly outside the region defined by the

scores of the fault free data, a fault may have occurred. If the scores of the fault free data

satisfy multivariate normal distribution, the decision ellipse can be given by:

 22' αTTT <Σ− (4.5)

 45

where

αα ,,

2)1(
pnpF

pn
npT −−

−
= (4.6)

and

p= number of variables.

n= number of observations.

α = significance level.

The disadvantage of T2 statistics is that it may be oversensitive to the small

elements of aΣ and result in high false alarm rate.

4.2.2 Q statistics

Q statistics can be used to test whether the principal component model can still

explain a new observation. The random variable used for this testing is the sum squared

error R of the original PCA model defined by the following equation:

 rrR '= (4.7)
where

 xPPIr)'(−=
If the sum squared error measuring the total sum of the variation in the residual

space exceeds the Q threshold, it indicates that the original PCA model cannot explain

the new data. The threshold of Q statistics αQ is defined as follows (Jackson and

Mudholkar, 1979)

 dczbaQ)(+=α (4.8)
where

z= the critical value for standard normal distribution at a given significance level.

∑
+=

=
p

ki
ia

1
λ

2
002 /)]1([1 ahhb −+= θ

ahc /)2(02θ=

0/1 hd =

 46

2

1
2 ∑

+=

=
p

ki
iλθ

3

1
3 ∑

+=

=
p

ki
iλθ

)3/()21(2
230 θθah −=

4.3 PCA for Fault Identification

The task of fault identification is to determine what are the most affected

variables once a fault happens. These variables are usually most relevant to fault

diagnosis. Fault identification is useful because it can help operators focus their attention

on a reduced number of variables. The out-of-status score can be approximated by

(Russell and Chiang, 2000):

k
Tt

i

i
2

2)(α

σ
>

where

iσ = singular value, si ,......2,1= .

=s the number of scores considered to be responsible for the out-of-control status.

=k the number of principal components.

The contribution of one original variable to one of the out-of-control scores can

be expressed as follows:

2,

))((

i

jiji
ji

Pxt
C

σ
=

where

jiC , = the contribution of variable jx to the out-of-control scores it .

 The total contribution of the thj variable jx to the out-of-control status can be

given by:

∑
=

=
s

i
jiC

1
,jC

 47

iC = the contribution of variable jx to the out-of-control status.

The fault identification measure can also be defined based on the normalized

error jR given by (Russell and Chiang, 2000):

j

j
j s

r
R

ˆ
=

where

xPPxr jjjj '−=

 2

1

2ˆ i

m

ki
ijj Ps σ∑

+=

= (4.9)

4.4 PCA fault Isolation Versus Parity Space Approach

Gertler et al (1999) reported that there is an inherent consistency between PCA

approach and parity space approach when used for fault isolation. A linear static system

can be described as follows:

∆
∆

+=
y
u

BtAuty)()(

where

)(ty = the observed outputs.

)(tu = the controlled inputs or the measured inputs.

u∆ = the disturbances or the unknown faults related to)(tu .

y∆ = the disturbances or unknown faults related to)(ty .

A and B= known system matrices.

If we combine all the measured variables)(tu and)(ty in a column vector

denoted as)(tx , a set of residuals can then be defined as:

 xBtxIAto ∆=−=)(],[)((4.10)
When PCA is performed, the residual vector is given by:

))(('))('()(')()(txxQQxxPPIxxPPxxto ∆+=∆+−=∆+−∆+= (4.11)
where

P = the eigenvectors that span the principal component space.

 48

Q = the eigenvectors that span the residual space.

 In the above derivation, we have used the property of orthonornal matrices:

IQQPP =+ ''

 In addition, we have assumed that the variances of the scores on the eigenvectors

corresponding to trivial components are approximately zero:

0)'var()var(≈= xQti

 Correspondingly, if the original data are mean centered, then

0' =xQ

Therefore,

)(')(txQQto ∆=

The residual vector)(to generated in this way can be directly used as a parity

vector for fault isolation since any nonzero component of the parity vector corresponds to

only one faulty measurement. Such a FDI approach has great advantages in its easy

implementation. However, the linear PCA algorithm and the method of obtaining

residual vector for fault isolation are not applicable for a non-linear system.

4.5 PCA Fault Isolation Based on Fault Direction

Yoon and MacGregor (2001) reported that the fault directions both in the model

space and in the residual space should be used in order to isolate a complex fault.

 If a fault occurs in a control loop, the fault effects may propagate within the

control loop after a new steady state is reached. Therefore, the developed PCA model

from fault free conditions cannot be used to characterize the new relationship. This has

twofold implications. The first one is that the linear redundant relationships between the

variables have changed. The second one is that the system status has changed. The

former can be represented by the residual change in the residual space and the latter can

be represented by the score change in the model space.

Combining the system status change and the model structure change, a fault

vector can be characterized by the superposition of two fault vectors defined in the model

space and in the residual space as follows:

 49

 vfuff ˆˆ 21 += (4.12)
where

uf ˆ1 = the fault vector defined in the principal component space.

vf ˆ2 = the fault vector defined in the residual space.

The developed PCA model for fault free conditions can be used to decompose a

measurement vector x into two spaces, one component ux ˆ1 in the model space and the

other one vx ˆ2 in the residual space, that is:

 vxuxx ˆˆ 21 += (4.13)

Therefore, the fault direction in the residual space can be defined as:

||||

ˆ
22

22
initialpost

initialpost

xx
xxv

−
−

= (4.14)

where

postpost xPPIx)'(2 −=
initialinitial xPPIx)'(2 −=

P =the loading matrix of the developed PCA model for fault free conditions.
postx =the measurement obtained after a new steady state has reached since a fault.
initialx =the measurement before a fault.

Since 02 ≈initialx , then

||||

ˆ
2

2
post

post

x
xv = (4.15)

 The direction defined in the residual space characterizes the change of the model

structure after a fault. However, the fault direction defined in the residual space may not

be sufficient for fault isolation. The system status change before and after a fault also

provides significant information to characterize a fault. The direction starting from the

initial plant condition before a fault and pointing to the condition after a fault in the

principal component space can be used to define the fault direction in the model space:

||||

ˆ
11

11
initialpost

initialpost

xx
xxu

−
−

= (4.16)

where
postpost xPPx '1 =
initialinitial xPPx '1 =

 50

After the fault signatures have been defined by fault directions, fault isolation can

be achieved based on the angle of the fault vector both in the model space and in the

residual space between a detected fault and some reference faults. A fault is isolated as

one defined in a reference fault dictionary whose fault direction is most collinear with

that of the detected fault both in the model space and in the residual space.

4.6 Determination of the Number of Constraints

Since PCA is in full agreement of parity space approach when used for fault

detection and isolation, it is crucial for a successful FDI system to find out all the

constraints inherent in the process system. In the context of PCA based FDI, the

constraint equations are implicitly represented by the eigenvectors spanning the residual

space. Therefore, the correct choice of the number of principal components is important

for PCA based FDI.

The most commonly used criteria are cumulative percent variance, Scree plot,

average Eigenvalue, and cross validation (Wold, 1978). Cumulative percent variance

method selects the number of principal components by setting a subjective threshold of

cumulative percent variance so that the model fitness and the parsimony in using

principal components are balanced. Scree plot method is based on the plot of the fraction

of variance explained by each principal component. The plot orders the principal

components from the one that gives the largest amount of explanation to the one that

gives the least amount of explanation. This method considers the beginning point of the

Scree as the most reasonable number of principal components. Average eigenvalue

method assumes that all the components whose corresponding eigenvalues are less than

the average value should be discarded. In addition, cross validation can also be used.

4.7 Recommended PCA Based FDI Procedure

The procedure to implement a PCA based FDI is proposed as follows:

(1) Become familiar with the system.

 51

(2) Get information on the operation history of the system and collect the operation

experiences of similar plants.

(3) Select faults of interest from an engineering point of view. The reliability data of the

components, the environment of the components, the consequences of the component

failure etc., should be taken into account.

As far as dual faults are concerned, the selection is mainly safety oriented.

(4) Study the fault responses of the selected faults.

(5) Collect data and evaluate its quality for fault free conditions.

(6) Build a PCA model that is able to characterize the relationships among the measured

variables.

(7) Quantitatively define the fault directions for all the faults and save them in a fault

dictionary. In effect, only one experiment or one simulation is needed in order to

determine the fault direction for each fault.

(8) Implement PCA fault detection using both Q statistic and 2T statistic.

(9) Implement PCA fault isolation based on fault directions defined both in the model

space and in the residual space.

4.8 Application to Nuclear Plant SG System

The PCA based FDI algorithm has been implemented for a PWR steam generator

system.

4.8.1 Development of PCA model

A good model to characterize the relationships between the measured variables

plays an essential role in PCA based FDI algorithm.

 52

Table 4.1 lists the fifteen measured variables used to develop the PCA model for

the SG system. Before the simulated data are used to build a model, some Gaussian noise

is added to the data based on the measurement errors of the corresponding sensors.

Figure 4.1 shows the fractions of the variance contained in the data explained by

the 15 eigenvectors. If a threshold of 98% percent is chosen, the number of principal

components is then determined to be eight. It should be noted that too few principal

components will decrease the accuracy of model prediction and too many principal

components will increase the complexity of the model. A complicated model is able to

reduce the training error, but it will lose the capability of generalization because some of

the degrees of freedoms are only used for modeling the noise.

Figure 4.2 shows the predicted SG narrow range level and the actual values. It

can be seen that the model can predict the trend of the actual data. The choice of more

principal components may increase the accuracy of predicting the training data, but it

may result in over-fitting.

The eight eigenvectors to define the model space are as follows:
 -0.2706 -0.0013 -0.0970 -0.0946 -0.0818 -0.2759 0.1669 0.3104

 -0.2673 0.0053 -0.2591 0.3724 -0.3567 0.6139 -0.2662 0.3839

 -0.2701 -0.0006 -0.1373 -0.0628 -0.0795 -0.1317 0.0112 -0.0808

 0.2499 -0.0442 -0.6176 0.1526 0.0334 -0.1397 0.0593 -0.0636

 -0.2666 -0.0229 -0.2695 -0.4125 0.7342 0.3625 -0.0562 0.0975

 -0.2709 0.0074 -0.0580 0.0030 -0.1170 0.1376 0.2739 -0.3698

 -0.2709 0.0064 -0.0576 0.0014 -0.1221 0.1314 0.3564 -0.3026

 0.0268 0.9976 -0.0610 -0.0125 0.0149 -0.0075 -0.0000 0.0017

 -0.2693 0.0166 0.1404 0.7813 0.5015 -0.2066 0.0428 -0.0255

 -0.2709 0.0025 -0.0661 -0.0614 -0.0998 -0.2263 -0.5195 -0.2465

 -0.2706 -0.0006 -0.0990 -0.0795 -0.0403 -0.2202 -0.5298 -0.2459

 -0.2706 -0.0014 -0.0968 -0.0956 -0.0829 -0.2842 0.1756 0.3432

 -0.2706 -0.0014 -0.0968 -0.0956 -0.0829 -0.2848 0.1756 0.3427

 -0.2709 0.0074 -0.0580 0.0030 -0.1171 0.1380 0.2736 -0.3691

 0.2497 -0.0441 -0.6198 0.1270 0.0154 -0.1386 0.0584 -0.1204

 53

Table 4.1. Measured variables used to develop PCA model

Variable
number

Variable Description

1 Thermal power
2 Cold leg 1 temperature
3 Hot leg 1 temperature
4 SG1 pressure
5 Feed water temperature
6 SG1 steam flow rate

7 Feed water flow rate to SG1
8 FCV1 position
9 FCV1 controller output
10 SG1 WR indicated level
11 SG 1 NR indicated level
12 SG WR reference
13 SG NR reference
14 TCV1 flow rate
15 SG1 temperature

 54

Figure 4.1. Fractions of the variance explained by different PC components.

Figure 4.2. Comparison between the predicted SG NR level and the actual values.

2 4 6 8 10 12 14 16 18 20

10 -2

10 -1

10 0

Order of the PCA model Pe
rc

en
ta

ge
 o

f t
he

 to
ta

l v
ar

ia
nc

e
ex

pl
ai

ne
d

0 10 20 30 40 50 60 70 80 90 100 -2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Sample

SG
 le

ve
l

 + Actual value Predicted values

 55

The seven eigenvectors to define the residual space are as follows:
 0.0142 0.1209 0.0868 -0.5418 0.0572 0.6171 -0.0379

 0.0165 -0.0024 0.0097 -0.0023 -0.0003 0.0020 -0.0004

 -0.0437 -0.9318 0.0606 0.0029 -0.0031 -0.0036 -0.0002

 -0.7060 0.0635 -0.0159 0.0004 0.0008 0.0001 -0.0002

 0.0059 0.0185 -0.0457 -0.0030 0.0006 0.0031 -0.0001

 -0.0116 0.1161 0.0205 0.0127 -0.3934 0.0088 -0.7140

 -0.0099 0.1070 -0.0597 -0.0433 -0.4195 0.0017 0.6925

 -0.0001 0.0011 -0.0002 -0.0000 -0.0004 0.0000 0.0006

 0.0196 -0.0074 -0.0060 -0.0004 0.0001 0.0006 0.0000

 -0.0077 0.1015 -0.7152 -0.0456 0.0102 0.0513 -0.0007

 -0.0051 0.1931 0.6822 0.0506 -0.0591 -0.0618 0.0824

 0.0165 0.1168 -0.0467 0.7910 -0.0176 0.1729 0.0018

 0.0160 0.1173 -0.0453 -0.2680 0.0117 -0.7629 -0.0445

 -0.0112 0.1127 0.0315 0.0470 0.8136 -0.0286 0.0212

 0.7056 0.0058 -0.0143 -0.0006 -0.0002 0.0004 0.0004

From the eigenvectors in the residual space, the following approximate linear

relationships among the measured variables can be derived:

-0.7140*steam flow rate+0.6925*feed water flow rate=0

0.6171*power+0.1729*WR reference level -0.7629*NR reference level=0

-0.3934*steam flow rate-0.4195*feed water flow rate+0.836*TCV flow rate=0.0

-0.5418*power+0.7910*WR reference level-0.2680*NR reference

level+0.047*TCV flow rate=0.0

0.0868*power+0.0606*hot leg temperature-0.0597*Steam flow rate-0.7152*WR

 level+0.6822*NR level=0.0

0.1209*power-0.9318*hot leg temperature-0.0635*SG pressure+0.1161*Steam

 56

flow rate+0.1070*Feed water flow rate+0.1015*WR level+0.1931*NR

level+0.1168*WR reference level+0.1173*NR reference level+0.1127*TCV

flow=0.0

-0.7060*SG pressure + 0.7065*SG temperature=0.0

These equations can be used to reveal the linear relationship among variables. The

corresponding physical relations can be written as follows:

Steam flow rate = feed water flow rate

SG wide range reference level =f(SG narrow range reference level, power)

Steam flow rate + feed water flow rate = TCV flow rate

 SG reference level = f (power, TCV flow rate)

SG narrow range level =f(SG wide range level, power, hot leg temperature, feed

water flow rate)

Hot leg temperature = f (power, SG pressure, SG NR level, SG flow rate)

SG temperature =f (SG pressure)

As can be seen, all the above equations have clear physical meanings. However,

PCA model cannot capture the nonlinear relationship among variables. For example, the

PCA model cannot reveal the relationship between FCV valve position and FCV flow

rate. Another point that should be emphasized in using PCA for FDI is that the

measurements must be carefully selected before a PCA model is to be built. If the

available measurements do not allow finding out some relations among variables that are

the basis to isolate some faults, these faults will hence not be isolated.

 57

4.8.2 Fault detection

Fault detection can be performed based on the developed PCA models.

Figure 4.3 and Figure 4.4 shows the T Square and Q statistics for the fault free

data, respectively. The red lines in the two figures are the T square or the Q statistical

limits corresponding to 99% confidence level. If the corresponding statistics exceeds the

limit, the confidence to state that the fault free model cannot explain the data is at a level

greater than 99 %. The two figures illustrate that all the fault free data are well below the

limit lines. The probability of false alarms due to process disturbance is low.

Figure 4.5 and Figure 4.6 show the T square and Q statistics based fault detection

for feed water flow meter and steam flow meter drift faults. If the confidence level is

chosen to be 99%, the false alarm rate and missing detection rate is shown as follow:

Detecting Fault: Normal Operation
 PCA detection
 False alarm rates by T2+Q testing = 0.04
 False alarm rate by T2 testing = 0.03
 False alarm rate by Q testing = 0.01
Detecting Fault: Feed Water Flow Meter Drift Fault
 PCA detection
 missing detection rate by T2+Q testing = 0.000000
 missing detection rate by T2 testing = 0.012547
 missing detection rate by Q testing = 0.095358
Detecting Fault: Steam Flow Meter Drift fault
 PCA detection
 missing detection rate by T2+Q testing = 0.000000
missing detection rate by Q testing = 0.077792
missing detection rate by T2 testing = 0.011292
 missing detection rate by Q testing = 0.100376
Detecting Fault: Steam Flow Meter Feed Flow Meter Drift Faults
PCA detection
 missing detection rate by T2+Q testing = 0.000000
 missing detection rate by T2 testing = 0.010038
 missing detection rate by Q testing = 0.115433
Detecting Fault: Feed Flow Meter Drift Fault and SG Level Sensor Drift Fault
 PCA detection
 missing detection rate by T2+Q testing = 0.000000
 missing detection rate by T2 testing = 0.013802
Detecting Fault: Steam Flow Meter Drift Fault and SG Level Sensor Drift Fault

 58

Figure 4.3. T square statistics for the normal data.

Figure 4.4. Q statistics for the normal data.

0 100 200 300 400 500 600 700 800 0

5

10

15

20

25

30

Sample

T
sq

ua
re

 s
ta

tis
tic

s

T square statistics for Normal Operation

0 100 200 300 400 500 600 700 800 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Sample

Q
 s

ta
tis

tic
s

Q statistics for normal operation

 59

Figure 4.5. T square statistics to detect steam flow meter and feed water flow meter drift
faults.

Figure 4.6. Q statistics for steam flow meter drift fault and steam flow meter drift fault.

0 100 200 300 400 500 600 700 800 900 0

50

100

150

200

250

300

350

Sample

T
sq

ua
re

 s
ta

tis
tic

s

T square statistics for steam flow and feed flow meter faults

0 100 200 300 400 500 600 700 800 900 0

0.05

0.1

0.15

0.2

0.25

Sample

Q
 s

ta
tis

tic
s

Sample Q statistics for steam flow and feed flow meter faults

 60

 PCA detection
 missing detection rate by T2+Q testing = 0.000000
missing detection rate by T2 testing = 0.006274
 missing detection rate by Q testing = 0.042660
Detecting Fault: SG Pressure Sensor Drift Fault
PCA detection
 missing detection rate by T2+Q testing = 0.000000
 missing detection rate by T2 testing = 0.002789
 missing detection rate by Q testing = 0.068042
Detecting Fault: Feed Water Flow Meter Drift fault & SG Pressure Sensor Drift Fault
 PCA detection
 missing detection rate by T2+Q testing = 0.000000
 missing detection rate by T2 testing = 0.001255
 missing detection rate by Q testing = 0.097867
Detecting Fault: SG Level Sensor Drift Fault & SG Pressure Sensor Drift Fault
 PCA detection
missing detection rate by T2+Q testing = 0.000000
missing detection rate by T2 testing = 0.006274
missing detection rate by Q testing = 0.096612

Detecting Fault: SG Level Sensor Drift Fault

It can be seen that the missing detection rate is small for all the selected faults. It

should be kept in mind that both 2T and Q statistics must be used for fault detection.

Either statistics being violated will signify that a fault has happened. The violation of 2T

statistics represents that the system operates at an abnormal state beyond the model space.

The violation of Q statistics represents that some of the constraint equations defined in

the residual space are violated and the system is abnormal.

PCA can only deal with steady state condition or a slow dynamic process. The

algorithm to perform PCA based fault detection is only applicable to steady state

condition. When the false alarm rate and the missing detection rate are carefully

examined, the false alarm rate and the missing detection rates are not equal to the

expected value of one percent. The reason is that the probabilistic distribution underlying

the data used to build the model is not normal. Therefore, it is reasonable that the false

alarm rate and the missing detection rate are not equal to the specified significance level.

The significance level should be determined using experiences obtained from testing the

FDI design on the process system.

 61

It should also be noticed that the confidence level would affect the false alarm rate

and the missing detection rate. A higher confidence level tends to result in a smaller false

alarm rate but a higher missing detection rate. In a real application, the confidence level

needs to be adjusted according to the operation requirements.

4.8.3 Fault identification

Figure 4.7 and Figure 4.8 show the contribution plots of the abnormal scores and

the abnormal residuals for the feed water flow meter drift fault, respectively. The

contribution plots show that the most affected variables for the feed water flow meter

drift fault as follows:

• Reactor power

• Feed water temperature

• Feed water flow rate

• Steam flow rate

• SG NR level

• SG temperature

All the identified variables are in agreement with the analysis of the fault

responses. The feed water flow rate has been successfully identified as important

variables of concern.

The fault identification does not give immediate results to isolate faults. It only

provides information about what variables significantly contribute to the residuals. This

is true especially in the case that a feed back controller is involved since all the

measurements within the control loop may be affected by a fault in the closed loop.

4.8.4 Fault isolation

The objective of fault isolation is to determine whether the fault is known in the

fault dictionary and to determine which fault is the most likely one after the fault has

been detected.

 62

Figure 4.7. Contribution plot in the model space for feed water flow meter fault.

Figure 4.8. Contribution plot in the residual space for feed water flow meter fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -4

-3

-2

-1

0

1

2

3

4

5 x 10 7

Sample

C
on

tri
bu

tio
n

pl
ot

 in
 re

si
du

al
 s

pa
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5 x 10 12

Sample

C
on

tri
bu

tio
n

pl
ot

 in
 m

od
el

 s
pa

ce

 63

The fault direction jointly defined in the model space and in the residual space has

been used as fault signature for fault isolation. The fault direction is represented by the

cosine angle of the fault directions between the unknown fault and all the 13 reference

faults. These reference faults are numbered as follows:

• Feed water flow meter offset fault.

• Steam flow meter offset fault.

• Feed water flow meter offset fault and steam flow meter offset fault.

• Feed water flow meter offset fault and SG level sensor offset fault.

• Steam flow meter offset fault and SG level sensor offset fault.

• SG pressure sensor offset fault.

• Feed water flow meter offset fault and SG pressure sensor offset fault.

• Feed water flow meter offset fault and FCV offset sensor offset fault.

• Steam flow meter offset fault and FCV position offset fault.

• FCV valve position offset fault.

• SG pressure sensor offset fault and SG level sensor offset fault.

• SG level sensor offset fault.

• Steam flow meter offset fault and SG pressure sensor offset fault.

Figure 4.9 shows the fault direction in the model space and in the residual space

for SG NR level sensor fault and feed water flow meter sensor fault without using SG

wide range level. The feed water flow meter fault cannot be distinguished from feed

water flow meter sensor fault plus SG level sensor fault. This is because the symptoms

of the former fault envelope all those of the latter fault. Therefore, no additional

information can be used to uniquely isolate SG NR level sensor fault.

Figure 4.10 shows the fault direction for the feed flow meter fault after the SG

wide range level sensor has been used. After SG wide range level signal is used, feed

water flow meter fault can then be isolated from feed water flow meter sensor fault plus

SG level sensor fault. Therefore, in order to isolate all the selected thirteen faults

 64

Figure 4.9. Fault direction for feed water flow meter offset fault and SG NR level sensor
offset fault without using SG WR level signal.

Figure 4.10. Fault direction for feed water flow meter offset fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1
Fault direction in the model space and the residual space

Fault number

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

1 2 3 4 5 6 7 8 9 10 11 12 13 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

Fault number

 65

including dual faults, measurement redundancy must be used to avoid the compensation

effect of controller feedback.

Furthermore, an important criterion to judge if the designed FDI scheme is

successful or not is to test the stability of the fault signatures in different fault magnitudes

and under different initial operation conditions. For this reason, a set of data in fault

magnitude of three percent under the initial power level at 80% full power, which are

unknown to the fault dictionary, are generated to test the reliability of the designed FDI

system.

Figure 4.11 to Figure 4.22 show the fault direction both in the model space and in

the residual space for the defined 13 faults respectively in magnitude of three percent

under the initial power level at 80% full power. As can be seen, the fault direction in

either model space or residual space is sometimes not enough to isolate dual faults. For

example, the fault direction in the model space for steam flow meter offset fault is similar

to that for steam flow meter offset fault plus SG NR level sensor fault (See Figure 4.11).

Nonetheless, the fault direction in the residual space for steam flow meter offset fault is

quite different from steam flow meter offset fault plus SG NR level sensor fault. An

opposite example is that the fault direction in the model space helps to isolate a fault.

The fault direction in the residual space for steam flow meter offset is similar to that for

steam flow meter offset fault plus FCV position fault (See also Figure 4.11).

Nevertheless, the fault direction in the model space for steam flow meter offset

fault is quite different from steam flow meter offset fault plus FCV valve position offset

fault. Therefore, when the joint fault direction is used, there is more possibility to isolate

faults.

The cosine of the angle between the fault direction of an unknown fault and those

of the reference faults can also be used as confidence level when a decision is to be made.

Figure 4.15 shows that no significant margin exists to isolate a SG pressure sensor fault

from a SG pressure sensor fault plus a steam flow meter offset fault. Figure 4.19 shows

that there is no significant margin to isolate a FCV position fault from a steam flow meter

 66

Figure 4.11. Fault direction for steam flow meter offset fault.

Figure 4.12. Fault direction for feed water flow meter offset fault and steam flow meter
offset fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1
Fault direction in the model space and the residual space

Fault number

St
ea

m
 fl

ow
 m

et
er

 o
ffs

et

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.5

0

0.5

1
Fault direction in the model space and the residual space

Fault number

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

 a
nd

 S
te

am
 fl

ow
 m

et
er

of

fs
et

 67

Figure 4.13. Fault direction for feed water flow meter offset fault and SG NR level
sensor offset fault.

Figure 4.14. Fault direction for steam flow meter offset fault and SG NR level sensor
offset fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

 a
nd

 S
G

 L
ev

el

se
ns

or
 o

ffs
et

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

St
ea

m
 fl

ow
 m

et
er

 o
ffs

et
 a

nd
 S

G
 L

ev
el

se

ns
or

 o
ffs

et

 68

Figure 4.15. Fault direction for SG pressure sensor offset fault.

Figure 4.16. Fault direction for feed water flow meter offset fault and SG pressure sensor
offset fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

SG
 p

re
ss

ur
e

se
ns

or
 o

ffs
et

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.5

0

0.5

1
Fault direction in the model space and the residual space

Fault number

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

 a
nd

 S
G

Pr

es
su

re
 s

en
so

r f
au

lt

 69

Figure 4.17. Fault direction for feed water flow meter offset fault and FCV position
offset fault.

Figure 4.18. Fault direction for steam flow meter offset fault and FCV position offset
fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

Fe
ed

 fl
ow

 m
et

er
 o

ffs
et

 a
nd

 F
C

V
O

ffs
et

1 2 3 4 5 6 7 8 9 10 11 12 13 -1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
Fault direction in the model space and the residual space

Fault number

St
ea

m
 fl

ow
 m

et
er

 o
ffs

et
 a

nd
 F

C
V

O
ffs

et

 70

Figure 4.19. Fault direction for FCV position offset fault.

Figure 4.20. Fault direction for SG level sensor offset fault and SG pressure sensor offset
fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

FC
V

O
ffs

et

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

SG
 le

ve
l s

en
so

r o
ffs

et
 a

nd
 S

G
 p

re
ss

ur
e

se
ns

or
 fa

ul
t

 71

Figure 4.21. Fault direction for SG level sensor offset fault.

Figure 4.22. Fault direction for steam flow meter offset fault and SG pressure sensor
offset fault.

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.5

0

0.5

1
Fault direction in the model space and the residual space

Fault number

SG
 le

ve
l s

en
so

r f
au

lt

1 2 3 4 5 6 7 8 9 10 11 12 13 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Fault direction in the model space and the residual space

Fault number

St
ea

m
 fl

ow
 m

et
er

 s
en

so
r o

ffs
et

 a
nd

 S
G

pr

es
su

re
 s

en
so

r f
au

lt

 72

offset fault plus FCV position fault. Therefore, when decisions are made, the confidence

level to isolate these two faults should be taken into account.

4.9 Discussions

This chapter has presented the PCA approach to fault detection and isolation and

its application to PWR steam generator system. The PCA approach is shown to be in

agreement with parity space approach. The linear relationship among measured variables

implying analytical redundancy can be consistently represented by the eigenvectors

corresponding to the trivial components. The fault directions jointly defined both in the

model space and in the residual space is a sensitive fault signature for fault isolation.

PCA approach needs the least information about a system when applied to FDI. It

is simple to achieve on-line implementation. It provides an ideal tool to supervise plant

status without too much investment. However, PCA approach has many inherent

weaknesses. From the viewpoint of modeling, linear PCA is only applicable to a linear

static system. It is difficult to develop a nonlinear PCA model for a dynamic system

accurate enough to reveal the analytical redundancy inherent in a physical system. With

regard to fault isolation, the fault characteristics must be defined from fault data for the

enumerated faults. This exerts heavy burden on engineering application. In addition, the

fault isolation is a process of classification, so the decision has poor interpretability.

Because PCA approach has inherent connection with parity space approach, it is

very important to validate the constraint equations extracted from PCA modeling. If

process variables are not appropriately chosen, some constraint equations necessary for

fault isolation may not be obtained. If the number of principal components is chosen

incorrectly, the residual direction cannot be used to characterize a fault.

 73

Chapter 5

Adaptive Network Fuzzy Inference System

for Fault Diagnosis

A PCA model cannot take advantage of the available system knowledge. For this

reason, sometimes it is very difficult to build an appropriate model with low model

uncertainty. Some of these difficulties are as follow:

• When a large number of variables are involved, it is hard to make sure that all the

measurements are well excited in order to obtain a model with reliable generalization

capability.

• When noisy data is involved, its effects on how the constraint equations are extracted

from the noisy data are unknown to the analyst.

• When nonlinear behavior is involved, it is hard to have a tradeoff between choosing

more principal components to have a better approximation and preclude the

disturbance of noises.

In order to overcome these problems and keep the good feature of historical data

based FDI approach, ANFIS is implemented to generate models for FDI. This method

can take advantage of the available system knowledge and captures the most relevant

relationships among measured variables to characterize a fault.

5.1 ANFIS Architecture

ANFIS is a fuzzy inference system implemented in the framework of artificial

neural network (Jang, 1990). It is able to combine the reasoning capability of fuzzy logic

and the learning capability of neural network. It is efficient in building a model with only

a few inputs and one output. A fuzzy inference system implements inference procedure

using fuzzy rules. A fuzzy rule can be expressed linguistically as follows:

 If x is A then y is B (5.1)

 74

A fuzzy rule is analytically an implication relation R between its antecedent x and

its consequent y, which can be expressed as:

 ∫=
),(

),/(),(),(
yx

yxyxyxR µ (5.2)

where

),(yxµ = membership function.

The implication relationship R(x,y) can also be explained as the membership

function of a fuzzy set defined in a two dimensional universe of discourse (x,y). It can be

computed using implication operator φ as follows:

))(),((),(yxyxR BA µµφ= (5.3)
The most commonly used implication operators are Larsen product and Madamni min.

If there are several input variables, it is necessary to have several antecedents

connected with fuzzy operators. In general, a fuzzy inference system uses a set of fuzzy

rules connected with connectives forming fuzzy algorithms.

Fuzzy inference of Generalized Modus Ponens is stated as the following problem:

 If x is A then y is B

 '' ByAx =⇒= (5.4)
In the above problem statement, the known part is R(x,y) and A', the unknown

part is B' associated with A'. This inference procedure is a fuzzy composition given by:

),('' yxRAB = (5.5)
The most commonly used fuzzy composition operators are Max-Min if Madamni

Min implication relationship is used and Max-Product if Larsen Product implication

relationship is used.

A fuzzy inference system has the following four components (Jang, 1994):

• A rule base containing if-then rules.

• A database defining the membership functions used by the fuzzy rules.

• A decision-making unit performing inference operations on the rules.

• A unit to fuzzify the inputs and a unit to defuzzify the fuzzy outputs.

Five steps need to be taken in a fuzzy inference system as follows:

• Fuzzify the inputs.

• Apply fuzzy operator.

 75

• Apply implication Method.

• Aggregate all the outputs.

• Defuzzify the output.

The first step is to fuzzify the crisp inputs. In this step, the membership values of

each input variable are computed. The second step is to apply fuzzy operators to

compute the degree of the fulfillment (DOF) of the whole antecedent for each fuzzy rule

by combining the membership values of all the fuzzy inputs. The result is the firing

strength of its corresponding rule. In the third step, the membership of the consequent for

each rule is computed based on the DOF of the antecedent for the corresponding rule by

applying appropriate composition method. The fourth step is to aggregate the

membership of the fuzzy outputs for all the rules. The final step is to defuzzify the output

using methods such as centroid, maximum criterion, etc.

The simplest fuzzy inference model is of Sugeno type. It has the following form

of fuzzy rules:

 If x is A and y is B then

 z=f(x) (5.6)
where A and B are fuzzy sets and z=f(x) is a crisp function.

In this model, the consequent of each fuzzy rule is simply a crisp function rather

than a fuzzy set. It can significantly simplify fuzzy reasoning. In general, aggregation

and defuzzification will involve matrix operation in high dimensional space. However,

for a Sugeno fuzzy model, only a simple arithmetic function is involved in computing the

output of each rule. Hence, the aggregation and defuzzification can be combined into a

weighted sum (Hines and Wrest, 1997).

A Sugeno fuzzy model evolves into its first order form if the defined function is

of first order. Given that there are two inputs and one output, two of the fuzzy rules can

be represented by:

Rule 1: If x is A1 and y is B1 then z=ax+by+c

Rule 2: If x is A2 and y is B2 then z=px+qy+r

The output f can then be obtained as the sum of the two crisp output f1 and f2

weighted by the firing strength ratio w1 and w2. That is

 76

 2211 fwfwf += (5.7)
When the fuzzy inference system is implemented using an adaptive network, the

network system consists of layers of nodes capable of adapting parameters to map the

desired input-output relation using fuzzy inference mechanism. For each node, there are

several inputs and one output. The processing inside each node is nothing but performing

some function computation. There are no weights designated to the connection between

two nodes, but there is directional indication.

A classical ANFIS architecture, developed by Jang, 1994, is shown in Figure 5.1.

Two fuzzy rules are involved in the four layers of network. The nodes in the first layer

take crisp inputs and compute the DOF of the fuzzy sets (A1, A2, B1, B2). These fuzzy

sets are parameterized fuzzy sets. Their membership functions can be adjusted easily by

changing a set of parameters. The two nodes in the second layer correspond to the two

fuzzy rules. All the nodes in this layer take two inputs to give an output, w1 or w2,

representing the firing strength of each rule based on the product of the two membership

values being involved. The third layer is responsible for calculating the relative

importance of each rule (1w and 2w), the ratio of one rule's strength to the sum of the

firing strengths of all the rules. Each node in the fourth layer contains a node function to

calculate the consequent multiplied by the ratio calculated in the third layer. The output

layer gives the final output by summing all its inputs.

5.2 ANFIS Learning Rule

 Hybrid learning algorithm is developed for training ANFIS, which combines the

gradient descent method and the least square method (Jang, 1994). The training process

involves tuning parameters such that the desired input-output mapping is achieved. The

tuned parameters are classified into two sets. One set describes the linear relationship

between the inputs and the outputs, which contains the parameters of the crisp function to

describe the consequent of each rule. The other set of parameters describes the non-

linearity between the inputs and the outputs, which involves those parameters defining

membership functions.

 77

Figure 5.1. Schematic for Sugeno-type ANFIS System.

A1

A2

B1

B2

x

y

Mi N

N

+

F1=p1x+q1y+r1

F2=p2x+q2y+r2

×

×

f

A1

A2

B1

B2

x

y

X

X

N

N

X

X

f

 78

 In the forward pass, the parameters describing the linear relationships are

upgraded by sequential least square training. After the error is computed, the gradient

descent training is used, which makes the error propagated from the output layer to the

input layer. In this backward pass, the parameters describing the nonlinear relationship

are upgraded. The training process does not end until the desired error goal is reached or

the designated maximum number of epochs is exceeded.

For the ANFIS structure with two inputs and one output, the system output can be

expressed as follows:

)()2,2()()1,1(22221111 ryqxpBAwryqxpBAwf ++∗+++∗=

The parameter space S is partitioned into two subspaces 1S and 2S given by:

21 SSS +=

where

)2,2,1,1(1 BABAS ⊃

),,,,,(2221112 rqprqpS ⊃

During the forward pass with the fixed set 1S , the parameters in the subspace

2S can be determined by least squares estimate as follows:

YXXXS ')'(1
2

−=

where

X = input data set.

Y = target output.

During the backward pass with the fixed set 2S , the parameters in the subspace

1S can be determined by gradient descent method. For the output layer, the error rate is

defined by:

)(2 5
5 OT

O
E

−−=
∂
∂

where

)(*)(22221111
5 ryqxpwryqxpwO +++++∗=

=T target output.

 79

For the two nodes in the fourth layer, the error rate is defined by:

4
2

5

54
2

4
1

5

54
1

O
O

O
E

O
E

O
O

O
E

O
E

∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

where
4
2

4
1

5 OOO += =the system output.
k
iO =the output of the ith node for the kth layer.

For the two nodes in the third layer, the error rate is defined by:

)(

)(

3
2

4
2

4
2

5

3
2

4
1

4
1

5

53
2

3
1

4
2

4
2

5

3
1

4
1

4
1

5

53
1

O
O

O
O

O
O

O
O

O
E

O
E

O
O

O
O

O
O

O
O

O
E

O
E

∂
∂
∂

+
∂

∂
∂

∂
∂

=
∂
∂

∂
∂
∂

+
∂

∂
∂

∂
∂

=
∂
∂

where

2
3
2

4
2

1
3
1

4
1

fOO

fOO

=

=

For the two nodes in the second layer, the error rate is defined by:

2
2

3
2

3
2

4
2

4
2

5

3
2

4
1

4
1

5

52
2

3
1

3
1

4
2

4
2

5

3
1

4
1

4
1

5

52
2

2
1

3
2

3
2

4
2

4
2

5

3
2

4
1

4
1

5

52
1

3
1

3
1

4
2

4
2

5

3
1

4
1

4
1

5

52
1

)()(

)()(

O
O

O
O

O
O

O
O

O
O

O
E

O
O

O
O

O
O

O
O

O
O

O
E

O
E

O
O

O
O

O
O

O
O

O
O

O
E

O
O

O
O

O
O

O
O

O
O

O
E

O
E

∂
∂∂

∂
∂

+
∂

∂
∂

∂
∂

+
∂
∂∂

∂
∂

+
∂

∂
∂

∂
∂

=
∂
∂

∂
∂∂

∂
∂

+
∂

∂
∂

∂
∂

+
∂
∂∂

∂
∂

+
∂

∂
∂

∂
∂

=
∂
∂

where

2
2

2
1

2
23

2

2
2

2
1

2
13

1

OO
OO

OO
OO

+
=

+
=

For the jth node in the first layer, the error rate is defined by:

1

2
2

2
1

1

2
1

2
1

1
jjj O

O
O
E

O
O

O
E

O
E

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

 80

where

1
4

1
2

2
2

1
3

1
1

2
1

OOO

OOO

=

=

The derivative of the output error with respect to the parameters used to define the

membership functions can be determined by:

∑
= ∂

∂

∂
∂

=
∂
∂ M

j i

j

ji S
O

O
E

S
E

1 ,1

1

1
,1

where

jS ,1 =the jth parameter in the space of 1S .

M =the number of fuzzy sets used to define the fuzzy rules.

 If Gaussian membership function is used for the jth fuzzy set in the first layer,

which is given by:

))(exp()(21

j

j
jj a

cx
xO

−
−== µ

then

j

j

jj

j

j

jj

a
x

O
E

a
E

c
x

O
E

c
E

∂

∂

∂
∂

=
∂
∂

∂

∂

∂
∂

=
∂
∂

)(

)(

1

1

µ

µ

 The update of the parameters in the space of 1S is determined by:

j
j S

ES
,1

,1 ∂
∂

−=∆ η

where η is the learning rate.

 The hybrid learning algorithm is much faster than gradient descent method only

or gradient descent and one pass of least squares method (Jang, 1993). If some

membership functions or some rule functions are determined from expert knowledge, the

learning algorithms can be easily adapted to develop some hybrid models.

 81

5.3 Structured Residual Design Approach

 If structured residual design approach is used for fault isolation, the residual

vector is represented by the bit numbers for a set of models. The bit number 1 indicates

that the model has a significant residual while the bit number 0 indicates the model has

insignificant residual. If there are only single faults in the designed FDI system, it is

possible to achieve strong fault isolation if the model structures are carefully chosen. The

most straightforward method to obtain residuals is based on the natural redundancy in a

process. Table 5.1 shows the residual structure of four models for four faults. The

residual pattern for fault 1 is [1,1,0,0]; the residual pattern for fault 2 is [1,0,0,0]; the

residual pattern for fault 3 is [0,0,1,1]; and the residual pattern for fault 4 is [0,0,1,0]. If

the bit number of model 3 for fault 2 degenerate, fault 2 will be misdiagnosed as fault 1.

If the bit number of model 4 for fault 3 degenerate, fault 4 will be misdiagnosed as fault

1. This kind of residual structure can only result in weak isolation between faults. In

order to achieve strong fault isolation, which means a fault will not be misdiagnosed as

another fault even if one bit number has degenerated, it is necessary to transform the

residual vectors into a structured form shown in Table 5.2. For a linear system, the

structured residual can be achieved by a linear transformation on the original residuals.

However, for a nonlinear system, it is quite difficult to derive new dependent equations

by algebraic combinations of the previous equations in order to obtain the desired

residual structure (Garcia, et al, 2000).

5.4 Application to Nuclear Plant SG System

Once the possible faults are enumerated based on engineering judgments

structured residual design approach with ANFIS models can be implemented for fault

diagnosis for nuclear SG system. The study shows different residual structures are

required to deal with single faults and dual faults.

 82

Table 5.1. Structured residual design for weak fault isolation

Model Fault 1 Fault 2 Fault 3 Fault 4
Model 1 1 1 0 0
Model 2 1 0 0 0
Model 3 0 0 1 1
Model 4 0 0 1 0

 Table 5.2. Structured residual design for strong fault isolation

Model Fault 1 Fault 2 Fault 3 Fault 4
Model 1 1 1 0 1
Model 2 1 0 0 0
Model 3 0 0 1 1
Model 4 0 1 1 0

 83

For PWR SG system, the model structures derived from the physical analysis are

as follows:

FCV flow rate (t)=f (FCV valve position (t), SG pressure (t))

FCV valve position (t+1)=f (controller output (t), FCV valve position (t))

SG pressure (t)=f(SG temperature(t))

Steam flow rate(t+1)=f(feed water temperature(t), SG pressure(t), hot leg temperature(t),

cold leg temperature(t))

SG level (t+1)=f(SG level(t),Feed water flow rate(t), steam flow rate(t),SG pressure(t))

Table 5.3 shows the residual patterns for the 13 faults with the above model

structure. In the table, the bit number 0 indicates that the model to predict the specific

variable will not generate significant residual while the bit number 1 indicates that the

residual is significant. The threshold to distinguish the significance is determined by the

model accuracy and the level of plant disturbance. As can be seen from the table, the

residual patterns can be directly used to achieve strong fault isolation for the three single

faults (feed water flow meter offset, steam flow meter offset and FCV position offset).

However, the SG level sensor fault cannot even be detected. In this case, the residuals

refer to the values after the new steady state has been reached. Due to the compensation

effects of the SG level controller, the relationship among the feed water flow rate, the

steam flow rate, the SG pressure, the FCV position and the SG level are always attempted

not to change. Therefore, it is usually very difficult to detect a minor fault of the steam

generator water level sensor fault based on a steady state model. The table also shows

that some residuals become unstable due to fault competition with different fault

magnitudes when dual faults are involved. The unstable residuals of the SG level model,

denoted by the sign "?" in the table, correspond to the following combination of faults:

 84

Table 5.3. Consistency checking using natural redundant relations

 Functional
Model

Faults

FCV
flow
rate

Steam flow
rate

SG pressure FCV valve
position

SG level

Feed flow meter offset 1 0 0 0 1

Steam flow meter
offset

0 1 0 0 1

Steam flow meter and
feed flow meter offset

1 0 0 0 ?

SG NR level sensor
offset

0 0 0 0 0

Feed flow meter offset
and SG level
sensor offset

1 1 0 0 1

Steam flow meter
offset and SG level
sensor offset

0 1 0 0 1

SG pressure
sensor offset

1 1 1 0 1

Feed flow meter offset
and SG pressure sensor

offset

1 1 1 0 1

Steam flow meter
offset and SG pressure

sensor offset

1 1 1 0 1

SG level sensor offset
and SG pressure

sensor offset

1 1 1 0 ?

Feed water flow meter
offset and FCV
position offset

1 0 0 1 ?

Steam flow meter
offset and FCV
position offset

0 1 0 1 1

FCV position offset 0 0 0 1 1

 85

• Steam flow meter offset plus feed flow meter offset.

• SG pressure sensor offset plus SG level sensor offset.

• FCV valve position offset plus feed water flow meter offset.

Although the residual structure can be used directly to isolate the three single

faults, it is not sufficient to isolate dual faults. These dual faults are:

• Feed flow meter offset plus SG level sensor offset cannot be separated from feed flow

meter offset.

• Steam flow meter offset plus SG level sensor offset cannot be separated from steam

flow meter offset.

• SG pressure sensor fault plus Feed flow meter offset cannot be separated from steam

SG pressure sensor fault.

• SG pressure sensor fault plus SG level sensor offset and SG pressure sensor fault plus

SG steam flow meter offset.

In conclusion, although a set of models derived from physical analysis may result

in different residual patterns for fault isolation, they are usually not effective to deal with

dual faults. When used for dual fault isolation, some dual faults may result in the same

residual pattern as their element faults. In addition, the residuals of some models may

become unstable for dual faults with different fault magnitudes.

5.4.1 Dedicated residual design for dual faults

Because dual faults usually cannot be strongly isolated from its element faults,

dedicated residual structure is designed to isolate dual faults. Dedicated residual

structure has the following two properties:

• Each residual is only sensitive to one fault and insensitive to all the other faults.

• Different faults result in different types of residual patterns.

If the possible faults are known, dedicated residual structure can be obtained

through appropriately selecting the model structures to generate residuals. The

alternative models can be derived based on:

• Natural redundancy

 86

For instance, for a saturated system, the temperature and the pressure has one to

one correspondence. Any model involving either variable can be substituted by the other

variable.

• Derived redundancy

For instance, if the flow rate is determined by the system pressure and the valve

position for a system, any model involving the flow rate can be substituted by the system

pressure and the valve position.

• Measurement redundancy

The measurement redundancy is the most primitive one. For the SG system, the

SG narrow range level measurement involved in any model can be substituted by the SG

wide range level measurements.

In order to isolate the specified 13 faults for the nuclear SG system, the models

with dedicated residual structure are defined as follow:

FCV flow rate (t)=f (FCV valve position (t), SG temperature (t))

FCV valve position (t+1)=f (controller output (t), FCV valve position (t))

SG pressure (t)=f(SG temperature(t))

Steam flow rate(t+1)=f(feed water temperature(t), SG temperature(t), hot leg

temperature(t), cold leg temperature(t))

SG NR level (t)=f(SG WR level(t),Feed water temperature(t))

In order to isolate dual faults involving the controlled variable from their element

faults in a closed control loop, the measurement redundancy has to be used. For the

nuclear SG level system, SG WR level sensor has to be used to isolate SG NR level

sensor fault from SG NR level sensor fault plus another fault in the control loop.

 87

5.4.2 ANFIS modeling for SG system

The ANFIS modeling has been used to construct the five models for the system

during normal operation. Before the ANFIS models are constructed, the input variables

need to be appropriately scaled. The purpose to scale the inputs is to give equal

importance to all the inputs in the case that the input variables are in different units.

Feed water flow rate model is shown as an example to train the ANFIS model.

The network uses two bell-shape membership functions for either input. Two rules have

been selected to map the input and output relationship.

Figure 5.2 shows the membership functions for the ANFIS model to predict the

FCV valve flow rate before and after training. It can be seen that the training has

changed the shape of the membership function for the first input (FCV valve position)

significantly. In general, this change reflects the degree of nonlinearly contained in the

mapping between the input and the output. After three epochs, the ANFIS model has

been trained to reach a training error less than 0.5 %.

5.4.3 Model testing and validation

The residuals generated by some models can be immediately used for fault

detection. If the sum square residuals of all the models are greater than a specified

threshold, a fault is assumed to have happened.

In order to reduce the false alarm rates for fault detection, these models must be

able to correctly characterize the system behavior under all the fault free conditions.

However, if the models are fully static, any changes in the plant status or even plant

disturbance will cause false alarms because the dynamic behavior of the system is

unknown to the system. For this reason, most FDI systems need to use dynamic models.

The dynamic models are able to simulate the normal transients such as a normal power

transient.

In order to test the performance in characterizing the dynamic behavior, a power

transient from 100% power to 90% power is simulated using the ANFIS models built in

 88

Figure 5.2. Membership for the two inputs to predict feed water flow rate using ANFIS.

D
eg

re
e

of
 m

em
be

rs
hi

p
D

eg
re

e
of

 m
em

be
rs

hi
p

-2 0 2
0

0.2
0.4
0.6
0.8

1

input1

in1mf1 in1mf2

-1 0 1
0

0.2
0.4
0.6
0.8

1

input2

D
eg

re
e

of

in2mf1 in2mf2

-2 0 2
0

0.2
0.4
0.6
0.8

1

input1

in1mf1 in1mf2

-1 0 1
0

0.2
0.4
0.6
0.8

1

input2
D

eg
re

e
of

in2mf1 in2mf2

before
training

after
training

 89

the last section. Figure 5.3 to Figure 5.6 show the comparison between the estimation

from the ANFIS models and the actual values obtained by the SimPWR simulation code

for the following variables:

• SG narrow range level.

• Steam flow rate.

• FCV flow rate.

• FCV valve position.

From these figures, it can be seen that the ANFIS models can correctly simulate

the transient process with low errors. When a large complex system with strong

interaction is involved, it is usually very challenging to build perfect data driven models.

For instance, it would be difficult to build a data driven model for a fast transient due to

the fast interaction among systems. For fast transients, it will involve much more

complicated model structure and it is harder to collect data to sufficiently excite all the

related subsystems.

However, from FDI point of view, the slight errors of these models will not

impose a serious problem. First, different thresholds can be set to the residuals for

different models depending on the accuracy of the models. Secondly, fast transient is not

of major interest for an incipient fault detection and isolation system. A fast power

transient is usually under cautious supervision of operators, so operators can easily switch

off the FDI system if the expected transient is any faster than the designed level. In

general, the ANFIS models should give correct estimation if the relationship between the

input variables and the output variable does not change. However, if a fault happens,

some input variables may be outside their training range and the model may perform

unreliable extrapolation. Hence, the residual of the model may exceed the specified

threshold. In order to avoid this problem, it is necessary to evaluate whether the models

are excited in all fault cases.

 An example is given to show the importance of model testing for SG NR level

model. If the data are collected only from 20 % to 100% power ranges, the model will

 90

Figure 5.3. Transient simulation of SG NR level using ANFIS model.

Figure 5.4. Transient simulation of steam flow rate using ANFIS model.

0 20 40 60 80 100 120 -4

-2

0

2

4

6

8

10

12

14 x 10 -4

Si
m

ul
at

io
n

er
ro

r f
or

 S
G

 le
ve

l

Transient simulation

Sample

0 20 40 60 80 100 120
2.5

3

3.5

4

4.5

5

5.5
x 10-3

S
im

ul
at

io
n

er
ro

r f
or

 s
te

am
 fl

ow
 ra

te

Transient Simulation based on the developed ANFIS model

Sample

 91

Figure 5.5. Transient simulation of FCV flow rate using ANFIS model.

Figure 5.6. Transient simulation of FCV position using ANFIS model.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
x 10-3

S
im

ul
at

io
n

er
ro

r f
or

 F
C

V
 fl

ow
 ra

te

Trans ient s im ulation based on the developed ANFIS m odel

Sam ple

0 20 40 60 80 100 120
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

FC
V

 v
al

ve
 p

os
iti

on
 c

ha
ng

e

Validation of ANFIS models for power transients

-------- Predicted value
_____ Actual value

Sample

 92

generate unstable residual patterns for different fault magnitudes. Figure 5.7 shows that

when the SG steam flow meter and the SG pressure sensor have less than 2% offset

faults, the residual is less than 0.5%. However, when the fault magnitude is 3%, the

residuals become unstable. To investigate the causes, the training range of the inputs is

examined. The minimum values of the feed water temperature and the SG WR SG level

are 313.94 F and 76.269% respectively. The maximum values of the feed water

temperature and the SG WR SG level are 438.4 F and 85.599% respectively. However,

for the SG steam flow meter and SG pressure sensor offset faults with 3% fault

magnitude, the minimum values of the feed water temperature and the SG WR SG level

are 440.42 F and 83.0% respectively and the maximal values are 440.5 F and 86.167%

respectively. Apparently, the fault data have exceeded the training range, so the ANFIS

model is not able to correctly compute the residual of the SG narrow range level.

After more data is collected to cover the entire range for the faults, the residuals

exhibit consistent behavior. Figure 5.8 shows that the residuals of SG NR level models

are within 1% for the dual faults (the SG steam flow meter and the SG pressure sensor

offset fault) when the SG NR level sensors are healthy.

5.4.4 FDI Results

Table 5.4 shows the dedicated residual structure to isolate the defined 13 single

and dual faults. As can be seen, each ANFIS model is dedicated to isolate one fault. For

dual faults, the corresponding two models dedicated to the two element faults will

generate significant residuals, which provides the full possibility to isolate them.

Figure 5.9 to Figure 5.16 show the residual structures for different fault

magnitudes. In these figures, the 13 fault classes correspond to the following faults:

• Fault class 1= Feed water flow meter offset fault.

• Fault class 2= Steam flow meter offset fault.

• Fault class 3= Feed water flow meter offset fault and steam flow meter offset fault.

• Fault class 4= SG level sensor offset fault.

• Fault class 5= Feed water flow meter offset fault and SG level sensor offset fault.

 93

Figure 5.7. Unstable residual of SG level for SG pressure and steam flow meter fault.

Figure 5.8. Stable residual of SG level for SG pressure and steam flow meter fault.

0 10 20 30 40 50 60 70 80
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Sample

R
es

id
ua

ls
 o

f S
G

 le
ve

l

-- 3% bias fault + -1% bias fault
o 2% bias fault _ -2% bias fault
x 1% bias fault * -3% bias fault

0 10 20 30 40 50 60 70 80 -3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 x 10 -3

Sample

R
es

id
ua

ls
 o

f S
G

 le
ve

l

-- 3% bias + -1% bias

o 2% bias _._. -2% bias

x 1% bias * -3% bias

 94

Table 5.4. Dedicated residual structure for SG system

 Functional

Model
Faults

Feed water
flow rate

Steam
flow rate

SG pressure FCV valve
position

SG level

Feed flow meter offset 1 0 0 0 0

Steam flow meter
offset

0 1 0 0 0

Steam flow meter and
feed flow meter offset

1 1 0 0 0

SG NR level sensor
offset

0 0 0 0 1

Feed flow meter offset
and SG level
sensor offset

1 0 0 0 1

Steam flow meter
offset and SG level
sensor offset

0 1 0 0 1

SG pressure
sensor offset

0 0 1 0 0

Feed flow meter offset
and SG pressure sensor

offset

1 0 1 0 0

Steam flow meter
offset and SG pressure

sensor offset

0 1 1 0 0

SG level sensor offset
and SG pressure sensor

offset

0 0 1 0 1

Feed water flow meter
offset and FCV
position offset

1 0 0 1 0

Steam flow meter
offset and FCV
position offset

0 1 0 1 0

FCV position offset 0 0 0 1 0

 95

Figure 5.9. Structured residual pattern using ANFIS models

(100% Power, 1% offset fault).

Figure 5.10. Structured residual pattern using ANFIS models

(100% Power, 2% offset fault).

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Residual Patterns Fault Magnitude=0.01 Power Level=1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Residual Patterns Fault Magnitude=0.02 Power Level=1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

 96

Figure 5.11. Structured residual pattern using ANFIS models

(100% Power, 3% offset fault).

Figure 5.12. Structured residual pattern using ANFIS models

(100% Power, -1% offset fault).

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Residual Patterns Fault Magnitude=0.03 Power Level=1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Residual Patterns Fault Magnitude=-0.01 Power Level= 1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

 97

Figure 5.13. Structured residual pattern using ANFIS models

(100% Power, -2% offset fault).

Figure 5.14. Structured residual pattern using ANFIS models

(100% Power, -3% offset fault).

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Residual Patterns Fault Magnitude=-0.02 Power Level= 1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Residual Patterns Fault Magnitude=-0.03 Power Level= 1

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

 98

Figure 5.16. Structured residual pattern using ANFIS models

(80% Power, 1% offset fault).

1 2 3 4 5 6 7 8 9 10 11 12 13
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Residual Patterns Fault Magnitude=0.01 Power Level= 0.8

Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)

R
es

id
ua

l

 99

• Fault class 6= Steam flow meter offset fault and SG level sensor offset fault.

• Fault class 7= SG pressure sensor offset fault.

• Fault class 8= Feed water flow meter offset fault and SG pressure sensor offset fault.

• Fault class 9= Steam flow meter offset fault and SG pressure sensor offset fault.

• Fault class 10= SG pressure sensor offset fault and SG level sensor offset fault.

• Fault class 11= Feed water flow meter offset fault and FCV offset sensor offset fault.

• Fault class 12= Steam flow meter offset fault and FCV position offset fault.

• Fault class 13= FCV valve position offset fault.

In each figure, the 13 faults have different residual patterns, so they can be

isolated. If the residual patterns are compared for different fault magnitudes, their

structures are stable. Moreover, the residuals are approximately equal to the fault

magnitudes of the sensor faults such as the feed water flow meter fault and the steam

flow meter fault. Theoretically, the residuals should be exactly as same as the fault

magnitudes. However, due to the modeling errors of these data driven models, some

slight differences still exist and these slight differences in FDI are acceptable. The faults

occurring at 80% initial power level other than 100% full power are also tested. Figure

5.16 clearly shows that the performance of the FDI system does not degrade. The

residual structures keep the same pattern as those faults at 100% power level.

5.5 Discussions

This chapter has presented ANFIS model based approach to fault detection and

isolation and the application to PWR steam generator system. ANFIS model based

approach combined with structured residual design is shown to be efficient in fault

detection and isolation if the possible faults are enumerable. For single faults, strong

isolation scheme can be achieved through appropriate choice of the model structures. For

dual faults, it is not possible to achieve strong isolation between the dual faults and one of

the element faults. Using natural redundancy and derived redundancy, dedicated residual

structure can be achieved to isolate dual faults. In order to detect and isolate a fault

related to control variable, sometimes it is necessary to use the information about

 100

measurement redundancy itself. ANFIS model based approach combined with structured

residual design does not need fault signatures dependent of fault magnitude and initial

operation condition. It is in conformance with the principle of modern fault detection and

isolation methods. Since ANFIS is able to learn the relationship between variables from

data, it has the power of on-line implementation.

However, ANFIS model based approach needs to enumerate the possible faults.

This still exert heavy burden on engineering application. In addition, for a non-linear

complicated system, structured residual design for fault isolation, especially when data

driven modeling is used, is essentially a process of trial and error. This exerts additional

difficulties in engineering application.

 101

Chapter 6

Data Driven Model Causal Graph for Fault Diagnosis

6.1 Introduction

In Chapter 5, the dedicated residual structure is achieved based on the assumption

that the possible faults are enumerable. With the faults known, the designers may

achieve fault isolation through appropriate choice of the models. However, for a large

complex system, it will be extremely challenging to enumerate all the possible faults. In

order to avoid enumerating possible faults and predefining their associated fault

signatures, the development of data driven model causal graph approach has been

considered.

Data driven model causal graph is proposed as a generic approach to fault

diagnosis for fault isolation. It is able to combine the reasoning capability of qualitative

knowledge based method and the strength in resolution of quantitative knowledge based

method. To facilitate on-line implementation, ANFIS is used for modeling. Fault

detection is fulfilled by monitoring the residual of each model. Fault isolation is

achieved by cause effect analysis of the residuals generated from the models.

6.2 Cause Effect Reasoning Using Model Causal Graph

Cause effect reasoning was originally introduced as a reasoning tool to account

for the propagation of fault symptoms within a system (Davis, 1983). It has been

extended to quantitative model based FDI when mathematical models are available

(Montain and Gentil, 2000).

A model causal graph consists of individual nodes connected by quantitative

models. The individual nodes represent plant parameters, state variables and

measurement variables. The quantitative models represent the cause-effect relationship

between the nodes. As compared with sign directed graphs using qualitative knowledge

only to describe the relationship between variables, a quantitative model is formally

 102

introduced to express the cause effect relationships. The model causal graph is not a

simple network of structural models. It includes the dynamic information about process

flow-path, signal flow-path, and control logic so that a fault can be localized based on the

cause effect analysis for a process system.

A physical system can be represented by the following set of differential

equations:

),(iiii XGgX = (6.1)

where

iX = the i th system variables.

ig = a function to estimate iX .

}|{ ijXG ji ≠= ,

iG = a set of variables as the inputs to ig .

The moving average form of the above differential equation can be used to arrive

at the causal graph models, that is:

)(iii GfX = (6.2)
If the model causal graph is developed based upon the original process flow and

signal flow, the causal relationship between variables will be implicit in it.

The cause effect relationship between the inputs and the outputs of a model has

two connotations (Leyal, Gentil and Stephan, 1994). From physics point of view, the

cause-effect relation represents the pathway of the signal propagation. Any changes in

the model inputs are always before any changes in the model outputs in the time domain.

From the computational point of view, the cause-effect relation means that any changes

in the model inputs will sufficiently cause some changes in the model outputs and the

model outputs will not change without any changes in the model inputs. Figure 6.1

shows a simple example of a model causal graph. In the figure, four models

4321 g,g,g,g are shown to characterize the system. The six process variables are X1,

X2, X3, X4, X5, and X6.

 103

Figure 6.1. A simple example of model causal graph.

Causal effect reasoning can be easily performed based on analyzing the residuals

of the individual models. The original residuals are calculated for each measured

variable as follows:

*

iii XXR −= (6.3)
where

=iR the residual of the variable iX .

=iX the measured value of the variable iX .

=*
iX the estimated value of the variable iX from the model if defined previously.

If iR is significant, it can be determined that a fault has occurred to the system.

However, there are still two possibilities that may explain the abnormal residual:

a) A local fault affecting iX .

b) A consequence of a fault affecting the inputs of the model if .

To facilitate fault isolation, a set of reconstructed residuals are calculated as

follows:

j

ii
j

i XXR ~~ −= (6.4)

where

=j
iR~ the residual of iX after the input jX of model if has been reconstructed.

=j
iX~ .the estimated value of iX after the input jX of model if has been reconstructed

 X6

X5

X1

X3

X2

X4
g1

g2

g3

 g4

 104

Fault isolation can then be based on the following decision procedure:

a) If i
j

i RR~ << , jX has a local fault.

b) If i
j

i RR~ ≈ for all jX that will affect iX , iX has a fault.

c) If i
j

i RR ≈1
~ and i

j
i RR ≈2~ but i

jj
i RR <<21~ , then

1j
X and

2j
X have simultaneous faults.

As an example, the above model causal graph method is used for a typical feed

back control loop as shown in Figure 6.2. Four nodes connected by three models are

used to represent the control loop. These four nodes are the set point, the controller

output, the control variable, and the regulated variable. The three models are the

controller model, the actuator model and the plant model. Since a controller always takes

the measured value of the regulated variable as input, the controller model can always be

used to isolate a controller fault. For the same reason, the actuator model can be used to

isolate an actuator fault. However, fault detection and isolation becomes a challenging

task when a fault related to the regulated variable is involved. When a new steady state is

reached after the fault, the regulated variable will be brought back to its original level.

Hence, the steady state information is not enough to detect such a fault.

Figure 6.2. Dynamic model causal graph representation of a feedback control loop

regulated
variable

setpoint

co
nt

ro
lle

r actuator
model

plant m
odel

Error
controller
output

control
variable

 105

Model causal graph method needs to use dynamic models. If a steady state model

is used, the developed method can give correct FDI results after a new steady state has

been reached. During the fault transient, the steady state models will result in serious

false alarms. Moreover, the fault symptoms may become weak after the new steady state

due to controller feedback. In addition, dynamic models must be used to isolate a

controller fault and some actuator faults such as control valves. By the way, in order to

achieve a faster fault detection and isolation for safety concern, dynamic models are also

desired.

6.3 Extended Model Causal Graph

6.3.1 Multi-model causal graph

Multiple-model causal graph can be introduced to isolate input faults based on

cause effect analysis of model residuals when there are no additional models available to

reconstruct these process inputs.

Multi-model approach was proposed for fault isolation (Simani, 2000). The basic

idea is to make most use of the knowledge about the process redundancy inherent in a

system. For example, in a saturated SG system, there is a one-to-one relation between the

SG pressure and the SG temperature. Therefore, any model as a function of SG pressure

can always be used to derive a new model as a function of SG temperature. The cause

effect analysis on the residuals of these two models can then be performed to isolate the

two faults.

Figure 6.3 and Figure 6.4 show two types of multiple models designed to isolate

output faults and input faults, respectively. In the design scheme shown in Figure 6.3,

one output and all the inputs drive each model. An output measurement fault affects only

the residual of the model driven by this output variable. Therefore, the output faults can

then be isolated if there is no fault related to the inputs. In the design scheme shown in

Figure 6.4, each model is driven by all but one input and all the outputs, which generates

a residual sensitive to all but one input fault. Therefore, the input faults can then be

isolated if there is no fault related to the outputs.

 106

Figure 6.3. Multiple models to isolate output faults.

Figure 6.4. Multiple models to isolate input faults.

Process

Model 1

Model 2

u y

Process

Model 1

Model 2

u1
y

u2

 107

Figure 6.5. An example of multiple-model causal graph.

Figure 6.5 shows an example of how to combine multi-model approach and

regular model causal graph to obtain a multi-model causal graph. If 1X and 2X cannot

be reconstructed from some other models, the multi-model causal graph still enables to

perform cause effect analysis on the model residuals. After the subsequent models have

confirmed there are no faults related to variable 1Y and 2Y , the following decision logic

can be performed:

a) If 021 ≈≈≈ RRR , there is no fault with respect to 1X , 2X and 1Y and 2Y .

b) If both 1R and 2R are significant, there is a fault with respect to nX .

c) If 01 ≈R but 02 ≠R , there is a fault with respect to 2X .

d) If 02 ≈R but 01 ≠R , there is a fault with respect to 1X .

6.3.2 Model causal graph with hidden nodes

Model causal graph can also be extended to include unmeasured variables. This

is useful to detect and isolate process faults. Figure 6.6 shows an example. In the figure,

X1, X2, X3, and X4 correspond to four measured variables and H1 corresponds to an

unmeasured variable. In this case, the same reasoning logic can be used except that H1

cannot be used as an independent residual generator. It is necessary to prepare an explicit

model instead of a data driven model to estimate the value of a hidden node. If a data

driven model is to be used, some special learning algorithm must be developed.

1X

nX

1YModel 1

Model 2

2X
2Y

1R

2R

 108

Figure 6.6. Model causal graph with hidden nodes.

6.4 Model Causal Graph Approach with Fuzzy Inference Modeling

Theoretically, an ANFIS model is able to approximate a system to any desired

degree of accuracy. However, in real situation, it is not always able to achieve this

accuracy because a too complex model may be required. Even if such a model can be

obtained, the desired capability of generalization can still not be guaranteed.

In order to achieve a perfect model, the input variables must always be cautiously

selected. On the one hand, the co-linearity between the input variables should be avoided

since the least square method is used in training ANFIS. On the other hand, the

dimensionality of the inputs for the ANFIS models should be as few as possible. In

ANFIS, each input variable needs to be fuzzified into problem specific membership

functions. When the number of input variables is increased, the number of nodes in the

second layer and the third layer of the ANFIS network will be increased exponentially.

Correspondingly, the number of rules used in the system will be increased too. This

increase will not only have a severe influence on the training speed but also on the

stability of the built models because the number of degrees of freedoms may be more

than necessary. The principle of choosing the number of input variables is that none of

the redundant input variables should be retained in the ANFIS inputs.

An efficient ANFIS model with parsimonious number of rules and membership

functions can be achieved only through physically correct choice of inputs. In order to

characterize the behavior of a dynamic system, physically driving inputs are much more

efficient than purely input delay and output delay. If all the input variables driving the

X1

X2

H1model 1

X3

X4model 2

 109

dynamic process are included in the model, much fewer delays will be required to

perform the input-output mapping.

Model causal graph method is in full agreement with the requirement of efficient

ANFIS modeling using the system knowledge. The physically involved inputs can be

obtained through studying the cause-effect relationship. Therefore, the ANFIS model is

able to have most appropriate inputs when combined with cause effect analysis. If

known, some important non-linearity can also be directly captured through an

unmeasured node in the model graph before it is presented as an input to an ANFIS

model. For example, the pressure loss can be assumed as a square function of the flow

rate. An unmeasured node can then be designed as the square of the flow rate in the

model graph and is used as an input to the ANFIS model to estimate the pressure drop.

By explicitly including nonlinear terms in the inputs, fewer membership functions will be

needed in the resulting ANFIS models. Model causal graph method helps to decompose

a complex model into several small models. The model decomposition can significantly

enhance the performance of data driven modeling such as ANFIS when used for FDI. In

order to achieve an accurate data driven model, the amount of data required is

proportional to the number of inputs. When a complex model is decomposed, much

fewer inputs are related to each small model, and correspondingly, much fewer data will

be required to train the small model than a complex model with a great number of inputs.

In the case that sufficient knowledge is known about a system so that the rules

and the member functions of the inputs can be specified, the training algorithm of the

ANFIS system can also be adapted for this purpose. Since ANFIS is a fuzzy model in

nature, it is easy to integrate expert knowledge in different forms. Knowledge in

different confidence can be represented explicitly by appropriate choice of the shape of

membership function.

6.5 Procedures of Model Causal Graph Approach

The following is a summary of the procedures to design a data driven model

causal graph based FDI:

• Design the model causal graph structure.

 110

The structure can be obtained from process block diagram and control system

design scheme.

• Develop individual models.

 In some cases, one model defined in the first step may be decomposed into

several models in series. The series of models correspond to the inclusion of some

hidden nodes and some multi-model causal graph sub-modules.

• Develop fault detection module.

Appropriate thresholds should be specified for all the nodes. A too small

threshold may cause false alarms and a too big threshold may cause missing detection.

• Develop causal reasoning algorithm.

If only single faults are involved, the simple residual reasoning algorithm can be

directly implemented. If some dual faults are of concern for the FDI system, some

extended reasoning schemes may need to be designed.

The implementation of data driven model causal graph based FDI can be

summarized as following steps:

• Fault detection is fulfilled by monitoring the residual of each model.

• For any abnormal model, the possible root causes are identified by tracking

backwards until a model gives insignificant residual.

• All the corrupted signals are reconstructed by tracking forward from the identified

fault origin to the input nodes of the detected model.

• Finally, cause effect reasoning is performed on the residuals for fault isolation.

6.6 Application to Nuclear SG System

Figure 6.7 shows the model causal graph of steam generator water level system

for a PWR nuclear power plant. The models in series can be summarized as follows:

Controller output (t)=f(steam flow rate(t)-feed water flow rate(t), SG level(t)-SG
reference level(t))

FCV valve position (t+1)=f (controller output (t), FCV valve position (t))

 111

Figure 6.7. Model causal graph of nuclear SG system.

SG Level

SG
Temperature

Reference
Level

Feed water
flow rate

St
ea

m

flo
w

 m
od

el

Cold leg
Temperature

Hot leg
temperature

C
on

tro
lle

r
m

od
el

 Feed
flow
model

Controller
output

Valve
position
model

Valve
position

Steam
flow rate

Level
modelSG

pressure

 112

FCV flow rate (t)=f (FCV valve position (t), SG pressure (t))

FCV flow rate (t)=f (FCV valve position (t), SG pressure (t))

Steam flow rate (t+1)=f (feed water flow rate (t), SG pressure (t), hot leg temperature (t),
cold leg temperature (t+1))

 Figure 6.8 and Figure 6.9 show a comparison between the estimated controller

output and the indicated controller outputs for a controller gain offset fault and a feed

water flow meter offset fault. As can be seen, the residual can be used to isolate a

controller fault as a local fault. If some other faults related to the controller input signals

such as feed water flow rate, steam flow rate, or SG level occur, the residual of the

controller output remains close to zero. The reason is that the controller model always

uses indicated signals. Even if some faults happen to the input signals of the controller,

the controller model itself is still not violated. By the way, the capability of isolating the

controller fault as a local fault demonstrates that the ANFIS model is precise enough to

capture the dynamic behavior of the controller.

Figure 6.10 and Figure 6.11 show a comparison between the estimated valve

position change and the indicated valve position change for a valve position offset fault

and a feed water flow meter offset fault. As can be seen, the residual can be used to

isolate a valve position fault as a local fault. If feed water flow meter offset fault

happens, the residual of the valve position change remains close to zero. The reason is

that the valve position change is physically determined by the controller output signal.

Figure 6.12 shows the model causal graph to estimate the feed water flow rate.

Figure 6.13 shows the residual of feed water flow rate before and after the SG pressure is

reconstructed for a feed water flow meter sensor fault. The figure shows that the residual

does not change much before and after all the input signals are reconstructed. Therefore,

the detected fault can be isolated as a local fault. Figure 6.14 shows the residual of feed

water flow rate before and after the SG pressure is reconstructed for SG pressure sensor

fault. The reconstruction of SG pressure signal can fully explain the original residual.

This indicates that the detected fault is a secondary fault and the fault can be isolated as a

SG pressure sensor fault.

 113

Figure 6.8. Controller output for controller gain offset fault.

Figure 6.9. Controller output for feed water flow meter sensor fault.

0 100 200 300 400 500 600 700 800
-8

-6

-4

-2

0

2

4
x 10-4

S am ple

co
nt

ro
lle

r o
ut

pu
t

--- Indicated controller output __ Estimated controller output

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5
x 10-4

Sam ple

co
nt

ro
lle

r o
ut

pu
t

FeedFlowoffset

--- Indicated controller output __ Estimated controller output

 114

Figure 6.10. Change of valve position for valve position fault.

Figure 6.11. Change of valve position for feed water flow meter sensor fault.

0 10 20 30 40 50 60 70 80
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Sample

V
al

ve
 p

os
iti

on
C

ha
ng

e
of

 v
al

ve
 p

os
iti

on
(%

)

--- Indicated change of valve position
__ Predicted change of valve position

0 10 20 30 40 50 60 70 80
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Sample

V
al

ve
 p

os
iti

on
C

ha
ng

e
of

 v
al

ve
 p

os
iti

on
(%

)

--- Indicated change of valve position
__ Estimated change of valve position

 115

Figure 6.12. Model causal graph of feed water flow rate.

Figure 6.13. Model causal graph approach to isolate feed water flow meter sensor fault.

SG
temperature

SG pressure

SG
 p

re
ss

ur
e

m
od

el

FC
V

 fl
ow

 ra
te

FCV
valve
position

Feed water
flow rate

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
-0 .0 2 8

-0 .0 2 6

-0 .0 2 4

-0 .0 2 2

-0 .0 2

-0 .0 1 8

-0 .0 1 6

-0 .0 1 4

-0 .0 1 2

-0 .0 1

-0 .0 0 8

S a m p le

R
es

id
ua

l o
f f

ee
d

w
at

er
 fl

ow
 ra

te

-----After SG pressure and FCV position are reconstructed
___Original residual

 116

Figure 6.14. Model causal graph approach to isolate SG pressure sensor fault

using feed water flow rate model.

0 2 0 40 6 0 80 10 0 12 0 1 40 1 60 18 0 20 0 -2

0

2

4

6

8

10

12

14 x 1 0 -3

S am p le

R
es

id
ua

l o
f f

ee
d

w
at

er
 fl

ow
 ra

te

-----After SG pressure is reconstructed
 ___Original residual

 117

Figure 6.15, Figure 6.16 and Figure 6.17 show the residual of the steam flow rate

for a steam flow meter sensor fault, feed water flow meter sensor fault and SG pressure

sensor fault respectively. Figure 6.15 shows that the residual of steam flow rate does not

change much before and after the SG pressure, the feed water flow rate, and the feed

water flow rate and the SG pressure is reconstructed. Therefore, the detected fault can be

correctly isolated as a steam flow meter sensor fault. Figure 6.16 shows the residual of

the steam flow rate for feed water flow meter sensor fault. The reconstruction of feed

water flow rate signal can fully explain the original residual. This indicates that the

detected fault is a secondary fault and the fault can be isolated as a FCV flow meter

sensor fault. Figure 6.17 shows the residual of the steam flow rate for the SG pressure

sensor fault, the reconstruction of the SG pressure signal can fully explain the original

residual. Therefore, the detected fault is a secondary fault and can be correctly isolated

as a SG pressure sensor fault.

In order to detect and isolate the SG narrow range level sensor fault, it is

necessary to build a dynamic model to estimate SG level. From physics point of view,

The SG level can be determined by the SG mass and the SG thermal parameters. For this

reason, an unmeasured node, SG mass, is used to estimate the SG level. It is expressed as

a function of SG mass, SG pressure, SG temperature as well as feed water temperature,

cold leg temperature and hot leg temperature, shown in Figure 6.18. The SG mass can be

estimated as a function of feed water flow rate and steam flow rate. In fact, without using

the SG mass as an explicit variable, it is extremely difficult to build a data driven model

to estimate the SG level. The reason is that the SG mass is the integral effect of the

incoming feed water flow rate and the out-flowing steam flow rate. A given value of SG

mass may correspond to any value of FCV flow rate and steam flow rate. In the specific

case, a model using delay input does not help to track the dynamic behavior either since

the SG indicated level would be ultimately brought back to its normal value after a SG

level sensor fault due to the controller feedback.

 118

Figure 6.15. Model causal graph approach to isolate steam flow meter sensor fault.

Figure 6.16. Model causal graph approach to isolate feed water flow meter sensor fault.

0 10 20 30 40 50 60 70 80 90 -8

-6

-4

-2

0

2

4

6

8 x 10 -3

S am ple

R
es

id
ua

l o
f s

te
am

 fl
ow

 ra
te

__ Original residual
---- Residual after SG pressure is reconstructed
-.-.- Residual after FCV flow rate is reconstructed
….. Residual after both SG pressure and FCV flow are reconstructed

0 10 20 30 40 50 60 70 80 90 -12

-10

-8

-6

-4

-2

0

2 x 10 -3

Sam ple

R
es

id
ua

l o
f

SG
 s

te
am

 fl
ow

__ Original residual
---- Residual after SG pressure is reconstructed
-.-.-Residual after FCV flow rate is reconstructed
…..Residual after both SG pressure and FCV flow are reconstructed

 119

Figure 6.17. Model causal graph approach to isolate SG pressure sensor using

steam flow rate model.

Figure 6.18. Model causal graph of SG level measurement.

0 20 40 60 80 100 120 140 160 180 200 -0 .005

0

0 .005

0 .01

0 .015

0 .02

0 .025

0 .03

S am ple

R
es

id
ua

l o
f s

te
am

 fl
ow

 ra
te

___Original residual
---- Residual after SG pressure is reconstructed
-.-.-Residual after FCV flow rate is reconstructed
…..Residual after both SG pressure and FCV flow are reconstructed

Feed water
temperature

SG level

Cold leg temperature

Hot leg temperature

SG
mass
model

SG
 level m

odel

Feed water flow rate

Steam flow rate

SG
mass

SG pressure

 120

Figure 6.19 shows the residual of the SG level for a SG level sensor fault before

and after the input signal is reconstructed. The residual does not change because of the

input reconstruction for the detected fault. This indicates that the fault is a local fault.

The detected fault can then be successfully isolated.

Figure 6.20 shows the residual of the steam flow rate for simultaneous feed water

flow meter sensor fault and SG pressure sensor fault. The original residual can be used to

detect the fault. In order to isolate the faults, reconstructed residuals are used. When

either SG pressure or feed water flow rate is reconstructed, the residual can be reduced.

However, the reconstruction of either signal is not enough to explain 100 percent of the

original residual. Only when feed water flow rate and SG pressure are reconstructed can

the residual reach minimal. Therefore, from explaining maximal fault signature point of

view, the simultaneous dual faults can be correctly isolated. Figure 6.21 shows the

residual of feed water flow rate for simultaneous feed water flow meter sensor fault and

SG pressure sensor fault. The original residual can be used to detect the fault. After SG

pressure is reconstructed, the residual of FCV flow rate can be reduced by 50%. After

both SG pressure and FCV position are reconstructed, the residual of FCV flow rate

cannot be further reduced. It can be concluded that SG pressure sensor is faulty and FCV

valve position is healthy. However, the remained residual is still about 0.5%. This

fraction of the original residual must be explained by the assumption that the feed water

flow meter sensor has a fault.

6.7 Comparison with Other Approaches

Although PCA based FDI and ANFIS model based FDI with structured residual

design can be used for fault detection and isolation in some applications, model causal

graph approach has some unique features in FDI system design and application to

engineering problem.

Both PCA based FDI and ANFIS model based FDI with structured residual

design can only be designed when the possible faults are enumerable. However, model

causal graph approach isolates a fault based on cause effect reasoning on model residuals,

 121

Figure 6.19. Model causal graph approach to isolate SG level sensor fault.

Figure 6.20. Model causal graph approach to isolate feed water flow meter sensor fault
and SG pressure sensor fault.

0 10 20 30 40 50 60 70 80 90 -0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Sam ple

R
es

id
ua

l o
f S

G
 le

ve
l

-.- Residual after all the input signals are reconstructed
__ Original Residual

0 10 20 30 40 50 60 70 80 90 -5

0

5

10

15

20 x 10 -3

S am ple

R
es

id
ua

l o
f s

te
am

 fl
ow

__ Original residual
---- Residual after SG pressure is reconstructed
-.-.-.Residual after FCV flow rate is reconstructed
….. Residual after both SG pressure and FCV flow are reconstructed

 122

Figure 6.21. Model causal graph approach to isolate SG pressure sensor fault and feed
water flow meter sensor fault.

0 10 20 30 40 50 60 70 80 90 -0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Sample

R
es

id
ua

l o
f f

ee
d

w
at

er
 fl

ow
 ra

te

____ Original residual
.._ After SG pressure and FCV valve position are reconstructed
++++After SG pressure is reconstructed

 123

so it is not necessary to predefine the faults and their fault signatures. To incorporate an

automated detection and isolation into a large safety critical system such as nuclear

power plants, this is a significant step moving forward to engineering application.

Model causal graph approach achieves fault isolation by screening out a fault

among all the possible fault candidates so that all the abnormal measurements can be

explained. Therefore, there is no problem with misdiagnosing one fault as another.

However, both PCA based FDI and ANFIS model based FDI with structured residual

design do not have a safeguard against the possibility that some unknown faults may have

the same fault signatures as defined for a fault in the fault dictionary. Although

structured residual design approach is able to avoid misdiagnosing one fault as another

for the enumerated faults through manipulating the residual structures, it still cannot fully

solve the problem. In addition, structured residual design is not always achievable

especially for a non-linear system.

Data driven model causal graph approach is able to meet the requirement for

automation because only normal operation data are necessary to adaptively upgrade

system models. The fault signatures used for fault isolation are extracted from the

understanding about the physical system instead of time consuming simulation or

additional experiments.

Causal graph approach allows accurate data driven modeling. The most

parsimonious model structure can be obtained through a model causal graph. Therefore,

it can improve the accuracy of the developed data driven models significantly. In

addition, the model structure is consistent with the system decomposition, so it helps to

arrive at a modular FDI system.

Because fault isolation is based on reasoning about model residuals, data driven

model diagraph approach is also able to deal with simultaneous faults.

 124

Chapter 7

Picasso User Interface Design

In order to show the effectiveness of the developed FDI for nuclear power plants,

graphic user interface software has been successfully developed under the environment of

Picasso-3, a user interface management system. The software has the following

functions:

• Create a fault by changing the fault characteristic parameters.

• Display essential parameters on the schematic of the reactor system.

• Display the residual patterns specific to the fault.

• Trend the process variables relevant to the fault, and echo the FDI results.

The software has integrated SimPWR, a reactor system analysis code in

FORTRAN, and the FDI code in Matlab, and the C++ code to control the graphic user

interface. SimPWR code is the driving code in the software, which makes it possible to

advance the simulation time without interruption after the data are flushed to the user

interface. The Picasso Real Time Manager is controlled by a C++ code. It keeps running

in multithread mode while SimPWR is running so that the performance of the user

interface display does not degrade due to possible time delay before the C++ code can get

data from the simulation code.

7.1 Introduction

It is important to evaluate the overall performance of a newly developed FDI

system. Although quite a few FDI methods have been available, all of these methods

have their inherent weakness as compared with the others. This is mainly due to the great

challenges to the comprehensive requirements of an FDI system such as early detection

and diagnosis, isolability, robustness, novelty identification, multiple fault identifiability,

explanation facility, adaptability etc. Not a single FDI method is able to have all these

desired characteristics.

 125

Developing a graphic user interface (GUI) provides a convenient and cost

effective way to make the evaluation. A simulation code can be used to simulate the

process behavior under normal and faulty conditions. A fault can be created without

much effort by changing some parameters related to the fault. If only those data

measured in actual plants are used for FDI implementation, the data can be reliable

substitutes to the real data. Some noises can be easily added to the input and the output

of the simulation codes in order that the robustness of the FDI method can be tested.

With regard to testing the adaptability of the FDI method, the operational power levels

can be modified or some disturbances such as steam generator tube fouling factor can be

changed on the GUI. In addition, the GUI can also facilitate evaluating the FDI

performance in detecting and isolating a single fault or multiple faults during a transient.

7.2 Picasso Development Environment

Picasso-3 is a User interface Management Systems (UIMS) developed as part of

the Halden Reactor Project (Kjell, 1992, Jakobsen, 1994, Kjell, 1994(a), Kjell, 1994(b)).

Figure 7.1 shows the schematic of the Picasso-3 system

Picasso-3 has three components. Graphics Editor (GED) is the tool to design the

user interface. GED can be used to design some user interface components, draw some

pictures, set up some dialogues and define dynamic attributes to some user interface

components. The User Interface database is where the GED saves the information

containing the complete specification of the user interface. Run-time manager (RTM)

actually realizes the application's user interface. Application process is the C++ code

written by the user to guide how RTM is to generate the user interface as desired by the

user. Application Programmer's Interface (API) is a library of C++ functions that is

linked to the application process to enable it to communicate with RTM.

When an application is started, the application process calls functions in the API

library in order to connect to the RTM. The RTM responds by loading the application

user interface from its database and displaying it on the screen. By calling API functions

periodically, RTM will continue to handle incoming events generated by the end user or

by the processes.

 126

Figure 7.1. Schematic of Picasso-3 system.

GED

API

Application
Process

API

UI

DataBase

Picasso-3 RTM

 127

7.3 Application Process Design

The schematic of the application process is shown in Figure 7.2. The SimPWR

code is the main program. Before entering the main body of the computation, initial_link

is called in order to set up a connection with the Picasso RTM. In the meanwhile, some

initialization data for SimPWR calculation is transferred to RTM. The main body of

SimPWR code is run in a loop. At the end of the loop, the simulation time advances one

second. The loop keeps running until the simulation time exceeds the specified

maximum time. When SimPWR code steps out of the loop, terminate_link is called in

order to end Picasso gracefully.

The application process program is written in multithread operation mode. After

it is connected with Picasso RTM, the function process_picasso is called periodically.

On the one hand, it flushes the results calculated by SimPWR to Picasso-3 RTM so that

they can be displayed on the block diagram of the reactor system and can be trended on

trending plots. On the other hand, it detects whether some parameters defined on the

screen to create some faults have been changed by the end user. If so, Process_picasso

will transfer the changed parameters to SimPWR for a new simulation. If

Process_picasso detects the request from the end user for making fault detection and fault

diagnosis, it will call the FDI module computing the residuals due to the fault and send

the residuals to the RTM for display. The FDI diagnostic results will also be transferred

to the FDI diagnostic information window indicating what is the fault according to the

FDI algorithm.

The data exchange between Picasso-3 application process and SimPWR

simulation code is through global variables. These global variables return a structure in

the C++ part of the application process and return a common block in the Fortran part of

the application process. The data exchange between the Picasso-3 RTM and the Picasso-

3 application process is through process structures and process variables. Both these data

exchanges are two-way due to their global attributes.

 128

Figure 7.2. The flowchart of Picasso application process.

Initialization of
simulation code

Time=
Tmax

Code for
simulation

END

Time>
Tmax

Yes

No

Initialize_Link

Process
Tmax=Time+1.0sec

Call Process_picasso

RTM

Terminate_Link

 129

Two remote functions, stopApplication() and datMount(), are defined. These two

remote functions can be called directly by the user interface. The function

stopApplication() can help the API code end its task gracefully. The function datMount

enables the user to input the samples and sampling interval for SimPWR code to return

adequate amount of data for fault diagnosis.

7.4 Descriptions of the Major Functions

A description of the major functions is given in this section.

1) Header

The header files for Picasso API, MFC socket, FDI module, MATLAB as well as

the C++ application process itself are included in this part of the code. The header file

for the C++ application process declares the function prototypes, structures for sensor

characteristics, valve characteristics, controller characteristics, simulation data for

display, and residuals. It also defines the global variables or the structures used in the

application process. In addition, the global variables used to access the common blocks in

the SimPWR FORTRAN code are also declared here.

2) int Initialize_link()

The functions of this function are as follows:

• Initialization of the variables for display on the screen of end user.

• Calling PfInitialize to connect the application process to the RTM.

3) int process_picasso

It is the kernel code to be executed periodically. This code calls PfSend and

PfFlush to update the variables in all the user’s windows.

The required functions are as follows:

• Calling some functions to transfer data from RTM to SimPWR in order to follow the

recent changes in the parameters by end users.

• Sending the most recent SimPWR simulation results to RTM.

• Sending data to the FDI module or extract data from FDI module if FDI is requested.

4) terminate_link

 130

This function calls PfEndLoop to end the picasso application process.

5) int32 createRecords()

It calls PfReadScript to create records and variables according to specification in

RecordDefs.pdat.

6) int32 createVariables()

This calls PfCreateVar to create variables locally in API and puts the information

into a local buffer to be used by PfFlushCreateVar.

7) void whenRtmConnects()

PfInitialize calls this function. It establishes connections with RTM and calls

createRecords, createVariables and registerFunctions to let both RTM and the application

process know the declarations of some process variables, structures and functions.

8) int32 registerFunctions()

This calls PfRegisterFunction to register the function stopApplication to terminate

the API and the function datMount to receive the user’s input of samples and sampling

interval from SimPWR code.

9) int32 stopApplication()

This is a function defined in API code but available to RTM as a remote function.

Its function is to end the application.

10) int32 datMount()

This is a function defined in API code but available to RTM as a remote function.

Its function is to receive the user’s input of samples and sampling interval from SimPWR

code.

11) void whenRtmDisconnects()

This is a function to give a message if connection has been lost with RTM.

12) RESD class_conversion

This is a function to convert the residual array to the structure type RESD.

13) void Pushdata()

This is a function to convert a double matrix into a mxArray data structure used as

input of Matlab function.

14) void Extractdata()

 131

This is a function to convert mxArray data structure used as output of Matlab

function to a one-dimensional array.

15) char* faultType()

This is a function to determine the type of faults according to the residuals.

7.5 User Interface Design

The graphic user interface consists of five main windows.

The main window is designed to facilitate switching between functional windows.

It provides the following options:

• Switch to the simulation window
• Switch to the trending plot window
• Switch to the FDI diagnostic results window
• Switch to the fault creation window
• End task.

Figure 7.3 shows the options available on the main window of the graphic user

interface.

The fault creation window is designed to create faults by changing the parameters

of the sensors, controllers, and actuators. The following parameters can be changed on

this window:

• FCV1 valve stuck position
• FCV1 offset
• FCV1 time constant
• FCV2 valve stuck position
• FCV2 offset
• FCV2 time constant
• TCV1 valve stuck position
• TCV1 offset
• TCV1 time constant
• TCV2 valve stuck position
• TCV2 offset
• TCV2 time constant
• TCV3 valve stuck position
• TCV3 offset

 132

Figure 7.3. The main window of the graphic user interface.

 133

• TCV3 time constant
• TCV4 valve stuck position
• TCV4 offset
• TCV4 time constant
• Reactor power
• FCV1 controller offset
• Proportional gain of FCV1 controller
• Integral gain of FCV1 controller
• FCV2 controller offset
• Proportional gain of FCV2 controller
• Integral gain of FCV2 controller
• SG1 narrow range level sensor drifting rate
• SG2 narrow range level sensor drifting rate
• SG1 flow meter drifting rate
• SG2 flow meter drifting rate

Figure 7.4 shows the fault creation window of choices to change the parameters of

sensors, controllers, and actuators.

The trending plot window trends the following plots, which are important to

represent the reactor system responses to the created faults:

• Reactor nuclear power
• Reactor power output
• SG 1 water level
• SG 2 water level
• Hot leg temperature
• Cold leg temperature
• Feed water temperature
• Feed water flow rate
• SG 1 steam flow rate
• TCV 1 flow rate
• TCV 2 flow rate
• TCV 3 flow rate
• TCV 4 flow rate.

The fault diagnostic result window shows the residual patterns of the following

variables:

• SG1 narrow range water level
• SG2 narrow range water level
• FCV1 flow rate

 134

Figure 7.4. Fault creation window to change fault related parameters.

 135

• FCV2 flow rate
• SG 1 steam flow rate
• TCV1 flow rate
• TCV2 flow rate
• TCV3 flow rate
• TCV4 flow rate
• Hot leg temperature
• Cold leg temperature
• FCV1 valve position
• FCV2 valve position
• Feed water temperature (lumped loop)
• Pressurizer temperature
• Pressurizer level.

Figure 7.5 shows the FDI diagnostic window under steady state conditions.

The simulation window shows the following variables on the schematic of the

reactor system:

• Reactor nuclear power
• Hot leg temperature
• Cold leg temperature
• Pressure in the pressurizer
• Water level in the pressurizer
• Steam generator water level
• Feed water flow rate to SG1
• Feed water temperature
• Steam flow rate from SG1.

Figure 7.6 shows the simulation window, in which the key parameters of the

reactor operation are shown.

 136

Figure 7.5. Steady State FDI diagnostic window.

 137

Figure 7.6. FDI simulation window.

 138

Chapter 8

Summary, Conclusions, and Recommendations for
Future Work

8.1 Summary

The preceding chapters presented the development of three approaches to fault

diagnosis of nuclear power plant sensors and field devices and the applications to a PWR

steam generator system.

The application of PCA methods shows that both 2T statistic and Q statistic need

to be used for fault detection in order to achieve low missing detection rate. The fault

directions jointly defined in the model space and in the residual space can increase the

possibility of fault isolation. This approach requires the least amount of system

knowledge. However, the developed fault detection module must be sensitive enough so

that the plant measurements can be provided in time to the subsequent fault isolation

module to define the fault direction in the model space. In addition, fault isolation cannot

be completed until a new steady state condition has been reached after a fault. Because

PCA is based on linear projection, this FDI system is only applicable to a linear static

system.

ANFIS can be used to learn accurate nonlinear models from plant data. A

combination of ANFIS modeling with structured residual design enables us to make fault

isolation for a nonlinear system. However, the desired residual structure can only be

obtained through derived redundancy relationships. Correspondingly, very complicated

model structure may be involved. Moreover, in this approach, it is assumed that the

possible faults are known. If some additional faults are to be included, the entire FDI

system needs to be redesigned.

Model causal graph is developed as a new approach to FDI for nuclear plant

sensors and field devices. The significant feature of causal graph is that model inputs and

 139

model outputs have cause effect relationship. Because model structure is determined by

system physics, most parsimonious data driven model structure can then be obtained.

The fault isolation is based on cause effect analysis on model residuals, so it is not

necessary to predefine possible faults and their fault signatures. Model causal graph

approach can also provide diagnosis results with higher confidence because a fault can

usually be isolated using several models.

The above three FDI methods are demonstrated with application to PWR UTSG

system. In the demonstration, all the selected sensor and actuator faults, including five

single faults and eight dual faults, can be successfully detected and isolated.

8.2 Conclusions

The following conclusions are made from the research studies and the results

presented in this thesis:

• Analytical redundancy is the basis of modern FDI approaches. It makes it possible to

obtain stable fault signatures independent of fault magnitudes and initial operating

conditions.

• Data driven models are efficient to characterize the analytical relationship among

measured variables. These models can be adaptively upgraded during plant

operation.

• The qualification of the data plays a significant role in designing data driven FDI

algorithms. Any model extrapolation should be avoided in order to minimize false

alarms.

• Quasi-static model contains more information than a static model. FDI algorithm

based on quasi-static data enables to achieve earlier fault detection.

• PCA based FDI algorithm has inherent connection with parity space approach. The

linear relationship among measured variables implying analytical redundancy can be

consistently represented by the eigenvectors corresponding to the trivial components.

Any deviation either in the model space or in the residual space will indicate a fault.

 140

The fault direction jointly defined both in the model space and in the residual space

provides better performance in fault isolation.

• If the possible faults are known based on engineering judgments, a set of ANFIS

models can be built to characterize the relationship between plant measurements.

Through appropriate choice of model structures, structured residual design approach

can be achieved for fault isolation.

• Data driven model causal graph is a generic approach to fault diagnosis for nuclear

power plants. It is able to combine the reasoning capability of qualitative knowledge

based approach and the strength in fault resolution of quantitative knowledge based

method. Fault detection is fulfilled by monitoring the residual of each model. Fault

isolation is achieved by the cause effect analysis on the residuals.

• System decomposition and local residual analysis is not only in full agreement with

efficient data driven modeling but also conducive to FDI modularization.

• It is not always possible to distinguish dual faults and one of the element faults. For

instance, simultaneous feed water flow meter offset fault and SG narrow range level

sensor fault cannot be isolated from feed water flow meter offset fault without using

the SG wide range level signal since independent fault signatures are not available.

In this case, SG WR level sensor signal must be used such that SG NR level sensor

fault can be signified by checking its consistency with SG WR level signal.

• A graphic user interface has been successfully developed to simulate the plant

behavior for sensor, actuator and controller faults in nuclear power plants. It provides

a convenient environment to demonstrate the performance of any designed FDI

algorithms.

8.3 Recommendations for Future Work

Some future work could be launched in order to integrate the proposed FDI

algorithm into an engineering instrumentation and control system for nuclear power

plants.

 141

a) Development of a unified FDI framework, which is able to deal with system
knowledge in different forms.

b) Development of adaptive training algorithm for data driven models.

c) Development of FDI algorithms capable of dealing with sensor faults, actuator
faults, controller faults, and process faults simultaneously.

d) Development of automatic causal reasoning algorithm on model residuals.

e) Development of direction based classification algorithm to automate residual
analysis.

f) Development of novelty detection based algorithm for fault detection.

In summary, the developed PCA based FDI algorithm and the structured residual

design approach to FDI are satisfactory when applied to a PWR steam generator system

when the possible faults are known. Data driven model causal graph approach is a more

systematic and general approach to fault detection and isolation for a large system where

it is difficult to obtain information about the possible faults and their associated fault

signatures.

 142

List of References

 143

References

Amsterdam, J. (1992). Automated qualitative modeling of dynamic physical systems.

Ph.D. Dissertation, MIT.

Albuquerque, J. S., and Biegler L. T. (1996). Data reconciliation and gross error

detection for dynamic systems, AIChE Journal, Vol. 42, pp. 2841-2856.

Chen, J. and Patton, R. J. (1999). Robust model based fault diagnosis for dynamic

systems, Kluwer Academic Publisher.

Chow, E. Y. and Willsky A. S. (1984). Analytical redundancy and the design of robust

failure detection systems, IEEE Trans. on Automatic Control Vol. 29, pp. 603-614.

Doster, M. (2000). A code for PWR System Thermal Hydraulic Analysis, North Carolina

State University, Personal communication.

Davis, R. (1983). Diagnosis via causal reasoning: paths of interaction and the locality

principle. Proceedings of the Eighth International Joint Conference on Artificial

Intelligence, Karlsruhe, West Germany, pp. 88-94.

Dash, S. and Venkatasubramanian, V. (2000). Challenges in the industrial applications of

fault diagnostic systems. Comput. & Chem. Engng, Vol. 24, pp. 785-791.

Electric Power Research Institute (1994). EPRI/Utility Program Demonstrates Advanced

Nuclear Control System. Post Office Box 10412,

 (http://www.nuc.berkeley.edu/thyd/ne161/rtse/softcon.html).

Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy -- a survey and some new results. Automatica, Vol. 26, pp. 459-474.

 144

Garcia, F., Izquierdo, J. V., Miguel, L. J. and Peran, J. R. (2000). Fault diagnostic system

using analytical fuzzy redundancy. Engineering Applications of Artificial Intelligence,

Vol. 13, pp. 441-450.

Flury, B. (1989). Common principal components and related multivariate models. John

Wiley & Sons Publication.

Gertler, J. and Singer, D. (1985). Augmented models for statistical fault isolation in
complex dynamic system. Proceedings of American Control Conference, pp. 317-322.

Gertler, J. and Li, W. (1999). Isolation enhanced principal component analysis. AIChE

Journal, Vol. 45, pp. 323-333.

Glockler, O. and Tublett, M. V. (1995). Application of reactor noise analysis in the

Candu reactors of Ontario Hydro. Progress in Nuclear Energy, Vol. 29, pp. 171-191.

Himmelblau, D. M. (1978). Fault Detection and Diagnosis in Chemical and

Petrochemical Processes. Elsevier, New York.

Hines, J. W., Wrest, J. D., and Uhrig, R. E. (1997). Signal Validation using an adaptive

neural fuzzy inference system. August, Nuclear Technology, pp.181-193.

Jones, H. L. (1971). Failure detection in linear systems. PhD thesis, Dept. of

Aeronautics, MIT, Cambridge, Mass.

Jackson, J. E. and Mudholkar, G. S. (1979). Control procedures for residuals associated

with principal components analysis. Technometrics, Vol. 21, pp.341-349.

Jackson, J. E. (1991). A user guide to principal components. John Wiley & Sons, New

York.

 145

Jang, J. R. and Sun, C. (1993). ANFIS: Adaptive-Network-based Fuzzy Inference Systems.

IEEE, Transactions on Systems, Man, and Cybernetics Vol. 23, pp.665-685.

Jakobsen, O. (1994). The picasso-3 user interface management system, the Enlarged

Halden Programme Group Meeting, Storefjell, Norway, 8-11 March 1993.

Kaistha N. and Upadhyaya B. R. (2001) Incipient fault detection and isolation of field

devices in nuclear power systems using principal component analysis, Nuclear

Technology, Vol. 136, pp221-230.

Kjell, A. B. (1992). Picasso: a user interface management system for real time

applications. OECD Halden reactor project report.

Kjell, A. B. (1994(a)). Developing graphics applications in an interactive environment.

SCS Simulation Multiconference, San Diego, California.

Kjell, A. B. (1994(b)). Implementation of graphical user interfaces in nuclear

applications. ENS Topical Meeting on I&C of VVER, Prague, Czech Republic.

Kramer, M. A. and Palowitch, Jr., B. L. (1987). A rule based approach to fault diagnosis

using the signed directed graph. AIChE Journal, Vol. 33, pp. 1067-1078.

Lee, G. (1999). Multiple fault diagnosis under uncertain conditions by quantification of

qualitative relations. American Chemical Society, Vol. 38, pp. 988-998.

Leyval, L., Gentil, S. and Stephan, F. (1994). Model based causal reasoning for process

supervision. Automatica, Vol. 30, pp 1295-1306.

Montmain, P. J. and Gentil, S. (2000). Dynamic causal model diagnostic reasoning for

online technical process supervision. Automatica, Vol. 36, pp.1137-1152.

 146

Mosterman, P. J. and Biswas, G. (1997). Monitoring, prediction and fault isolation in

dynamic physical systems. Proceeding AAAI 1997, pp. 100-105.

Raich, A. and Cinar, A. (1996). Statistical process monitoring and disturbance diagnosis

in multivariable continuous processes. AIChE Journal, Vol. 42, pp.995~1009.

Russell, E. L. and Chiang, L. H. (2000). Data-driven methods for fault detection and

diagnosis in chemical processes. Springer-Verlag Incorporated, New York.

Simani, S. (2000). Model based fault diagnosis in dynamic systems using identification

technique. PhD dissertation, University of Hull, UK.

Upadhyaya, B. R. (1999). Incipient fault detection and isolation of sensors and field

devices. Research report, Nuclear Engineering Department, The University Of

Tennessee, UTNE/BRU/99-02.

Vedam, H. and Venkatasubramanian, V. (1995). PCA-SDG based Process Monitoring

and Fault Diagnosis. Applications of Artificial Intelligence, Vol. 8 , pp. 689-701.

White, J. D. (1994). Comparative assessments of nuclear instrumentation and controls in

the U.S., Canada, West Europe, Japan and former Soviet Union, Oak Ridge National

Laboratory. (http://itri.loyola.edu/ar93_94/canic.htm).

Wold, S. (1978). Cross validation estimation of the number of components in factor and

principal component analysis. Technometrics, Vol. 20, pp. 397-406.

Yoon, S. and MacGregor, J. F. (2001). Fault diagnosis with multivariate statistical

models part I: using steady state fault signatures. Journal of process control, Vol. 11, pp.

387-400.

 147

Zakarian, A. and Kusiak, A. (2000). Analysis of Process Models. IEEE Transactions on

electronics packaging manufacturing, Vol .23, pp. 137-147.

 148

APPENDIX

 149

Appendix A Matlab Code for PCA fault detection

close all;

clear all;

fnn=cell(11);

fnn{1}='E:\kzhao\SGdataNew\PWRrampNew';

fnn{2}='E:\kzhao\SGdataNew\FeedFlowDrift';

fnn{3}='E:\kzhao\SGdataNew\SteamflDrift';

fnn{4}='E:\kzhao\SGdataNew\SteamFeedDrift';

fnn{5}='E:\kzhao\SGdataNew\FeedSGLevelDrift';

fnn{6}='E:\kzhao\SGdataNew\SteamSGLevelDrift';

fnn{7}='E:\kzhao\SGdataNew\SGPrsDrift';

fnn{8}='E:\kzhao\SGdataNew\FeedSGPrsDrift';

fnn{9}='E:\kzhao\SGdataNew\SGLevelPrsDrift';

fnn{10}='E:\kzhao\SGdataNew\SGLevelDrift';

fnn{11}='E:\kzhao\SGdataNew\SteamSGPrsDrift';

fnn1=cell(11);

fnn1{1}='Normal Operation';

fnn1{2}='Feed Water Flow Meter Drift Fault';

fnn1{3}='Steam Flow Meter Drift fault';

fnn1{4}='Steam Flow Meter Feed Flow Meter Drift Faults';

fnn1{5}='Feed Flow Meter Drift Fault and SG Level Sensor Drift Fault';

fnn1{6}='Steam Flow Meter Drift Fault and SG Level Sensor Drift Fault';

fnn1{7}='SG Pressure Sensor Drift Fault';

fnn1{8}='Feed Water Flow Meter Dridt fault & SG Pressure Sensor Drift Fault';

fnn1{9}='SG Level Sensor Dridt Fault & SG Pressure Sensor Drift Fault';

fnn1{10}='SG Level Sensor Dridt Fault';

fnn1{11}='Steam Flow Meter Drift Fault and SG Pressure Sensor Drift Fault';

mmp=length(fnn);

 index=[1,5,9,24,27,29,31,32,33,36,37,39,40,57,70];

 indp=[2,4,7,8,9,11];

 noise=0.003;

 dataNormal='E:\kzhao\SGdataNew\PWRrampNew.dat';

 temp=dlmread(dataNormal,' ');

 A=temp(:,2:end);

 BTP=[A(1:2:end,index)];

 BTP=ran(BTP,noise);

 X_train=BTP;

 BTP=[A(2:2:end,index)];

 BTP=ran(BTP,noise);

 X_test=BTP;

 X=X_train;

 [n,m]=size(X);

 fprintf(' The training set contains %d observations and %d variables\n', n,m);

 [x,meanx,stdr]=zscore1(X);

 150

 xtest=zscore1(X_test,meanx,stdr);

%%%%%%%%%%%%%%%%%%%%%%%%PCA Model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 [Eigvec, TP, Eigp, TSQUARE] = PRINCOMP(x);

 ttsum=sum(Eigp);

 dps=Eigp/ttsum;

 figure;

 semilogy(dps);

 axis([1,20,0,1]);

 xlabel(' the order of the PCA model');

 ylabel(' the percentage of the total variance explained');

 a=input('the order of your model\n');

% P is the Loading matrix, m rows, a colums;

 P=Eigvec(:,1:a);

% Eig is the eigenvalues of the covariance matrix which are eqaul to the variance of the transformed variables;

 Eigval=Eigp;

 Eig=diag(Eigp(1:a),0);

 Eig1=diag(Eigp,0);

 T=TP(:,1:a);

 figure;

 plot(TP(:,1),TP(:,2),'r*');

 figure;

 plot(P(:,1),P(:,2),'r*');

 [nn,mm]=size(x);

 sse_test=[];

 sse_train=[];

 for aa=1:1:mm

 P=Eigvec(:,1:aa);

 xtrain_pred=x*P*P';

 ss=(xtrain_pred-x)*(xtrain_pred-x)';

 ssp=trace(ss);

 sse_train=[sse_train,ssp];

 xtest_pred=xtest*P*P';

 ss=(xtest_pred-xtest)*(xtest_pred-xtest)';

 ssp=trace(ss);

 sse_test=[sse_test,ssp];

end;

 figure;

 semilogy(sse_train,'b');

 hold on;

 semilogy(sse_test,'r');

 hold off;

 pause;

 a=input('the order of your model\n');

 P=Eigvec(:,1:a);

 Eig=diag(Eigp(1:a),0);

 151

 Eig1=diag(Eigp,0);

 mv=length(indp);

 [nn,mm]=size(xtest);

 xtest_pred=xtest*P*P';

 for ipp=1:1:mv

 figure;

 plot(xtest_pred(1:20:nn,indp(ipp)),'b+');

 hold on;

 plot(xtest(1:20:nn,indp(ipp)),'ro');

 end;

%%%%fault detection for PCA based on T square and Q statistics %%%

 [T2lim]=Tlim(confidence,n,a);

% Qlim(squared prediction error) is to measure the total sum of variations in the residual space,

 [Qlim]=QFlim(confidence,a,m,Eigval);

for iclass=1:1:mmp

 filem=fnn{iclass};

 for inn=1:1:1

 if iclass==1

 fileName=filem;

 eval(['load ', fileName]);

 BT=PWRrampNew(:,2:end);

 norm00=PWRrampNew(1,2:end);

 norm100=[];

 for ivv=1:1:100

 norm100=[norm100;norm00];

 end;

 else

 fileName=[filem,num2str(inn)];

 eval(['load ', fileName]);

 BT=Faultdata(:,2:end);

 BT=[BT];

end;

 note=fnn1{iclass};

 BTP=[BT(1:end,index)];

 BT=BTP;

 BT=ran(BT,noise);

 fprintf('Detecting Fault:%s\n',fnn1{iclass});

 [TTSQ,QQSQ,miss,miss1,miss2,fal1,fal2] = dtectPCA(BT,meanx,stdr,Eig,P,T2lim,Qlim);

 figure;

 [nn1,mm1]=size(TTSQ);

 plot(TTSQ(1:1:mm1),'b*');

 hold on;

 TTSQ_lim=ones(1,mm1).*T2lim;

 plot(TTSQ_lim(1:1:mm1),'r')

 note1=['detecting ',note,' based on T square statistics'];

 152

 xlabel('sample');

 ylabel('T square statistics');

 title(note1);

 hold off;

 figure;

 plot(QQSQ(1:1:mm1),'b*');

 hold on;

 [nn1,mm1]=size(QQSQ);

 QQSQ_lim=ones(1,mm1).*Qlim;

 plot(QQSQ_lim(1:1:mm1),'r');

 note2=['detecting ',note,' based on Q statistics'];

 xlabel('sample');

 ylabel('Q statistics');

 title(note2);

 hold off;

end;

end;

pause;

%%%%%%%%%%%%%%%%%%%%%%%%Fault Identification%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 ind01=[];ind02=[];ind03=[];ind04=[];

 ind11=[];ind12=[];ind13=[];ind14=[];

 [mn1,mn2]=size(BT);

 pattern=[];

 for iclass=2:1:mmp

 filem=fnn{iclass};

 for inn=1:1:1

 fileName=[filem,num2str(inn)];

 note=fileName;

 eval(['load ', fileName]);

 BT=Faultdata(:,2:end);

 xid=[BT(end,index)];

 xid=ran(xid,noise);

 xid=(xid-meanx);

 [CONT,RES]=ident1(xid,T2lim,Qlim,a,P,Eigvec,Eig1);

 CONT1=sort(abs(CONT));

 ma=length(CONT);

 RES1=sort(abs(RES));

 mb=length(RES);

 if CONT1(ma)~=0.0 indd1=find(abs(CONT)==CONT1(ma)); end;

 ind01=[ind01,indd1];

 if RES1(mb)~=0.0 indd1=find(abs(RES)==RES1(mb)); end;

 ind02=[ind02,indd1];

 end;

 figure;

 bar(1:1:15,CONT);

 153

 title(note);

 figure;

 bar(1:1:15,RES);

 title(note);

end;

end;

 154

Appendix B Matlab Code for PCA fault isolation

close all;

clear all;

ytext1=cell(1);

ytext1{1}='Dynamic linear PCA';

fnn=cell(13);

fnn{1}='E:\kzhao\SGdataNew\FeedFlowoffset';

fnn{2}='E:\kzhao\SGdataNew\Steamfloffset';

fnn{3}='E:\kzhao\SGdataNew\SteamFeedoffset';

fnn{4}='E:\kzhao\SGdataNew\FeedSGLevel';

fnn{5}='E:\kzhao\SGdataNew\SteamSGLevel';

fnn{6}='E:\kzhao\SGdataNew\SGPrs';

fnn{7}='E:\kzhao\SGdataNew\FeedSGPrs';

fnn{8}='E:\kzhao\SGdataNew\FeedFCVOffset';

fnn{9}='E:\kzhao\SGdataNew\SteamFCVOffset';

fnn{10}='E:\kzhao\SGdataNew\FCVOffset';

fnn{11}='E:\kzhao\SGdataNew\SGLevelPrs';

fnn{12}='E:\kzhao\SGdataNew\SGLevel';

fnn{13}='E:\kzhao\SGdataNew\SteamSGPrs';

fnns=cell(13);

fnns{1}='Feed flow meter offset';

fnns{2}='Steam flow meter offset';

fnns{3}='Feed flow meter offset and Steam flow meter offset';

fnns{4}='Feed flow meter offset and SG Level sensor offset';

fnns{5}='Steam flow meter offset and SG Level sensor offset';

fnns{6}='SG pressure sensor offset';

fnns{7}='Feed flow meter offset and SG Pressure sensor fault';

fnns{8}='Feed flow meter offset and FCV Offset';

fnns{9}='Steam flow meter offset and FCV Offset';

fnns{10}='FCV Offset';

fnns{11}='SG Level sensor offset and SG Pressure sensor fault';

fnns{12}='SG Level sensor fault';

fnns{13}='Steam flow meter sensor offset and SG Pressure sensor fault';

mpp=length(fnn);

index=[1,5,9,24,27,29,31,32,33,36,37,39,40,57,70];

noi=[0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002];

kkk=length(index);

load E:\kzhao\SGdataNew\PWRrampNew;

B1=PWRrampNew(:,2:end);

BTP=[B1(2:1:end,index),B1(1:end-1,index)];

BTT=BTP(1:2:end,:);

load E:\kzhao\SGdataNew\PWRnormalNew;

B11=PWRnormalNew(:,2:end);

BTV=[B11(2:end,index),B11(1:end-1,index)];

 155

norm100=BTV(1,:);

B11=PWRnormalNew(:,2:end);

BTV=[B11(2:end,index),B11(1:end-1,index)];

norm80=BTV(223,:);

[x,meanx,stdr]=zscore1(BTT);

[Eigvec, TP, Eigp, TSQUARE] = PRINCOMP(x);

 ttsum=sum(Eigp);

 dps=Eigp/ttsum;

 figure;

 plot(dps);

 xlabel(' the order of the PCA model');

 ylabel(' the percentage of the total variance explained');

 a=input('the order of your model\n');

% P is the Loading matrix, m rows, a colums;

 P=Eigvec(:,1:a);

 Eigval=Eigp;

 Eig=diag(Eigp(1:a),0);

 Eig1=diag(Eigp,0);

% T is the score matrix being the corordinates in the new corordinate system spanned by principal components,

T=TP(:,1:a);

 figure;

 plot(TP(:,1),TP(:,2),'r*');

 figure;

 plot(P(:,1),P(:,2),'r*');

Ytrue=BTP(2:2:end,:);

xtest=zscore1(BTP(2:2:end,:),meanx,stdr);

testout=xtest*P*P';

pred=unscore(testout,meanx,stdr);

figure;

DDD=(pred-Ytrue)./Ytrue;

plot(DDD(1:1:1810,:)','ro');

xlabel('sample no.');

ylabel([ytext1{1},'normal operation']);

BT1=[];

for iclass=1:1:mpp

 filem=fnn{iclass};

 Fault(iclass).RX=[];

 Fault(iclass).score=[];

for inn=1:1:7

 fileName=[filem,num2str(inn)];

 eval(['load ', fileName]);

BT1=Faultdata(:,2:end);

for itime=700-1:1:700

%BT1=ran(BT1,noise);

BTT=[BT1(itime,index),BT1(itime-1,index)];

 156

BV=zscore1(BTT,meanx,stdr);

predict = BV*P*P';

Bnorm=zscore1(norm100,meanx,stdr);

normscore=Bnorm*P*P';

PPP=predict-normscore;

QQQ=BV-predict;

Fault(iclass).Case(inn).RX(itime,:)=QQQ/norm(QQQ);

Fault(iclass).Case(inn).score(itime,:)=PPP/norm(PPP);

end;

end;

end;

for iclass=1:1:mpp

 filem=fnn{iclass};

 Fault(iclass).RX=[];

 Fault(iclass).score=[];

for inn=1:1:7

 fileName=[filem,num2str(inn)];

 eval(['load ', fileName]);

BT1=Faultdata(:,2:end);

[nn,mm]=size(BT1);

%BT1=ran(BT1,noise);

for itime=700-1:1:700

noise=[];

for ivv=1:1:length(index)

noise=[noise,noi(ivv).*rand(nn,1)];

end;

BT11=BT1(itime,index);

BT111=BT11+BT11.*noise(itime,:);

BT22=BT1(itime-1,index);

BT222=BT22+BT22.*noise(itime-1,:);

BT=[BT111,BT222];

BTT=BT;

BV=zscore1(BTT,meanx,stdr);

predict = BV*P*P';

if inn==7

 BVV=norm80;

else

 BVV=norm100;

end;

Bnorm=zscore1(BVV,meanx,stdr);

normscore=Bnorm*P*P';

PPP1=(predict-normscore);

PPP1=PPP1/norm(PPP1);

QQQ1=(BV-predict);

QQQ1=QQQ1/norm(QQQ1);

 157

for idd=1:1:mpp

A1=Fault(idd).Case(1).score(itime,:);

B1=Fault(idd).Case(1).RX(itime,:);

A11=Fault(idd).Case(4).score(itime,:);

B11=Fault(idd).Case(4).RX(itime,:);

if inn==1|inn==2|inn==3|inn==7

Sdd(iclass).Case(inn).CosTheta1(itime,idd)=A1*PPP1';

Sdd(iclass).Case(inn).CosTheta2(itime,idd)=B1*QQQ1';

elseif inn==4|inn==5|inn==6

Sdd(iclass).Case(inn).CosTheta1(itime,idd)=A11*PPP1';

Sdd(iclass).Case(inn).CosTheta2(itime,idd)=B11*QQQ1';

end;

end;

end;

end;

end;

for itime=700:1:700

for iclass=1:1:mpp

 XXX=[];GGG=[];

 for inn=1:1:7

 VVV1=[];

 VVV2=[];

 for idd=1:mpp

 VVV1=[VVV1,Sdd(iclass).Case(inn).CosTheta2(itime,idd)];

 VVV2=[VVV2,Sdd(iclass).Case(inn).CosTheta1(itime,idd)];

 end;

 XXX=[XXX;VVV1];

 GGG=[GGG;VVV2];

 end;

disp(XXX);

disp(GGG);

fprintf('\n');

AM(itime).YYY1(iclass).XXX=XXX;

AM(itime).YYY2(iclass).GGG=GGG;

end;

end;

for iclass=1:1:mpp

 ZZZ2=[];ZZZ1=[];

 for itime=700:1:700

 for inn=2:1:2

 YYYT=AM(itime).YYY2(iclass).GGG(inn,:);

 YYYB=AM(itime).YYY1(iclass).XXX(inn,:);

 ZZZ1=[ZZZ1;YYYB];

 158

 ZZZ2=[ZZZ2;YYYT];

 figure;

 bar([ZZZ1;ZZZ2]');colormap(cool);

 title(['residual direction in the model space and the residual space']);

 ylabel(fnns{iclass});

 xlabel('Fault number');

 end;

end;

end;

 159

Appendix C Matlab Code for ANFIS model based fault isolation

clear all;
close all;
 warning off;
 noise=0.01;
indv=[33,31,29,37,24];
ptest_title=cell(5);
ytext=cell(5);
ytext1=cell(5);
fnn{1}='D:\kzhao\SGdataNew\FeedFlowoffset';
fnn{2}='D:\kzhao\SGdataNew\Steamfloffset';
fnn{3}='D:\kzhao\SGdataNew\SteamFeedoffset';
fnn{4}='D:\kzhao\SGdataNew\SGLevel';
fnn{5}='D:\kzhao\SGdataNew\FeedSGLevel';
fnn{6}='D:\kzhao\SGdataNew\SteamSGLevel';
fnn{7}='D:\kzhao\SGdataNew\SGPrs';
fnn{8}='D:\kzhao\SGdataNew\FeedSGPrs';
fnn{9}='D:\kzhao\SGdataNew\SteamSGPrs';
fnn{10}='D:\kzhao\SGdataNew\SGLevelPrs';
fnn{11}='D:\kzhao\SGdataNew\FeedFCVOffset';
fnn{12}='D:\kzhao\SGdataNew\SteamFCVOffset';
fnn{13}='D:\kzhao\SGdataNew\FCVOffset';

fnns=cell(13);
fnns{1}='D:\kzhao\SGdataNew\FeedFlowoffset';
fnns{2}='D:\kzhao\SGdataNew\Steamfloffset';
fnns{3}='D:\kzhao\SGdataNew\SteamFeedoffset';
fnns{4}='D:\kzhao\SGdataNew\SGLevel';
fnns{5}='D:\kzhao\SGdataNew\FeedSGLevel';
fnns{6}='D:\kzhao\SGdataNew\SteamSGLevel';
fnns{7}='D:\kzhao\SGdataNew\SGPrs';
fnns{8}='D:\kzhao\SGdataNew\FeedSGPrs';
fnns{9}='D:\kzhao\SGdataNew\SteamSGPrs';
fnns{10}='D:\kzhao\SGdataNew\SGLevelPrs';
fnns{11}='D:\kzhao\SGdataNew\FeedFCVOffset';
fnns{12}='D:\kzhao\SGdataNew\SteamFCVOffset';
fnns{13}='D:\kzhao\SGdataNew\FCVOffset';

ptest_title{1}='ANFIS model to estimate FCV valve position';
ptest_title{2}='ANFIS model to estimate FCV flow rate';
ptest_title{3}='ANFIS model to estimate SG steam flow rate';
ptest_title{4}='ANFIS model to estimate SG level';
ptest_title{5}='ANFIS model to estimate SG Pressure';

ytext{1}='FCV valve position(%)';
ytext{2}='FCV flow rate(%)';
ytext{3}='SG steam flow rate(%)';
ytext{4}='SG level(%)';
ytext{5}='SG pressure(%)';
BT1=[];
for inn=1:1:7
for iclass=1:1:length(fnn)
filem=fnn{iclass};
fileName=[filem,num2str(inn)];
eval(['load ', fileName]);
BT1=Faultdata;
[nns,mms]=size(BT1);
BBTT=BT1(:,2:mms);
BT1=BT1(:,2:mms);
[nnn,mmm]=size(BT1);
BT1=BT1+0.001.*rand(nnn,mmm).*BT1;
BBTT=BBTT+0.001.*rand(nnn,mmm).*BBTT;

XYY=[];
for i=nns:1:nns

 160

indexp1=[33,32];
indexp2=[33];
BTT=BT1(i,indexp1);
load ValPos meanx stdx gfis2;
BS1=zscore2(BTT,meanx,stdx);
Valve_position=evalfis(BS1,gfis2);

indexp1=[70,33];
indexp2=[31];
BTT=BT1(i-1,indexp1);
load FCVFlow meanx stdx gfis2;
BS1=zscore2(BTT,meanx,stdx);
FCV_Flowrate=evalfis(BS1,gfis2);

indexp1=[27,70,5,9];
indexp2=[29];
BTT=[BBTT(i-1,[27,70]),BBTT(i,9)-BBTT(i-1,5)];
load SGSteamFlow meanx stdx gfis2;
BS1=zscore2(BTT,meanx,stdx);
Steam_Flowrate=evalfis(BS1,gfis2);

indexp1=[36,27];
indexp2=[37];
BTT=[BT1(i,indexp1)];
load SGLevel meanx stdx gfis2;
BS1=zscore2(BTT,meanx,stdx);
SG_Level=evalfis(BS1,gfis2);

indexp1=[70];
indexp2=[24];
BTT=BT1(i,indexp1);
load SGPressure meanx stdx gfis2;
BS1=zscore2(BTT,meanx,stdx);
SG_Prs=evalfis(BS1,gfis2);
XYY=[XYY;[Valve_position,FCV_Flowrate,Steam_Flowrate,SG_Level,SG_Prs]];

end;

for ipp=1:1:length(indv)
 if ipp==1
 bbb=XYY(:,ipp)-(BBTT(end,indv(ipp))-BBTT(end-1,indv(ipp)));
 if bbb >= 0.05
 bbb=0.05;
 elseif bbb <= -0.05
 bbb=-0.05;
 end;
 Fault(iclass).Variable(ipp).Residual=bbb;
 else
 bbb=(XYY(:,ipp)-BBTT(end,indv(ipp)))./BBTT(end,indv(ipp));
 if bbb >= 0.05
 bbb=0.05;
 elseif bbb <= -0.05
 bbb=-0.05;
 end;
 Fault(iclass).Variable(ipp).Residual=bbb;
 end;
end;
end;

figure;
X=[1:1:length(fnn)];
Y=[];
for iclass=1:1:length(fnn)
 YT=[];

 161

 for ivar=1:1:length(indv)
 YT=[YT,Fault(iclass).Variable(ivar).Residual(end,1)];
 end;
 Y=[Y;YT];
end;
BAR(Y);
ser=num2str(inn);
title(['Residual Patterns based on ANFIS Local Model Fault Magnitude=Case',ser]);
xlabel('Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)');
ylabel('Residual');
end;

 162

Appendix D C++ Code for user interface

#ifndef MLF_V2
#define MLF_V2 1
#endif
#include "libmatlb.h"
#include "mex.h"
#include "matrix.h"
#include "fault_det_all.h"
#include "convert.h"
#include "convert2.h"
#include "ANNt_PBK.h"
#include "ANNt_PBK1.h"
#include "S1zscore.h"
#include "S2zscore.h"
#include "fun3.h"
#include "fun4.h"
#include "MyBinaryGenerator.h"
#include "libmmfile.h"
#define BOOL_IS_KEYWORD 1
#include <fstream>
#include <afxsock.h> // MFC socket extensions
#include <process.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define BUFSIZE 256
#include <api/api.h>
#include <api/apiAnacronisms.h>
#include "SimulatorInterface.h"

// Simulator Common Blocks

extern "C" struct
{
 float time, Seconds, deltat;
} TIME;

extern "C" struct
{
 int Ntime;
 float Tmax, Dtmin, Dtmax;
 int ITYPEacc;
 int nValvesFailedOpen;
} SIMCONTROL;

extern "C" struct
{
 float aload, bload, Duration;
} BOPLOAD;

extern "C" struct
{
 float VTBV[10], VSDV[10], VADV1, VSRV1[10], VADV2, VSRV2[10],
 VSLbrk, VTCV[4], FlowTBV[10], FlowSDV[10], FlowADV1,
 FlowSRV1, FlowADV2, FlowSRV2, FlowSLbrk, FlowSL1,
 FlowSL2, FlowTCV[4], FlowSG1, FlowSG2, hSG1, hSG2;
} BOPFLOW;

extern "C" struct
{
 float DDDtime,DDDQthnew,DDDQrxnew,DDDQtrans,DDDFlowc,

 163

 DDDFlow1,DDDFlow2,DDDTrxnew,DDDTfuelHot1,DDDTcladMAX,
 DDDTinfnew,DDDTAVEInd,DDDTaveREF,DDDTold16,DDDTold14,DDDTCL1Ind,
 DDDTold18,DDDTCL2Ind,DDDTold5,DDDTHL1Ind,DDDTHL2Ind,DDDTsat,
 DDDMDNBR,DDDWithDrawal,DDDCb,
 DDDRhoTot,DDDDeltaRhoFuel,DDDDeltaRhoMod,DDDDeltaRhoB,DDDRhocr,
 DDDWturb;
} DDD;

extern "C" struct
{
float PPPSeconds,PPPPp,PPPPprz,PPPQhtrKw,PPPGPMspray,
 PPPPrzLvlP,PPPRefLvlP,PPPGPMcharge,PPPGPMletdwn,PPPFlowSIS,
 PPPmporv,PPPFlowPrzSRV,PPPGPMmsrg;
} PPP;

extern "C" struct
{
float SSSSeconds,SSSPs10,SSSPs10Ind,SSSPs20,SSSPs20Ind,
 SSSTsat10,SSSTsat20,SSSFeedTemp,SSSFlowSG1,
 SSSFlowSG1Ind,SSSFlowfd1,SSSFlowfd1Ind,SSSFCV1P,
 SSSFlowEFW1,SSSSGLvl1WR,SSSSGLvl1NR,SSSSGLvl1WRInd,
 SSSSGLvl1NRInd,SSSSG1Mass,SSSSGRefWR,SSSSGRefNR,SSSFlowSG2,
 SSSFlowSG2Ind,SSSFlowfd2,SSSFlowfd2Ind,SSSFCV2P,SSSFlowEFW2,
 SSSSGLvl2WR,SSSSGLvl2NR,SSSSGLvl2WRInd,SSSSGLvl2NRInd,SSSSG2Mass,
 SSSFlowSLbrk;
} SSS;

extern "C" struct
{
float BBBSeconds,BBBFlowTCV1,BBBFlowTCV2,BBBFlowTCV3,BBBFlowTCV4,
 BBBTCVposP1,BBBTCVposP2,BBBTCVposP3,BBBTCVposP4;
} BBB;

extern "C" struct
{
float DeadBand[10][50],Tau[10][50];
} VALVEPROPERTIES;

extern "C" struct
{
 float SensorOffset[20],SensorDrift[20],SensorNoise[20],SensorSpan[20];
} SENSORPROPERTIES;

extern "C" struct
{
float FeedGain[4][2],FeedGainTrip[4],EFWGain[4],G1Feed[2],G2Feed[2];

} FEEDCONTROL;

extern "C" struct
{

 float SGLvl1,SG1IndWRLvl,SG1IndNRLvl,SGLvl2,SG2IndWRLvl,SG2IndNRLvl,
 Ps10,Ps20,hfd1,hfd2,Flowfd1,Flowfd2;
} SGINIT;

extern "C" struct
{
 float Qrx, Trx, RodDepth;
} COREINIT;

extern "C" struct
{
 float Wturb, Wload, Pcond, Phdr, TCVposition[4], FCV1,
 FCV2, ADV1Position, ADV2Position, TBVposition;

 164

} BOPINIT;

extern "C" struct
{
 float DeltaPcp1, DeltaPcp2;
 int nfeedpumps;
 float DeltaPEFW, FeedTempRate, FeedDuration, FeedTempData[100], FeedTempTime[100];
 int nTimeFeed;
} BOPFEED;

extern "C" struct
{
 float Told[30];
} PRIMTEMPS;
extern "C" struct
{
 float Pprz,PrzLvlP;
} PRZADD;

extern "C" struct
{
 float Qthnew,FeedTemp,SGLvl1NR,SGLvl2NR,SGRefNR;
} TREND;

 static int threadRunning = 0;
 static void GUIThread(void *ptr)
{
 threadRunning = 1;
 PfMainLoop();
 threadRunning = 0;
 return;
}

extern "C" Code();

extern "C"
void whenRtmDisconnects(int status, const char *msg)
{
 printf("Lost contact with RTM %s\n",applName);

 return;
}
extern "C"
void whenRtmConnects(int status, const char *msg)
{
 if (status & PfCrtmResume)
 {
 printf("Connection established\n");
 return;
 }

/*Create records, variables and functions */
 if (createRecords() !=OK) quit();
 if (createVariables() !=OK) quit();
 if (registerFunctions() !=OK) quit();

 PfFlush();

/*Create processhandler to be called every time interval if not already created*/

 return ;
}

extern "C"

 165

int process(int i)
{
SIMCONTROL.Tmax=TIME.time+1.0/3600;
 return OK;
}

extern "C"
int initialize_link()
{
 unsigned long guiThread;
 int error = 0;
 Vardd=0;
 SIMCONTROL.Tmax=(float)(0.1/3600);
// Calls made in the initialize_link function
 printf("\n\n");
 PfInitialize("NERI","NERI","rtm",NULL,0,0,whenRtmConnects,whenRtmDisconnects);

/*Create processhandler to be called every time interval if not already created*/

 if (processHandlerId == PfBADINDEX)
 { PfSetProcessHandler(process_picasso, 5000);
 if (apiError !=OK)printf("PfsetProcessHandler failed\n");
 else
 printf("PfsetProcessHandler OK \n");
 }
 guiThread=_beginthread(GUIThread, 0, NULL);
 if (apiError != OK)
 {
 printf("Pfinitialize failed\n");
 }
 else
 {
 initialControllerData();
 initialsensorData();
 initialFCVData();
 initialTCVData();
 initPower();
 return(0);
 PfFlush();
 }
 TRACE("initialize_link: finished\n");
 return error;
}

extern "C"
int process_picasso(int i)
{

 int error=0;
 int numcc;
 int inum,ierror,ii,jj;
 float dusy;
 char* FaultTemp;
 FILE * fid50;
 FILE * fid20;
 double *VV;
 double VV1[39];
 float rsd[38]={0.0};
 if (PfIsConnected())
 {
 if (Vardd == 1)
 {
 VV=getData();
 VV1[0]=Vardd;
 for (int ikk=0;ikk<38;++ikk)
 {
 VV1[ikk+1]=*(VV+ikk);
 }

 166

 PushData(1,39,VV1);
 YY = (mxArray *)mlfFault_det_all(XX);
 fid50=fopen("Gmdh_residual.dat","r");
 inum=0;
 do
 {
 ierror=fscanf(fid50,"%g",&dusy);
 if (ierror==EOF) break;
 rsd[inum]=dusy;
 printf(" rsd = %g\n", rsd[inum]);
 inum++;
 }
 while (ierror!=EOF);
 fclose(fid50);

 reds=Class_conversion(rsd);
 ExtractData(YY);
 FaultTemp=FaultType();
 for (numcc=0; *(FaultTemp+numcc) != NULL; ++numcc)
 FaultEcho[numcc]=*(FaultTemp+numcc);
 Vardd=0;
 }

 if (Vardd == 2)
 {
 VV=getData();
 VV1[0]=Vardd;
 for (int ikk=0;ikk<38;++ikk)
 {
 VV1[ikk+1]=*(VV+ikk);
 }
 PushData(1,39,VV1);

 YY1 = (mxArray *)mlfFault_det_all(XX);
 ExtractData(YY1);
 sse_trans=diags[0];
 Vardd=2;
 }
 if (Vardd == 3)
 {
 PowerChange();
 Vardd=0;
 }
 if (PPP.PPPSeconds<5.0)
 {
 INITFDIData();
 };
 if (PPP.PPPSeconds>5.0)
 {
 FDIFData();
 };
 simulationData();
 FCVData();
 TCVData();
 ControllerData();
 sensorData();

 myGlobalTime=PPP.PPPSeconds;
 PfSend (controller1_id);
 PfSend (controller2_id);
 PfSend (FCV1_id);
 PfSend (FCV2_id);
 PfSend (TCV1_id);
 PfSend (TCV2_id);
 PfSend (TCV3_id);
 PfSend (TCV4_id);
 PfSend (SG1_id);
 PfSend (SG2_id);

 167

 PfSend (Flowmeter1_id);
 PfSend (Flowmeter2_id);
 PfSend (simulation_id);
 PfSend (fdi_id);
 PfSend (reds_id);
 PfSend (Var_Id);
 PfSend(a_id);
 PfSend(b_id);
 PfSend(c_id);
 PfSend(d_id);
 PfSend(e11_id);
 PfSend(e12_id);
 PfSend(e13_id);
 PfSend(e14_id);
 PfSend(f11_id);
 PfSend(f12_id);
 PfSend(g11_id);
 PfSend(g12_id);
 PfSend(g13_id);
 PfSend(g14_id);
 PfSend(time_id);
 PfSend(diags_id);
 PfSend(FaultEcho_id);
 PfSend(sse_id);
 PfSend(G_Perload_id);
 PfSend(G_aload_id);
 PfSend(G_bload_id);
 PfSend(G_PerloadMin_id);
 PfSend(G_Refload_id);
 PfSend(G_Duration_id);

 PfFlush();
 printf ("Transferring Data to RTM \n");
}

return OK;
}

extern "C"
int terminate_link()
{
int error=0;
if (threadRunning)
{
 PfEndLoop();
 while (threadRunning) { Sleep(1000); }
}
return error;
}

// Send message to log.

extern "C"
int send_log_message(const char *pMsg)
{
 int error = 0;
 return error;
}

extern "C"
float get_sim_time()
{
 return 0.0;
}

/* Standard error macro for reporting API errors */

 #define PERR(bSuccess, api){if(!(bSuccess)) printf("%s:Error %d from %s \

 168

 on line %d\n", __FILE__, GetLastError(), api, __LINE__);}
 extern "C"
 void clsgp()
 {
 HANDLE hConsole;
 hConsole = GetStdHandle(STD_OUTPUT_HANDLE);

 COORD coordScreen = { 0, 0 }; /* here's where we'll home the
 cursor */
 BOOL bSuccess;
 DWORD cCharsWritten;
 CONSOLE_SCREEN_BUFFER_INFO csbi; /* to get buffer info */
 DWORD dwConSize; /* number of character cells in
 the current buffer */

 /* get the number of character cells in the current buffer */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "GetConsoleScreenBufferInfo");
 dwConSize = csbi.dwSize.X * csbi.dwSize.Y;

 /* fill the entire screen with blanks */

 bSuccess = FillConsoleOutputCharacter(hConsole, (TCHAR) ' ',
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputCharacter");

 /* get the current text attribute */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "ConsoleScreenBufferInfo");

 /* now set the buffer's attributes accordingly */

 bSuccess = FillConsoleOutputAttribute(hConsole, csbi.wAttributes,
 dwConSize, coordScreen, &cCharsWritten);
 //PERR(bSuccess, "FillConsoleOutputAttribute");

 /* put the cursor at (0, 0) */

 bSuccess = SetConsoleCursorPosition(hConsole, coordScreen);
 PERR(bSuccess, "SetConsoleCursorPosition");
 return;
 }

extern "C"
void quit()
{
PfEndLoop();
printf ("Picasso is done\n");
SIMCONTROL.Tmax=TIME.time-1.0/3600;
return;
}

extern "C"
int32 KbdHandler(int32 handlerId)
{
char c;
scanf("%c",&c);
if (c=='q' || c=='Q')
quit();
return OK;
}

extern "C"
 int32 registerFunctions()
{
 PfTArg formals[2];

 169

/*Register a function for terminating the program*/
 PfRegisterFunction("stopApplication",stopApplication,0,NULL);
 if (apiError !=OK)
 printf ("PfRegisFunction failed (%s)\n", applName);
/*Register a function for receiving data points calculated by NCSU for diagnosis*/
 formals[0].dtype=PfCInt;
 formals[0].size=1;
 formals[1].dtype=PfCFloat;
 formals[1].size=1;
 PfRegisterFunction("datMount",datMount,2,formals);
 if (apiError !=OK)
 printf ("PfRegisFunction failed (%s)\n", applName);
 return OK;
}

extern "C"
 int32 createRecords()
{
 int32 numErrors;
 char *Filename="RecordDefs.pdat";
 numErrors=PfReadScript(Filename);//PfReadScript creates records and variables according to specification in NERI.Pdat
 if (apiError!=OK)
 printf ("pfReadScript reported errors for %s\n",Filename);
 else
 printf ("pfReadScript is done\n");
 return apiError;
}

extern "C"
 int32 createVariables()
{
/*PfCreateVar creates the variable locally in api and puts the information into a local buffer
to be used by PfFlushCreateVar.*/

a_id= PfCreateVar("a1",PfCDouble, NULL,0,&a1);
 if(apiError == OK)
 printf("a1 added\n");
 else
 printf("Adding a1 failed\n");
 b_id= PfCreateVar("b1",PfCDouble, NULL,0,&b1);
 if(apiError == OK)
 printf("b1 added\n");
 else
 printf("Adding b1 failed\n");
 c_id= PfCreateVar("c1",PfCDouble, NULL,0,&c1);
 if(apiError == OK)
 printf("c1 added\n");
 else
 printf("Adding c1 failed\n");
 d_id= PfCreateVar("d1",PfCDouble, NULL,0,&d1);
 if(apiError == OK)
 printf("d1 added\n");
 else
 printf("Adding d1 failed\n");
 e11_id= PfCreateVar("e11",PfCDouble, NULL,0,&e11);
 if(apiError == OK)
 printf("e11 added\n");
 else
 printf("Adding e11failed\n");
 e12_id= PfCreateVar("e12",PfCDouble, NULL,0,&e12);
 if(apiError == OK)
 printf("e12 added\n");
 else
 printf("Adding e12 failed\n");
 e13_id= PfCreateVar("e13",PfCDouble, NULL,0,&e13);
 if(apiError == OK)

 170

 printf("e13 added\n");
 else
 printf("Adding e13 failed\n");
 e14_id= PfCreateVar("e14",PfCDouble, NULL,0,&e14);
 if(apiError == OK)
 printf("e14 added\n");
 else
 printf("Adding e14 failed\n");
 f11_id= PfCreateVar("f11",PfCDouble, NULL,0,&f11);
 if(apiError == OK)
 printf("f11 added\n");
 else
 printf("Adding f11failed\n");
 f12_id= PfCreateVar("f12",PfCDouble, NULL,0,&f12);
 if(apiError == OK)
 printf("f12 added\n");
 else
 printf("Adding f12 failed\n");
 g11_id= PfCreateVar("g11",PfCDouble, NULL,0,&g11);
 if(apiError == OK)
 printf("g11 added\n");
 else
 printf("Adding e11failed\n");
 g12_id= PfCreateVar("g12",PfCDouble, NULL,0,&g12);
 if(apiError == OK)
 printf("g12 added\n");
 else
 printf("Adding g12 failed\n");
 g13_id= PfCreateVar("g13",PfCDouble, NULL,0,&g13);
 if(apiError == OK)
 printf("g13 added\n");
 else
 printf("Adding g13 failed\n");
 g14_id= PfCreateVar("g14",PfCDouble, NULL,0,&g14);
 if(apiError == OK)
 printf("g14 added\n");
 else
 printf("Adding g14 failed\n");
 sse_id= PfCreateVar("sse_trans",PfCDouble, NULL,0,&sse_trans);
 if(apiError == OK)
 printf("sse_trans added\n");
 else
 printf("Adding sse_trans failed\n");

 G_Perload_id= PfCreateVar("G_Perload",PfCDouble, NULL,0,&G_Perload);
 if(apiError == OK)
 printf("Perload added\n");
 else
 printf("Adding Perload failed\n");

 G_aload_id= PfCreateVar("G_aload",PfCDouble, NULL,0,&G_aload);
 if(apiError == OK)
 printf("aload added\n");
 else
 printf("Adding aload failed\n");

G_bload_id= PfCreateVar("G_bload",PfCDouble, NULL,0,&G_bload);
 if(apiError == OK)
 printf("bload added\n");
 else
 printf("Adding bload failed\n");

 G_Refload_id= PfCreateVar("G_Refload",PfCDouble, NULL,0,&G_Refload);
 if(apiError == OK)
 printf("Reference Load added\n");
 else
 printf("Adding Refload failed\n");

 171

 G_PerloadMin_id= PfCreateVar("G_PerloadMin",PfCDouble, NULL,0,&G_PerloadMin);
 if(apiError == OK)
 printf("PerloadMin added\n");
 else
 printf("Adding PerloadMin failed\n");

 G_Duration_id= PfCreateVar("G_Duration",PfCDouble, NULL,0,&G_Duration);
 if(apiError == OK)
 printf("Duration added\n");
 else
 printf("Adding Duration failed\n");

 Var_Id= PfCreateVar("Vardd",PfCInt, NULL,0,&Vardd);
 if(apiError == OK)
 printf("Vardd added\n");
 else
 printf("Adding Vardd failed\n");

controller1_id=PfCreateVar("controller1",PfCRecord, "Controller",0,&controller1);
 if(apiError == OK)
 printf("controller1 added\n");
 else
printf("adding controller1 failed\n");
controller2_id=PfCreateVar("controller2",PfCRecord, "Controller",0,&controller2);
 if(apiError == OK)
 printf("controller2 added\n");
 else
 printf("adding controller2 failed\n");
 FCV1_id=PfCreateVar("FCV1",PfCRecord, "Valve",0,&FCV1);
 if(apiError == OK)
 printf("FCV1 added\n");
 else
printf("Adding FCV1 failed\n");
FCV2_id=PfCreateVar("FCV2",PfCRecord, "Valve",0,&FCV2);
 if(apiError == OK)
 printf("FCV2 added\n");
 else
printf("Adding FCV2 failed\n");
TCV1_id= PfCreateVar("TCV1",PfCRecord, "Valve",0,&TCV1);
 if(apiError == OK)
 printf("TCV1 added\n");
 else
printf("Adding TCV1 failed\n");
TCV2_id= PfCreateVar("TCV2",PfCRecord, "Valve",0,&TCV2);
 if(apiError == OK)
 printf("TCV2 added\n");
 else
 printf("Adding TCV2 failed\n");
TCV3_id= PfCreateVar("TCV3",PfCRecord, "Valve",0,&TCV3);
 if(apiError == OK)
 printf("TCV3 added\n");
 else
 printf("Adding TCV3 failed\n");
TCV4_id= PfCreateVar("TCV4",PfCRecord, "Valve",0,&TCV4);
 if(apiError == OK)
 printf("TCV4 added\n");
 else
printf("Adding TCV4 failed\n");
SG1_id= PfCreateVar("SG1",PfCRecord, "Sensor",0,&SG1);
 if(apiError == OK)
 printf("SG1 added\n");
SG2_id= PfCreateVar("SG2",PfCRecord, "Sensor",0,&SG2);
 if(apiError == OK)
 printf("SG2 added\n");
 else
 printf("Adding SG2 failed\n");
Flowmeter1_id= PfCreateVar("Flowmeter1",PfCRecord, "Sensor",0,&Flowmeter1);

 172

 if(apiError == OK)
 printf("Flow1 added\n");
 else
 printf("Adding Flow1 failed\n");

Flowmeter2_id= PfCreateVar("Flowmeter2",PfCRecord, "Sensor",0,&Flowmeter2);
 if(apiError == OK)
 printf("Flow2 added\n");
 else
 printf("Adding Flow2 failed\n");
simulation_id= PfCreateVar("simulation",PfCRecord, "Simulation",0,&simulation);
 if(apiError == OK)
 printf("simulation added\n");
 else
 printf("adding simulation failed\n");
fdi_id= PfCreateVar("fdi",PfCRecord, "FDIF",0,&fdi);
 if(apiError == OK)
 printf("fdi added\n");
 else
printf("Adding FDIF failed\n");
reds_id= PfCreateVar("reds",PfCRecord, "RESD",0,&reds);
 if(apiError == OK)
 printf("Residual added\n");
 else
printf("Adding Residual failed\n");

diags_id= PfCreateArray("diags",PfCDouble, 20,NULL,true,diags);
 if(apiError == OK)
 printf("diagnostic information added\n");
 else
printf("Adding diagnostic information failed\n");

FaultEcho_id= PfCreateArray("FaultEcho",PfCUnsignedChar, 30,NULL,true,FaultEcho);
 if(apiError == OK)
 printf("Fault Echo information added\n");
 else
printf("Adding Fault Echo information failed\n");

time_id = PfCreateVar("myGlobalTime", PfCInt, NULL, 1, &myGlobalTime);
 if(apiError == OK)
 printf("variable myGlobalTime added\n");
 else
 printf("variable myGlobalTime failed\n");

PfFlushCreateVar();
if (apiError ==OK)
 printf ("All variables successively created\n");
 return apiError;
}

extern "C"
RESD Class_conversion(float* rsd)
{
/*
 reds.level_SG1=-(double)rsd[0]; //SG1 water level;
 reds.level_SG2=-(double)rsd[1]; //SG2 water level;
 reds.flow_FCV1=-(double)rsd[2]; //FCV1 flow rate;
 reds.flow_FCV2=-(double)rsd[3]; //FCV2 flow rate;
 reds.flow_TCV1=-(double)rsd[4]; //TCV1 flow rate;
 reds.flow_TCV2=-(double)rsd[5]; //TCV2 flow rate;
 reds.flow_TCV3=-(double)rsd[6]; //TCV3 flow rate;
 reds.flow_TCV4=-(double)rsd[7]; // TCV4 flow rate;
 reds.T_hl=(double)rsd[8]; // hot leg temperature;
 reds.T_cl=(double)rsd[9]; //cold leg temperature;
 reds.T_FCV1=(double)rsd[10]; //feed water temperature;
 reds.T_FCV2=(double)rsd[11]; //feed water temperature(lumped loop);

 173

 reds.T_PRZ=(double)rsd[12]; //pressurizer temperature;
 reds.L_PRZ=(double)rsd[13]; //presurizer level;
 reds.set_power=(double)rsd[14]; // power load demand;
 reds.set_level=(double)rsd[15]; //SG water level setpoint;
 reds.ctl_level=(double)rsd[16]; // SG level controller output
 return reds;
*/
 reds.level_SG1=(double)rsd[0]; //SG1 water level;
 reds.level_SG2=0.0; //SG2 water level;
 reds.flow_FCV1=(double)rsd[1]; //FCV1 flow rate;
 reds.flow_FCV2=0.0; //FCV2 flow rate;
 reds.flow_steam=(double)rsd[3]; //steam flow rate;
 reds.flow_TCV1=(double)rsd[4]; //TCV1 flow rate;
 reds.flow_TCV2=(double)rsd[5]; //TCV2 flow rate;
 reds.flow_TCV3=(double)rsd[6]; //TCV3 flow rate;
 reds.flow_TCV4=(double)rsd[7]; // TCV4 flow rate;
 reds.T_hl=0.0; // hot leg temperature;
 reds.T_cl=0.0; //cold leg temperature;
 reds.FCV1pos=(double)rsd[2]; //FCV1 valve position;
 reds.FCV2pos=0.0; //FCV2 valve position;
 reds.T_FCV=0.0; //feed water temperature(lumped loop);
 reds.T_PRZ=0.0; //pressurizer temperature;
 reds.L_PRZ=0.0; //presurizer level;
 reds.set_power=0.0; // power load demand;
 reds.set_level=0.0; //SG water level setpoint;
 reds.ctl_level=0.0; // SG level controller output
 return reds;
}

extern "C"
 void FDIFData()
{
 a1=SSS.SSSSGLvl1NR;
 b1=SSS.SSSSGLvl2NR;
 c1=SSS.SSSFlowfd1;
 d1=SSS.SSSFlowfd2;
 e11=BBB.BBBFlowTCV1;
 e12=BBB.BBBFlowTCV2;
 e13=BBB.BBBFlowTCV3;
 e14=BBB.BBBFlowTCV4;
 f11=simulation.power=DDD.DDDQthnew; //reactor power
 f12=simulation.load=DDD.DDDWturb; //reactor power output
 g11=DDD.DDDTold5; // hot leg temperature;?
 g12=DDD.DDDTold14; //cold leg temperature;?
 g13=TREND.FeedTemp;//feed water temperature;
 g14=TREND.FeedTemp;//feed water temperature(lumped loop);
 fdi.set_power=BOPLOAD.aload; // power load demand;
 fdi.set_level=SSS.SSSSGRefNR; //SG water level setpoint;
 fdi.ctl_level=0.0; // SG level controller

 fdi.level_SG1=(SSS.SSSSGLvl1NR-aa[0])/aa[0];
 fdi.level_SG2=(SSS.SSSSGLvl2NR-aa[1])/aa[1];
 fdi.flow_FCV1=(SSS.SSSFlowfd1-aa[2])/aa[2];
 fdi.flow_FCV2=(SSS.SSSFlowfd2-aa[3])/aa[3];
 fdi.flow_TCV1=(BBB.BBBFlowTCV1-aa[4])/aa[4];
 fdi.flow_TCV2=(BBB.BBBFlowTCV2-aa[5])/aa[5];
 fdi.flow_TCV3=(BBB.BBBFlowTCV3-aa[6])/aa[6];
 fdi.flow_TCV4=(BBB.BBBFlowTCV4-aa[7])/aa[7];
 fdi.T_hl=(DDD.DDDTold5-aa[9])/aa[9];
 fdi.T_cl=(DDD.DDDTold14-aa[8])/aa[8];
 fdi.T_PRZ=(PPP.PPPPprz-aa[10])/aa[10];
 fdi.L_PRZ=(PPP.PPPPrzLvlP-aa[11])/aa[11];
 fdi.T_FCV1=0.0;
 fdi.T_FCV2=0.0;
}
extern "C"
 void simulationData()
{

 174

 simulation.power=DDD.DDDQthnew; //reactor power
 simulation.T_hl=DDD.DDDTold5; // hot leg temperature
 simulation.T_cl=DDD.DDDTold14;// cold leg temperature
 simulation.P_PRZ=PPP.PPPPprz;// pressure in the pressurizer
 simulation.L_PRZ=PPP.PPPPrzLvlP; //level in the pressurizer
 simulation.L_SG=SSS.SSSSGLvl1NR; //steam generator water level
 simulation.flow_FCV=SSS.SSSFlowfd1; //feed water flow rate to SG1
 simulation.T_FCV=TREND.FeedTemp; //main feed water temperature
 simulation.flow_TCV=SSS.SSSFlowSG1;//steam flow rate from SG1
 simulation.speed_Turbine=0.0;
// simulation.load=BOPINIT.Wturb;// turbine output
}
extern "C"
 void FCVData()
{
 BOPINIT.FCV1=FCV1.stuck; //valves stuck position
 VALVEPROPERTIES.DeadBand[0][13]=FCV1.offset;
 VALVEPROPERTIES.Tau[0][13]=FCV1.timeconst; //time constant
 BOPINIT.FCV2=FCV2.stuck; //valves stuck position
 VALVEPROPERTIES.DeadBand[1][13]=FCV2.offset; // offset fault
 VALVEPROPERTIES.Tau[1][13]=FCV2.timeconst; //time constant
}

 void initialFCVData()
{
 FCV1.stuck=BOPINIT.FCV1; //valves stuck position
 FCV1.offset=VALVEPROPERTIES.DeadBand[0][13];
 FCV1.timeconst=VALVEPROPERTIES.Tau[0][13]; //time constant
 FCV2.stuck=BOPINIT.FCV2; //valves stuck position
 FCV2.offset=VALVEPROPERTIES.DeadBand[1][13]; // offset fault
 FCV2.timeconst=VALVEPROPERTIES.Tau[1][13]; //time constant
}
 void INITFDIData()
{

 aa[0]=SSS.SSSSGLvl1NRInd;
 aa[1]=SSS.SSSSGLvl2NRInd;
 aa[2]=SSS.SSSFlowSG1Ind;
 aa[3]=SSS.SSSFlowSG2Ind;
 aa[4]=BBB.BBBFlowTCV1;
 aa[5]=BBB.BBBFlowTCV2;
 aa[6]=BBB.BBBFlowTCV3;
 aa[7]=BBB.BBBFlowTCV4;
 aa[8]=DDD.DDDTCL1Ind;
 aa[9]=DDD.DDDTHL1Ind;
 aa[10]=PPP.PPPPprz;;
 aa[11]=PPP.PPPPrzLvlP;
 return;
}

extern "C"
 void TCVData()
{
VALVEPROPERTIES.DeadBand[0][2]=TCV1.offset; // offset fault
 VALVEPROPERTIES.Tau[0][2]=TCV1.timeconst; //time constant
VALVEPROPERTIES.DeadBand[1][2]=TCV2.offset; // offset fault
 VALVEPROPERTIES.Tau[1][2]=TCV2.timeconst; //time constant
VALVEPROPERTIES.DeadBand[2][2]=TCV3.offset; // offset fault
 VALVEPROPERTIES.Tau[2][2]=TCV3.timeconst; //time constant
VALVEPROPERTIES.DeadBand[3][2]=TCV4.offset; // offset fault
 VALVEPROPERTIES.Tau[3][2]=TCV4.timeconst; //time constant
}
extern "C"
 void initialTCVData()
{
TCV1.offset=VALVEPROPERTIES.DeadBand[0][2]; // offset fault
 TCV1.timeconst=VALVEPROPERTIES.Tau[0][2]; //time constant
TCV2.offset=VALVEPROPERTIES.DeadBand[1][2]; // offset fault

 175

 TCV2.timeconst=VALVEPROPERTIES.Tau[1][2]; //time constant
TCV3.offset=VALVEPROPERTIES.DeadBand[2][2]; // offset fault
 TCV3.timeconst=VALVEPROPERTIES.Tau[2][2]; //time constant
TCV4.offset=VALVEPROPERTIES.DeadBand[3][2]; // offset fault
 TCV4.timeconst=VALVEPROPERTIES.Tau[3][2]; //time constant
}

extern "C"
 void ControllerData()
{
FEEDCONTROL.FeedGain[0][0]=controller1.offset; // main feed water control valve 1 controller offset fault
 FEEDCONTROL.FeedGain[1][0]=controller1.Kp; //main feed water control valve 1 controller proportional gain
 FEEDCONTROL.FeedGain[2][0]=controller1.Ki; //main feed water control valve 1 controller integral gain fault
 FEEDCONTROL.FeedGain[0][1]=controller2.offset; // main feed water control valve 1 controller offset fault
 FEEDCONTROL.FeedGain[1][1]=controller2.Kp; //main feed water control valve 1 controller proportional gain
 FEEDCONTROL.FeedGain[2][1]=controller2.Ki; //main feed water control valve 1 controller integral gain fault
}

extern "C"
 void initialControllerData()
{
 fdi.set_power=BOPLOAD.aload;
 controller1.offset=FEEDCONTROL.FeedGain[0][0]; // main feed water control valve 1 controller offset fault
 controller1.Kp=FEEDCONTROL.FeedGain[1][0]; //main feed water control valve 1 controller proportional gain
 controller1.Ki=FEEDCONTROL.FeedGain[2][0]; //main feed water control valve 1 controller integral gain fault
 controller2.offset=FEEDCONTROL.FeedGain[0][1]; // main feed water control valve 1 controller offset fault
 controller2.Kp=FEEDCONTROL.FeedGain[1][1]; //main feed water control valve 1 controller proportional gain
 controller2.Ki=FEEDCONTROL.FeedGain[2][1]; //main feed water control valve 1 controller integral gain fault
}

extern "C"
 void initPower()
{
G_aload=BOPLOAD.aload;
 G_bload=BOPLOAD.bload;
 G_Duration=BOPLOAD.Duration;
}

extern "C"
 void PowerChange()
{
BOPLOAD.aload=G_aload;
 BOPLOAD.bload=G_bload;
 BOPLOAD.Duration=G_Duration;
}

extern "C"
 void sensorData()
{
SENSORPROPERTIES.SensorDrift[1]=SG1.drift;
SENSORPROPERTIES.SensorDrift[6]=SG2.drift;
SENSORPROPERTIES.SensorDrift[2]=Flowmeter1.drift;
SENSORPROPERTIES.SensorDrift[7]=Flowmeter2.drift;
}

extern "C"
 void initialsensorData()
{
SG1.drift=SENSORPROPERTIES.SensorDrift[1];
SG2.drift=SENSORPROPERTIES.SensorDrift[6];
Flowmeter1.drift=SENSORPROPERTIES.SensorDrift[2];
Flowmeter2.drift=SENSORPROPERTIES.SensorDrift[7];
}
/*Function to be called from an RTM*/
extern "C"
 int32 stopApplication(int32 numArgs,void* args)
 {
 quit();

 176

 return OK;
}

/*Function to be called from an RTM*/
extern "C"
 int32 datMount(int32 numArgs, void* args)
{

 void* data;
 int32 type, size;
 if (numArgs !=2)
 return !OK;
 data=PfGetFuncArg(&args,&type,&size);
 if (type!=PfCInt||size!=1)
 return !OK;
 datPoint=*(int32*)data;
 data=PfGetFuncArg(&args,&type,&size);
 if (type!=PfCFloat||size!=1)
 return !OK;
 timeInterval=*(float*)data;
 printf("data Points =%d,timeInterval=%5.2f\n",datPoint,timeInterval);
 return OK;
}

extern "C"
 void PushData(int rows,int cols,double pr_data[])
// This is a small program to push data into mxArray Data Structure;
{
 double *start_of_pr;
// mxArray *array_ptr;

 /* Create a 2-by-4 real double matrix named "B". */
 XX = mxCreateDoubleMatrix(rows, cols, mxREAL);
 mxSetName(XX, "B");

 /* Populate the real part of the created array. */
 start_of_pr = (double *)mxGetPr(XX);
 memcpy(start_of_pr, pr_data, rows * cols * sizeof(double));
}

// void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])
 extern "C"
 void ExtractData(const mxArray * XY)
// This is a small program to push data into mxArray Data Structure);
 {
 int c, total_num_of_elements;
 double *real_data_ptr;

 if (mxIsDouble(XY)) {
 /* Get starting address of real data in input array. */
 real_data_ptr = (double *)mxGetPr(XY);

 /* Using pointer auto-increment, display every element in
 the array. */
 total_num_of_elements = mxGetM(XY) * mxGetN(XY);

 /* Display the contents of every real value. */
 for (c = 0; c < total_num_of_elements; c++)
 {
 diags[c]=*real_data_ptr;
 printf("%g\n", *real_data_ptr++);

 }
 }
 else
 printf("First argument must be a double array.");
}

 177

extern "C"
double * getData()
{
double * VV1;
double VV[38];
VV[0]=DDD.DDDQthnew;
VV[1]=DDD.DDDTaveREF;
VV[2]=DDD.DDDTold16;
VV[3]=DDD.DDDTCL1Ind;
VV[4]=DDD.DDDTCL2Ind;
VV[5]=DDD.DDDTHL1Ind;
VV[6]=DDD.DDDTsat;
VV[7]=PPP.PPPQhtrKw;
VV[8]=SSS.SSSPs10Ind;
VV[9]=SSS.SSSPs20Ind;
VV[10]=SSS.SSSTsat10;
VV[11]=SSS.SSSTsat20;
VV[12]=SSS.SSSFeedTemp;
VV[13]=SSS.SSSFlowSG1Ind;
VV[14]=SSS.SSSFlowfd1Ind;
VV[15]=SSS.SSSFCV1P;
VV[16]=SSS.SSSSGLvl1WR;
VV[17]=SSS.SSSSGLvl1NR;
VV[18]=SSS.SSSSGLvl1WRInd;
VV[19]=SSS.SSSSGLvl1NRInd;
VV[20]=SSS.SSSSG1Mass;
VV[21]=SSS.SSSSGRefWR;
VV[22]=SSS.SSSSGRefNR;
VV[23]=SSS.SSSFlowSG2Ind;
VV[24]=SSS.SSSFlowfd2Ind;
VV[25]=SSS.SSSFCV2P;
VV[26]=SSS.SSSSGLvl2WR;
VV[27]=SSS.SSSSGLvl2NR;
VV[28]=SSS.SSSSGLvl2WRInd;
VV[29]=SSS.SSSSGLvl2NRInd;
VV[30]=BBB.BBBTCVposP1;
VV[31]=BBB.BBBFlowTCV1;
VV[32]=BBB.BBBTCVposP2;
VV[33]=BBB.BBBFlowTCV2;
VV[34]=BBB.BBBTCVposP3;
VV[35]=BBB.BBBFlowTCV3;
VV[36]=BBB.BBBTCVposP4;
VV[37]=BBB.BBBFlowTCV4;
VV1=VV;
return VV1;
}
extern "C"
char* FaultType()
{
char* faultDDD;
char* FaultTable[9];
FaultTable[0]="No Error";
FaultTable[1]="NR drifting";
FaultTable[2]="NR deadband fault";
FaultTable[3]="FCV deadband";
FaultTable[4]="FCV stuck";
FaultTable[5]="Flowmeter drifting";
FaultTable[6]="Bypass valve error";
FaultTable[7]="TCV degradation";
FaultTable[8]="Unknown Fault";
if (diags[0]==0.0) faultDDD=FaultTable[0];
if (diags[0]==1.0) faultDDD=FaultTable[1];
if (diags[0]==2.0) faultDDD=FaultTable[2];
if (diags[0]==3.0) faultDDD=FaultTable[3];
if (diags[0]==4.0) faultDDD=FaultTable[4];
if (diags[0]==5.0) faultDDD=FaultTable[5];
if (diags[0]==6.0) faultDDD=FaultTable[6];

 178

if (diags[0]==7.0) faultDDD=FaultTable[7];
if (diags[0]==8.0) faultDDD=FaultTable[8];
return faultDDD;
}

 179

VITA

Ke Zhao was born in Sichuan, China on May 3,1969. He received the Bachelor

of Science degree from the Physics Department of Sichuan University, China, in July

1989.

In July 1989, Ke Zhao was employed by Nuclear Power Institute of China. He

became an engineer in radiation safety and environmental influence assessment in 1994.

He was promoted to be a senior engineer in reactor safety analysis and probabilistic risk

assessment in 1998. He did research on failed fuel behavior analysis in Atomic Energy

Commission, Cadarache, France, from July 1998 to February 1999.

Ke Zhao came to the United States and entered The University of Tennessee as a

graduate student in Nuclear Engineering Department in August 2000. He is advised by

Dr. B.R. Upadhyaya in the field of reactor simulation, control, and fault diagnosis. Ke

Zhao has coauthored the following papers during his M.S. degree program at The

University of Tennessee.

(1) B.R. Upadhyaya, K. Zhao, B. Lu, and M. Doster, Fault Detection and Isolation of

Sensors and Actuators in a Nuclear Plant Steam Generator, Transactions of the

American Nuclear Society, Vol. 85, pp. 350-351, November 2001.

(2) B.R. Upadhyaya, B. Lu, K. Zhao, and J.M. Doster, Equipment Monitoring During

Process Transients and Multiple Fault Conditions, Proceedings of MARCON 2002,

Knoxville, TN, May 2002.

(3) B.R. Upadhyaya, K. Zhao, and B. Lu, Fault Monitoring of Nuclear Power Plant

Sensors and Field Devices, Proceedings of SMORN-8, Symposium on Nuclear Power

Plant Surveillance and Diagnostics, Goteborg, Sweden, May 2002.

(4) B.R. Upadhyaya, K. Zhao, B. Lu, J.M. Doster, M.G. Na, Y.R. Sim, and K.H. Park,

Nuclear Plant System Monitoring Under Process Transients and Multiple Fault

Conditions, Transactions of the American Nuclear Society, Vol. 86, pp. 482-484, June

2002.

(5) B.R. Upadhyaya, B. Lu, K. Zhao, J.A. Mullens, Data driven prediction of process

variables, ORNL/TM-2002/196, 2002.

	Development of a Data Driven Multiple Observer and Causal Graph Approach for Fault Diagnosis of Nuclear Power Plant Sensors and Field Devices
	Recommended Citation

	Microsoft Word - ZhaoThesis.doc

