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Abstract 
 

Data driven multiple observer and causal graph approach to fault detection and 

isolation is developed for nuclear power plant sensors and actuators.  It can be integrated 

into the advanced instrumentation and control system for the next generation nuclear 

power plants. 

The developed approach is based on analytical redundancy principle of fault 

diagnosis.  Some analytical models are built to generate the residuals between measured 

values and expected values.  Any significant residuals are used for fault detection and the 

residual patterns are analyzed for fault isolation.  

Advanced data driven modeling methods such as Principal Component Analysis 

and Adaptive Network Fuzzy Inference System are used to achieve on-line accurate and 

consistent models.  As compared with most current data-driven modeling, it is 

emphasized that the best choice of model structure should be obtained from physical 

study on a system. 

Multiple observer approach realizes strong fault isolation through designing 

appropriate residual structures.  Even if one of the residuals is corrupted, the approach is 

able to indicate an unknown fault instead of a misleading fault.  Multiple observers are 

designed through making full use of the redundant relationships implied in a process 

when predicting one variable. 

Data-driven causal graph is developed as a generic approach to fault diagnosis for 

nuclear power plants where limited fault information is available.  It has the potential of 

combining the reasoning capability of qualitative diagnostic method and the strength of 

quantitative diagnostic method in fault resolution.  A data-driven causal graph consists of 

individual nodes representing plant variables connected with adaptive quantitative 

models.  With the causal graph, fault detection is fulfilled by monitoring the residual of 

each model.  Fault isolation is achieved by testing the possible assumptions involved in 

each model.  Conservatism is implied in the approach since a faulty sensor or a fault 

actuator signal is isolated only when their reconstructions can fully explain all the 

abnormal behavior of the system. 



 v

The developed approaches have been applied to nuclear steam generator system 

of a pressurized water reactor and a simulation code has been developed to show its 

performance.  The results show that both single and dual sensor faults and actuator faults 

can be detected and isolated correctly independent of fault magnitudes and initial power 

level during early fault transient. 
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Chapter 1  
 

Introduction 
 
 
1.1 Background and Motivation 
 

Fault Detection and Isolation (FDI) has been considered as an important strategy 

to improve operational performance in a variety of industries for a long time.  A fault in a 

process is defined as any malfunction of sensors, controllers and field devices at the 

initial stage, which may ultimately affect the operational performance.  The most 

important objectives of fault detection and isolation are to prevent a sudden equipment 

failure, collect information on malfunctions, improve maintenance planning, and have a 

better plant control such that optimal operational performance can be achieved 

(Himmelblau, 1978).  It brings about significant benefits through minimizing the 

downtime, enhancing the safety and reducing the manufacturing cost (Upadhyaya, 1999).  

In nuclear power plants (NPPs), FDI becomes increasingly emphasized with the 

strategic development of advanced plant instrumentation and control.  Owing to the 

revolution of digitization, the abundant available measurements have provided the 

opportunity to automate FDI.  The incorporation of FDI as an indispensable part of 

modern instrumentation and control system has begun to be further speeded up. 

In current nuclear power plants, some major deficiencies of plant instrumentation 

and control design which are affecting the economic performance and safety features, are 

as follows (White, 1994): 

• Unscheduled plant trips are not rare due to component failures. 

• Important indications of abnormal conditions are masked by many less important 

alarms during some transients. 

• Operators face difficulties to determine which alarms are due to an important 

initiating event and which alarms are due to operation action such as out-of-service 

components undergoing maintenance. 

• Due to fault propagation, the fault alarms may occur in an order different from that 

the fault occurs. 



 2

In order to overcome these problems, the advanced instrumentation and control 

system has been defined with the following features (EPRI, 1994):  

• Fault-tolerant systems should be introduced to avoid misinformation. 

• Digital systems should enable the plant to have self-diagnostics and on-line 

replacement. Failed equipment can be replaced and fixed on non-outage time.  

• “Adaptive tuning, drift-free operation, and nonlinear compensation" should be 

achieved to avoid human errors. 

 In fact, the automation of FDI has become an important measure to differ 

advanced instrumentation and control system from a traditional one in nuclear power 

plants.  Figure 1.1 illustrates the interface between FDI system and the advanced 

instrumentation and control system.  On the one hand, the FDI system is able to provide 

fault information to either an operator support system or a plant surveillance system.  

This information assists operators in making optimal maintenance planning and fault 

management.  On the other hand, the FDI system provides inputs to some software driven 

protection logic and software driven control algorithms either to compensate for fault 

effects or to implement safeguard. 

The overall objective of the thesis is to develop some FDI algorithms that can be 

integrated into the advanced instrumentation and control system.  Because the algorithms 

aim at on-line implementation for a nuclear power plant, the following performances 

must be satisfied: 

• The fault detection module can detect an incipient fault but will not trigger a false 

alarm during any normal plant transients. 

• A fault can be correctly diagnosed regardless of its fault magnitude and the initial 

plant condition when the fault occurs. 

• If one of the fault signatures is corrupted or degenerated due to process noise or 

measurement noise, the algorithm will indicate an unknown fault instead of being 

misdiagnosed as another fault. 

• A fault must be detected and isolated during its fault transient rather than after a new 

steady state has arrived in order to overcome the problem with controller 

compensation. 
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Figure 1.1.  A proposed schematic of on-line incipient fault detection and isolation (FDI) 
for nuclear power plants (NPPs). 
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• In order to facilitate modularization in implementation, a decision should be made 

only based on local evidences. 

Since a large safety critical system is being dealt with, the following constraints 

are imposed on the development: 

• The possible faults may not be enumerable. 

• The fault signatures can be obtained only from limited amount of fault data. 

 In order to achieve the FDI algorithm with the above technical specification under 

the above constraints advanced statistical inference based modeling such as Principal 

Component Analysis (PCA) and artificial intelligence methods such as Adaptive Network 

Fuzzy Inference System (ANFIS) are studied in order for adaptive modeling. As 

compared with most current data-driven modeling, the best choice of model structure is 

obtained from physical study on a system.  After a systematic reviewing on the available 

FDI methods in other industries and the implementation of PCA based approach and 

ANFIS model based approach, data driven model causal graph is proposed as a general 

approach to automatic FDI for nuclear power plants.  This approach can naturally arrive 

at efficient data driven modeling.  The fault isolation is based on cause effect analysis on 

model residuals.  Therefore, it is unnecessary to enumerate faults and define the 

associated fault signatures for fault isolation.  Moreover, it also enables to isolate 

simultaneous faults thanks to its excellent reasoning capability.  In addition, since fault 

isolation is considered as a process of confirming which fault candidate can fully explain 

all the observed abnormal fault symptoms, the decision logic is inherent with 

conservatism.  It is concluded that the data driven model causal graph approach is 

applicable to be integrated into the advanced instrumentation and control system for 

nuclear power plants. 

 

1.2 Statement of the Problem 
 

Although many researches on FDI have been performed in other industries, some 

special issues must be seriously addressed when those experiences are applied to nuclear 

systems (Kaistha and Upadhyaya, 2001). 
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1.2.1 Multi-operational regimes 
 

A nuclear power plant may operate at numerous operational points such as start-

up operation, the change in power demand, the evolution of fuel cycle, performance 

change of components throughout its lifetime, the change in system configuration to meet 

safety requirements, etc.  The designed FDI system must be adaptable to all these 

operational regimes.  For instance, the FDI system should be able to correctly isolate a 

fault under all these operational conditions.  A normal operational transient such as a 

power change, a chemical-volume-control-system startup or shutdown, a steam generator 

blow-down system startup or shutdown, will not trigger a false alarm.  This requires that 

the developed FDI system be able to adaptively adjust its models at all the operational 

points. 

 
1.2.2 Dynamic process behavior  
 

A nuclear power plant always experiences some internal disturbances such as the 

vibration of machinery components and turbulence induced fluctuation, and some 

external disturbances such as the change in power demand.  Therefore, all the state 

variables and/or the measured variables are random variables due to measurement 

disturbances or process disturbances. 

Unlike a process dynamics, an electric circuit exhibits static behavior.  Once an 

electrical circuit is around its operation point, a set of algebraic equations can always be 

found to characterize the relationship of the voltage, the current and the resistance among 

certain nodes.  By systematically checking the consistency of all the algebraic equations, 

it is not difficult to detect a faulty component and isolate it within the circuit. 

For a dynamic process, a set of algebraic equations may not be able to 

characterize the relationship among process variables.  Different initial conditions may 

result in different sets of relationships.  A set of differential equations may usually be 

required to characterize a dynamic system. 

Non-linearity results in additional difficulties in modeling the behavior of a 

dynamic system especially for a nuclear power plant where many nonlinear components 

such as valves, pumps, and controllers with dead band and saturation limits are utilized. 
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The existence of non-linearity will also weaken certain good features of many FDI design 

schemes. 

 
1.2.3 Controller feedback effects  
 

Many distributed feedback controllers are present in a nuclear power plant in 

order to maintain the operation within the designed operation regimes.  Power regulating 

system controls the reactor power such that the power generation from the core matches 

the desired power output of the plant.  Steam generator (SG) water level control system 

controls the feed water control valve position such that SG level is maintained at the set 

point level.  Pressurizer level and pressure control system manipulates the power of 

electric heaters and spray flow rate such that the level and pressure is maintained at the 

set point level. 

Because of feedback controller, a sensor fault or an actuator fault will propagate 

throughout the system.  The fault propagation would create challenges to designing an 

effective FDI system as described below (Dash and Venkatasubramanian, 2000): 

• Data reconciliation approach is not applicable. 

• A minor fault is harder to be detected and isolated. 

• A fault may propagate from one subsystem to another subsystem through a control 

system bridging them. 

• A comparison between set points and measured values after a new steady state 

cannot reveal the occurrence of a sensor fault that is involved in the feedback control 

loop. 

 

1.2.4 Complexity of fault natures  
 

In a large system such as a nuclear plant, the natures of possible faults are very 

complicated because many different components may be involved.  From the FDI 

methodology point of view, these components may be categorized as sensor fault, 

actuator fault, controller fault, and process fault.  With regard to fault effects on the 

measurements, a fault can be classified as additive fault and multiplicative fault.  The 
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time dependence of fault magnitude allows categorizing a fault as abrupt fault, drift fault 

and intermittent fault.  None of the available FDI approaches has acceptable performance 

for all the different types of faults. 

 
1.2.5 Multiple faults 
 

The importance of multiple fault diagnosis should not be underestimated simply 

because its probability is much lower than single faults.  In practice, in a facility such as 

nuclear power plants where safety is always placed at the top, multiple fault diagnosis 

plays a role as important as single fault diagnosis because the risk contribution due to 

multiple faults is much higher than single faults.  A good example that simultaneous 

faults may have significant consequence is the Three-Mile-Island accident.  One of the 

major reasons for multiple faults is a common cause failure.  

Multiple fault diagnostics is challenging because of the interacting nature of most 

faults (Dash and Venkatasubramanian, 2000).  In a complex process, the interaction of 

different faults through a closed control loop would make the fault symptoms more 

difficult to delineate.  System non-linearity makes it even harder to develop analytical 

methods to infer multiple faults simply based on the information contained in single 

faults.  

 
1.2.6 Complex systems  
 

When most FDI techniques are applied to a complex system such as a nuclear 

power plant, some serious difficulties may occur. These difficulties are: 

• Many input variables may be involved in a model such that its accuracy may 

deteriorate significantly. 

• Faults in many subsystems may have the same symptoms. 

• The system interaction or controller interaction among the subsystems may make the 

causal-effect relation very complicated. 
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1.3 Current Solution 
 
1.3.1 Hardware redundancy 
 

Serious consequences of a failure in an instrument system have resulted in great 

conservatism in the design of nuclear power plants.  Hardware redundancy is the 

traditional design scheme to achieve this conservatism.  When an instrument 

measurement is used for system control, a voting logic based on several redundant 

sensors is used to detect and isolate a faulty sensor.  More conservatism has been 

imposed upon the reactor protection systems.  The designed safety-critical control system 

must satisfy: 

• Adequate redundancy. 

• Adequate independence. 

• Physical isolation. 

Adequate redundancy means that multiple sensors or instrumentation channels 

should be used.  Adequate independence means the measurements should be performed 

based upon multiple different principles.  Physical isolation means that the sensors or 

instrumentation channels should be physically isolated.  The second and the third criteria 

aim at defending common cause and common mode failures.  

Hardware redundancy is the most effective way to detect and isolate an 

instrument fault.  However, it is too expensive to extend the philosophy to the whole 

plant including all the auxiliary systems of a nuclear plant.  

 
1.3.2 Reactor spectral analysis 
 

Reactor spectral analysis is a widely used signal processing technology to detect 

and isolate a fault at the component level. 

“Reactor spectral analysis is basically a statistical technique for extracting 

information on reactor system dynamics from the fluctuations of measured 

instrumentation signals during steady state operation.  The small fluctuations of 

measurable process signals are the results of stochastic effects inherent in physical 

process such as heat transfer, boiling, coolant flow turbulence, fission process, structural 
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vibrations and pressure oscillations.  Reactor noise analysis can monitor and assess the 

conditions of technological processes and the instrumentation in the nuclear reactor in a 

non-intrusive, passive way” (Glockler and Tublett, 1995).  

Some successful applications of reactor spectral analysis are summarized as 

follows: 

• Detection of abnormal operation of an instrument or an actuator. 

• On-line monitoring of slowly changing parameters such as fuel-to-coolant heat 

transfer coefficient, sensor degradation. 

• Monitoring reactor stability and stability margin. 

• Vibration analysis of reactor internals and components. 

• Sensor response monitoring and failure detection. 

Reactor spectral analysis is successful in detecting a sensor fault or an actuator 

fault at the component level.  Frequency spectrum analysis assumes that plant 

measurements have a standard frequency spectrum under normal operations and any 

deviation from the standard spectrum indicates an abnormal condition.  One drawback of 

reactor spectral analysis technique is the difficulty in its extension to the level of a system 

or a plant.  For example, if the steam generator water level control system is to be 

monitored, an individual signal-processing unit must be designed for each signal.  

Another drawback of reactor spectral analysis is that the signal characteristics and its 

dependence on operation conditions of the system must be known for the faults of 

concern. 

Modern FDI technique, with analytical redundancy being the representative, has a 

significant feature that the fault signature for a fault is not dependent on system operation 

states.  There would be long-term benefits to the operation of nuclear plants if modern 

FDI technologies can be combined with the traditional reactor spectral analysis. 

 

1.3.3 Analytical redundancy analysis 
 

Analytical redundancy analysis is the foundation of modern FDI.  It borrows the 

idea from hardware redundancy.  It takes advantage of the redundant information 
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inherent in a physical system.  First-principle or data-driven models of fault-free systems 

are built to relate different measurements.  These models can function as soft sensors 

providing an additional redundancy to the measurement systems if none of the model 

inputs is corrupted.  In general, if the relations are violated, a conclusion can be drawn 

that either the process or the measurements are not correct.  This information can be used 

as an indicator to fault detection.  The deviation pattern can further be analyzed for fault 

isolation. 

Analytical redundancy based FDI approaches have some incomparable 

advantages as compared with the traditional methods: 

• The fault signature is independent of fault magnitudes. 

• The fault signature is independent of the operation conditions when a fault occurs. 

Therefore, the fault signature collected once for a fault is sufficient to characterize 

the fault so that it can be isolated.  The application of FDI technology has been 

significantly speeded up since the analytical redundancy was introduced.  It is evident 

that FDI approaches dependent on large amounts of fault data to characterize a fault have 

little value in engineering application.  

However, as a principle, analytical redundancy does not give information about 

how to generate and analyze fault signatures for fault detection and isolation.  Depending 

on the form of system knowledge available and the technical specification of the 

designed FDI system, a variety of implementation strategies exist.  A detailed description 

of these approaches is given in Chapter 2.  In the thesis, the difficulties of utilizing the 

principle on FDI for nuclear power plants are addressed and engineering applicable 

implementation strategies are pursued.  

 

1.4 Technical Approach and Task Definition 
 

The FDI process aims at inferring the root causes from the symptoms observed in 

the measurements.  These symptoms are the basis for an operator to make fault diagnosis. 

The concept of an automatic FDI follows the same logic as a human being in making a 

decision  feature extraction, fault detection and fault isolation.  Feature extraction 
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compresses fault symptoms into a low dimensional space.  Fault detection detects any 

changes in the feature space. Fault isolation classifies the fault signatures into separate 

fault classes.  

Fault symptoms are observed in many measured variables.  They can be 

represented in three ways. The first one is the values of individual measurements.  They 

can be compared with certain set points dependent on operation conditions.  The second 

one is the change of measurements before and after a fault.  A third one, the most 

sophisticated one, is the residuals between measured values and the expected values 

based on some analytical models.  The analytical models can take advantage of the 

redundancy of measurements inherent in a process such as energy conservation, 

momentum conservation, mass conservation, etc.  These models can be considered as 

additional soft sensors available for checking consistency. In the thesis, the third 

representation is used. 

Analytical redundancy approach is used as the basis to develop FDI methods for 

nuclear power plants.  Plant models are built to characterize the relationship among plant 

variables.  Fault signatures are generated as deviations from the models.  Different 

modeling methods and different approaches to defining fault signatures have been studied 

for fault detection and fault isolation. 

A successful FDI system depends on accurate modeling.  Accurate modeling 

implies that the developed model is able to characterize a system with high accuracy. 

However, because a nuclear power plant is so complicated, the available first principle 

models are usually not accurate enough for FDI. For this reason, data driven modeling 

method needs to be used which is able to learn a model from data.  Many data driven 

modeling techniques have been developed such as time series models, Kalman filtering 

algorithms, Principal Component Analysis (PCA), Partial Least Squares (PLS) models, 

Group Method of Data Handling (GMDH) and Artificial Neural Network.  Different 

modeling methods have their own advantages and disadvantages.  In the thesis, PCA and 

ANFIS are utilized. 

Appropriate choice of model structure is essential to building data-driven models. 

For example, if many input variables are involved in a neural network model, it is very 
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difficult to train it. Moreover, more input variables need more measurements for training, 

which may cause a delay in fault detection.  In addition, the co-linearity contained in the 

inputs may result in model instability.  In the thesis, it is emphasized to take advantage of 

the available system knowledge so that the most parsimonious model structure can be 

obtained.  

Three different types of simultaneous faults exist (Lee, 1999).  Independent dual 

faults result in symptoms on different variables.  The effects of either fault will be 

different on different variables.  For masked dual faults, the fault symptoms of one of the 

dual faults are a subset of the symptoms of another fault.  For dependent dual faults, one 

of the dual faults competes with the other.  The resulting symptom is unpredictable 

depending on which fault dominates the process.  In this case, neither of the dual faults 

can explain all the symptoms because of mutual amplification and diminution.  

The challenge to multiple fault diagnosis is to appropriately select fault signatures 

in order to avoid fault masking.  For a dual fault whose fault symptom masks one of its 

elemental faults, the only possibility that they can be distinguished is to derive some new 

fault signatures to avoid the fault masking.  Otherwise, the dual fault cannot be isolated 

from its element faults. 

Figure 1.2 shows the overall technical approach taken in this thesis.  Data driven 

modeling such as ANFIS and PCA is used to obtain system models. The system 

knowledge is used to define model structures.  The plant measurements are used to 

parameterize the models.  The process of fault diagnosis involves residual generation and 

residual analysis.  The physical residual is defined as the difference between the 

measured values and their true values.  Based on the available physical models, the 

physical residuals can be approximated as the difference between the measured values 

and the predicted values.  A significant residual can be used to detect a fault.  Three 

methods are used for residual analysis.  If the possible faults and their associated fault 

signatures are known, residual direction and residual structure can be defined to 

characterize a fault for fault isolation.  In the more general case when possible faults are 

not known and their associated fault signatures are not available, cause graph approach 

based on the cause effect analysis on the residuals can be used for fault isolation. 
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Figure 1.2.  Schematic diagram of the overall technical approach. 
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To accomplish the objectives of the thesis based on the technical approach 

discussed above, the following tasks, demonstrating the independent work performed for 

the thesis research are completed: 

• Review modern FDI techniques for process monitoring. 

• Study data driven modeling for a linear static system using PCA. 

• Study data driven modeling for a nonlinear dynamic system using ANFIS. 

• Analyze the fault responses of sensor and actuator faults for PWR steam generator 

system. 

• Implement PCA based FDI to detect and isolate the faults for PWR SG system. 

• Implement structured residual design approach for PWR SG system using ANFIS 

models. 

• Develop data driven model causal graph approach to fault detection and isolation for 

nuclear power plants and apply it to PWR SG system. 

• Design a user interface to demonstrate the efficiency of the designed FDI system.  

 
1.5 Contributions of the Thesis 
 

The contributions of the thesis are as follows: 

 

a) A detailed review of the modern approaches to fault detection and isolation. 
 

Qualitative model based approaches such as Sign Directed Graph (SDG) and 

bond graph approach, and quantitative model based approaches such as parity space 

approach, state space approach, parameter estimation approach, and pattern recognition 

approach are reviewed.  Some comparison study is then performed.  

 

b) Implementation of PCA based FDI algorithm.  
 

A statistical inference method such as PCA algorithm is implemented for fault 

detection and isolation.  This approach is shown to have inherent connection with parity 

space approach.  The linear relationship among measured variables implying analytical 

redundancy can be consistently represented by the eigenvectors corresponding to the 
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trivial components. Any deviation in either model space or residual space indicates a 

fault.  The fault direction jointly defined both in the model space and in the residual space 

provides better fault isolability.  When applied to nuclear plant steam generator system, it 

is able to detect and isolate the selected thirteen single and dual faults. 

 

c) Implementation of ANFIS based FDI algorithm. 
 

Given that the possible faults are known for the plant based on engineering 

judgment, a set of ANFIS models can be built to characterize the nonlinear relationship 

among plant measurements.  Through appropriate choice of model structures, structured 

residuals can be achieved for fault isolation.  When applied to nuclear plant steam 

generator system, it is able to detect and isolate the selected thirteen single and dual 

faults. 

 

d) Development of data driven model causal graph based FDI algorithms 
 

Data driven model causal graph is proposed as a generic approach to fault 

diagnosis for nuclear power plants.  This approach is able to combine the reasoning 

capability of qualitative model based method and the strength in fault resolution of 

quantitative model based method.  The causal graph consists of individual nodes 

representing plant variables connected with quantitative models.  To facilitate on-line 

implementation, ANFIS is used as an adaptive modeling tool.  Fault detection is fulfilled 

by monitoring the residual of each model. Fault isolation is achieved by cause effect 

analysis on the residuals.  The developed approach is demonstrated using data obtained 

from a simulation code for a Pressurized Water Reactor (PWR) (Doster, 2000).  The 

developed approach is able to detect and isolate single faults and dual faults with fault 

propagation regardless of fault magnitudes and initial power level during early fault 

transient. 
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e) Development of a real time demonstration system for FDI 
 

In order to show the effectiveness of the developed FDI methods for nuclear 

power plants, a graphic user interface is developed under the environment of Picasso-3, a 

user interface management system.  The software is able to (1) create a fault by changing 

the fault characteristic parameters; (2) display key parameters on the schematic of a 

reactor system; (3) exhibit residual patterns specific to a fault; (4) trend process variables 

relevant to a fault; and (5) echo FDI results.  The software has integrated SimPWR, a 

reactor system analysis code in FORTRAN, and the FDI code in Matlab, and the C++ 

code to control the GUI.  

 
1.6 Organization of the Thesis 
 

The overall objective of the research is to develop an approach to automated FDI 

for nuclear power plant systems.  

In Chapter 2, major modern FDI techniques under the principle of analytical 

redundancy are described.  Qualitative model based approaches such as SDG and bond 

graph, and quantitative model based approaches such as parity space approach, state 

space approach, parameter estimation approach, and pattern recognition approach are 

reviewed.  Some comparison studies in their applications are also made.  

In Chapter 3, the nuclear steam generator system and the available measurements 

are described for a PWR reactor.  Some discussions about how to enumerate faults are 

also made. Some considerations on preparing data for building models are then described. 

Finally, the system responses to these faults are analyzed.  

In Chapter 4, linear PCA algorithms and the relationships between PCA and 

parity space approach for FDI are described.  The PCA algorithm is then implemented to 

detect and isolate the faults for a PWR nuclear steam generator system.  The 2T statistics 

and Q statistics are used for fault detection.  Fault direction is used as fault signatures for 

fault isolation. 
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In Chapter 5, ANFIS is introduced as an advanced tool for modeling nonlinear 

systems. Its structure and learning algorithm are discussed.  ANFIS model based FDI is 

implemented to isolate the selected faults for the steam generator water level system. 

Structured residual design approach proves to be an efficient method for fault isolation. 

The approaches to structured residuals are studied.  

In Chapter 6, data driven model causal graph is developed as a generic approach 

to fault detection and isolation for nuclear power plants.  The structure of a model causal 

graph is described.  The reasoning algorithms are then described in order to achieve fault 

isolation.  It has also been shown that the causal graph is in full agreement with efficient 

data driven modeling.  The developed approach is successful when applied to nuclear 

steam generator system. 

Chapter 7 describes a graphical user interface and its design to demonstrate the 

efficiency of the designed FDI system. 

Concluding remarks and recommendations for future work are presented in 

Chapter 8. 
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Chapter 2  
 

Literature Review 
 
 

This chapter describes the principles of fault detection and isolation through a 

systematic literature review.  

The FDI approaches differ in what kind of knowledge is used and how the 

knowledge is used.  In broad sense, FDI approaches can be quantitative knowledge based 

or qualitative knowledge based.  Depending on how to develop models, FDI approaches 

can be first-principle model based or historical data driven model based.  In terms of how 

to use the knowledge, many FDI approaches exist.  The major approaches are reviewed in 

this chapter.  

 

2.1 Data Reconciliation  
 

Data reconciliation is a technique used for detecting and isolating a measurement 

error or a process fault that results in measurements inconsistent with energy balance 

equations, mass balance equations, and other balance equations.  Its goal is to reconstruct 

the measurements so that the balance equations are not violated.  This approach provides 

an efficient way to handle a large system (Albuquerque and Biegler, 1996). 

For a given system under fault conditions, the measurement vector y can be 

represented as a function of the actual values of some system variables denoted by the 

vector z , which is given by: 

 yzfy ∆+= )(  
where   

y∆ = measurement error and fault error. 

 The actual values of the system variables satisfy certain constraint relationship, 

which is given by: 

 0),( =zcg  
where 
c  = some other system variables. 
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Data reconciliation aims at determining a vector *z  such that 

 *)((*))((*)( 1 zfyRzfyzJ −−= −   
is minimized on condition that 

 0*),( =zcg   
where  

R = a weighting matrix reflecting the accuracy of different measurements. 

The reconstructed measurements can then be obtained by: 

 *)(* zfy =  
Therefore, *yy −  can be used as fault signatures for fault detection and isolation. 

Data reconciliation approach is powerful in solving a large system with co-

linearity.  However, it is only applicable for steady state conditions since the involved 

optimization may become unmanageable during transient process.  Therefore, there might 

be some undesirable time lag for fault detection and isolation.  In addition, for nuclear 

power plants where many controllers are involved, the steady state information may not 

be enough to isolate some faults.  

 

2.2 Model Based Approach 
 

The foundation of model-based approach is analytical redundancy.  It assumes 

that first principle or data-driven models can be used to represent the relationships among 

plant variables during fault free conditions.  These models provide the same function as 

some redundant soft sensors.  The physical residuals can then be approximated as the 

difference between the measured values and the model prediction.  A significant residual 

can be used to detect a fault and the residuals can be analyzed for fault isolation. Model 

based approaches differ in how to generate and analyze residuals.  

 

2.2.1 Parity space approach 
 

For a given system, the relationship between the measurement vector y and the 

state vector x is given by: 

   yCxy ∆+=        

where 
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y∆ = measurement error. 

C = system matrix. 

xxx ∆+= *  

x∆ = disturbance of state variables. 

Parity space approach (Chow and Willsky 1984, and Frank, 1990) aims at 

generating a residual vector that is influenced only by measurement error.  The physical 

residual o(t) of the system has this property, which is given by: 
*o(t) Cxy −=  

This physical residual is not directly available.  Therefore, a parity vector must be 

introduced. The parity vector p(t) is obtained through a linear transformation TV of the 

physical residuals given by: 

 )()( xCyVtoVp TT ∆+∆==   (2.1) 
The parity vector will not depend on the disturbance of the state variables if the 

following constraint is imposed: 

 0=CxV T  
Consequently, 

 0=∆xCV T  
Therefore, 

 yVp T ∆=  
Hence, the parity vector p is influenced only by the measurement error.  It is 

defined in the parity space that is usually smaller than the original measurement space.  A 

nonzero component of the parity vector indicates a faulty measurement. 

For example, a system has five measurements and three state variables.  The 

dimension of the measurement vector y is 5 by 1, the dimension of the measurement 

matrix C is 5 by 3, and the dimension of the parity vector will be 2 by 1 since the system 

has two linear dependent relationships among the measurements if the rank of the matrix 

is three.  Therefore, two of the five measurements can be derived from the other 

measurements.  Correspondingly, the dimension of the matrix V is 5 by 2. 

Such a FDI approach has a great advantage in its robustness to disturbances. 

However, the linear transformation approach is not applicable for a non-linear system.  
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2.2.2  State estimation approach 
 

State estimation approach is considered as a more general approach than parity 

space approach.  When the residuals are generated for fault detection and isolation, the 

simplest model to estimate a measured signal is identical to the plant model functioning 

as a simulator in parallel without using the information of the system outputs.  However, 

because the simulator type of model is an open loop system, the solution may not be 

stable or convergent if the plant operates beyond its designed region. 

In order to overcome the problem, the state space model is introduced in the FDI. 

The linear state space model of a system is defined as follows: 

 
Cx(t)y(t)

Bu(t)Ax(t)1)x(t
=

+=+
 (2.2) 

 
For fault free condition, a state observer with feedback matrix H can be designed 

as follows (Simani, 2000): 

 
(t)x̂C-y(t)e(t)

He(t)Bu(t)(t)x̂A1)(tx̂
=

++=+
 (2.3) 

such that: 

           (t)x̂-x(t)(t) =ε  approaches zero asymptotically. 

  (t)HC)-(A1)(t εε =+  approaches zero asymptotically. 

where  

)(te = output estimation error. 

)(tε = state estimation error. 

If an additive fault )(tf  occurs in the system, the dynamic behavior of the system 

can be characterized by: 

 
)(D(t)x̂Cy(t)

f(t)DBu(t)(t)x̂A1)(tx̂

2

1

tf+=
++=+

 (2.4) 

Then the output error is given by: 

)()()( 2 tfDtCte += ε  

Both state estimation error and the output error are not zero and show dynamic 

behavior after a fault occurs.  Both can be used for fault detection.  To generate stable 
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and sensitive residuals, the feedback matrix H must be carefully designed.  State 

estimation error vectors can also be designed with directional characteristics for fault 

isolation (Jones, 1973).  

Because the dynamic behavior of state estimation error and the output error are 

different from )(1 tfD  and )(2 tfD  if the signals are affected by additional noise, it is a 

challenging task to design the feedback matrix such that the estimation error is sensitive 

to a fault and insensitive to noise. 

 

2.2.3 Parameter estimation approach 
 

Some process parameters can be estimated using some input variables and/or 

some output variables.  The difference between the normal process parameters and the 

estimated parameters can then be used for fault detection and diagnosis (Chen and Patton, 

1993). 

Given a single input single output (SISO) system of order n defined in the matrix 

form as follows: 

 θ')( xty =  (2.5) 
where 

θ  = parameters related to the linear model. 

)](),...1(),(),...1([' ntutuntytyx −−−−=  

The least square estimate of θ  can be computed as: 

 yxx 1)'( −=θ  (2.6) 
If the knowledge is known about what is the mapping between a fault and the 

parameter θ , the values found from the measurements through system identification can 

then be used for fault isolation. 

Parameter estimation is a powerful approach to detecting and isolating a process 

fault for a linear system.  However, for a nonlinear system, it may be very difficult to 

estimate the parameters with enough accuracy and define a one-to-one relationship 

between a parameter change and a fault in the physical process. 
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2.3 Pattern Recognition 
 

Statistical inference and neural network are two major applications of pattern 

recognition techniques in fault detection and isolation.  The task of pattern recognition is 

to extract some features and set up a mapping between a class of objects and their 

features.  This is in conformance with the task of fault diagnosis. If appropriate fault 

signatures can be obtained to characterize fault symptoms, they can then be used as 

features to infer the fault. 

Mathematically, the principle of fault detection and isolation based on pattern 

recognition can be described by Bayes's rule: 

 
∑

=
)()(
)|()()|(

i

ii
i FPSP

FSPFPSFP  (2.7) 

where 

)|( SFP i  = the probability that a fault with symptoms S is Fi. 

)( iFP = the prior probability of Fi. 

)|( iFSP = the conditional probability of  symptom S given fault Fi. 

Each fault defines a specific region in the feature space.  For a given observation, 

the likelihood of the observation falling into each region corresponding to all the possible 

faults in the feature space can be computed.  The observation is assigned to the fault class 

that gives the largest likelihood. 

Quite a few statistical methods such as PCA, PLS, multivariate auto-regression 

modeling can be used to capture the features.  The critical point to feature extraction is to 

compress the information describing the relationship among variables in a reduced 

dimensional space without significant loss of information.  

Artificial neural network is another powerful technique to perform pattern 

recognition. It is trained such that all the fault patterns are memorized.  When a new fault 

comes, the network is then able to classify its pattern into correct fault class. 

Pattern recognition based FDI has the advantage in its possibility of on-line 

implementation.  However, a large amount of training data is needed in order to 

characterize the features of the possible faults.  For nuclear power plants where many 
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components are involved, it is unrealistic to collect such data and define fault 

characteristics for the possible faults of interest.  

 

2.4 Sign Directed Graph 
 

A signed directed graph (SDG) is a graphic representation of the causal 

relationship among plant variables.  In a SDG, these variables are individual nodes and 

some directed arcs are used to represent the causal relations between the nodes.  A node 

can take qualitative values, denoted as 0, +, and –, which correspond to nominal, high and 

low, respectively.  The directed arc signs may take + or – depending on whether the 

causal relation is in the same direction or in the opposite direction.  A root node is linked 

with at least one effect node but is not connected to any causal node.  The process of fault 

diagnosis using SDG is to find a single path from a root node to all the abnormal 

measurement nodes, which satisfies the qualitative constraints defined by the signed 

directed arcs for the system (Lee, 1999). 

The process of single fault diagnosis using the SDG method can be summarized 

as the following steps (Vedam and Venkatasubramanian, 1995): 

• Identify all the fault candidates by tracking consistent arcs from the effect nodes to 

the causal nodes starting from all the abnormal measurement nodes. 

• For each of the fault candidates, check if an effective causal path exists to explain the 

observed abnormal measurements. 

• A fault candidate is confirmed to be the fault origin if reasonable causal paths can be 

defined to interpret all the abnormal measurements. 

The SDG method has a distinct feature in fault diagnosis in finding out all the 

possible root causes capable of explaining all the abnormal measurements.  

In order to represent explicitly the knowledge of the system behavior contained in 

SDG, a rule based SDG approach to FDI has been developed (Kramer and Palowitch, 

1987).  The rule base variation is more concise and can be easily incorporated into an 

expert diagnostic system. 

Recently fuzzy-SDG has been developed (Zakarian and Kusiak, 2000).  A node of 

fuzzy-SDG is a variable that may take several fuzzy values such as low, medium low, 
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normal, medium high and high.  A branch represents the causal-effect direction and 

strength.  The connection strength )( 1 jj xxe →+  from 1+jx  to jx is determined by: 

 
j

j
jjj Rx

Rx
Sx 1

1,1j )e(x +
++ =→  (2.8) 

where 

1+jRx  , jRx = the value range of node 1+jx  and jx . 

1, +jjS  = the sensitivity coefficient. 

1
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+ ∂

∂
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The architecture of fuzzy-SDG not only has the good features of traditional SDG 

methods but also has the learning capability from data.  

 

2.5 Bond Graph  
 

When a fault happens, the system may involve some dynamic behavior because of 

external disturbances and control changes.  In most cases, a model developed under fault 

free conditions may not be able to track the model changes caused by faults.  However, 

the transient behavior caused by faults contains rich information for fault isolation. In 

order to make most use of this information, a diagnosis inference method, bond graph 

approach has been proposed to model the dynamic behavior, reason about the temporal 

attributes of system parameters and relate behavior changes to component parameters 

(Mosterman and Biswas, 1997): 

Bond graph is a causal behavior graph developed for qualitative modeling 

(Amsterdam, 1992).  In a bond graph, the individual nodes represent effort variables in 

the system.  The directed arcs represent the relations between flow and effort variables. 

The characterization of the relationship is achieved in analogy to some electrical element. 

For a resistance element, the relationship is characterized with the inverse of its electric 

resistance. For a capacity element, the relationship is characterized with the inverse of the 

time integral of its capacity.  Because a bond graph model makes it possible to keep track 

of the magnitude change and change rates of all the measured variables, the temporal 
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response of a fault manifested in measurements can then be used as fault signatures for 

fault isolation during transients.  

The diagnostic procedure using bond graph is summarized as follows (Mosterman 

and Biswas, 1997): 

• Generate fault candidates by propagating the observed values backward to some root 

node.  

• Predict the fault behavior for each fault candidate and make a comparison between 

the predicted values and measured values. 

• If all the measurements are consistent with the predicted values, the candidate fault is 

chosen as the true fault. Otherwise, the candidate fault is rejected. 

This chapter has reviewed the major modern approaches to fault detection and 

isolation developed in other industries.  Analytical redundancy has been recognized as 

the foundation of modern FDI approaches.  Under this principle, qualitative model and 

quantitative model based approaches can be derived.  Data reconciliation approach, 

model based approach and pattern recognition approach are quantitative model based 

approaches.  Sign directed graph approach and bond graph approach are qualitative 

model based approach.  The former approach has better resolution in fault isolation and 

the latter has better reasoning capability.  In the thesis, accurate models required by 

quantitative model based approach will be achieved by data driven modeling such as 

PCA and ANFIS.  Furthermore, in order to organically combine the reasoning capability 

of qualitative model based approaches and the good resolution of quantitative model 

based approaches, data driven model causal graph will be developed as a generic 

approach to fault diagnosis for nuclear power plants.  
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Chapter 3  

 
General FDI Design for Nuclear SG System 

 
 
 

The U-tube steam generator (UTSG) water level control system of a typical four 

loop PWR is selected to study the FDI methods. 

 

3.1 Description of nuclear SG system 
 

The SG water level control system in PWR has a three-element controller to 

control the water level in the steam generator as is shown in Figure 3.1.  The three 

elements are steam flow, feed water flow, and steam generator water level.  The reference 

water level is a function of the turbine load and the steam dump rate through steam dump 

valves.  The SG level error signal is the measured level minus the reference level.  The 

flow mismatch error is the fractional steam flow rate minus the fractional feed water flow 

rate.  The combination of the SG level error and the flow mismatch error is used as the 

input to the controller.  The controller output is used to manipulate the feed water control 

valve position.  Because the main control purpose of the SG level control system is to 

control the water level, the level error has been multiplied by a gain in order to dominate 

the flow mismatch error signal.  In addition, feed water temperature is used to take into 

account its effect on SG level. 

Another control system involved in the nuclear SG system is the control over the 

speed of the main feed water pump.  The objective of this control system is to maintain 

the feed water control valve position approximately at its midpoint so that the best control 

performance can be achieved.  The system obtains the collected steam flow rate from all 

the steam generators and generates a reference pressure difference.  The error signal is 

generated from the difference between the reference pressure difference and the actual 

pressure difference between the collected steam line and the collected feed water line. 

The error signal is used to control the pump speed.  The pressure on the feed water line is 
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Figure 3.1.  SG water level control system.  
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measured at the upstream of feed water control valve.  The pressure on the steam line is 

measured at the downstream of the main steam isolation valve.  

 

3.2 Available Measurements 
 

Table 3.1 shows the major available measurements relevant to the FDI task for the 

steam generator system of a nuclear power plant. 

 

3.3 Enumeration of Single Faults 
 

For a large system where thousands of components may be involved, it is usually 

difficult to know all the possible faults and incorporate them into a fault dictionary. 

However, in nuclear power plants, the sophisticated reliability analysis can provide rich 

information about the possible faults from engineering point view at a specified operation 

lifetime.  In addition, probabilistic risk assessment can provide detailed information about 

the faults of safety concern under different operation conditions.  Therefore, it is still of 

great value to develop FDI methods with the assumption that the faults can be 

enumerable.  In the thesis, the approaches described in Chapter 4 and Chapter 5 deal with 

the situation where the possible faults are known.  Data-driven model causal graph 

approach developed in Chapter 6 deals with the situation where the possible faults are 

unknown. 

 

3.4 Enumeration of Simultaneous Faults 
 

 Even when the possible single faults are known, their combination will generate 

many possible simultaneous faults.  To keep the number of possible simultaneous faults 

manageable, a common approach is to ignore those simultaneous faults with very low 

probability based on engineering experiences.  However, these engineering practices are 

usually very subjective and even so there still might remain a very large number of 

possible simultaneous faults.  
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Table 3.1.  Available measured variables for the FDI of nuclear SG system 

1 Thermal power 23 FCV1 position 
2 Reference temperature 24 FCV1 controller output  
3 Programmed reference 

temperature 
25 SG1 WR indicator 

4 Primary pressure 26 SG 1 NR indicator 
4 Cold leg 1 temperature 27 FCV2 position 
5 Cold leg 2 temperature 28 FCV2 controller output  

6 Hot leg 1 temperature 29 SG NR reference 
7 Hot leg 2 temperature 30 SG2 WR indicator 
8 Pressurizer pressure 31 SG2 NR indicator 
9 Pressurizer heater output 32 SG1 temperature 
10 Pressurizer level 33 SG2 temperature 
11 Pressurizer reference level 34 TCV1 position 
12 Pressurizer spray flow rate 35 TCV1 flow rate 
13 Charging flow are 36 TCV2 position 
14 Letdown flow rate 37 TCV2 flow rate 
15 Surging flow rate 38 TCV3 position 
16 SG1 pressure 39 TCV3 flow rate 
17 SG2 pressure 40 TCV4 position 
18 Feed water temperature 41 TCV4 flow rate 
19 SG1 steam flow rate 42 Turbine header pressure 
20 SG2 steam flow rate 43 Turbine output 
21 Feed water flow rate to SG1 44 Turbine load 
22 Feed water flow rate to SG2 45 Turbine RPM 
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In the thesis, qualitative knowledge based FDI is proposed to limit the number of 

possible simultaneous faults.  For an online FDI system, the qualitative knowledge based 

FDI module is used to generate only a few fault candidates and their reference fault 

signatures are generated on-line using a simulator in parallel with the plants.  In fact, only 

one simulation is required to generate data so as to characterize a fault if analytical 

redundancy based FDI approach instead of pattern recognition method is used. 

Qualitative knowledge based FDI needs to have certain system knowledge in 

order to obtain system causal graph.  However, this is not a major problem for nuclear 

power plants, where the system responses to significant faults can be available from a 

variety of sources such as system design manual, system operation manual or standard 

safety analysis report.   

The following section shows an example on how to use sign directed graph, a 

typical qualitative knowledge based approach to generate the reasonable combination of 

simultaneous faults for the steam generator system.  

Figure 3.2 shows the sign directed graph for the steam generator system in which 

three single faults, feed water flow meter offset fault, SG level sensor offset fault, and 

steam flow meter offset fault, are considered.  Correspondingly, only three root nodes 

(node 1, node 8 and node 11) and the other eight process nodes are involved.  In the 

graph, the cause effect relationships between variables are represented by the positive and 

the negative directional connections.  Because a feedback control loop is involved, the 

directional variation of the effect variable during the transients induced by a disturbance 

on the causal variable is used to represent the cause effect relationship. 

The fault candidates can be identified simply by tracking consistent arcs from the 

effect nodes to the causal nodes starting from all the abnormal measurement nodes.  As 

an example, if the observed symptom is that the feed water flow indicator is low and the 

SG narrow range level indicator is high, node 2 takes a negative value and node 7 takes a 

positive value.  If the negative value of node 2 is back propagated immediately to node 1, 

a negative feed water flow meter offset fault can be identified as a possible root cause.  
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• Node 1: Feed water flow meter offset
• Node 2: Feed water flow indicator
• Node 3: FCV position
• Node 4: Feed water flow rate
• Node 5: SG mass
• Node 6: SG level
• Node 7: SG level indicator
• Node 8: SG level sensor offset
• Node 9: SG steam flow
• Node 10: SG steam flow indicator
• Node 11: SG steam flow meter offset
• Positive connection: in red arrows
• Negative connection: in blue arrows
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Figure 3.2.  SDG graph of nuclear SG system. 
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If the negative value of node 2 is back propagated to the root node 11 along node 

4, node 3, the node 10, a negative steam flow meter offset can be identified as a possible 

root cause.  If the negative value of node 2 is back propagated to node 8 along the node 4, 

the node 3, the node 7, a positive steam generator level sensor offset fault can be 

identified as a possible root cause.  

If the positive value of node 7 is back propagated immediately to the root node 8, 

a positive steam generator level sensor offset fault can be identified as a possible root 

cause.  If it is back propagated to the root node 11 along node 6, node 5, node 4, node 3, 

and node 10, a positive steam flow meter offset fault can be identified as a possible root 

cause. 

In the sign directed graph method, fault localization is a process of determining 

one or several root nodes whose predicted fault symptoms are in agreement with the 

measured fault symptoms.  In the example, after the possible fault candidates have been 

identified, the fault symptoms can then be predicted by propagating forward from the root 

nodes to the measured or the unmeasured nodes.  If there is only single fault in the 

system, a positive SG level offset fault will be isolated as the fault origin since it is able 

to fully explain the observed fault symptoms. However, if dual faults are considered, the 

possibility of a negative feed water flow meter offset fault cannot be excluded since its 

combination with a positive steam generator level sensor offset may also cause the same 

symptoms.  

From this example, it can be seen that the number of possible simultaneous faults 

can be significantly reduced based on a preliminary SDG analysis. In fact, three single 

faults and three simultaneous faults need to be considered without SDG analysis. 

 

3.5 Scope of the Studied Faults 
 

Although SDG can be introduced to generate fault candidates for both single and 

dual faults, the focus of the thesis is on how to detect and isolate these single faults and 

dual faults. 

To design a FDI algorithm that is able to deal with simultaneous faults, the 

number of the faults has to be manageable from research point of view.  Only those 
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simultaneous faults with meaningful probability in engineering sense have been taken 

into account.  For instance, triple faults occur with much lower probability than dual 

faults.  It is usually enough to incorporate only dual faults. Moreover, inappropriate 

inclusion of simultaneous faults may degrade the performance of a designed FDI system 

since not all the possible simultaneous faults can be isolated.  Raich and Cinar, 1996 

reported that a random variation fault is highly likely to mask with another random fault 

or another step fault or a ramp fault.  Therefore, random variation fault is not taken into 

account in order to avoid fault masking due to inadequate information.   

The following single faults and dual faults are defined in the FDI design for the 

steam generator system: 

• Feed water flow meter offset fault. 

• Steam flow meter offset fault. 

• Feed water flow meter offset fault and steam flow meter offset fault. 

• Feed water flow meter offset fault and SG level sensor offset fault. 

• Steam flow meter offset fault and SG level sensor offset fault. 

• SG pressure sensor offset fault. 

• Feed water flow meter offset fault and SG pressure sensor offset fault. 

• Feed water flow meter offset fault and FCV offset fault. 

• Steam flow meter offset fault and FCV position offset fault. 

• Feed water control valve position offset fault. 

• SG pressure sensor offset fault and SG level sensor offset fault. 

• SG level sensor offset fault. 

• Steam flow meter offset fault and SG pressure sensor offset fault. 

 

3.6 Data Preparation for Modeling 
 

In order to develop appropriate data driven models with enough accuracy for fault 

detection and isolation, the quality of data preparation is very important.  The collected 

data must cover the entire normal operation range and the entire faulty operation range. 
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Otherwise, the data driven models will perform extrapolation and the prediction will be 

unreliable. 

The following operation conditions are considered in order to prepare the data for 

SG modeling: 

• Slow power transients at forty power levels beginning from 20% to 100% at an 

interval of 2% power increase. 

• Large power transients from 20% to 100% power level. 

• Large power transients from 100% to 20% power level. 

The data are collected during slow transient conditions because such data are 

appropriate to build dynamic models. For a system with feed back control loop, the static 

information may not enough to detect some faults within the control loop.  In addition, it 

is difficult to generate sufficient amount of data to build data driven models if only steady 

state data are used.  The data collected during large power transients are used to build 

data driven models to predict the controller output and the control valve position. 

When a FDI system is developed for a real application, more process conditions 

need to be covered.  Some of the conditions may be different stages of the reactor life 

cycle, different ranges of heat transfer rate from the primary side to the secondary side, 

etc. 

A short sampling interval makes it possible to detect a fault faster, but it may 

bring some high frequency noises into the data and result in time dependence between 

adjacent observations.  This dependence may result in a more complex model to 

characterize the system behavior. The sampling time is chosen to be 1 second. 

The fault data are generated for all the considered faults at 100% power level 

under the following conditions: 

• Drift faults with drift rate at 1%/hr, 2%/hr, 3%/hr, -1%/hr, -2%/hr, -3%/hr. 

• Bias faults with offset at 1%, 2%, 3%, -1%, -2%, -3%. 

For both the drift faults and the bias fault, the data set for only one fault 

magnitude is used to provide reference fault signatures and all the other data sets are used 

to test the reliability of the developed FDI approaches.  Although most of the test cases 
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are based on 100% full power, one special test case is designed to show the performance 

of the developed FDI algorithm in dealing with a fault at another power level 80%. 

 

3.7 Fault Response Analysis 
 

Before a FDI system is designed, it is necessary to have some qualitative fault 

response analysis.  This analysis facilitates to determine the structure of the models to be 

developed.  The value range of the affected variables can also be examined after the 

faults of interest occur so that the developed data driven models have reliable 

generalization capability.  In addition, the analysis can help to examine the effects of 

controller feedback.  

 
3.7.1 Feed water flow meter positive offset fault 
 

When the feed water flow meter has a positive offset fault, the initial responses 

are as follows: 

• The indicated feed water flow meter increases. 

• The FCV valve position decreases. 

• The SG water level decreases. 

• The SG pressure does not change. 

• The steam flow rate has a very slight increase.   

The reason why steam flow rate does not change significantly is that the steam 

flow rate is mainly determined by the power demand. 

When a new steady state is reached, the system responses are as follows: 

• The indicated feed water flow rate increases. 

• The FCV position returns to its initial level. 

• The SG water level decreases. 

• The SG pressure does not change. 

• The steam flow rate returns to its initial value.   

 After the new steady state, the steam flow rate is equal to the actual feed water 

flow rate instead of the measured feed water flow rate.  The error signal to the controller 
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becomes zero.  This is achieved by the fact that the SG water level has decreased 

although the indicated feed water flow rate has increased.  To maintain the constant 

reactor power output during the fault, the steam flow does not change. 

 In the process, the indicated feed water flow rate will be consistently higher than 

the true value.  A model capable of calculating the true value of feed water flow rate can 

be used to isolate the feed water flow meter fault.  

 

3.7.2 Steam water flow meter positive offset fault 
 

When the steam flow meter has a positive offset fault, the initial responses are as 

follows: 

• The feed water flow meter increases. 

• The FCV valve position increases. 

• The SG water level increases. 

• The SG pressure does not change. 

• The indicated steam flow rate increases.   

When a new steady state is reached, the system responses are as follows: 

• The feed water flow rate returns to its initial level. 

• The FCV valve position returns to its initial level. 

• The SG water level increases. 

• The SG pressure does not change. 

• The indicated steam flow rate increases.   

 After the new steady state, the actual steam flow rate instead of the indicated 

steam flow rate is equal to the feed water flow rate.  The error signal to the controller 

becomes zero.  This is achieved by the fact that the SG water level increases although the 

indicated steam water flow rate has increased.  

 In the process, the indicated steam flow rate will be consistently higher than the 

actual value.  A model capable of calculating the actual value of the steam flow rate can 

be used to isolate the steam flow meter fault.  
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3.7.3 Steam generator pressure sensor offset fault 
 

When the steam generator pressure sensor has a positive offset fault, the speed of 

the main feed water pump will change.  The proportional integral controller of main feed 

water pump uses the pressure difference between the steam line and the feed water line as 

input to control the valve position of feed water control valve approximately at its 

midpoint.  The initial response to SG pressure sensor positive offset fault is that the feed 

water flow rate will increase due to the increase in the feed water pump speed. To be 

followed is that the SG water level will increase.  After a new steady state is reached, the 

feed water flow rate will go back to its initial level.  The steam flow rate does not have 

significant changes.  The SG level will go back to its initial level after the new steady 

state is reached. 

 

3.7.4 Feed water control valve position fault 
 

When the feed water control valve has a positive offset fault during its actuation 

when a command is received from the controller output, the initial responses are as 

follows: 

• The feed water flow meter increases. 

• The FCV valve position increases. 

• The SG water level increases. 

• The SG pressure decreases. 

• The steam flow rate doe not change.   

When a new steady state is reached, the system responses are as follows: 

• The feed water flow rate does not change. 

• The actual FCV valve position returns to its initial value. 

• The SG water level increases. 

• The SG pressure does not change. 

• The steam flow rate does not change.   

 



 39

When the feed water control valve has a positive offset fault, the initial response 

is that the feed water flow rate increases.  The controller will then reduce the open-width 

of the feed water control valve using the mismatch signal between the FCV flow rate and 

the SG steam flow rate.  To be followed is that the SG water level increases and the FCV 

controller will reduce the open-width of FCV valve position again.  In the end, the FCV 

flow rate and the FCV valve position return to their initial levels.  

The SG level changes as the integral effect of the change of the FCV flow rate 

during the fault progression.  The SG final level is greater than the initial level. 

Because the command has a positive bias, the controller output will be negative so 

that the actual actuation of the feed water control valve is zero because the SG water level 

has increased when a new steady state is reached. 

 

3.7.5 SG narrow range level sensor fault 
 

When the SG narrow range level sensor has a positive offset fault, the initial 

responses are as follows: 

• The feed water flow meter decreases. 

• The FCV valve position decreases. 

• The indicated SG water level increases. 

• The SG pressure has a slight decrease since the actual water level decreases. 

• The steam flow rate has a very slight increase.   

When a new steady state is reached, the system responses are as follows: 

• The feed water flow rate returns approximately to its initial level. 

• The FCV valve position returns approximately to its initial level. 

• The indicated SG water level returns to its initial level. 

• The SG pressure has a slight decrease. 

• The steam flow rate returns approximately to its initial level.   

When the steam generator level sensor has a positive offset fault, the initial action 

of the controller is to reduce the open-width of the feed water control valve.  The feed 
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water flow rate decreases at the beginning and tends to go back to its initial level in the 

end.  

The steam generator indicated level would go back approximately to its initial 

level after steady state is reached.  However, the SG true level would be lower than its 

initial level with an offset equal to the magnitude of the sensor bias as is shown in Figure 

3.3.  In the fault process, the reactor power load does not change and nor does the SG 

narrow range reference level.  After the new steady state, the steam flow rate is equal to 

the feed water flow rate.  

Table 3.2 summarizes the fault responses to the five single faults.  Based on the 

table, if only steady state information is used, controller output signal must be used in 

order to detect FCV position fault. Process redundancy is not sufficient in order to detect 

SG narrow range level sensor fault.  Instead, measurement redundancy should be taken 

into account. 
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Figure 3.3.  SG Level measurement responding to SG NR level sensor fault. 
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Chapter 4  
 

Principal Component Analysis for Fault Diagnosis 
 
 
4.1 PCA Algorithms 
 

From the point of view of data, PCA is a dimensional reduction method.  The 

original data can be represented in a lower dimensional space without significant loss of 

the variability.  From the modeling point of view, PCA transforms correlated variables 

into uncorrelated ones and determines the linear combinations with large and low 

variability (Flury, 1988).  

Before the original data are transformed into a lower dimensional space, they are 

mean centered because only the variability of the data is of interest.  The data are 

standardized with unit variance so that equal weights are given to all the variables as far 

as their variability is concerned. 

For the original data matrix X associated with n observations and m measured 

variables, the first principal component is obtained by finding out a linear transformation 

column vector 1P  such that the scores 1t  of the original data along this component has 

maximized variance. In mathematical term, this is given by: 

 11 XPt =  
 1111111 ''')var()var( PPXPXPXPtE Σ====    is maximized. 
where 

SnXX )1(' −==Σ  

)'(
1

1 XX
n

S
−

=  

=S  sample covariance matrix. 

 An additional constraint on the transformation column vector is to normalize its 

length. 

 In order to maximize the variance of 1t with the above constraints, we can set the 

derivative of 1E to zero and include a Lagrange multiplier 1λ  to ensure the constraint is 

satisfied as well: 
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In the above derivation, we have used the formula for the derivative of a matrix with 
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The variance of the original data along the first principal component is then given by: 
 
 111111 ')var( λλ === PPtE  (4.2) 

Equation (4.1) and Equation (4.2) show that the transformation vector to obtain 

the first principal component is actually the eigenvector of XX ' corresponding to its 

maximum eigenvalue.  

In order to obtain the thj principal component, the following constraints must be 

satisfied (Jackson, 1991): 

kkkk PPtE Σ== ')var(  is maximized 
1' =kk PP  

kXP is orthogonal to jXP  for 1....2,1 −= kj  
 In order to maximize kE with the above constraints, we can set the derivative of 

kE to zero, include a Lagrange multiplier kλ  to ensure 1' =jk PP  and 1−j  Lagrange 

multipliers jφ  to ensure kXP is orthogonal to jXP  for 1....2,1 −= kj : 
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If we left-multiply Equation (4.3) by 'jP  for 1....2,1 −= kj  and notice the orthogonal 

property of jP , then we have: 

0=jφ  for 1,.......2,1 −= kj  

kkk PP λ=Σ  

kkE λ=  
If the score vectors are combined, then we have: 
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XPT =  
The matrix P is constructed by the columns of the eigenvectors of XX ' whose 

left-columns correspond to larger eigenvalues than the right columns.  The matrix P is 

called loading matrix in the sense that the original data can be loaded to a lower 

dimensional if its dimension is chosen to be fewer than the number of variables in the 

original data. 

The loading matrix can be used to reconstruct the original data without loss of 

much information given by:  

 'TPX =  (4.4) 
From the equation, it can be seen that all the information contained in the original 

data set has been compressed into the loading matrix. If the loading matrix is known, the 

original data can then be reconstructed. 

 

4.2 PCA for Fault Detection 
 

During normal operation, the sample covariance of the measured data is governed 

by the physics in the process.  Its structure will change if a fault occurs in the process.  If 

a PCA model is used to describe the covariance structure of the measured data for the 

fault free condition, a fault can be detected when the model cannot explain the new 

observed data.  Two cases may make the PCA model fail to explain the new data.  The 

first case is that the new observation deviates from the mean of the normal operation 

defined by the effective region of the PCA model in the score space.  The other case is 

that the residual of the model has changed significantly.  The model residual represents 

the noise and the redundant information of a system.  If a fault occurs, the characteristics 

of the noise and the redundancy are expected to change.  

 

4.2.1 2T  statistics 
 

If the score of a new observation is significantly outside the region defined by the 

scores of the fault free data, a fault may have occurred.  If the scores of the fault free data 

satisfy multivariate normal distribution, the decision ellipse can be given by: 

 22' αTTT <Σ−  (4.5) 
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where 

 
αα ,,

2 )1(
pnpF

pn
npT −−

−
=  (4.6) 

and 

p= number of  variables. 

n= number of observations. 

α = significance level. 

The disadvantage of T2 statistics is that it may be oversensitive to the small 

elements of aΣ and result in high false alarm rate. 

 

4.2.2 Q statistics 
 

Q statistics can be used to test whether the principal component model can still 

explain a new observation.  The random variable used for this testing is the sum squared 

error R of the original PCA model defined by the following equation: 

 rrR '=  (4.7) 
where  

 xPPIr )'( −=  
If the sum squared error measuring the total sum of the variation in the residual 

space exceeds the Q threshold, it indicates that the original PCA model cannot explain 

the new data.  The threshold of Q statistics αQ  is defined as follows (Jackson and 

Mudholkar, 1979) 

 dczbaQ )( +=α  (4.8) 
where 

z= the critical value for standard normal distribution at a given significance level. 
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4.3 PCA for Fault Identification 
 

The task of fault identification is to determine what are the most affected 

variables once a fault happens.  These variables are usually most relevant to fault 

diagnosis.  Fault identification is useful because it can help operators focus their attention 

on a reduced number of variables.  The out-of-status score can be approximated by 

(Russell and Chiang, 2000): 

k
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i

i
2
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σ
>  

where 

iσ = singular value, si ,......2,1= . 

=s  the number of scores considered to be responsible for the out-of-control status. 

=k  the number of principal components. 

The contribution of one original variable to one of the out-of-control scores can 

be expressed as follows: 
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jiC , = the contribution of  variable jx to the out-of-control scores it . 

 The total contribution of the thj  variable jx  to the out-of-control status can be 

given by: 
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iC = the contribution of  variable jx to the out-of-control status. 

The fault identification measure can also be defined based on the normalized 

error jR  given by (Russell and Chiang, 2000): 
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4.4 PCA fault Isolation Versus Parity Space Approach 
 

Gertler et al (1999) reported that there is an inherent consistency between PCA 

approach and parity space approach when used for fault isolation.  A linear static system 

can be described as follows: 
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where 

)(ty = the observed outputs. 

)(tu = the controlled inputs or the measured inputs. 

u∆ = the disturbances or the unknown faults related to )(tu . 

y∆ = the disturbances or unknown faults related to )(ty . 

A and B= known system matrices. 

If we combine all the measured variables )(tu  and )(ty  in a column vector 

denoted as )(tx , a set of residuals can then be defined as: 

 xBtxIAto ∆=−= )(],[)(  (4.10) 
When PCA is performed, the residual vector is given by: 

 ))(('))('()(')()( txxQQxxPPIxxPPxxto ∆+=∆+−=∆+−∆+=  (4.11) 
where 

P = the eigenvectors that span the principal component space. 
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Q = the eigenvectors that span the residual space. 

 In the above derivation, we have used the property of orthonornal matrices: 

IQQPP =+ ''  

 In addition, we have assumed that the variances of the scores on the eigenvectors 

corresponding to trivial components are approximately zero: 

0)'var()var( ≈= xQti  

 Correspondingly, if the original data are mean centered, then 

0' =xQ  

Therefore,  

)(')( txQQto ∆=  

The residual vector )(to  generated in this way can be directly used as a parity 

vector for fault isolation since any nonzero component of the parity vector corresponds to 

only one faulty measurement. Such a FDI approach has great advantages in its easy 

implementation.  However, the linear PCA algorithm and the method of obtaining 

residual vector for fault isolation are not applicable for a non-linear system.  

 

4.5 PCA Fault Isolation Based on Fault Direction 
 

Yoon and MacGregor (2001) reported that the fault directions both in the model 

space and in the residual space should be used in order to isolate a complex fault. 

 If a fault occurs in a control loop, the fault effects may propagate within the 

control loop after a new steady state is reached.  Therefore, the developed PCA model 

from fault free conditions cannot be used to characterize the new relationship.  This has 

twofold implications.  The first one is that the linear redundant relationships between the 

variables have changed.  The second one is that the system status has changed.  The 

former can be represented by the residual change in the residual space and the latter can 

be represented by the score change in the model space.  

Combining the system status change and the model structure change, a fault 

vector can be characterized by the superposition of two fault vectors defined in the model 

space and in the residual space as follows: 
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 vfuff ˆˆ 21 +=  (4.12) 
where  

uf ˆ1 =  the fault vector defined in the principal component space.  

vf ˆ2 =  the fault vector defined in the residual space. 

The developed PCA model for fault free conditions can be used to decompose a 

measurement vector x  into two spaces, one component ux ˆ1  in the model space and the 

other one vx ˆ2  in the residual space, that is: 

 vxuxx ˆˆ 21 +=  (4.13) 
 

Therefore, the fault direction in the residual space can be defined as: 
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where 
 

postpost xPPIx )'(2 −=  
initialinitial xPPIx )'(2 −=  

P =the loading matrix of the developed PCA model for fault free conditions. 
postx =the measurement obtained after a new steady state has reached since a fault.  
initialx =the measurement before a fault. 

Since 02 ≈initialx , then  
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 The direction defined in the residual space characterizes the change of the model 

structure after a fault.  However, the fault direction defined in the residual space may not 

be sufficient for fault isolation.  The system status change before and after a fault also 

provides significant information to characterize a fault.  The direction starting from the 

initial plant condition before a fault and pointing to the condition after a fault in the 

principal component space can be used to define the fault direction in the model space: 
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where 
postpost xPPx '1 =  
initialinitial xPPx '1 =  
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After the fault signatures have been defined by fault directions, fault isolation can 

be achieved based on the angle of the fault vector both in the model space and in the 

residual space between a detected fault and some reference faults.  A fault is isolated as 

one defined in a reference fault dictionary whose fault direction is most collinear with 

that of the detected fault both in the model space and in the residual space.  

 

4.6 Determination of the Number of Constraints 
 

Since PCA is in full agreement of parity space approach when used for fault 

detection and isolation, it is crucial for a successful FDI system to find out all the 

constraints inherent in the process system.  In the context of PCA based FDI, the 

constraint equations are implicitly represented by the eigenvectors spanning the residual 

space.  Therefore, the correct choice of the number of principal components is important 

for PCA based FDI.  

The most commonly used criteria are cumulative percent variance, Scree plot, 

average Eigenvalue, and cross validation (Wold, 1978).  Cumulative percent variance 

method selects the number of principal components by setting a subjective threshold of 

cumulative percent variance so that the model fitness and the parsimony in using 

principal components are balanced.  Scree plot method is based on the plot of the fraction 

of variance explained by each principal component.  The plot orders the principal 

components from the one that gives the largest amount of explanation to the one that 

gives the least amount of explanation.  This method considers the beginning point of the 

Scree as the most reasonable number of principal components.  Average eigenvalue 

method assumes that all the components whose corresponding eigenvalues are less than 

the average value should be discarded. In addition, cross validation can also be used. 

 

4.7 Recommended PCA Based FDI Procedure 
 

The procedure to implement a PCA based FDI is proposed as follows: 

(1) Become familiar with the system. 
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(2) Get information on the operation history of the system and collect the operation 

experiences of similar plants. 

(3) Select faults of interest from an engineering point of view. The reliability data of the 

components, the environment of the components, the consequences of the component 

failure etc., should be taken into account.  

As far as dual faults are concerned, the selection is mainly safety oriented.  

(4) Study the fault responses of the selected faults.  

(5) Collect data and evaluate its quality for fault free conditions. 

(6) Build a PCA model that is able to characterize the relationships among the measured 

variables. 

(7) Quantitatively define the fault directions for all the faults and save them in a fault 

dictionary.  In effect, only one experiment or one simulation is needed in order to 

determine the fault direction for each fault.  

(8) Implement PCA fault detection using both Q statistic and 2T  statistic. 

(9) Implement PCA fault isolation based on fault directions defined both in the model 

space and in the residual space. 

 

4.8 Application to Nuclear Plant SG System 
 

The PCA based FDI algorithm has been implemented for a PWR steam generator 

system. 

 

4.8.1 Development of PCA model  
 

A good model to characterize the relationships between the measured variables 

plays an essential role in PCA based FDI algorithm. 
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Table 4.1 lists the fifteen measured variables used to develop the PCA model for 

the SG system.  Before the simulated data are used to build a model, some Gaussian noise 

is added to the data based on the measurement errors of the corresponding sensors. 

Figure 4.1 shows the fractions of the variance contained in the data explained by 

the 15 eigenvectors.  If a threshold of 98% percent is chosen, the number of principal 

components is then determined to be eight.  It should be noted that too few principal 

components will decrease the accuracy of model prediction and too many principal 

components will increase the complexity of the model.  A complicated model is able to 

reduce the training error, but it will lose the capability of generalization because some of 

the degrees of freedoms are only used for modeling the noise. 

Figure 4.2 shows the predicted SG narrow range level and the actual values.  It 

can be seen that the model can predict the trend of the actual data.  The choice of more 

principal components may increase the accuracy of predicting the training data, but it 

may result in over-fitting. 

The eight eigenvectors to define the model space are as follows: 
   -0.2706   -0.0013   -0.0970   -0.0946   -0.0818   -0.2759    0.1669    0.3104 

   -0.2673    0.0053   -0.2591    0.3724    -0.3567    0.6139   -0.2662    0.3839 

   -0.2701   -0.0006   -0.1373   -0.0628   -0.0795   -0.1317    0.0112   -0.0808 

    0.2499   -0.0442   -0.6176    0.1526    0.0334   -0.1397     0.0593   -0.0636 

   -0.2666   -0.0229   -0.2695   -0.4125    0.7342    0.3625    -0.0562    0.0975 

   -0.2709    0.0074   -0.0580    0.0030   -0.1170    0.1376    0.2739   -0.3698 

   -0.2709    0.0064   -0.0576    0.0014   -0.1221    0.1314    0.3564   -0.3026 

    0.0268    0.9976   -0.0610   -0.0125    0.0149   -0.0075   -0.0000    0.0017 

   -0.2693    0.0166    0.1404    0.7813    0.5015   -0.2066    0.0428    -0.0255 

   -0.2709    0.0025   -0.0661   -0.0614   -0.0998   -0.2263   -0.5195   -0.2465 

   -0.2706   -0.0006   -0.0990   -0.0795   -0.0403   -0.2202   -0.5298   -0.2459 

   -0.2706   -0.0014   -0.0968   -0.0956   -0.0829   -0.2842    0.1756    0.3432 

   -0.2706   -0.0014   -0.0968   -0.0956   -0.0829   -0.2848    0.1756    0.3427 

   -0.2709    0.0074   -0.0580    0.0030   -0.1171    0.1380    0.2736   -0.3691 

    0.2497   -0.0441   -0.6198    0.1270    0.0154   -0.1386    0.0584   -0.1204 
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Table 4.1.  Measured variables used to develop PCA model 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Variable 
number 

Variable Description 

1 Thermal power 
2 Cold leg 1 temperature 
3 Hot leg 1 temperature 
4 SG1 pressure 
5 Feed water temperature 
6 SG1 steam flow rate 

7 Feed water flow rate to SG1  
8 FCV1 position 
9 FCV1 controller output 
10 SG1 WR indicated level 
11 SG 1 NR indicated level 
12 SG WR reference 
13 SG NR reference 
14 TCV1 flow rate 
15 SG1 temperature 
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Figure 4.1.  Fractions of the variance explained by different PC components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.  Comparison between the predicted SG NR level and the actual values. 
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The seven eigenvectors to define the residual space are as follows: 
    0.0142    0.1209    0.0868   -0.5418    0.0572    0.6171   -0.0379 

    0.0165   -0.0024    0.0097   -0.0023   -0.0003    0.0020   -0.0004 

   -0.0437   -0.9318    0.0606    0.0029   -0.0031   -0.0036   -0.0002 

   -0.7060    0.0635   -0.0159    0.0004    0.0008    0.0001   -0.0002 

    0.0059    0.0185   -0.0457   -0.0030    0.0006    0.0031   -0.0001 

   -0.0116    0.1161    0.0205    0.0127   -0.3934    0.0088   -0.7140 

   -0.0099    0.1070   -0.0597   -0.0433   -0.4195    0.0017    0.6925 

   -0.0001    0.0011   -0.0002   -0.0000   -0.0004    0.0000    0.0006 

    0.0196   -0.0074   -0.0060   -0.0004    0.0001    0.0006    0.0000 

   -0.0077    0.1015   -0.7152   -0.0456    0.0102    0.0513   -0.0007 

   -0.0051    0.1931    0.6822    0.0506   -0.0591   -0.0618    0.0824 

    0.0165    0.1168   -0.0467    0.7910   -0.0176    0.1729    0.0018 

    0.0160    0.1173   -0.0453   -0.2680    0.0117   -0.7629   -0.0445 

   -0.0112    0.1127    0.0315    0.0470    0.8136   -0.0286    0.0212 

    0.7056    0.0058   -0.0143   -0.0006   -0.0002    0.0004    0.0004 

From the eigenvectors in the residual space, the following approximate linear 

relationships among the measured variables can be derived: 

-0.7140*steam flow rate+0.6925*feed water flow rate=0 

 

0.6171*power+0.1729*WR reference level -0.7629*NR reference level=0 

 

-0.3934*steam flow rate-0.4195*feed water flow rate+0.836*TCV flow rate=0.0 

 

-0.5418*power+0.7910*WR reference level-0.2680*NR reference  

level+0.047*TCV flow rate=0.0 

 

0.0868*power+0.0606*hot leg temperature-0.0597*Steam flow rate-0.7152*WR 

 level+0.6822*NR level=0.0 

 

0.1209*power-0.9318*hot leg temperature-0.0635*SG pressure+0.1161*Steam 
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flow rate+0.1070*Feed water flow rate+0.1015*WR level+0.1931*NR 

level+0.1168*WR reference level+0.1173*NR reference level+0.1127*TCV 

flow=0.0 

-0.7060*SG pressure + 0.7065*SG temperature=0.0 

These equations can be used to reveal the linear relationship among variables. The 

corresponding physical relations can be written as follows: 

Steam flow rate = feed water flow rate 

 

SG wide range reference level =f(SG narrow range reference level, power) 

 

Steam flow rate + feed water flow rate = TCV flow rate 

 

 SG reference level = f (power, TCV flow rate) 

 

SG narrow range level =f(SG wide range level, power, hot leg temperature, feed 

water flow rate) 

 

Hot leg temperature  = f (power, SG pressure, SG NR level, SG flow rate) 

 

SG temperature =f (SG pressure) 

 

As can be seen, all the above equations have clear physical meanings.  However, 

PCA model cannot capture the nonlinear relationship among variables.  For example, the 

PCA model cannot reveal the relationship between FCV valve position and FCV flow 

rate.  Another point that should be emphasized in using PCA for FDI is that the 

measurements must be carefully selected before a PCA model is to be built.  If the 

available measurements do not allow finding out some relations among variables that are 

the basis to isolate some faults, these faults will hence not be isolated. 
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4.8.2 Fault detection  
 

Fault detection can be performed based on the developed PCA models. 

Figure 4.3 and Figure 4.4 shows the T Square and Q statistics for the fault free 

data, respectively.  The red lines in the two figures are the T square or the Q statistical 

limits corresponding to 99% confidence level.  If the corresponding statistics exceeds the 

limit, the confidence to state that the fault free model cannot explain the data is at a level 

greater than 99 %.  The two figures illustrate that all the fault free data are well below the 

limit lines.  The probability of false alarms due to process disturbance is low. 

Figure 4.5 and Figure 4.6 show the T square and Q statistics based fault detection 

for feed water flow meter and steam flow meter drift faults.  If the confidence level is 

chosen to be 99%, the false alarm rate and missing detection rate is shown as follow: 

Detecting Fault: Normal Operation 
 PCA detection 
 False alarm rates by T2+Q testing  = 0.04 
 False alarm rate by T2 testing  = 0.03 
 False alarm rate by Q testing  = 0.01 
Detecting Fault: Feed Water Flow Meter Drift Fault 
 PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
 missing detection rate by T2 testing  = 0.012547 
 missing detection rate by Q testing  = 0.095358 
Detecting Fault: Steam Flow Meter Drift fault 
 PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
missing detection rate by Q testing  = 0.077792 
missing detection rate by T2 testing  = 0.011292 
 missing detection rate by Q testing  = 0.100376 
Detecting Fault: Steam Flow Meter Feed Flow Meter Drift Faults 
PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
 missing detection rate by T2 testing  = 0.010038 
 missing detection rate by Q testing  = 0.115433 
Detecting Fault: Feed Flow Meter Drift Fault and SG Level Sensor Drift Fault 
 PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
 missing detection rate by T2 testing  = 0.013802 
Detecting Fault: Steam Flow Meter Drift Fault and SG Level Sensor Drift Fault 
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Figure 4.3.  T square statistics for the normal data.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4.4.  Q statistics for the normal data. 
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Figure 4.5.  T square statistics to detect steam flow meter and feed water flow meter drift 
faults. 

 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 
 

Figure 4.6.  Q statistics for steam flow meter drift fault and steam flow meter drift fault. 
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 PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
missing detection rate by T2 testing  = 0.006274 
 missing detection rate by Q testing  = 0.042660 
Detecting Fault: SG Pressure Sensor Drift Fault 
PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
 missing detection rate by T2 testing  = 0.002789 
 missing detection rate by Q testing  = 0.068042 
Detecting Fault: Feed Water Flow Meter Drift fault & SG Pressure Sensor Drift Fault 
 PCA detection 
 missing detection rate by T2+Q testing  = 0.000000 
 missing detection rate by T2 testing  = 0.001255 
 missing detection rate by Q testing  = 0.097867 
Detecting Fault: SG Level Sensor Drift Fault & SG Pressure Sensor Drift Fault 
 PCA detection 
missing detection rate by T2+Q testing  = 0.000000 
missing detection rate by T2 testing  = 0.006274 
missing detection rate by Q testing  = 0.096612 

Detecting Fault: SG Level Sensor Drift Fault 

It can be seen that the missing detection rate is small for all the selected faults.  It 

should be kept in mind that both 2T  and Q statistics must be used for fault detection. 

Either statistics being violated will signify that a fault has happened.  The violation of 2T  

statistics represents that the system operates at an abnormal state beyond the model space. 

The violation of Q statistics represents that some of the constraint equations defined in 

the residual space are violated and the system is abnormal. 

PCA can only deal with steady state condition or a slow dynamic process.  The 

algorithm to perform PCA based fault detection is only applicable to steady state 

condition.  When the false alarm rate and the missing detection rate are carefully 

examined, the false alarm rate and the missing detection rates are not equal to the 

expected value of one percent.  The reason is that the probabilistic distribution underlying 

the data used to build the model is not normal.  Therefore, it is reasonable that the false 

alarm rate and the missing detection rate are not equal to the specified significance level. 

The significance level should be determined using experiences obtained from testing the 

FDI design on the process system. 
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It should also be noticed that the confidence level would affect the false alarm rate 

and the missing detection rate.  A higher confidence level tends to result in a smaller false 

alarm rate but a higher missing detection rate. In a real application, the confidence level 

needs to be adjusted according to the operation requirements. 

 

4.8.3 Fault identification 
 

Figure 4.7 and Figure 4.8 show the contribution plots of the abnormal scores and 

the abnormal residuals for the feed water flow meter drift fault, respectively.  The 

contribution plots show that the most affected variables for the feed water flow meter 

drift fault as follows: 

• Reactor power 

• Feed water temperature 

• Feed water flow rate 

• Steam flow rate 

• SG NR level 

• SG temperature 

All the identified variables are in agreement with the analysis of the fault 

responses.  The feed water flow rate has been successfully identified as important 

variables of concern. 

The fault identification does not give immediate results to isolate faults.  It only 

provides information about what variables significantly contribute to the residuals.  This 

is true especially in the case that a feed back controller is involved since all the 

measurements within the control loop may be affected by a fault in the closed loop. 

 

4.8.4 Fault isolation 
 

The objective of fault isolation is to determine whether the fault is known in the 

fault dictionary and to determine which fault is the most likely one after the fault has 

been detected.  
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Figure 4.7.  Contribution plot in the model space for feed water flow meter fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8.  Contribution plot in the residual space for feed water flow meter fault. 
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The fault direction jointly defined in the model space and in the residual space has 

been used as fault signature for fault isolation.  The fault direction is represented by the 

cosine angle of the fault directions between the unknown fault and all the 13 reference 

faults.  These reference faults are numbered as follows: 

• Feed water flow meter offset fault. 

• Steam flow meter offset fault. 

• Feed water flow meter offset fault and steam flow meter offset fault. 

• Feed water flow meter offset fault and SG level sensor offset fault. 

• Steam flow meter offset fault and SG level sensor offset fault. 

• SG pressure sensor offset fault. 

• Feed water flow meter offset fault and SG pressure sensor offset fault. 

• Feed water flow meter offset fault and FCV offset sensor offset fault. 

• Steam flow meter offset fault and FCV position offset fault. 

• FCV valve position offset fault. 

• SG pressure sensor offset fault and SG level sensor offset fault. 

• SG level sensor offset fault. 

• Steam flow meter offset fault and SG pressure sensor offset fault. 

Figure 4.9 shows the fault direction in the model space and in the residual space 

for SG NR level sensor fault and feed water flow meter sensor fault without using SG 

wide range level.  The feed water flow meter fault cannot be distinguished from feed 

water flow meter sensor fault plus SG level sensor fault.  This is because the symptoms 

of the former fault envelope all those of the latter fault.  Therefore, no additional 

information can be used to uniquely isolate SG NR level sensor fault. 

Figure 4.10 shows the fault direction for the feed flow meter fault after the SG 

wide range level sensor has been used.  After SG wide range level signal is used, feed 

water flow meter fault can then be isolated from feed water flow meter sensor fault plus 

SG  level  sensor  fault.   Therefore,  in  order  to  isolate  all  the  selected  thirteen  faults  
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Figure 4.9.  Fault direction for feed water flow meter offset fault and SG NR level sensor 
offset fault without using SG WR level signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10.  Fault direction for feed water flow meter offset fault. 
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including dual faults, measurement redundancy must be used to avoid the compensation 

effect of controller feedback.  

Furthermore, an important criterion to judge if the designed FDI scheme is 

successful or not is to test the stability of the fault signatures in different fault magnitudes 

and under different initial operation conditions.  For this reason, a set of data in fault 

magnitude of three percent under the initial power level at 80% full power, which are 

unknown to the fault dictionary, are generated to test the reliability of the designed FDI 

system.  

Figure 4.11 to Figure 4.22 show the fault direction both in the model space and in 

the residual space for the defined 13 faults respectively in magnitude of three percent 

under the initial power level at 80% full power.  As can be seen, the fault direction in 

either model space or residual space is sometimes not enough to isolate dual faults.  For 

example, the fault direction in the model space for steam flow meter offset fault is similar 

to that for steam flow meter offset fault plus SG NR level sensor fault (See Figure 4.11). 

Nonetheless, the fault direction in the residual space for steam flow meter offset fault is 

quite different from steam flow meter offset fault plus SG NR level sensor fault.  An 

opposite example is that the fault direction in the model space helps to isolate a fault.  

The fault direction in the residual space for steam flow meter offset is similar to that for 

steam flow meter offset fault plus FCV position fault (See also Figure 4.11). 

Nevertheless, the fault direction in the model space for steam flow meter offset 

fault is quite different from steam flow meter offset fault plus FCV valve position offset 

fault. Therefore, when the joint fault direction is used, there is more possibility to isolate 

faults.  

The cosine of the angle between the fault direction of an unknown fault and those 

of the reference faults can also be used as confidence level when a decision is to be made. 

Figure 4.15 shows that no significant margin exists to isolate a SG pressure sensor fault 

from a SG pressure sensor fault plus a steam flow meter offset fault.  Figure 4.19 shows 

that there is no significant margin to isolate a FCV position fault from a steam flow meter  
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Figure 4.11.  Fault direction for steam flow meter offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12.  Fault direction for feed water flow meter offset fault and steam flow meter 
offset fault. 
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Figure 4.13.  Fault direction for feed water flow meter offset fault and SG NR level 
sensor offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14.  Fault direction for steam flow meter offset fault and SG NR level sensor 
offset fault. 
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Figure 4.15.  Fault direction for SG pressure sensor offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16.  Fault direction for feed water flow meter offset fault and SG pressure sensor 
offset fault. 
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Figure 4.17.  Fault direction for feed water flow meter offset fault and FCV position 
offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.18.  Fault direction for steam flow meter offset fault and FCV position offset 
fault. 
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Figure 4.19.  Fault direction for FCV position offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.20.  Fault direction for SG level sensor offset fault and SG pressure sensor offset 
fault. 
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Figure 4.21.  Fault direction for SG level sensor offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22.  Fault direction for steam flow meter offset fault and SG pressure sensor 
offset fault. 
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offset fault plus FCV position fault.  Therefore, when decisions are made, the confidence 

level to isolate these two faults should be taken into account.  

 

4.9 Discussions 
 

This chapter has presented the PCA approach to fault detection and isolation and 

its application to PWR steam generator system.  The PCA approach is shown to be in 

agreement with parity space approach.  The linear relationship among measured variables 

implying analytical redundancy can be consistently represented by the eigenvectors 

corresponding to the trivial components.  The fault directions jointly defined both in the 

model space and in the residual space is a sensitive fault signature for fault isolation. 

PCA approach needs the least information about a system when applied to FDI.  It 

is simple to achieve on-line implementation.  It provides an ideal tool to supervise plant 

status without too much investment.  However, PCA approach has many inherent 

weaknesses.  From the viewpoint of modeling, linear PCA is only applicable to a linear 

static system.  It is difficult to develop a nonlinear PCA model for a dynamic system 

accurate enough to reveal the analytical redundancy inherent in a physical system.  With 

regard to fault isolation, the fault characteristics must be defined from fault data for the 

enumerated faults.  This exerts heavy burden on engineering application.  In addition, the 

fault isolation is a process of classification, so the decision has poor interpretability. 

Because PCA approach has inherent connection with parity space approach, it is 

very important to validate the constraint equations extracted from PCA modeling.  If 

process variables are not appropriately chosen, some constraint equations necessary for 

fault isolation may not be obtained.  If the number of principal components is chosen 

incorrectly, the residual direction cannot be used to characterize a fault. 
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Chapter 5  

 
Adaptive Network Fuzzy Inference System 

for Fault Diagnosis 
 
 

A PCA model cannot take advantage of the available system knowledge.  For this 

reason, sometimes it is very difficult to build an appropriate model with low model 

uncertainty. Some of these difficulties are as follow: 

• When a large number of variables are involved, it is hard to make sure that all the 

measurements are well excited in order to obtain a model with reliable generalization 

capability. 

• When noisy data is involved, its effects on how the constraint equations are extracted 

from the noisy data are unknown to the analyst.  

• When nonlinear behavior is involved, it is hard to have a tradeoff between choosing 

more principal components to have a better approximation and preclude the 

disturbance of noises. 

In order to overcome these problems and keep the good feature of historical data 

based FDI approach, ANFIS is implemented to generate models for FDI.  This method 

can take advantage of the available system knowledge and captures the most relevant 

relationships among measured variables to characterize a fault. 

 

5.1 ANFIS Architecture 
 

ANFIS is a fuzzy inference system implemented in the framework of artificial 

neural network (Jang, 1990).  It is able to combine the reasoning capability of fuzzy logic 

and the learning capability of neural network. It is efficient in building a model with only 

a few inputs and one output.  A fuzzy inference system implements inference procedure 

using fuzzy rules.  A fuzzy rule can be expressed linguistically as follows: 

 If x is A then y is B (5.1) 
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A fuzzy rule is analytically an implication relation R between its antecedent x and 

its consequent y, which can be expressed as: 

 ∫=
),(

),/(),(),(
yx

yxyxyxR µ  (5.2) 

where 

),( yxµ = membership function. 

The implication relationship R(x,y) can also be explained as the membership 

function of a fuzzy set defined in a two dimensional universe of discourse (x,y). It can be 

computed using implication operator φ as follows:  

 ))(),((),( yxyxR BA µµφ=  (5.3) 
The most commonly used implication operators are Larsen product and Madamni min. 

If there are several input variables, it is necessary to have several antecedents 

connected with fuzzy operators.  In general, a fuzzy inference system uses a set of fuzzy 

rules connected with connectives forming fuzzy algorithms.  

Fuzzy inference of Generalized Modus Ponens is stated as the following problem: 

    If x is A then y is B 

 '' ByAx =⇒=  (5.4) 
In the above problem statement, the known part is R(x,y) and A', the unknown 

part is B' associated with A'. This inference procedure is a fuzzy composition given by: 

 ),('' yxRAB =  (5.5) 
The most commonly used fuzzy composition operators are Max-Min if Madamni 

Min implication relationship is used and Max-Product if Larsen Product implication 

relationship is used. 

A fuzzy inference system has the following four components (Jang, 1994): 

• A rule base containing if-then rules. 

• A database defining the membership functions used by the fuzzy rules. 

• A decision-making unit performing inference operations on the rules. 

• A unit to fuzzify the inputs and a unit to defuzzify the fuzzy outputs. 

Five steps need to be taken in a fuzzy inference system as follows:  

• Fuzzify the inputs. 

• Apply fuzzy operator. 
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• Apply implication Method. 

• Aggregate all the outputs. 

• Defuzzify the output. 

The first step is to fuzzify the crisp inputs. In this step, the membership values of 

each input variable are computed.  The second step is to apply fuzzy operators to 

compute the degree of the fulfillment (DOF) of the whole antecedent for each fuzzy rule 

by combining the membership values of all the fuzzy inputs.  The result is the firing 

strength of its corresponding rule.  In the third step, the membership of the consequent for 

each rule is computed based on the DOF of the antecedent for the corresponding rule by 

applying appropriate composition method.  The fourth step is to aggregate the 

membership of the fuzzy outputs for all the rules.  The final step is to defuzzify the output 

using methods such as centroid, maximum criterion, etc.  

The simplest fuzzy inference model is of Sugeno type.  It has the following form 

of fuzzy rules: 

    If x is A and y is B then  

 z=f(x) (5.6) 
where A and B are fuzzy sets and z=f(x) is a crisp function.  

In this model, the consequent of each fuzzy rule is simply a crisp function rather 

than a fuzzy set. It can significantly simplify fuzzy reasoning.  In general, aggregation 

and defuzzification will involve matrix operation in high dimensional space.  However, 

for a Sugeno fuzzy model, only a simple arithmetic function is involved in computing the 

output of each rule.  Hence, the aggregation and defuzzification can be combined into a 

weighted sum (Hines and Wrest, 1997).  

A Sugeno fuzzy model evolves into its first order form if the defined function is 

of first order.  Given that there are two inputs and one output, two of the fuzzy rules can 

be represented by: 

Rule 1: If x is A1 and y is B1 then z=ax+by+c 

Rule 2: If x is A2 and y is B2 then z=px+qy+r 

The output f can then be obtained as the sum of the two crisp output f1 and f2 

weighted by the firing strength ratio w1 and w2. That is 
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 2211 fwfwf +=  (5.7) 
When the fuzzy inference system is implemented using an adaptive network, the 

network system consists of layers of nodes capable of adapting parameters to map the 

desired input-output relation using fuzzy inference mechanism.  For each node, there are 

several inputs and one output.  The processing inside each node is nothing but performing 

some function computation.  There are no weights designated to the connection between 

two nodes, but there is directional indication.  

A classical ANFIS architecture, developed by Jang, 1994, is shown in Figure 5.1.  

Two fuzzy rules are involved in the four layers of network.  The nodes in the first layer 

take crisp inputs and compute the DOF of the fuzzy sets (A1, A2, B1, B2).  These fuzzy 

sets are parameterized fuzzy sets.  Their membership functions can be adjusted easily by 

changing a set of parameters.  The two nodes in the second layer correspond to the two 

fuzzy rules.  All the nodes in this layer take two inputs to give an output, w1 or w2, 

representing the firing strength of each rule based on the product of the two membership 

values being involved.  The third layer is responsible for calculating the relative 

importance of each rule ( 1w and 2w ), the ratio of one rule's strength to the sum of the 

firing strengths of all the rules.  Each node in the fourth layer contains a node function to 

calculate the consequent multiplied by the ratio calculated in the third layer.  The output 

layer gives the final output by summing all its inputs. 

 
5.2 ANFIS Learning Rule  
 
 Hybrid learning algorithm is developed for training ANFIS, which combines the 

gradient descent method and the least square method (Jang, 1994).  The training process 

involves tuning parameters such that the desired input-output mapping is achieved.  The 

tuned parameters are classified into two sets.  One set describes the linear relationship 

between the inputs and the outputs, which contains the parameters of the crisp function to 

describe the consequent of each rule. The other set of parameters describes the non-

linearity between the inputs and the outputs, which involves those parameters defining 

membership functions.   
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Figure 5.1.  Schematic for Sugeno-type ANFIS System. 
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 In the forward pass, the parameters describing the linear relationships are 

upgraded by sequential least square training.  After the error is computed, the gradient 

descent training is used, which makes the error propagated from the output layer to the 

input layer.  In this backward pass, the parameters describing the nonlinear relationship 

are upgraded.  The training process does not end until the desired error goal is reached or 

the designated maximum number of epochs is exceeded. 

For the ANFIS structure with two inputs and one output, the system output can be 

expressed as follows: 

)()2,2()()1,1( 22221111 ryqxpBAwryqxpBAwf ++∗+++∗=  

The parameter space S  is partitioned into two subspaces 1S  and 2S given by: 

21 SSS +=  

where 

)2,2,1,1(1 BABAS ⊃  

),,,,,( 2221112 rqprqpS ⊃  

During the forward pass with the fixed set 1S , the parameters in the subspace 

2S can be determined by least squares estimate as follows: 

YXXXS ')'( 1
2

−=  

where 

X = input data set. 

Y = target output. 

During the backward pass with the fixed set 2S , the parameters in the subspace 

1S can be determined by gradient descent method.  For the output layer, the error rate is 

defined by: 

)(2 5
5 OT

O
E

−−=
∂
∂  

where 

)(*)( 22221111
5 ryqxpwryqxpwO +++++∗=   

=T target output. 
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For the two nodes in the fourth layer, the error rate is defined by: 
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5 OOO +=  =the system output.  
k
iO =the output of the ith node for the kth layer. 

For the two nodes in the third layer, the error rate is defined by: 
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For the two nodes in the second layer, the error rate is defined by: 
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For the jth node in the first layer, the error rate is defined by: 
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where 
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The derivative of the output error with respect to the parameters used to define the 

membership functions can be determined by: 

∑
= ∂

∂

∂
∂

=
∂
∂ M

j i

j

ji S
O

O
E

S
E

1 ,1

1

1
,1

 

where 

jS ,1 =the jth parameter in the space of 1S . 

M =the number of fuzzy sets used to define the fuzzy rules.  

 If Gaussian membership function is used for the jth fuzzy set in the first layer, 

which is given by: 

))(exp()( 21

j

j
jj a

cx
xO

−
−== µ  

then 

j

j

jj

j

j

jj

a
x

O
E

a
E

c
x

O
E

c
E

∂

∂

∂
∂

=
∂
∂

∂

∂

∂
∂

=
∂
∂

)(

)(

1

1

µ

µ

 

 The update of the parameters in the space of 1S  is determined by: 

j
j S

ES
,1

,1 ∂
∂

−=∆ η  

where η  is the learning rate.  

 The hybrid learning algorithm is much faster than gradient descent method only 

or gradient descent and one pass of least squares method (Jang, 1993).  If some 

membership functions or some rule functions are determined from expert knowledge, the 

learning algorithms can be easily adapted to develop some hybrid models.  
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5.3 Structured Residual Design Approach  
 

 If structured residual design approach is used for fault isolation, the residual 

vector is represented by the bit numbers for a set of models.  The bit number 1 indicates 

that the model has a significant residual while the bit number 0 indicates the model has 

insignificant residual.  If there are only single faults in the designed FDI system, it is 

possible to achieve strong fault isolation if the model structures are carefully chosen.  The 

most straightforward method to obtain residuals is based on the natural redundancy in a 

process.  Table 5.1 shows the residual structure of four models for four faults.  The 

residual pattern for fault 1 is [1,1,0,0]; the residual pattern for fault 2 is [1,0,0,0]; the 

residual pattern for fault 3 is [0,0,1,1]; and the residual pattern for fault 4 is [0,0,1,0].  If 

the bit number of model 3 for fault 2 degenerate, fault 2 will be misdiagnosed as fault 1.  

If the bit number of model 4 for fault 3 degenerate, fault 4 will be misdiagnosed as fault 

1.  This kind of residual structure can only result in weak isolation between faults.  In 

order to achieve strong fault isolation, which means a fault will not be misdiagnosed as 

another fault even if one bit number has degenerated, it is necessary to transform the 

residual vectors into a structured form shown in Table 5.2.  For a linear system, the 

structured residual can be achieved by a linear transformation on the original residuals.  

However, for a nonlinear system, it is quite difficult to derive new dependent equations 

by algebraic combinations of the previous equations in order to obtain the desired 

residual structure (Garcia, et al, 2000). 

 

5.4 Application to Nuclear Plant SG System  
 

Once the possible faults are enumerated based on engineering judgments 

structured residual design approach with ANFIS models can be implemented for fault 

diagnosis for nuclear SG system.  The study shows different residual structures are 

required to deal with single faults and dual faults.   
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Table 5.1.  Structured residual design for weak fault isolation 

Model Fault 1 Fault 2 Fault 3 Fault 4 
Model 1 1 1 0 0 
Model 2 1 0 0 0 
Model 3 0 0 1 1 
Model 4 0 0 1 0 
 
 
 
 
 

 Table 5.2.  Structured residual design for strong fault isolation   

Model Fault 1 Fault 2 Fault 3 Fault 4 
Model 1 1 1 0 1 
Model 2 1 0 0 0 
Model 3 0 0 1 1 
Model 4 0 1 1 0 
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For PWR SG system, the model structures derived from the physical analysis are 

as follows: 

 

FCV flow rate (t)=f (FCV valve position (t), SG pressure (t)) 

 

FCV valve position (t+1)=f (controller output (t), FCV valve position (t)) 

 

SG pressure (t)=f(SG temperature(t)) 

 

Steam flow rate(t+1)=f(feed water temperature(t), SG pressure(t), hot leg temperature(t), 

cold leg temperature(t)) 

 

SG level (t+1)=f(SG level(t),Feed water flow rate(t), steam flow rate(t),SG pressure(t))  

Table 5.3 shows the residual patterns for the 13 faults with the above model 

structure.  In the table, the bit number 0 indicates that the model to predict the specific 

variable will not generate significant residual while the bit number 1 indicates that the 

residual is significant.  The threshold to distinguish the significance is determined by the 

model accuracy and the level of plant disturbance.  As can be seen from the table, the 

residual patterns can be directly used to achieve strong fault isolation for the three single 

faults (feed water flow meter offset, steam flow meter offset and FCV position offset). 

However, the SG level sensor fault cannot even be detected. In this case, the residuals 

refer to the values after the new steady state has been reached.  Due to the compensation 

effects of the SG level controller, the relationship among the feed water flow rate, the 

steam flow rate, the SG pressure, the FCV position and the SG level are always attempted 

not to change.  Therefore, it is usually very difficult to detect a minor fault of the steam 

generator water level sensor fault based on a steady state model.  The table also shows 

that some residuals become unstable due to fault competition with different fault 

magnitudes when dual faults are involved.  The unstable residuals of the SG level model, 

denoted by the sign "?" in the table, correspond to the following combination of faults: 
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Table 5.3.  Consistency checking using natural redundant relations 

          Functional  
Model 

Faults 

FCV 
flow 
rate 

Steam flow 
rate  

SG pressure FCV valve 
position 

SG level 

Feed flow meter offset 1 0 0 0 1 

Steam flow meter 
offset 

0 1 0 0 1 

Steam flow meter and 
feed flow meter offset 

1 0 0 0 ? 

SG NR level sensor 
offset 

0 0 0 0 0 

Feed flow meter offset 
and SG level 
sensor offset 

1 1 0 0 1 

Steam flow meter 
offset and SG level 
sensor offset 

0 1 0 0 1 

SG pressure 
sensor offset 

1 1 1 0 1 

Feed flow meter offset 
and SG pressure sensor 

offset 

1 1 1 0 1 

Steam flow meter 
offset and SG pressure 

sensor offset 

1 1 1 0 1 

SG level sensor offset 
and SG pressure 

sensor offset 

1 1 1 0 ? 

Feed water flow meter 
offset and FCV 
position offset 

 

1 0 0 1 ? 

Steam flow meter 
offset and FCV 
position offset 

0 1 0 1 1 

FCV position offset 0 0 0 1 1 
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• Steam flow meter offset plus feed flow meter offset. 

• SG pressure sensor offset plus SG level sensor offset. 

• FCV valve position offset plus feed water flow meter offset. 

Although the residual structure can be used directly to isolate the three single 

faults, it is not sufficient to isolate dual faults. These dual faults are:  

• Feed flow meter offset plus SG level sensor offset cannot be separated from feed flow 

meter offset.  

• Steam flow meter offset plus SG level sensor offset cannot be separated from steam 

flow meter offset.  

• SG pressure sensor fault plus Feed flow meter offset cannot be separated from steam 

SG pressure sensor fault. 

• SG pressure sensor fault plus SG level sensor offset and SG pressure sensor fault plus 

SG steam flow meter offset. 

In conclusion, although a set of models derived from physical analysis may result 

in different residual patterns for fault isolation, they are usually not effective to deal with 

dual faults.  When used for dual fault isolation, some dual faults may result in the same 

residual pattern as their element faults.  In addition, the residuals of some models may 

become unstable for dual faults with different fault magnitudes. 

 

5.4.1 Dedicated residual design for dual faults  
 

Because dual faults usually cannot be strongly isolated from its element faults, 

dedicated residual structure is designed to isolate dual faults.  Dedicated residual 

structure has the following two properties: 

• Each residual is only sensitive to one fault and insensitive to all the other faults. 

• Different faults result in different types of residual patterns.  

If the possible faults are known, dedicated residual structure can be obtained 

through appropriately selecting the model structures to generate residuals.  The 

alternative models can be derived based on: 

• Natural redundancy 
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For instance, for a saturated system, the temperature and the pressure has one to 

one correspondence.  Any model involving either variable can be substituted by the other 

variable. 

• Derived redundancy 

For instance, if the flow rate is determined by the system pressure and the valve 

position for a system, any model involving the flow rate can be substituted by the system 

pressure and the valve position. 

• Measurement redundancy 

The measurement redundancy is the most primitive one.  For the SG system, the 

SG narrow range level measurement involved in any model can be substituted by the SG 

wide range level measurements. 

In order to isolate the specified 13 faults for the nuclear SG system, the models 

with dedicated residual structure are defined as follow: 

 

FCV flow rate (t)=f (FCV valve position (t), SG temperature (t)) 

 

FCV valve position (t+1)=f (controller output (t), FCV valve position (t)) 

 

SG pressure (t)=f(SG temperature(t)) 

 

Steam flow rate(t+1)=f(feed water temperature(t), SG temperature(t), hot leg 

temperature(t), cold leg temperature(t)) 

 

SG NR level (t)=f(SG WR level(t),Feed water temperature(t)) 

 

In order to isolate dual faults involving the controlled variable from their element 

faults in a closed control loop, the measurement redundancy has to be used.  For the 

nuclear SG level system, SG WR level sensor has to be used to isolate SG NR level 

sensor fault from SG NR level sensor fault plus another fault in the control loop. 
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5.4.2 ANFIS modeling for SG system 
 

The ANFIS modeling has been used to construct the five models for the system 

during normal operation.  Before the ANFIS models are constructed, the input variables 

need to be appropriately scaled.  The purpose to scale the inputs is to give equal 

importance to all the inputs in the case that the input variables are in different units.  

Feed water flow rate model is shown as an example to train the ANFIS model.  

The network uses two bell-shape membership functions for either input.  Two rules have 

been selected to map the input and output relationship.  

Figure 5.2 shows the membership functions for the ANFIS model to predict the 

FCV valve flow rate before and after training.  It can be seen that the training has 

changed the shape of the membership function for the first input (FCV valve position) 

significantly.  In general, this change reflects the degree of nonlinearly contained in the 

mapping between the input and the output.  After three epochs, the ANFIS model has 

been trained to reach a training error less than 0.5 %.  

 

5.4.3 Model testing and validation 
 

The residuals generated by some models can be immediately used for fault 

detection. If the sum square residuals of all the models are greater than a specified 

threshold, a fault is assumed to have happened. 

In order to reduce the false alarm rates for fault detection, these models must be 

able to correctly characterize the system behavior under all the fault free conditions. 

However, if the models are fully static, any changes in the plant status or even plant 

disturbance will cause false alarms because the dynamic behavior of the system is 

unknown to the system.  For this reason, most FDI systems need to use dynamic models. 

The dynamic models are able to simulate the normal transients such as a normal power 

transient. 

In order to test the performance in characterizing the dynamic behavior, a power 

transient from 100% power to 90% power is simulated using the ANFIS models built in  
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Figure 5.2.  Membership for the two inputs to predict feed water flow rate using ANFIS. 
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the last section.  Figure 5.3 to Figure 5.6 show the comparison between the estimation 

from the ANFIS models and the actual values obtained by the SimPWR simulation code 

for the following variables: 

• SG narrow range level. 

• Steam flow rate. 

• FCV flow rate. 

• FCV valve position. 

From these figures, it can be seen that the ANFIS models can correctly simulate 

the transient process with low errors.  When a large complex system with strong 

interaction is involved, it is usually very challenging to build perfect data driven models.  

For instance, it would be difficult to build a data driven model for a fast transient due to 

the fast interaction among systems.  For fast transients, it will involve much more 

complicated model structure and it is harder to collect data to sufficiently excite all the 

related subsystems.  

However, from FDI point of view, the slight errors of these models will not 

impose a serious problem.  First, different thresholds can be set to the residuals for 

different models depending on the accuracy of the models.  Secondly, fast transient is not 

of major interest for an incipient fault detection and isolation system.  A fast power 

transient is usually under cautious supervision of operators, so operators can easily switch 

off the FDI system if the expected transient is any faster than the designed level.  In 

general, the ANFIS models should give correct estimation if the relationship between the 

input variables and the output variable does not change.  However, if a fault happens, 

some input variables may be outside their training range and the model may perform 

unreliable extrapolation.  Hence, the residual of the model may exceed the specified 

threshold. In order to avoid this problem, it is necessary to evaluate whether the models 

are excited in all fault cases. 

 An example is given to show the importance of model testing for SG NR level 

model.  If the data are collected only from 20 % to 100% power ranges, the model will 
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Figure 5.3.  Transient simulation of SG NR level using ANFIS model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4.  Transient simulation of steam flow rate using ANFIS model. 
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Figure 5.5.  Transient simulation of FCV flow rate using ANFIS model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.6.  Transient simulation of FCV position using ANFIS model. 

 

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
x  10-3

S
im

ul
at

io
n 

er
ro

r f
or

 F
C

V
 fl

ow
 ra

te

Trans ient s im ulation based on the developed ANFIS  m odel

Sam ple 

0 20 40 60 80 100 120
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

FC
V

 v
al

ve
 p

os
iti

on
 c

ha
ng

e

Validation of ANFIS models for power transients

--------  Predicted value
_____  Actual value 

Sample 



 92

generate unstable residual patterns for different fault magnitudes.  Figure 5.7 shows that 

when the SG steam flow meter and the SG pressure sensor have less than 2% offset 

faults, the residual is less than 0.5%.  However, when the fault magnitude is 3%, the 

residuals become unstable.  To investigate the causes, the training range of the inputs is 

examined.  The minimum values of the feed water temperature and the SG WR SG level 

are 313.94 F and 76.269% respectively.  The maximum values of the feed water 

temperature and the SG WR SG level are 438.4 F and 85.599% respectively.  However, 

for the SG steam flow meter and SG pressure sensor offset faults with 3% fault 

magnitude, the minimum values of the feed water temperature and the SG WR SG level 

are 440.42 F and 83.0% respectively and the maximal values are 440.5 F and 86.167% 

respectively.  Apparently, the fault data have exceeded the training range, so the ANFIS 

model is not able to correctly compute the residual of the SG narrow range level. 

After more data is collected to cover the entire range for the faults, the residuals 

exhibit consistent behavior.  Figure 5.8 shows that the residuals of SG NR level models 

are within 1% for the dual faults (the SG steam flow meter and the SG pressure sensor 

offset fault) when the SG NR level sensors are healthy.  

 

5.4.4 FDI Results   
 

Table 5.4 shows the dedicated residual structure to isolate the defined 13 single 

and dual faults. As can be seen, each ANFIS model is dedicated to isolate one fault. For 

dual faults, the corresponding two models dedicated to the two element faults will 

generate significant residuals, which provides the full possibility to isolate them.  

Figure 5.9 to Figure 5.16 show the residual structures for different fault 

magnitudes. In these figures, the 13 fault classes correspond to the following faults: 

• Fault class 1= Feed water flow meter offset fault. 

• Fault class 2= Steam flow meter offset fault. 

• Fault class 3= Feed water flow meter offset fault and steam flow meter offset fault. 

• Fault class 4= SG level sensor offset fault. 

• Fault class 5= Feed water flow meter offset fault and SG level sensor offset fault. 



 93

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.7.  Unstable residual of SG level for SG pressure and steam flow meter fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.8.  Stable residual of SG level for SG pressure and steam flow meter fault. 
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Table 5.4.  Dedicated residual structure for SG system 

 
          Functional  

Model 
Faults 

Feed water 
flow rate 

Steam 
flow rate 

SG pressure FCV valve 
position 

SG level 

Feed flow meter offset 1 0 0 0 0 

Steam flow meter 
offset 

0 1 0 0 0 

Steam flow meter and 
feed flow meter offset 

1 1 0 0 0 

SG NR level sensor 
offset 

0 0 0 0 1 

Feed flow meter offset 
and SG level 
sensor offset 

1 0 0 0 1 

Steam flow meter 
offset and SG level 
sensor offset 

0 1 0 0 1 

SG pressure 
sensor offset 

0 0 1 0 0 

Feed flow meter offset 
and SG pressure sensor 

offset 

1 0 1 0 0 

Steam flow meter 
offset and SG pressure 

sensor offset 

0 1 1 0 0 

SG level sensor offset 
and SG pressure sensor 

offset 

0 0 1 0 1 

Feed water flow meter 
offset and FCV 
position offset 

 

1 0 0 1 0 

Steam flow meter 
offset and FCV 
position offset 

0 1 0 1 0 

FCV position offset 0 0 0 1 0 
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Figure 5.9.  Structured residual pattern using ANFIS models  

(100% Power, 1% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10.  Structured residual pattern using ANFIS models 

(100% Power, 2% offset fault). 
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Figure 5.11.  Structured residual pattern using ANFIS models 

(100% Power, 3% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12.  Structured residual pattern using ANFIS models 

(100% Power, -1% offset fault). 
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Figure 5.13.  Structured residual pattern using ANFIS models 

(100% Power, -2% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14.  Structured residual pattern using ANFIS models 

(100% Power, -3% offset fault). 
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Figure 5.16.  Structured residual pattern using ANFIS models 

(80% Power, 1% offset fault). 
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• Fault class 6= Steam flow meter offset fault and SG level sensor offset fault. 

• Fault class 7= SG pressure sensor offset fault. 

• Fault class 8= Feed water flow meter offset fault and SG pressure sensor offset fault. 

• Fault class 9= Steam flow meter offset fault and SG pressure sensor offset fault. 

• Fault class 10= SG pressure sensor offset fault and SG level sensor offset fault. 

• Fault class 11= Feed water flow meter offset fault and FCV offset sensor offset fault. 

• Fault class 12= Steam flow meter offset fault and FCV position offset fault. 

• Fault class 13= FCV valve position offset fault. 

In each figure, the 13 faults have different residual patterns, so they can be 

isolated.  If the residual patterns are compared for different fault magnitudes, their 

structures are stable.  Moreover, the residuals are approximately equal to the fault 

magnitudes of the sensor faults such as the feed water flow meter fault and the steam 

flow meter fault.  Theoretically, the residuals should be exactly as same as the fault 

magnitudes.  However, due to the modeling errors of these data driven models, some 

slight differences still exist and these slight differences in FDI are acceptable.  The faults 

occurring at 80% initial power level other than 100% full power are also tested.  Figure 

5.16 clearly shows that the performance of the FDI system does not degrade.  The 

residual structures keep the same pattern as those faults at 100% power level. 

 

5.5 Discussions 
 

This chapter has presented ANFIS model based approach to fault detection and 

isolation and the application to PWR steam generator system.  ANFIS model based 

approach combined with structured residual design is shown to be efficient in fault 

detection and isolation if the possible faults are enumerable.  For single faults, strong 

isolation scheme can be achieved through appropriate choice of the model structures.  For 

dual faults, it is not possible to achieve strong isolation between the dual faults and one of 

the element faults.  Using natural redundancy and derived redundancy, dedicated residual 

structure can be achieved to isolate dual faults.  In order to detect and isolate a fault 

related to control variable, sometimes it is necessary to use the information about 
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measurement redundancy itself.  ANFIS model based approach combined with structured 

residual design does not need fault signatures dependent of fault magnitude and initial 

operation condition.  It is in conformance with the principle of modern fault detection and 

isolation methods.  Since ANFIS is able to learn the relationship between variables from 

data, it has the power of on-line implementation.   

However, ANFIS model based approach needs to enumerate the possible faults.  

This still exert heavy burden on engineering application.  In addition, for a non-linear 

complicated system, structured residual design for fault isolation, especially when data 

driven modeling is used, is essentially a process of trial and error.  This exerts additional 

difficulties in engineering application. 
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Chapter 6  
 

Data Driven Model Causal Graph for Fault Diagnosis 
 
 
6.1 Introduction 
 

In Chapter 5, the dedicated residual structure is achieved based on the assumption 

that the possible faults are enumerable.  With the faults known, the designers may 

achieve fault isolation through appropriate choice of the models.  However, for a large 

complex system, it will be extremely challenging to enumerate all the possible faults.  In 

order to avoid enumerating possible faults and predefining their associated fault 

signatures, the development of data driven model causal graph approach has been 

considered. 

Data driven model causal graph is proposed as a generic approach to fault 

diagnosis for fault isolation.  It is able to combine the reasoning capability of qualitative 

knowledge based method and the strength in resolution of quantitative knowledge based 

method.  To facilitate on-line implementation, ANFIS is used for modeling. Fault 

detection is fulfilled by monitoring the residual of each model.  Fault isolation is 

achieved by cause effect analysis of the residuals generated from the models. 

 
6.2 Cause Effect Reasoning Using Model Causal Graph 
 

Cause effect reasoning was originally introduced as a reasoning tool to account 

for the propagation of fault symptoms within a system (Davis, 1983).  It has been 

extended to quantitative model based FDI when mathematical models are available 

(Montain and Gentil, 2000).  

A model causal graph consists of individual nodes connected by quantitative 

models. The individual nodes represent plant parameters, state variables and 

measurement variables.  The quantitative models represent the cause-effect relationship 

between the nodes.  As compared with sign directed graphs using qualitative knowledge 

only to describe the relationship between variables, a quantitative model is formally 
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introduced to express the cause effect relationships.  The model causal graph is not a 

simple network of structural models.  It includes the dynamic information about process 

flow-path, signal flow-path, and control logic so that a fault can be localized based on the 

cause effect analysis for a process system. 

A physical system can be represented by the following set of differential 

equations: 

 ),( iiii XGgX =  (6.1) 

where 

iX = the i  th system variables. 

ig = a function to estimate iX . 

}|{ ijXG ji ≠= ,  

iG  = a set of variables as the inputs to ig . 

The moving average form of the above differential equation can be used to arrive 

at the causal graph models, that is: 

 )( iii GfX =  (6.2) 
If the model causal graph is developed based upon the original process flow and 

signal flow, the causal relationship between variables will be implicit in it.  

The cause effect relationship between the inputs and the outputs of a model has 

two connotations (Leyal, Gentil and Stephan, 1994).  From physics point of view, the 

cause-effect relation represents the pathway of the signal propagation.  Any changes in 

the model inputs are always before any changes in the model outputs in the time domain. 

From the computational point of view, the cause-effect relation means that any changes 

in the model inputs will sufficiently cause some changes in the model outputs and the 

model outputs will not change without any changes in the model inputs.  Figure 6.1 

shows a simple example of a model causal graph.  In the figure, four models 

4321 g,g,g,g  are shown to characterize the system.  The six process variables are X1, 

X2, X3, X4, X5, and X6. 
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Figure 6.1.  A simple example of model causal graph. 

 
Causal effect reasoning can be easily performed based on analyzing the residuals 

of the individual models.  The original residuals are calculated for each measured 

variable as follows: 

 
*

iii XXR −=  (6.3) 
where 

=iR  the residual of  the variable iX . 

=iX  the measured value of the variable iX . 

=*
iX  the estimated value of  the variable iX  from the model if  defined previously. 

If iR  is significant, it can be determined that a fault has occurred to the system. 

However, there are still two possibilities that may explain the abnormal residual: 

a) A local fault affecting iX . 

b) A consequence of a fault affecting the inputs of the model if . 

To facilitate fault isolation, a set of reconstructed residuals are calculated as 

follows: 

    
j

ii
j

i XXR ~~ −=      (6.4) 

where 

=j
iR~  the residual of iX after the input jX of model if has been reconstructed. 

=j
iX~ .the estimated value of iX  after the input jX of model if has been reconstructed 
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Fault isolation can then be based on the following decision procedure: 

a) If i
j

i RR~ << , jX  has a local fault. 

b) If i
j

i RR~ ≈  for all jX  that will affect iX , iX  has a fault. 

c) If i
j

i RR ≈1
~  and i

j
i RR ≈2~  but i

jj
i RR <<21~ , then 

1j
X and 

2j
X  have simultaneous faults. 

As an example, the above model causal graph method is used for a typical feed 

back control loop as shown in Figure 6.2.  Four nodes connected by three models are 

used to represent the control loop.  These four nodes are the set point, the controller 

output, the control variable, and the regulated variable.  The three models are the 

controller model, the actuator model and the plant model.  Since a controller always takes 

the measured value of the regulated variable as input, the controller model can always be 

used to isolate a controller fault.  For the same reason, the actuator model can be used to 

isolate an actuator fault.  However, fault detection and isolation becomes a challenging 

task when a fault related to the regulated variable is involved.  When a new steady state is 

reached after the fault, the regulated variable will be brought back to its original level.  

Hence, the steady state information is not enough to detect such a fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.2.  Dynamic model causal graph representation of a feedback control loop 
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Model causal graph method needs to use dynamic models.  If a steady state model 

is used, the developed method can give correct FDI results after a new steady state has 

been reached.  During the fault transient, the steady state models will result in serious 

false alarms.  Moreover, the fault symptoms may become weak after the new steady state 

due to controller feedback.  In addition, dynamic models must be used to isolate a 

controller fault and some actuator faults such as control valves.  By the way, in order to 

achieve a faster fault detection and isolation for safety concern, dynamic models are also 

desired. 

 

6.3 Extended Model Causal Graph 
 
6.3.1 Multi-model causal graph 
 

Multiple-model causal graph can be introduced to isolate input faults based on  

cause effect analysis of model residuals when there are no additional models available to 

reconstruct these process inputs.  

Multi-model approach was proposed for fault isolation (Simani, 2000).  The basic 

idea is to make most use of the knowledge about the process redundancy inherent in a 

system.  For example, in a saturated SG system, there is a one-to-one relation between the 

SG pressure and the SG temperature.  Therefore, any model as a function of SG pressure 

can always be used to derive a new model as a function of SG temperature.  The cause 

effect analysis on the residuals of these two models can then be performed to isolate the 

two faults. 

Figure 6.3 and Figure 6.4 show two types of multiple models designed to isolate 

output faults and input faults, respectively.  In the design scheme shown in Figure 6.3, 

one output and all the inputs drive each model.  An output measurement fault affects only 

the residual of the model driven by this output variable.  Therefore, the output faults can 

then be isolated if there is no fault related to the inputs.  In the design scheme shown in 

Figure 6.4, each model is driven by all but one input and all the outputs, which generates 

a residual sensitive to all but one input fault.  Therefore, the input faults can then be 

isolated if there is no fault related to the outputs. 
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Figure 6.3.  Multiple models to isolate output faults. 

 
 
 
 
 
 
 
 
 
 
 
                
 
 
 

Figure 6.4.  Multiple models to isolate input faults. 
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Figure 6.5.  An example of multiple-model causal graph. 

 

Figure 6.5 shows an example of how to combine multi-model approach and 

regular model causal graph to obtain a multi-model causal graph.  If 1X  and 2X cannot 

be reconstructed from some other models, the multi-model causal graph still enables to 

perform cause effect analysis on the model residuals.  After the subsequent models have 

confirmed there are no faults related to variable 1Y  and 2Y , the following decision logic 

can be performed: 

a) If  021 ≈≈≈ RRR , there is no fault with respect to 1X , 2X  and 1Y  and 2Y . 

b) If both 1R  and 2R are significant, there is a fault with respect to nX . 

c) If  01 ≈R  but 02 ≠R , there is a fault with respect to 2X . 

d) If  02 ≈R  but 01 ≠R , there is a fault with respect to 1X . 

 

6.3.2 Model causal graph with hidden nodes 
 

Model causal graph can also be extended to include unmeasured variables.  This 

is useful to detect and isolate process faults.  Figure 6.6 shows an example.  In the figure, 

X1, X2, X3, and X4 correspond to four measured variables and H1 corresponds to an 

unmeasured variable.  In this case, the same reasoning logic can be used except that H1 

cannot be used as an independent residual generator.  It is necessary to prepare an explicit 

model instead of a data driven model to estimate the value of a hidden node.  If a data 

driven model is to be used, some special learning algorithm must be developed.  
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Figure 6.6.  Model causal graph with hidden nodes. 

 
6.4  Model Causal Graph Approach with Fuzzy Inference Modeling  
 

Theoretically, an ANFIS model is able to approximate a system to any desired 

degree of accuracy.  However, in real situation, it is not always able to achieve this 

accuracy because a too complex model may be required.  Even if such a model can be 

obtained, the desired capability of generalization can still not be guaranteed.  

In order to achieve a perfect model, the input variables must always be cautiously 

selected.  On the one hand, the co-linearity between the input variables should be avoided 

since the least square method is used in training ANFIS.  On the other hand, the 

dimensionality of the inputs for the ANFIS models should be as few as possible.  In 

ANFIS, each input variable needs to be fuzzified into problem specific membership 

functions.  When the number of input variables is increased, the number of nodes in the 

second layer and the third layer of the ANFIS network will be increased exponentially. 

Correspondingly, the number of rules used in the system will be increased too.  This 

increase will not only have a severe influence on the training speed but also on the 

stability of the built models because the number of degrees of freedoms may be more 

than necessary.  The principle of choosing the number of input variables is that none of 

the redundant input variables should be retained in the ANFIS inputs.  

An efficient ANFIS model with parsimonious number of rules and membership 

functions can be achieved only through physically correct choice of inputs.  In order to 

characterize the behavior of a dynamic system, physically driving inputs are much more 

efficient than purely input delay and output delay.  If all the input variables driving the 

X1 

X2 

H1model 1 

X3

X4model 2 
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dynamic process are included in the model, much fewer delays will be required to 

perform the input-output mapping.  

Model causal graph method is in full agreement with the requirement of efficient 

ANFIS modeling using the system knowledge.  The physically involved inputs can be 

obtained through studying the cause-effect relationship.  Therefore, the ANFIS model is 

able to have most appropriate inputs when combined with cause effect analysis.  If 

known, some important non-linearity can also be directly captured through an 

unmeasured node in the model graph before it is presented as an input to an ANFIS 

model.  For example, the pressure loss can be assumed as a square function of the flow 

rate.  An unmeasured node can then be designed as the square of the flow rate in the 

model graph and is used as an input to the ANFIS model to estimate the pressure drop.  

By explicitly including nonlinear terms in the inputs, fewer membership functions will be 

needed in the resulting ANFIS models.  Model causal graph method helps to decompose 

a complex model into several small models.  The model decomposition can significantly 

enhance the performance of data driven modeling such as ANFIS when used for FDI. In 

order to achieve an accurate data driven model, the amount of data required is 

proportional to the number of inputs.  When a complex model is decomposed, much 

fewer inputs are related to each small model, and correspondingly, much fewer data will 

be required to train the small model than a complex model with a great number of inputs.  

In the case that sufficient knowledge is known about a system so that the rules 

and the member functions of the inputs can be specified, the training algorithm of the 

ANFIS system can also be adapted for this purpose.  Since ANFIS is a fuzzy model in 

nature, it is easy to integrate expert knowledge in different forms.  Knowledge in 

different confidence can be represented explicitly by appropriate choice of the shape of 

membership function. 

 

6.5 Procedures of Model Causal Graph Approach  
 

The following is a summary of the procedures to design a data driven model 

causal graph based FDI: 

• Design the model causal graph structure.  
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The structure can be obtained from process block diagram and control system 

design scheme.  

• Develop individual models. 

 In some cases, one model defined in the first step may be decomposed into 

several models in series.  The series of models correspond to the inclusion of some 

hidden nodes and some multi-model causal graph sub-modules. 

• Develop fault detection module.  

Appropriate thresholds should be specified for all the nodes.  A too small 

threshold may cause false alarms and a too big threshold may cause missing detection. 

• Develop causal reasoning algorithm. 

If only single faults are involved, the simple residual reasoning algorithm can be 

directly implemented.  If some dual faults are of concern for the FDI system, some 

extended reasoning schemes may need to be designed. 

The implementation of data driven model causal graph based FDI can be 

summarized as following steps: 

• Fault detection is fulfilled by monitoring the residual of each model.  

• For any abnormal model, the possible root causes are identified by tracking 

backwards until a model gives insignificant residual.  

• All the corrupted signals are reconstructed by tracking forward from the identified 

fault origin to the input nodes of the detected model.  

• Finally, cause effect reasoning is performed on the residuals for fault isolation. 

 

6.6 Application to Nuclear SG System 
 

Figure 6.7 shows the model causal graph of steam generator water level system 

for a PWR nuclear power plant. The models in series can be summarized as follows: 

 
Controller output (t)=f(steam flow rate(t)-feed water flow rate(t), SG level(t)-SG 
reference level(t)) 
 
FCV valve position (t+1)=f (controller output (t), FCV valve position (t)) 
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Figure 6.7.  Model causal graph of nuclear SG system. 
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FCV flow rate (t)=f (FCV valve position (t), SG pressure (t)) 
 
FCV flow rate (t)=f (FCV valve position (t), SG pressure (t)) 
 
Steam flow rate (t+1)=f (feed water flow rate (t), SG pressure (t), hot leg temperature (t), 
cold leg temperature (t+1)) 
 
 Figure 6.8 and Figure 6.9 show a comparison between the estimated controller 

output and the indicated controller outputs for a controller gain offset fault and a feed 

water flow meter offset fault.  As can be seen, the residual can be used to isolate a 

controller fault as a local fault.  If some other faults related to the controller input signals 

such as feed water flow rate, steam flow rate, or SG level occur, the residual of the 

controller output remains close to zero.  The reason is that the controller model always 

uses indicated signals.  Even if some faults happen to the input signals of the controller, 

the controller model itself is still not violated.  By the way, the capability of isolating the 

controller fault as a local fault demonstrates that the ANFIS model is precise enough to 

capture the dynamic behavior of the controller. 

Figure 6.10 and Figure 6.11 show a comparison between the estimated valve 

position change and the indicated valve position change for a valve position offset fault 

and a feed water flow meter offset fault.  As can be seen, the residual can be used to 

isolate a valve position fault as a local fault.  If feed water flow meter offset fault 

happens, the residual of the valve position change remains close to zero.  The reason is 

that the valve position change is physically determined by the controller output signal.  

Figure 6.12 shows the model causal graph to estimate the feed water flow rate.  

Figure 6.13 shows the residual of feed water flow rate before and after the SG pressure is 

reconstructed for a feed water flow meter sensor fault.  The figure shows that the residual 

does not change much before and after all the input signals are reconstructed.  Therefore, 

the detected fault can be isolated as a local fault.  Figure 6.14 shows the residual of feed 

water flow rate before and after the SG pressure is reconstructed for SG pressure sensor 

fault. The reconstruction of SG pressure signal can fully explain the original residual.  

This indicates that the detected fault is a secondary fault and the fault can be isolated as a 

SG pressure sensor fault. 
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Figure 6.8.  Controller output for controller gain offset fault. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.9.  Controller output for feed water flow meter sensor fault. 
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Figure 6.10.  Change of valve position for valve position fault. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 6.11.  Change of valve position for feed water flow meter sensor fault. 
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Figure 6.12.  Model causal graph of feed water flow rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.13.  Model causal graph approach to isolate feed water flow meter sensor fault. 
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Figure 6.14.  Model causal graph approach to isolate SG pressure sensor fault 

using feed water flow rate model. 
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Figure 6.15, Figure 6.16 and Figure 6.17 show the residual of the steam flow rate 

for a steam flow meter sensor fault, feed water flow meter sensor fault and SG pressure 

sensor fault respectively.  Figure 6.15 shows that the residual of steam flow rate does not 

change much before and after the SG pressure, the feed water flow rate, and the feed 

water flow rate and the SG pressure is reconstructed.  Therefore, the detected fault can be 

correctly isolated as a steam flow meter sensor fault. Figure 6.16 shows the residual of 

the steam flow rate for feed water flow meter sensor fault. The reconstruction of feed 

water flow rate signal can fully explain the original residual.  This indicates that the 

detected fault is a secondary fault and the fault can be isolated as a FCV flow meter 

sensor fault.  Figure 6.17 shows the residual of the steam flow rate for the SG pressure 

sensor fault, the reconstruction of the SG pressure signal can fully explain the original 

residual.  Therefore, the detected fault is a secondary fault and can be correctly isolated 

as a SG pressure sensor fault. 

In order to detect and isolate the SG narrow range level sensor fault, it is 

necessary to build a dynamic model to estimate SG level.  From physics point of view, 

The SG level can be determined by the SG mass and the SG thermal parameters.  For this 

reason, an unmeasured node, SG mass, is used to estimate the SG level.  It is expressed as 

a function of SG mass, SG pressure, SG temperature as well as feed water temperature, 

cold leg temperature and hot leg temperature, shown in Figure 6.18.  The SG mass can be 

estimated as a function of feed water flow rate and steam flow rate.  In fact, without using 

the SG mass as an explicit variable, it is extremely difficult to build a data driven model 

to estimate the SG level.  The reason is that the SG mass is the integral effect of the 

incoming feed water flow rate and the out-flowing steam flow rate.  A given value of SG 

mass may correspond to any value of FCV flow rate and steam flow rate.  In the specific 

case, a model using delay input does not help to track the dynamic behavior either since 

the SG indicated level would be ultimately brought back to its normal value after a SG 

level sensor fault due to the controller feedback.  
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Figure 6.15.  Model causal graph approach to isolate steam flow meter sensor fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.16.  Model causal graph approach to isolate feed water flow meter sensor fault. 
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Figure 6.17.  Model causal graph approach to isolate SG pressure sensor using 

steam flow rate model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.18.  Model causal graph of SG level measurement. 
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Figure 6.19 shows the residual of the SG level for a SG level sensor fault before 

and after the input signal is reconstructed. The residual does not change because of the 

input reconstruction for the detected fault.  This indicates that the fault is a local fault. 

The detected fault can then be successfully isolated.   

Figure 6.20 shows the residual of the steam flow rate for simultaneous feed water 

flow meter sensor fault and SG pressure sensor fault.  The original residual can be used to 

detect the fault. In order to isolate the faults, reconstructed residuals are used.  When 

either SG pressure or feed water flow rate is reconstructed, the residual can be reduced.  

However, the reconstruction of either signal is not enough to explain 100 percent of the 

original residual. Only when feed water flow rate and SG pressure are reconstructed can 

the residual reach minimal.  Therefore, from explaining maximal fault signature point of 

view, the simultaneous dual faults can be correctly isolated.  Figure 6.21 shows the 

residual of feed water flow rate for simultaneous feed water flow meter sensor fault and 

SG pressure sensor fault.  The original residual can be used to detect the fault.  After SG 

pressure is reconstructed, the residual of FCV flow rate can be reduced by 50%.  After 

both SG pressure and FCV position are reconstructed, the residual of FCV flow rate 

cannot be further reduced.  It can be concluded that SG pressure sensor is faulty and FCV 

valve position is healthy. However, the remained residual is still about 0.5%.  This 

fraction of the original residual must be explained by the assumption that the feed water 

flow meter sensor has a fault. 

 

6.7 Comparison with Other Approaches 
 

Although PCA based FDI and ANFIS model based FDI with structured residual 

design can be used for fault detection and isolation in some applications, model causal 

graph approach has some unique features in FDI system design and application to 

engineering problem.  

Both PCA based FDI and ANFIS model based FDI with structured residual 

design can only be designed when the possible faults are enumerable.  However, model 

causal graph approach isolates a fault based on cause effect reasoning on model residuals, 
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Figure 6.19.  Model causal graph approach to isolate SG level sensor fault. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.20.  Model causal graph approach to isolate feed water flow meter sensor fault 
and SG pressure sensor fault. 
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Figure 6.21.  Model causal graph approach to isolate SG pressure sensor fault and feed 
water flow meter sensor fault. 
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so it is not necessary to predefine the faults and their fault signatures.  To incorporate an 

automated detection and isolation into a large safety critical system such as nuclear 

power plants, this is a significant step moving forward to engineering application.   

Model causal graph approach achieves fault isolation by screening out a fault 

among all the possible fault candidates so that all the abnormal measurements can be 

explained. Therefore, there is no problem with misdiagnosing one fault as another.  

However, both PCA based FDI and ANFIS model based FDI with structured residual 

design do not have a safeguard against the possibility that some unknown faults may have 

the same fault signatures as defined for a fault in the fault dictionary.  Although 

structured residual design approach is able to avoid misdiagnosing one fault as another 

for the enumerated faults through manipulating the residual structures, it still cannot fully 

solve the problem. In addition, structured residual design is not always achievable 

especially for a non-linear system.  

Data driven model causal graph approach is able to meet the requirement for 

automation because only normal operation data are necessary to adaptively upgrade 

system models.  The fault signatures used for fault isolation are extracted from the 

understanding about the physical system instead of time consuming simulation or 

additional experiments. 

Causal graph approach allows accurate data driven modeling.  The most 

parsimonious model structure can be obtained through a model causal graph.  Therefore, 

it can improve the accuracy of the developed data driven models significantly.  In 

addition, the model structure is consistent with the system decomposition, so it helps to 

arrive at a modular FDI system.  

Because fault isolation is based on reasoning about model residuals, data driven 

model diagraph approach is also able to deal with simultaneous faults. 
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Chapter 7  
 

Picasso User Interface Design 
 
 

In order to show the effectiveness of the developed FDI for nuclear power plants, 

graphic user interface software has been successfully developed under the environment of 

Picasso-3, a user interface management system.  The software has the following 

functions: 

• Create a fault by changing the fault characteristic parameters. 

• Display essential parameters on the schematic of the reactor system. 

• Display the residual patterns specific to the fault. 

• Trend the process variables relevant to the fault, and echo the FDI results. 

The software has integrated SimPWR, a reactor system analysis code in 

FORTRAN, and the FDI code in Matlab, and the C++ code to control the graphic user 

interface.  SimPWR code is the driving code in the software, which makes it possible to 

advance the simulation time without interruption after the data are flushed to the user 

interface.  The Picasso Real Time Manager is controlled by a C++ code.  It keeps running 

in multithread mode while SimPWR is running so that the performance of the user 

interface display does not degrade due to possible time delay before the C++ code can get 

data from the simulation code. 

 

7.1 Introduction 
 

It is important to evaluate the overall performance of a newly developed FDI 

system. Although quite a few FDI methods have been available, all of these methods 

have their inherent weakness as compared with the others.  This is mainly due to the great 

challenges to the comprehensive requirements of an FDI system such as early detection 

and diagnosis, isolability, robustness, novelty identification, multiple fault identifiability, 

explanation facility, adaptability etc. Not a single FDI method is able to have all these 

desired characteristics. 
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Developing a graphic user interface (GUI) provides a convenient and cost 

effective way to make the evaluation.  A simulation code can be used to simulate the 

process behavior under normal and faulty conditions.  A fault can be created without 

much effort by changing some parameters related to the fault.  If only those data 

measured in actual plants are used for FDI implementation, the data can be reliable 

substitutes to the real data.  Some noises can be easily added to the input and the output 

of the simulation codes in order that the robustness of the FDI method can be tested.  

With regard to testing the adaptability of the FDI method, the operational power levels 

can be modified or some disturbances such as steam generator tube fouling factor can be 

changed on the GUI.  In addition, the GUI can also facilitate evaluating the FDI 

performance in detecting and isolating a single fault or multiple faults during a transient. 

 

7.2 Picasso Development Environment 
 

Picasso-3 is a User interface Management Systems (UIMS) developed as part of 

the Halden Reactor Project (Kjell, 1992, Jakobsen, 1994, Kjell, 1994(a), Kjell, 1994(b)).  

Figure 7.1 shows the schematic of the Picasso-3 system 

Picasso-3 has three components. Graphics Editor (GED) is the tool to design the 

user interface.  GED can be used to design some user interface components, draw some 

pictures, set up some dialogues and define dynamic attributes to some user interface 

components.  The User Interface database is where the GED saves the information 

containing the complete specification of the user interface.  Run-time manager (RTM) 

actually realizes the application's user interface.  Application process is the C++ code 

written by the user to guide how RTM is to generate the user interface as desired by the 

user.  Application Programmer's Interface (API) is a library of C++ functions that is 

linked to the application process to enable it to communicate with RTM.  

When an application is started, the application process calls functions in the API 

library in order to connect to the RTM. The RTM responds by loading the application 

user interface from its database and displaying it on the screen. By calling API functions 

periodically, RTM will continue to handle incoming events generated by the end user or 

by the processes. 
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Figure 7.1.  Schematic of Picasso-3 system. 
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7.3 Application Process Design 
 

The schematic of the application process is shown in Figure 7.2. The SimPWR 

code is the main program.  Before entering the main body of the computation, initial_link 

is called in order to set up a connection with the Picasso RTM.  In the meanwhile, some 

initialization data for SimPWR calculation is transferred to RTM.  The main body of 

SimPWR code is run in a loop.  At the end of the loop, the simulation time advances one 

second.  The loop keeps running until the simulation time exceeds the specified 

maximum time.  When SimPWR code steps out of the loop, terminate_link is called in 

order to end Picasso gracefully.   

The application process program is written in multithread operation mode.  After 

it is connected with Picasso RTM, the function process_picasso is called periodically.  

On the one hand, it flushes the results calculated by SimPWR to Picasso-3 RTM so that 

they can be displayed on the block diagram of the reactor system and can be trended on 

trending plots.  On the other hand, it detects whether some parameters defined on the 

screen to create some faults have been changed by the end user.  If so, Process_picasso 

will transfer the changed parameters to SimPWR for a new simulation.  If 

Process_picasso detects the request from the end user for making fault detection and fault 

diagnosis, it will call the FDI module computing the residuals due to the fault and send 

the residuals to the RTM for display.  The FDI diagnostic results will also be transferred 

to the FDI diagnostic information window indicating what is the fault according to the 

FDI algorithm. 

The data exchange between Picasso-3 application process and SimPWR 

simulation code is through global variables.  These global variables return a structure in 

the C++ part of the application process and return a common block in the Fortran part of 

the application process.  The data exchange between the Picasso-3 RTM and the Picasso-

3 application process is through process structures and process variables. Both these data 

exchanges are two-way due to their global attributes. 
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Figure 7.2.  The flowchart of Picasso application process. 
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Two remote functions, stopApplication() and datMount(), are defined.  These two 

remote functions can be called directly by the user interface.  The function 

stopApplication() can help the API code end its task gracefully. The function datMount 

enables the user to input the samples and sampling interval for SimPWR code to return 

adequate amount of data for fault diagnosis. 

 

7.4 Descriptions of the Major Functions 
 

A description of the major functions is given in this section. 

1) Header 

The header files for Picasso API, MFC socket, FDI module, MATLAB as well as 

the C++ application process itself are included in this part of the code.  The header file 

for the C++ application process declares the function prototypes, structures for sensor 

characteristics, valve characteristics, controller characteristics, simulation data for 

display, and residuals. It also defines the global variables or the structures used in the 

application process. In addition, the global variables used to access the common blocks in 

the SimPWR FORTRAN code are also declared here. 

2) int Initialize_link() 

The functions of this function are as follows: 

• Initialization of the variables for display on the screen of end user. 

• Calling PfInitialize to connect the application process to the RTM. 

3) int process_picasso 

It is the kernel code to be executed periodically.  This code calls PfSend and 

PfFlush to update the variables in all the user’s windows. 

The required functions are as follows: 

• Calling some functions to transfer data from RTM to SimPWR in order to follow the 

recent changes in the parameters by end users. 

• Sending the most recent SimPWR simulation results to RTM. 

• Sending data to the FDI module or extract data from FDI module if FDI is requested. 

4) terminate_link 
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This function calls PfEndLoop to end the picasso application process. 

5) int32 createRecords() 

It calls PfReadScript to create records and variables according to specification in 

RecordDefs.pdat. 

6) int32 createVariables() 

This calls PfCreateVar to create variables locally in API and puts the information 

into a local buffer to be used by PfFlushCreateVar. 

7) void whenRtmConnects() 

PfInitialize calls this function.  It establishes connections with RTM and calls 

createRecords, createVariables and registerFunctions to let both RTM and the application 

process know the declarations of some process variables, structures and functions. 

8) int32 registerFunctions() 

This calls PfRegisterFunction to register the function stopApplication to terminate 

the API and the function datMount to receive the user’s input of samples and sampling 

interval from SimPWR code. 

9) int32 stopApplication() 

This is a function defined in API code but available to RTM as a remote function. 

Its function is to end the application.   

10) int32 datMount() 

This is a function defined in API code but available to RTM as a remote function. 

Its function is to receive the user’s input of samples and sampling interval from SimPWR 

code. 

11) void whenRtmDisconnects() 

This is a function to give a message if connection has been lost with RTM. 

12) RESD class_conversion 

This is a function to convert the residual array to the structure type RESD. 

13) void Pushdata() 

This is a function to convert a double matrix into a mxArray data structure used as 

input of Matlab function. 

14) void Extractdata() 
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This is a function to convert mxArray data structure used as output of Matlab 

function to a one-dimensional array.   

15) char* faultType() 

This is a function to determine the type of faults according to the residuals. 

 

7.5 User Interface Design 
 

The graphic user interface consists of five main windows.  

The main window is designed to facilitate switching between functional windows. 

It provides the following options: 

• Switch to the simulation window 
• Switch to the trending plot window 
• Switch to the FDI diagnostic results window 
• Switch to the fault creation window 
• End task. 
 

Figure 7.3 shows the options available on the main window of the graphic user 

interface. 

The fault creation window is designed to create faults by changing the parameters 

of the sensors, controllers, and actuators.  The following parameters can be changed on 

this window: 

• FCV1 valve stuck position 
• FCV1 offset 
• FCV1 time constant 
• FCV2 valve stuck position 
• FCV2 offset 
• FCV2 time constant 
• TCV1 valve stuck position 
• TCV1 offset 
• TCV1 time constant 
• TCV2 valve stuck position 
• TCV2 offset 
• TCV2 time constant 
• TCV3 valve stuck position 
• TCV3 offset 
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Figure 7.3.  The main window of the graphic user interface. 
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• TCV3 time constant 
• TCV4 valve stuck position  
• TCV4 offset 
• TCV4 time constant 
• Reactor power 
• FCV1 controller offset 
• Proportional gain of FCV1 controller 
• Integral gain of FCV1 controller 
• FCV2 controller offset 
• Proportional gain of FCV2 controller 
• Integral gain of FCV2 controller 
• SG1 narrow range level sensor drifting rate 
• SG2 narrow range level sensor drifting rate 
•  SG1 flow meter drifting rate 
• SG2 flow meter drifting rate 
 

Figure 7.4 shows the fault creation window of choices to change the parameters of 

sensors, controllers, and actuators.  

The trending plot window trends the following plots, which are important to 

represent the reactor system responses to the created faults: 

• Reactor nuclear power 
• Reactor power output 
• SG 1 water level 
• SG 2 water level 
• Hot leg temperature 
• Cold leg temperature 
• Feed water temperature 
• Feed water flow rate 
• SG 1 steam flow rate 
• TCV 1 flow rate 
• TCV 2 flow rate 
• TCV 3 flow rate 
• TCV 4 flow rate. 
 

The fault diagnostic result window shows the residual patterns of the following 

variables: 

• SG1 narrow range water level 
• SG2 narrow range water level 
• FCV1 flow rate 
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Figure 7.4.  Fault creation window to change fault related parameters. 



 135

• FCV2 flow rate 
• SG 1 steam flow rate 
• TCV1 flow rate 
• TCV2 flow rate 
• TCV3 flow rate 
• TCV4 flow rate 
• Hot leg temperature 
• Cold leg temperature 
• FCV1 valve position 
• FCV2 valve position 
• Feed water temperature (lumped loop) 
• Pressurizer temperature 
• Pressurizer level. 

 

Figure 7.5 shows the FDI diagnostic window under steady state conditions. 

The simulation window shows the following variables on the schematic of the 

reactor system: 

• Reactor nuclear power 
•  Hot leg temperature 
•  Cold leg temperature 
•  Pressure in the pressurizer 
•  Water level in the pressurizer 
•  Steam generator water level 
•  Feed water flow rate to SG1 
•  Feed water temperature 
•  Steam flow rate from SG1. 
 

Figure 7.6 shows the simulation window, in which the key parameters of the 

reactor operation are shown. 
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Figure 7.5.  Steady State FDI diagnostic window. 
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Figure 7.6.  FDI simulation window. 
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Chapter 8  
 

Summary, Conclusions, and Recommendations for  
Future Work 

 

 

8.1 Summary 
 

The preceding chapters presented the development of three approaches to fault 

diagnosis of nuclear power plant sensors and field devices and the applications to a PWR 

steam generator system. 

The application of PCA methods shows that both 2T statistic and Q statistic need 

to be used for fault detection in order to achieve low missing detection rate.  The fault 

directions jointly defined in the model space and in the residual space can increase the 

possibility of fault isolation.  This approach requires the least amount of system 

knowledge.  However, the developed fault detection module must be sensitive enough so 

that the plant measurements can be provided in time to the subsequent fault isolation 

module to define the fault direction in the model space.  In addition, fault isolation cannot 

be completed until a new steady state condition has been reached after a fault.  Because 

PCA is based on linear projection, this FDI system is only applicable to a linear static 

system.   

ANFIS can be used to learn accurate nonlinear models from plant data.  A 

combination of ANFIS modeling with structured residual design enables us to make fault 

isolation for a nonlinear system.  However, the desired residual structure can only be 

obtained through derived redundancy relationships. Correspondingly, very complicated 

model structure may be involved.  Moreover, in this approach, it is assumed that the 

possible faults are known.  If some additional faults are to be included, the entire FDI 

system needs to be redesigned. 

Model causal graph is developed as a new approach to FDI for nuclear plant 

sensors and field devices.  The significant feature of causal graph is that model inputs and 
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model outputs have cause effect relationship.  Because model structure is determined by 

system physics, most parsimonious data driven model structure can then be obtained.  

The fault isolation is based on cause effect analysis on model residuals, so it is not 

necessary to predefine possible faults and their fault signatures.  Model causal graph 

approach can also provide diagnosis results with higher confidence because a fault can 

usually be isolated using several models.  

The above three FDI methods are demonstrated with application to PWR UTSG 

system.  In the demonstration, all the selected sensor and actuator faults, including five 

single faults and eight dual faults, can be successfully detected and isolated.   

 

8.2 Conclusions 
 

The following conclusions are made from the research studies and the results 

presented in this thesis: 

• Analytical redundancy is the basis of modern FDI approaches.  It makes it possible to 

obtain stable fault signatures independent of fault magnitudes and initial operating 

conditions. 

• Data driven models are efficient to characterize the analytical relationship among 

measured variables.  These models can be adaptively upgraded during plant 

operation. 

• The qualification of the data plays a significant role in designing data driven FDI 

algorithms.  Any model extrapolation should be avoided in order to minimize false 

alarms. 

• Quasi-static model contains more information than a static model.  FDI algorithm 

based on quasi-static data enables to achieve earlier fault detection. 

• PCA based FDI algorithm has inherent connection with parity space approach.  The 

linear relationship among measured variables implying analytical redundancy can be 

consistently represented by the eigenvectors corresponding to the trivial components. 

Any deviation either in the model space or in the residual space will indicate a fault. 
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The fault direction jointly defined both in the model space and in the residual space 

provides better performance in fault isolation. 

• If the possible faults are known based on engineering judgments, a set of ANFIS 

models can be built to characterize the relationship between plant measurements.  

Through appropriate choice of model structures, structured residual design approach 

can be achieved for fault isolation. 

• Data driven model causal graph is a generic approach to fault diagnosis for nuclear 

power plants.  It is able to combine the reasoning capability of qualitative knowledge 

based approach and the strength in fault resolution of quantitative knowledge based 

method. Fault detection is fulfilled by monitoring the residual of each model.  Fault 

isolation is achieved by the cause effect analysis on the residuals.  

• System decomposition and local residual analysis is not only in full agreement with 

efficient data driven modeling but also conducive to FDI modularization.  

• It is not always possible to distinguish dual faults and one of the element faults. For 

instance, simultaneous feed water flow meter offset fault and SG narrow range level 

sensor fault cannot be isolated from feed water flow meter offset fault without using 

the SG wide range level signal since independent fault signatures are not available.  

In this case, SG WR level sensor signal must be used such that SG NR level sensor 

fault can be signified by checking its consistency with SG WR level signal.  

• A graphic user interface has been successfully developed to simulate the plant 

behavior for sensor, actuator and controller faults in nuclear power plants.  It provides 

a convenient environment to demonstrate the performance of any designed FDI 

algorithms. 

 

8.3 Recommendations for Future Work 
 

Some future work could be launched in order to integrate the proposed FDI 

algorithm into an engineering instrumentation and control system for nuclear power 

plants. 
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a) Development of a unified FDI framework, which is able to deal with system 
knowledge in different forms. 

b) Development of adaptive training algorithm for data driven models. 

c) Development of FDI algorithms capable of dealing with sensor faults, actuator 
faults, controller faults, and process faults simultaneously.  

d) Development of automatic causal reasoning algorithm on model residuals. 

e) Development of direction based classification algorithm to automate residual 
analysis. 

f) Development of novelty detection based algorithm for fault detection. 

In summary, the developed PCA based FDI algorithm and the structured residual 

design approach to FDI are satisfactory when applied to a PWR steam generator system 

when the possible faults are known.  Data driven model causal graph approach is a more 

systematic and general approach to fault detection and isolation for a large system where 

it is difficult to obtain information about the possible faults and their associated fault 

signatures.  
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Appendix A  Matlab Code for PCA fault detection 
 
close all; 

clear all; 

fnn=cell(11); 

fnn{1}='E:\kzhao\SGdataNew\PWRrampNew'; 

fnn{2}='E:\kzhao\SGdataNew\FeedFlowDrift'; 

fnn{3}='E:\kzhao\SGdataNew\SteamflDrift'; 

fnn{4}='E:\kzhao\SGdataNew\SteamFeedDrift'; 

fnn{5}='E:\kzhao\SGdataNew\FeedSGLevelDrift'; 

fnn{6}='E:\kzhao\SGdataNew\SteamSGLevelDrift'; 

fnn{7}='E:\kzhao\SGdataNew\SGPrsDrift'; 

fnn{8}='E:\kzhao\SGdataNew\FeedSGPrsDrift'; 

fnn{9}='E:\kzhao\SGdataNew\SGLevelPrsDrift'; 

fnn{10}='E:\kzhao\SGdataNew\SGLevelDrift'; 

fnn{11}='E:\kzhao\SGdataNew\SteamSGPrsDrift'; 

fnn1=cell(11); 

fnn1{1}='Normal Operation'; 

fnn1{2}='Feed Water Flow Meter Drift Fault'; 

fnn1{3}='Steam Flow Meter Drift fault'; 

fnn1{4}='Steam Flow Meter Feed Flow Meter Drift Faults'; 

fnn1{5}='Feed Flow Meter Drift Fault and SG Level Sensor Drift Fault'; 

fnn1{6}='Steam Flow Meter Drift Fault and SG Level Sensor Drift Fault'; 

fnn1{7}='SG Pressure Sensor Drift Fault'; 

fnn1{8}='Feed Water Flow Meter Dridt fault & SG Pressure Sensor Drift Fault'; 

fnn1{9}='SG Level Sensor Dridt Fault & SG Pressure Sensor Drift Fault'; 

fnn1{10}='SG Level Sensor Dridt Fault'; 

fnn1{11}='Steam Flow Meter Drift Fault and SG Pressure Sensor Drift Fault'; 

mmp=length(fnn); 

  index=[1,5,9,24,27,29,31,32,33,36,37,39,40,57,70]; 

  indp=[2,4,7,8,9,11]; 

  noise=0.003; 

  dataNormal='E:\kzhao\SGdataNew\PWRrampNew.dat'; 

  temp=dlmread(dataNormal,' '); 

  A=temp(:,2:end); 

  BTP=[A(1:2:end,index)]; 

  BTP=ran(BTP,noise); 

  X_train=BTP; 

  BTP=[A(2:2:end,index)]; 

  BTP=ran(BTP,noise); 

  X_test=BTP; 

  X=X_train; 

  [n,m]=size(X); 

  fprintf(' The training set contains %d observations and %d variables\n', n,m); 

  [x,meanx,stdr]=zscore1(X); 
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  xtest=zscore1(X_test,meanx,stdr); 

%%%%%%%%%%%%%%%%%%%%%%%%PCA Model%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  [Eigvec, TP, Eigp, TSQUARE] = PRINCOMP(x); 

  ttsum=sum(Eigp); 

  dps=Eigp/ttsum; 

  figure; 

  semilogy(dps); 

  axis([1,20,0,1]); 

  xlabel(' the order of the PCA model'); 

  ylabel(' the percentage of the total variance explained'); 

  a=input('the order of your model\n');  

% P is the Loading matrix, m rows, a colums; 

  P=Eigvec(:,1:a); 

% Eig is the eigenvalues of the covariance matrix which are eqaul to the variance of the transformed variables; 

  Eigval=Eigp; 

  Eig=diag(Eigp(1:a),0); 

  Eig1=diag(Eigp,0); 

  T=TP(:,1:a); 

  figure; 

  plot(TP(:,1),TP(:,2),'r*'); 

  figure; 

  plot(P(:,1),P(:,2),'r*'); 

  [nn,mm]=size(x); 

  sse_test=[]; 

  sse_train=[]; 

  for aa=1:1:mm 

  P=Eigvec(:,1:aa); 

  xtrain_pred=x*P*P'; 

  ss=(xtrain_pred-x)*(xtrain_pred-x)'; 

  ssp=trace(ss); 

  sse_train=[sse_train,ssp]; 

  xtest_pred=xtest*P*P'; 

  ss=(xtest_pred-xtest)*(xtest_pred-xtest)'; 

  ssp=trace(ss); 

  sse_test=[sse_test,ssp]; 

end; 

  figure; 

  semilogy(sse_train,'b'); 

  hold on; 

  semilogy(sse_test,'r'); 

  hold off; 

  pause; 

  a=input('the order of your model\n');  

  P=Eigvec(:,1:a); 

  Eig=diag(Eigp(1:a),0); 
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  Eig1=diag(Eigp,0); 

  mv=length(indp); 

  [nn,mm]=size(xtest); 

  xtest_pred=xtest*P*P'; 

  for ipp=1:1:mv 

      figure; 

      plot(xtest_pred(1:20:nn,indp(ipp)),'b+'); 

      hold on; 

      plot(xtest(1:20:nn,indp(ipp)),'ro'); 

  end; 

%%%%fault detection for PCA based on T square and Q statistics %%% 

  [T2lim]=Tlim(confidence,n,a); 

% Qlim(squared prediction error) is to measure the total sum of variations in the residual space, 

  [Qlim]=QFlim(confidence,a,m,Eigval); 

for iclass=1:1:mmp 

 filem=fnn{iclass}; 

  for inn=1:1:1 

      if iclass==1  

          fileName=filem; 

          eval(['load ', fileName]); 

      BT=PWRrampNew(:,2:end);   

      norm00=PWRrampNew(1,2:end);  

      norm100=[]; 

      for ivv=1:1:100 

          norm100=[norm100;norm00]; 

      end; 

      else 

      fileName=[filem,num2str(inn)]; 

      eval(['load ', fileName]); 

      BT=Faultdata(:,2:end); 

      BT=[BT]; 

end; 

  note=fnn1{iclass}; 

  BTP=[BT(1:end,index)]; 

  BT=BTP; 

  BT=ran(BT,noise); 

  fprintf('Detecting Fault:%s\n',fnn1{iclass}); 

  [TTSQ,QQSQ,miss,miss1,miss2,fal1,fal2] = dtectPCA(BT,meanx,stdr,Eig,P,T2lim,Qlim); 

  figure; 

  [nn1,mm1]=size(TTSQ); 

  plot(TTSQ(1:1:mm1),'b*'); 

  hold on; 

  TTSQ_lim=ones(1,mm1).*T2lim; 

  plot(TTSQ_lim(1:1:mm1),'r') 

  note1=['detecting ',note,' based on T square statistics']; 
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  xlabel('sample'); 

  ylabel('T square statistics'); 

  title(note1); 

  hold off; 

  figure; 

  plot(QQSQ(1:1:mm1),'b*'); 

  hold on; 

  [nn1,mm1]=size(QQSQ); 

  QQSQ_lim=ones(1,mm1).*Qlim; 

  plot(QQSQ_lim(1:1:mm1),'r'); 

  note2=['detecting ',note,' based on Q statistics']; 

  xlabel('sample'); 

  ylabel('Q statistics'); 

  title(note2); 

  hold off; 

end; 

end; 

pause; 

%%%%%%%%%%%%%%%%%%%%%%%%Fault Identification%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  ind01=[];ind02=[];ind03=[];ind04=[]; 

  ind11=[];ind12=[];ind13=[];ind14=[]; 

  [mn1,mn2]=size(BT); 

  pattern=[]; 

  for iclass=2:1:mmp 

       filem=fnn{iclass}; 

  for inn=1:1:1 

      fileName=[filem,num2str(inn)]; 

      note=fileName; 

      eval(['load ', fileName]); 

      BT=Faultdata(:,2:end); 

      xid=[BT(end,index)]; 

      xid=ran(xid,noise); 

  xid=(xid-meanx); 

  [CONT,RES]=ident1(xid,T2lim,Qlim,a,P,Eigvec,Eig1); 

  CONT1=sort(abs(CONT)); 

  ma=length(CONT); 

  RES1=sort(abs(RES)); 

  mb=length(RES); 

  if CONT1(ma)~=0.0 indd1=find(abs(CONT)==CONT1(ma)); end; 

  ind01=[ind01,indd1]; 

  if RES1(mb)~=0.0 indd1=find(abs(RES)==RES1(mb)); end; 

  ind02=[ind02,indd1]; 

  end; 

  figure; 

  bar(1:1:15,CONT); 
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  title(note); 

  figure; 

  bar(1:1:15,RES); 

  title(note); 

end; 

end; 
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Appendix B  Matlab Code for PCA fault isolation 
 
close all; 

clear all; 

ytext1=cell(1); 

ytext1{1}='Dynamic linear PCA'; 

fnn=cell(13); 

fnn{1}='E:\kzhao\SGdataNew\FeedFlowoffset'; 

fnn{2}='E:\kzhao\SGdataNew\Steamfloffset'; 

fnn{3}='E:\kzhao\SGdataNew\SteamFeedoffset'; 

fnn{4}='E:\kzhao\SGdataNew\FeedSGLevel'; 

fnn{5}='E:\kzhao\SGdataNew\SteamSGLevel'; 

fnn{6}='E:\kzhao\SGdataNew\SGPrs'; 

fnn{7}='E:\kzhao\SGdataNew\FeedSGPrs'; 

fnn{8}='E:\kzhao\SGdataNew\FeedFCVOffset'; 

fnn{9}='E:\kzhao\SGdataNew\SteamFCVOffset'; 

fnn{10}='E:\kzhao\SGdataNew\FCVOffset'; 

fnn{11}='E:\kzhao\SGdataNew\SGLevelPrs'; 

fnn{12}='E:\kzhao\SGdataNew\SGLevel'; 

fnn{13}='E:\kzhao\SGdataNew\SteamSGPrs'; 

fnns=cell(13); 

fnns{1}='Feed flow meter offset'; 

fnns{2}='Steam flow meter offset'; 

fnns{3}='Feed flow meter offset and Steam flow meter offset'; 

fnns{4}='Feed flow meter offset and SG Level sensor offset'; 

fnns{5}='Steam flow meter offset and SG Level sensor offset'; 

fnns{6}='SG pressure sensor offset'; 

fnns{7}='Feed flow meter offset and SG Pressure sensor fault'; 

fnns{8}='Feed flow meter offset and FCV Offset'; 

fnns{9}='Steam flow meter offset and FCV Offset'; 

fnns{10}='FCV Offset'; 

fnns{11}='SG Level sensor offset and SG Pressure sensor fault'; 

fnns{12}='SG Level sensor fault'; 

fnns{13}='Steam flow meter sensor offset and SG Pressure sensor fault'; 

mpp=length(fnn); 

index=[1,5,9,24,27,29,31,32,33,36,37,39,40,57,70]; 

noi=[0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002,0.002]; 

kkk=length(index); 

load E:\kzhao\SGdataNew\PWRrampNew; 

B1=PWRrampNew(:,2:end); 

BTP=[B1(2:1:end,index),B1(1:end-1,index)]; 

BTT=BTP(1:2:end,:); 

load E:\kzhao\SGdataNew\PWRnormalNew; 

B11=PWRnormalNew(:,2:end); 

BTV=[B11(2:end,index),B11(1:end-1,index)]; 
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norm100=BTV(1,:); 

B11=PWRnormalNew(:,2:end); 

BTV=[B11(2:end,index),B11(1:end-1,index)]; 

norm80=BTV(223,:); 

[x,meanx,stdr]=zscore1(BTT); 

[Eigvec, TP, Eigp, TSQUARE] = PRINCOMP(x); 

  ttsum=sum(Eigp); 

  dps=Eigp/ttsum; 

  figure; 

  plot(dps); 

  xlabel(' the order of the PCA model'); 

  ylabel(' the percentage of the total variance explained'); 

  a=input('the order of your model\n');  

% P is the Loading matrix, m rows, a colums; 

  P=Eigvec(:,1:a); 

  Eigval=Eigp; 

  Eig=diag(Eigp(1:a),0); 

  Eig1=diag(Eigp,0); 

% T is the score matrix being the corordinates in the new corordinate system spanned by principal components, 

T=TP(:,1:a); 

 figure; 

  plot(TP(:,1),TP(:,2),'r*'); 

  figure; 

  plot(P(:,1),P(:,2),'r*'); 

Ytrue=BTP(2:2:end,:); 

xtest=zscore1(BTP(2:2:end,:),meanx,stdr); 

testout=xtest*P*P'; 

pred=unscore(testout,meanx,stdr); 

figure; 

DDD=(pred-Ytrue)./Ytrue; 

plot(DDD(1:1:1810,:)','ro'); 

xlabel('sample no.'); 

ylabel([ytext1{1},'normal operation']); 

BT1=[]; 

for iclass=1:1:mpp 

 filem=fnn{iclass}; 

 Fault(iclass).RX=[]; 

 Fault(iclass).score=[]; 

for inn=1:1:7 

  fileName=[filem,num2str(inn)]; 

   eval(['load ', fileName]); 

BT1=Faultdata(:,2:end); 

for itime=700-1:1:700 

%BT1=ran(BT1,noise); 

BTT=[BT1(itime,index),BT1(itime-1,index)];  
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BV=zscore1(BTT,meanx,stdr); 

predict = BV*P*P'; 

Bnorm=zscore1(norm100,meanx,stdr); 

normscore=Bnorm*P*P'; 

PPP=predict-normscore; 

QQQ=BV-predict; 

Fault(iclass).Case(inn).RX(itime,:)=QQQ/norm(QQQ); 

Fault(iclass).Case(inn).score(itime,:)=PPP/norm(PPP); 

end; 

end; 

end; 

for iclass=1:1:mpp 

 filem=fnn{iclass}; 

 Fault(iclass).RX=[]; 

 Fault(iclass).score=[]; 

for inn=1:1:7 

  fileName=[filem,num2str(inn)]; 

   eval(['load ', fileName]); 

BT1=Faultdata(:,2:end); 

[nn,mm]=size(BT1); 

%BT1=ran(BT1,noise); 

for itime=700-1:1:700 

noise=[]; 

for ivv=1:1:length(index) 

noise=[noise,noi(ivv).*rand(nn,1)]; 

end; 

BT11=BT1(itime,index); 

BT111=BT11+BT11.*noise(itime,:); 

BT22=BT1(itime-1,index); 

BT222=BT22+BT22.*noise(itime-1,:); 

BT=[BT111,BT222]; 

BTT=BT; 

BV=zscore1(BTT,meanx,stdr); 

predict = BV*P*P'; 

if inn==7 

    BVV=norm80; 

else 

    BVV=norm100; 

end; 

Bnorm=zscore1(BVV,meanx,stdr); 

normscore=Bnorm*P*P'; 

PPP1=(predict-normscore); 

PPP1=PPP1/norm(PPP1); 

QQQ1=(BV-predict); 

QQQ1=QQQ1/norm(QQQ1); 
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for idd=1:1:mpp 

A1=Fault(idd).Case(1).score(itime,:); 

B1=Fault(idd).Case(1).RX(itime,:); 

A11=Fault(idd).Case(4).score(itime,:); 

B11=Fault(idd).Case(4).RX(itime,:); 

if inn==1|inn==2|inn==3|inn==7 

Sdd(iclass).Case(inn).CosTheta1(itime,idd)=A1*PPP1'; 

Sdd(iclass).Case(inn).CosTheta2(itime,idd)=B1*QQQ1'; 

elseif inn==4|inn==5|inn==6 

Sdd(iclass).Case(inn).CosTheta1(itime,idd)=A11*PPP1'; 

Sdd(iclass).Case(inn).CosTheta2(itime,idd)=B11*QQQ1'; 

end; 

end; 

end; 

end; 

end; 

 

for itime=700:1:700 

for iclass=1:1:mpp 

    XXX=[];GGG=[]; 

    for inn=1:1:7 

        VVV1=[]; 

        VVV2=[]; 

        for idd=1:mpp 

            VVV1=[VVV1,Sdd(iclass).Case(inn).CosTheta2(itime,idd)]; 

            VVV2=[VVV2,Sdd(iclass).Case(inn).CosTheta1(itime,idd)]; 

        end; 

    XXX=[XXX;VVV1];     

    GGG=[GGG;VVV2]; 

     end; 

disp(XXX); 

disp(GGG); 

fprintf('\n'); 

 

AM(itime).YYY1(iclass).XXX=XXX; 

AM(itime).YYY2(iclass).GGG=GGG; 

end; 

end; 

for iclass=1:1:mpp 

    ZZZ2=[];ZZZ1=[]; 

    for itime=700:1:700 

        for inn=2:1:2 

        YYYT=AM(itime).YYY2(iclass).GGG(inn,:); 

        YYYB=AM(itime).YYY1(iclass).XXX(inn,:); 

        ZZZ1=[ZZZ1;YYYB]; 
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        ZZZ2=[ZZZ2;YYYT];  

        figure; 

        bar([ZZZ1;ZZZ2]');colormap(cool); 

        title(['residual direction in the model space and the residual space']);    

        ylabel(fnns{iclass}); 

        xlabel('Fault number'); 

   end; 

end; 

end; 
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Appendix C   Matlab Code for ANFIS model based fault isolation 
 
clear all; 
close all; 
  warning off; 
  noise=0.01; 
indv=[33,31,29,37,24]; 
ptest_title=cell(5); 
ytext=cell(5); 
ytext1=cell(5); 
fnn{1}='D:\kzhao\SGdataNew\FeedFlowoffset'; 
fnn{2}='D:\kzhao\SGdataNew\Steamfloffset'; 
fnn{3}='D:\kzhao\SGdataNew\SteamFeedoffset'; 
fnn{4}='D:\kzhao\SGdataNew\SGLevel'; 
fnn{5}='D:\kzhao\SGdataNew\FeedSGLevel'; 
fnn{6}='D:\kzhao\SGdataNew\SteamSGLevel'; 
fnn{7}='D:\kzhao\SGdataNew\SGPrs'; 
fnn{8}='D:\kzhao\SGdataNew\FeedSGPrs'; 
fnn{9}='D:\kzhao\SGdataNew\SteamSGPrs'; 
fnn{10}='D:\kzhao\SGdataNew\SGLevelPrs'; 
fnn{11}='D:\kzhao\SGdataNew\FeedFCVOffset'; 
fnn{12}='D:\kzhao\SGdataNew\SteamFCVOffset'; 
fnn{13}='D:\kzhao\SGdataNew\FCVOffset'; 
 
fnns=cell(13); 
fnns{1}='D:\kzhao\SGdataNew\FeedFlowoffset'; 
fnns{2}='D:\kzhao\SGdataNew\Steamfloffset'; 
fnns{3}='D:\kzhao\SGdataNew\SteamFeedoffset'; 
fnns{4}='D:\kzhao\SGdataNew\SGLevel'; 
fnns{5}='D:\kzhao\SGdataNew\FeedSGLevel'; 
fnns{6}='D:\kzhao\SGdataNew\SteamSGLevel'; 
fnns{7}='D:\kzhao\SGdataNew\SGPrs'; 
fnns{8}='D:\kzhao\SGdataNew\FeedSGPrs'; 
fnns{9}='D:\kzhao\SGdataNew\SteamSGPrs'; 
fnns{10}='D:\kzhao\SGdataNew\SGLevelPrs'; 
fnns{11}='D:\kzhao\SGdataNew\FeedFCVOffset'; 
fnns{12}='D:\kzhao\SGdataNew\SteamFCVOffset'; 
fnns{13}='D:\kzhao\SGdataNew\FCVOffset'; 
 
ptest_title{1}='ANFIS model to estimate FCV valve position';  
ptest_title{2}='ANFIS model to estimate FCV flow rate';  
ptest_title{3}='ANFIS model to estimate SG steam flow rate';  
ptest_title{4}='ANFIS model to estimate SG level';  
ptest_title{5}='ANFIS model to estimate SG Pressure';  
 
ytext{1}='FCV valve position(%)'; 
ytext{2}='FCV flow rate(%)'; 
ytext{3}='SG steam flow rate(%)'; 
ytext{4}='SG level(%)'; 
ytext{5}='SG pressure(%)'; 
BT1=[]; 
for inn=1:1:7     
for iclass=1:1:length(fnn) 
filem=fnn{iclass}; 
fileName=[filem,num2str(inn)]; 
eval(['load ', fileName]); 
BT1=Faultdata; 
[nns,mms]=size(BT1); 
BBTT=BT1(:,2:mms); 
BT1=BT1(:,2:mms); 
[nnn,mmm]=size(BT1); 
BT1=BT1+0.001.*rand(nnn,mmm).*BT1; 
BBTT=BBTT+0.001.*rand(nnn,mmm).*BBTT; 
 
XYY=[]; 
for i=nns:1:nns 
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indexp1=[33,32]; 
indexp2=[33]; 
BTT=BT1(i,indexp1); 
load ValPos meanx stdx gfis2; 
BS1=zscore2(BTT,meanx,stdx); 
Valve_position=evalfis(BS1,gfis2); 
 
indexp1=[70,33]; 
indexp2=[31]; 
BTT=BT1(i-1,indexp1); 
load FCVFlow meanx stdx gfis2; 
BS1=zscore2(BTT,meanx,stdx); 
FCV_Flowrate=evalfis(BS1,gfis2); 
 
indexp1=[27,70,5,9]; 
indexp2=[29]; 
BTT=[BBTT(i-1,[27,70]),BBTT(i,9)-BBTT(i-1,5)]; 
load SGSteamFlow meanx stdx gfis2; 
BS1=zscore2(BTT,meanx,stdx); 
Steam_Flowrate=evalfis(BS1,gfis2); 
 
 
 
indexp1=[36,27]; 
indexp2=[37]; 
BTT=[BT1(i,indexp1)]; 
load SGLevel meanx stdx gfis2; 
BS1=zscore2(BTT,meanx,stdx); 
SG_Level=evalfis(BS1,gfis2); 
 
 
indexp1=[70]; 
indexp2=[24]; 
BTT=BT1(i,indexp1); 
load SGPressure meanx stdx gfis2; 
BS1=zscore2(BTT,meanx,stdx); 
SG_Prs=evalfis(BS1,gfis2); 
XYY=[XYY;[Valve_position,FCV_Flowrate,Steam_Flowrate,SG_Level,SG_Prs]]; 
 
end; 
 
for ipp=1:1:length(indv) 
   if ipp==1 
    bbb=XYY(:,ipp)-(BBTT(end,indv(ipp))-BBTT(end-1,indv(ipp)));     
    if bbb >= 0.05 
        bbb=0.05; 
    elseif bbb <= -0.05     
        bbb=-0.05; 
    end;    
    Fault(iclass).Variable(ipp).Residual=bbb; 
   else 
   bbb=(XYY(:,ipp)-BBTT(end,indv(ipp)))./BBTT(end,indv(ipp));  
       if bbb >= 0.05 
        bbb=0.05; 
    elseif bbb <= -0.05     
        bbb=-0.05; 
    end;    
   Fault(iclass).Variable(ipp).Residual=bbb; 
   end; 
end; 
end; 
 
figure; 
X=[1:1:length(fnn)]; 
Y=[]; 
for iclass=1:1:length(fnn) 
   YT=[]; 
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   for ivar=1:1:length(indv) 
         YT=[YT,Fault(iclass).Variable(ivar).Residual(end,1)]; 
   end; 
   Y=[Y;YT]; 
end;    
BAR(Y); 
ser=num2str(inn); 
title(['Residual Patterns based on ANFIS Local Model Fault Magnitude=Case',ser]); 
xlabel('Fault Class(FCV position,FCV Flowrate,Steam Flowrate,SG Level,SG Pressure)'); 
ylabel('Residual'); 
end; 
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Appendix D  C++ Code for user interface 
 
#ifndef MLF_V2 
#define MLF_V2 1 
#endif 
#include "libmatlb.h" 
#include "mex.h" 
#include "matrix.h" 
#include "fault_det_all.h" 
#include "convert.h" 
#include "convert2.h" 
#include "ANNt_PBK.h" 
#include "ANNt_PBK1.h" 
#include "S1zscore.h" 
#include "S2zscore.h" 
#include "fun3.h" 
#include "fun4.h" 
#include "MyBinaryGenerator.h" 
#include "libmmfile.h" 
#define BOOL_IS_KEYWORD 1 
#include <fstream> 
#include <afxsock.h>  // MFC socket extensions 
#include <process.h>  
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#define  BUFSIZE 256 
#include <api/api.h> 
#include <api/apiAnacronisms.h> 
#include "SimulatorInterface.h" 
 
 
 
// Simulator Common Blocks 
 
extern "C" struct 
{ 
    float time, Seconds, deltat; 
} TIME; 
 
extern "C" struct 
{ 
 int Ntime; 
 float Tmax, Dtmin, Dtmax; 
 int ITYPEacc; 
 int nValvesFailedOpen; 
} SIMCONTROL; 
 
 
extern "C" struct  
{ 
 float aload, bload, Duration; 
} BOPLOAD; 
 
 
extern "C" struct 
{ 
  float VTBV[10], VSDV[10], VADV1, VSRV1[10], VADV2, VSRV2[10], 
     VSLbrk, VTCV[4], FlowTBV[10], FlowSDV[10], FlowADV1, 
  FlowSRV1, FlowADV2, FlowSRV2, FlowSLbrk, FlowSL1, 
  FlowSL2, FlowTCV[4], FlowSG1, FlowSG2, hSG1, hSG2; 
} BOPFLOW; 
 
extern "C" struct 
{ 
 float DDDtime,DDDQthnew,DDDQrxnew,DDDQtrans,DDDFlowc, 
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       DDDFlow1,DDDFlow2,DDDTrxnew,DDDTfuelHot1,DDDTcladMAX, 
       DDDTinfnew,DDDTAVEInd,DDDTaveREF,DDDTold16,DDDTold14,DDDTCL1Ind, 
       DDDTold18,DDDTCL2Ind,DDDTold5,DDDTHL1Ind,DDDTHL2Ind,DDDTsat, 
       DDDMDNBR,DDDWithDrawal,DDDCb, 
       DDDRhoTot,DDDDeltaRhoFuel,DDDDeltaRhoMod,DDDDeltaRhoB,DDDRhocr, 
    DDDWturb; 
} DDD; 
 
 
extern "C" struct 
{ 
float PPPSeconds,PPPPp,PPPPprz,PPPQhtrKw,PPPGPMspray, 
      PPPPrzLvlP,PPPRefLvlP,PPPGPMcharge,PPPGPMletdwn,PPPFlowSIS, 
      PPPmporv,PPPFlowPrzSRV,PPPGPMmsrg; 
} PPP; 
 
extern "C" struct 
{ 
float SSSSeconds,SSSPs10,SSSPs10Ind,SSSPs20,SSSPs20Ind, 
      SSSTsat10,SSSTsat20,SSSFeedTemp,SSSFlowSG1, 
      SSSFlowSG1Ind,SSSFlowfd1,SSSFlowfd1Ind,SSSFCV1P, 
      SSSFlowEFW1,SSSSGLvl1WR,SSSSGLvl1NR,SSSSGLvl1WRInd, 
      SSSSGLvl1NRInd,SSSSG1Mass,SSSSGRefWR,SSSSGRefNR,SSSFlowSG2, 
      SSSFlowSG2Ind,SSSFlowfd2,SSSFlowfd2Ind,SSSFCV2P,SSSFlowEFW2, 
      SSSSGLvl2WR,SSSSGLvl2NR,SSSSGLvl2WRInd,SSSSGLvl2NRInd,SSSSG2Mass, 
      SSSFlowSLbrk; 
} SSS; 
 
extern "C" struct 
{ 
float BBBSeconds,BBBFlowTCV1,BBBFlowTCV2,BBBFlowTCV3,BBBFlowTCV4, 
      BBBTCVposP1,BBBTCVposP2,BBBTCVposP3,BBBTCVposP4; 
} BBB; 
 
extern "C" struct 
{ 
float DeadBand[10][50],Tau[10][50]; 
} VALVEPROPERTIES; 
 
extern "C" struct 
{ 
 float SensorOffset[20],SensorDrift[20],SensorNoise[20],SensorSpan[20]; 
} SENSORPROPERTIES; 
 
extern "C" struct 
{ 
float FeedGain[4][2],FeedGainTrip[4],EFWGain[4],G1Feed[2],G2Feed[2]; 
 
} FEEDCONTROL; 
 
extern "C" struct 
{ 
 
 float SGLvl1,SG1IndWRLvl,SG1IndNRLvl,SGLvl2,SG2IndWRLvl,SG2IndNRLvl, 
    Ps10,Ps20,hfd1,hfd2,Flowfd1,Flowfd2; 
} SGINIT; 
 
 
extern "C" struct 
{ 
 float Qrx, Trx, RodDepth; 
} COREINIT; 
 
 
extern "C" struct 
{ 
 float Wturb, Wload, Pcond, Phdr, TCVposition[4], FCV1, 
   FCV2, ADV1Position, ADV2Position, TBVposition; 
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} BOPINIT; 
 
 
extern "C" struct 
{ 
 float DeltaPcp1, DeltaPcp2; 
 int  nfeedpumps; 
 float DeltaPEFW, FeedTempRate, FeedDuration, FeedTempData[100], FeedTempTime[100]; 
 int  nTimeFeed; 
} BOPFEED; 
 
 
extern "C" struct 
{ 
 float Told[30]; 
} PRIMTEMPS; 
extern "C" struct 
{ 
 float Pprz,PrzLvlP; 
} PRZADD; 
 
extern "C" struct 
{ 
 float Qthnew,FeedTemp,SGLvl1NR,SGLvl2NR,SGRefNR; 
} TREND; 
 
 
   static int threadRunning = 0; 
   static void GUIThread(void *ptr) 
{ 
   threadRunning = 1; 
   PfMainLoop(); 
   threadRunning = 0; 
   return; 
} 
 
extern "C" Code(); 
 
extern "C" 
void whenRtmDisconnects(int status, const char *msg) 
{ 
  printf( "Lost contact with RTM %s\n",applName); 
  
  return; 
} 
extern "C" 
void whenRtmConnects(int status, const char *msg) 
{  
    if ( status & PfCrtmResume ) 
    { 
     printf("Connection established\n"); 
  return; 
 } 
 
 
/*Create records, variables and functions */ 
    if (createRecords() !=OK) quit(); 
    if (createVariables() !=OK) quit(); 
    if (registerFunctions() !=OK) quit(); 
 
    PfFlush();   
  
/*Create processhandler to be called every time interval if not already created*/ 
 
 return ; 
} 
      
extern "C" 
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int process(int i) 
{ 
SIMCONTROL.Tmax=TIME.time+1.0/3600; 
   return OK; 
} 
 
extern "C" 
int initialize_link() 
{ 
    unsigned long guiThread; 
 int error = 0; 
 Vardd=0; 
    SIMCONTROL.Tmax=(float)(0.1/3600); 
// Calls made in the initialize_link function 
 printf("\n\n"); 
    PfInitialize("NERI","NERI","rtm",NULL,0,0,whenRtmConnects,whenRtmDisconnects); 
 
/*Create processhandler to be called every time interval if not already created*/ 
 
    if ( processHandlerId == PfBADINDEX) 
 { PfSetProcessHandler(process_picasso, 5000); 
         if ( apiError !=OK)printf("PfsetProcessHandler failed\n"); 
      else 
    printf("PfsetProcessHandler OK \n"); 
 } 
    guiThread=_beginthread(GUIThread, 0, NULL); 
    if (apiError != OK) 
    { 
         printf("Pfinitialize failed\n"); 
 } 
 else 
    { 
        initialControllerData(); 
        initialsensorData(); 
        initialFCVData(); 
        initialTCVData(); 
        initPower(); 
       return(0); 
   PfFlush();   
 }  
 TRACE( "initialize_link: finished\n" ); 
 return error; 
} 
 
extern "C" 
int process_picasso(int i) 
{ 
 
   int error=0; 
   int numcc; 
   int inum,ierror,ii,jj; 
   float dusy; 
   char* FaultTemp; 
   FILE * fid50; 
   FILE * fid20; 
   double *VV; 
   double VV1[39]; 
   float rsd[38]={0.0}; 
   if (PfIsConnected()) 
   { 
 if  (Vardd == 1) 
   { 
    VV=getData(); 
 VV1[0]=Vardd; 
 for (int ikk=0;ikk<38;++ikk) 
 { 
  VV1[ikk+1]=*(VV+ikk); 
 } 
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 PushData(1,39,VV1); 
 YY = (mxArray *)mlfFault_det_all(XX);  
 fid50=fopen("Gmdh_residual.dat","r"); 
    inum=0; 
    do 
 { 
    ierror=fscanf(fid50,"%g",&dusy); 
 if (ierror==EOF) break; 
    rsd[inum]=dusy; 
 printf(" rsd = %g\n", rsd[inum]); 
    inum++; 
 } 
    while (ierror!=EOF); 
    fclose(fid50); 
 
    reds=Class_conversion(rsd); 
    ExtractData(YY); 
    FaultTemp=FaultType(); 
    for (numcc=0; *(FaultTemp+numcc) != NULL; ++numcc) 
  FaultEcho[numcc]=*(FaultTemp+numcc);  
    Vardd=0; 
 } 
 
 if  (Vardd == 2) 
   { 
    VV=getData(); 
 VV1[0]=Vardd; 
 for (int ikk=0;ikk<38;++ikk) 
 { 
  VV1[ikk+1]=*(VV+ikk); 
 } 
 PushData(1,39,VV1); 
 
 YY1 = (mxArray *)mlfFault_det_all(XX);  
    ExtractData(YY1); 
    sse_trans=diags[0]; 
 Vardd=2; 
 } 
 if  (Vardd == 3) 
   { 
 PowerChange(); 
 Vardd=0; 
 } 
    if (PPP.PPPSeconds<5.0)  
 { 
 INITFDIData(); 
 }; 
     if (PPP.PPPSeconds>5.0)  
 { 
 FDIFData(); 
 }; 
 simulationData(); 
      FCVData(); 
      TCVData(); 
    ControllerData(); 
    sensorData(); 
 
 myGlobalTime=PPP.PPPSeconds; 
 PfSend (controller1_id); 
 PfSend (controller2_id); 
 PfSend (FCV1_id); 
 PfSend (FCV2_id); 
 PfSend (TCV1_id);  
 PfSend (TCV2_id); 
 PfSend (TCV3_id); 
 PfSend (TCV4_id); 
 PfSend (SG1_id); 
 PfSend (SG2_id); 
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 PfSend (Flowmeter1_id); 
 PfSend (Flowmeter2_id); 
 PfSend (simulation_id);  
 PfSend (fdi_id); 
 PfSend (reds_id); 
 PfSend (Var_Id); 
 PfSend(a_id); 
 PfSend(b_id); 
 PfSend(c_id); 
 PfSend(d_id); 
 PfSend(e11_id); 
 PfSend(e12_id); 
 PfSend(e13_id); 
 PfSend(e14_id); 
 PfSend(f11_id); 
 PfSend(f12_id); 
 PfSend(g11_id); 
 PfSend(g12_id); 
 PfSend(g13_id); 
 PfSend(g14_id); 
 PfSend(time_id ); 
 PfSend(diags_id); 
 PfSend(FaultEcho_id); 
 PfSend(sse_id); 
 PfSend(G_Perload_id); 
 PfSend(G_aload_id); 
 PfSend(G_bload_id); 
 PfSend(G_PerloadMin_id); 
 PfSend(G_Refload_id); 
 PfSend(G_Duration_id); 
 
 PfFlush(); 
 printf ( "Transferring Data  to RTM \n");  
} 
 
return OK; 
} 
 
extern "C" 
int terminate_link() 
{ 
int error=0; 
if (threadRunning) 
{ 
 PfEndLoop(); 
 while (threadRunning) { Sleep(1000); } 
} 
return error; 
} 
 
// Send message to log. 
 
extern "C"  
int send_log_message(const char *pMsg) 
{ 
 int error = 0; 
 return error; 
} 
 
extern "C" 
float get_sim_time() 
{ 
 return 0.0; 
} 
 
/* Standard error macro for reporting API errors */ 
 
 #define PERR(bSuccess, api){if(!(bSuccess)) printf("%s:Error %d from %s \ 
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    on line %d\n", __FILE__, GetLastError(), api, __LINE__);} 
 extern "C" 
 void clsgp( ) 
 { 
  HANDLE hConsole; 
  hConsole = GetStdHandle(STD_OUTPUT_HANDLE); 
 
    COORD coordScreen = { 0, 0 };    /* here's where we'll home the 
                                        cursor */ 
    BOOL bSuccess; 
    DWORD cCharsWritten; 
    CONSOLE_SCREEN_BUFFER_INFO csbi; /* to get buffer info */ 
    DWORD dwConSize;                 /* number of character cells in 
                                        the current buffer */ 
 
    /* get the number of character cells in the current buffer */ 
 
    bSuccess = GetConsoleScreenBufferInfo( hConsole, &csbi ); 
    PERR( bSuccess, "GetConsoleScreenBufferInfo" ); 
    dwConSize = csbi.dwSize.X * csbi.dwSize.Y; 
 
    /* fill the entire screen with blanks */ 
 
    bSuccess = FillConsoleOutputCharacter( hConsole, (TCHAR) ' ', 
    dwConSize, coordScreen, &cCharsWritten ); 
    PERR( bSuccess, "FillConsoleOutputCharacter" ); 
 
    /* get the current text attribute */ 
 
    bSuccess = GetConsoleScreenBufferInfo( hConsole, &csbi ); 
    PERR( bSuccess, "ConsoleScreenBufferInfo" ); 
 
    /* now set the buffer's attributes accordingly */ 
 
    bSuccess = FillConsoleOutputAttribute( hConsole, csbi.wAttributes, 
    dwConSize, coordScreen, &cCharsWritten ); 
    //PERR( bSuccess, "FillConsoleOutputAttribute" ); 
 
    /* put the cursor at (0, 0) */ 
 
    bSuccess = SetConsoleCursorPosition( hConsole, coordScreen ); 
    PERR( bSuccess, "SetConsoleCursorPosition" ); 
    return; 
 } 
 
extern "C" 
void quit() 
{ 
PfEndLoop(); 
printf ("Picasso is done\n"); 
SIMCONTROL.Tmax=TIME.time-1.0/3600; 
return; 
} 
 
extern "C" 
int32 KbdHandler(int32 handlerId) 
{ 
char c; 
scanf("%c",&c); 
if (c=='q' || c=='Q') 
quit(); 
return OK; 
} 
 
extern "C" 
     int32 registerFunctions() 
{ 
     PfTArg formals[2]; 



 169

/*Register a function for terminating the program*/ 
    PfRegisterFunction("stopApplication",stopApplication,0,NULL); 
    if (apiError !=OK) 
    printf ("PfRegisFunction failed (%s)\n", applName); 
/*Register a function for receiving data points calculated by NCSU for diagnosis*/ 
    formals[0].dtype=PfCInt; 
    formals[0].size=1;  
    formals[1].dtype=PfCFloat; 
    formals[1].size=1;  
    PfRegisterFunction("datMount",datMount,2,formals); 
    if (apiError !=OK) 
    printf ("PfRegisFunction failed (%s)\n", applName); 
    return OK; 
} 
  
   
   
extern "C"  
  int32 createRecords() 
{ 
 int32 numErrors; 
 char *Filename="RecordDefs.pdat"; 
 numErrors=PfReadScript(Filename);//PfReadScript creates records and variables according to specification in NERI.Pdat  
 if (apiError!=OK) 
 printf ( "pfReadScript reported  errors for %s\n",Filename); 
 else 
 printf ( "pfReadScript is done\n"); 
 return apiError; 
} 
  
extern "C"  
   int32 createVariables() 
{ 
/*PfCreateVar creates the variable locally in api and puts the information into a local buffer 
to be used by PfFlushCreateVar.*/ 
 
a_id= PfCreateVar("a1",PfCDouble, NULL,0,&a1); 
 if(apiError == OK) 
 printf("a1 added\n"); 
 else 
 printf("Adding a1 failed\n"); 
  b_id= PfCreateVar("b1",PfCDouble, NULL,0,&b1); 
 if(apiError == OK) 
 printf("b1 added\n"); 
 else 
 printf("Adding b1 failed\n"); 
 c_id= PfCreateVar("c1",PfCDouble, NULL,0,&c1); 
 if(apiError == OK) 
 printf("c1 added\n"); 
 else 
 printf("Adding c1 failed\n"); 
 d_id= PfCreateVar("d1",PfCDouble, NULL,0,&d1); 
 if(apiError == OK) 
 printf("d1 added\n"); 
 else 
 printf("Adding d1 failed\n"); 
  e11_id= PfCreateVar("e11",PfCDouble, NULL,0,&e11); 
 if(apiError == OK) 
 printf("e11 added\n"); 
 else 
 printf("Adding e11failed\n"); 
 e12_id= PfCreateVar("e12",PfCDouble, NULL,0,&e12); 
 if(apiError == OK) 
 printf("e12 added\n"); 
 else 
 printf("Adding e12 failed\n"); 
 e13_id= PfCreateVar("e13",PfCDouble, NULL,0,&e13); 
 if(apiError == OK) 
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 printf("e13 added\n"); 
 else 
 printf("Adding e13 failed\n"); 
 e14_id= PfCreateVar("e14",PfCDouble, NULL,0,&e14); 
 if(apiError == OK) 
 printf("e14 added\n"); 
 else 
 printf("Adding e14 failed\n"); 
 f11_id= PfCreateVar("f11",PfCDouble, NULL,0,&f11); 
 if(apiError == OK) 
 printf("f11 added\n"); 
 else 
 printf("Adding f11failed\n"); 
 f12_id= PfCreateVar("f12",PfCDouble, NULL,0,&f12); 
 if(apiError == OK) 
 printf("f12 added\n"); 
 else 
 printf("Adding f12 failed\n"); 
 g11_id= PfCreateVar("g11",PfCDouble, NULL,0,&g11); 
 if(apiError == OK) 
 printf("g11 added\n"); 
 else 
 printf("Adding e11failed\n"); 
 g12_id= PfCreateVar("g12",PfCDouble, NULL,0,&g12); 
 if(apiError == OK) 
 printf("g12 added\n"); 
 else 
 printf("Adding g12 failed\n"); 
 g13_id= PfCreateVar("g13",PfCDouble, NULL,0,&g13); 
 if(apiError == OK) 
 printf("g13 added\n"); 
 else 
 printf("Adding g13 failed\n"); 
 g14_id= PfCreateVar("g14",PfCDouble, NULL,0,&g14); 
 if(apiError == OK) 
 printf("g14 added\n"); 
 else 
 printf("Adding g14 failed\n"); 
 sse_id= PfCreateVar("sse_trans",PfCDouble, NULL,0,&sse_trans); 
 if(apiError == OK) 
 printf("sse_trans added\n"); 
 else 
 printf("Adding sse_trans failed\n"); 
 
 G_Perload_id= PfCreateVar("G_Perload",PfCDouble, NULL,0,&G_Perload); 
 if(apiError == OK) 
 printf("Perload added\n"); 
 else 
 printf("Adding Perload failed\n"); 
 
 G_aload_id= PfCreateVar("G_aload",PfCDouble, NULL,0,&G_aload); 
 if(apiError == OK) 
 printf("aload added\n"); 
 else 
 printf("Adding aload failed\n"); 
 
G_bload_id= PfCreateVar("G_bload",PfCDouble, NULL,0,&G_bload); 
 if(apiError == OK) 
 printf("bload added\n"); 
 else 
 printf("Adding bload failed\n"); 
 
 G_Refload_id= PfCreateVar("G_Refload",PfCDouble, NULL,0,&G_Refload); 
 if(apiError == OK) 
 printf("Reference Load added\n"); 
 else 
 printf("Adding Refload failed\n"); 
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 G_PerloadMin_id= PfCreateVar("G_PerloadMin",PfCDouble, NULL,0,&G_PerloadMin); 
 if(apiError == OK) 
 printf("PerloadMin added\n"); 
 else 
 printf("Adding PerloadMin failed\n"); 
 
 G_Duration_id= PfCreateVar("G_Duration",PfCDouble, NULL,0,&G_Duration); 
 if(apiError == OK) 
 printf("Duration added\n"); 
 else 
 printf("Adding Duration failed\n"); 
 
 
 Var_Id= PfCreateVar("Vardd",PfCInt, NULL,0,&Vardd); 
 if(apiError == OK) 
 printf("Vardd added\n"); 
 else 
 printf("Adding Vardd failed\n"); 
 
controller1_id=PfCreateVar("controller1",PfCRecord, "Controller",0,&controller1); 
 if(apiError == OK) 
 printf("controller1 added\n"); 
 else 
printf("adding controller1 failed\n"); 
controller2_id=PfCreateVar("controller2",PfCRecord, "Controller",0,&controller2); 
 if(apiError == OK) 
 printf("controller2 added\n"); 
 else 
 printf("adding controller2 failed\n"); 
 FCV1_id=PfCreateVar("FCV1",PfCRecord, "Valve",0,&FCV1); 
 if(apiError == OK) 
 printf("FCV1 added\n"); 
 else 
printf("Adding FCV1 failed\n"); 
FCV2_id=PfCreateVar("FCV2",PfCRecord, "Valve",0,&FCV2); 
 if(apiError == OK) 
 printf("FCV2 added\n"); 
 else 
printf("Adding FCV2 failed\n"); 
TCV1_id= PfCreateVar("TCV1",PfCRecord, "Valve",0,&TCV1); 
 if(apiError == OK) 
 printf("TCV1 added\n"); 
 else 
printf("Adding TCV1 failed\n"); 
TCV2_id= PfCreateVar("TCV2",PfCRecord, "Valve",0,&TCV2); 
 if(apiError == OK) 
 printf("TCV2 added\n"); 
 else 
 printf("Adding TCV2 failed\n"); 
TCV3_id= PfCreateVar("TCV3",PfCRecord, "Valve",0,&TCV3); 
 if(apiError == OK) 
 printf("TCV3 added\n"); 
 else 
 printf("Adding TCV3 failed\n"); 
TCV4_id= PfCreateVar("TCV4",PfCRecord, "Valve",0,&TCV4); 
 if(apiError == OK) 
 printf("TCV4 added\n"); 
 else 
printf("Adding TCV4 failed\n"); 
SG1_id= PfCreateVar("SG1",PfCRecord, "Sensor",0,&SG1); 
 if(apiError == OK) 
 printf("SG1 added\n"); 
SG2_id= PfCreateVar("SG2",PfCRecord, "Sensor",0,&SG2); 
 if(apiError == OK) 
 printf("SG2 added\n"); 
 else 
 printf("Adding SG2 failed\n"); 
Flowmeter1_id= PfCreateVar("Flowmeter1",PfCRecord, "Sensor",0,&Flowmeter1); 
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 if(apiError == OK) 
 printf("Flow1 added\n"); 
 else 
 printf("Adding Flow1 failed\n"); 
 
Flowmeter2_id= PfCreateVar("Flowmeter2",PfCRecord, "Sensor",0,&Flowmeter2); 
 if(apiError == OK) 
 printf("Flow2 added\n"); 
 else 
 printf("Adding Flow2 failed\n"); 
simulation_id= PfCreateVar("simulation",PfCRecord, "Simulation",0,&simulation); 
 if(apiError == OK) 
 printf("simulation added\n"); 
 else 
 printf("adding simulation failed\n"); 
fdi_id= PfCreateVar("fdi",PfCRecord, "FDIF",0,&fdi); 
 if(apiError == OK) 
 printf("fdi added\n"); 
 else 
printf("Adding FDIF failed\n"); 
reds_id= PfCreateVar("reds",PfCRecord, "RESD",0,&reds); 
 if(apiError == OK) 
 printf("Residual added\n"); 
 else 
printf("Adding Residual failed\n"); 
 
diags_id= PfCreateArray("diags",PfCDouble, 20,NULL,true,diags); 
 if(apiError == OK) 
 printf("diagnostic information added\n"); 
 else 
printf("Adding diagnostic information failed\n"); 
 
FaultEcho_id= PfCreateArray("FaultEcho",PfCUnsignedChar, 30,NULL,true,FaultEcho); 
 if(apiError == OK) 
 printf("Fault Echo information added\n"); 
 else 
printf("Adding Fault Echo information failed\n"); 
 
time_id = PfCreateVar("myGlobalTime", PfCInt, NULL, 1, &myGlobalTime); 
 if(apiError == OK) 
    printf("variable myGlobalTime added\n"); 
  else 
  printf("variable myGlobalTime failed\n"); 
 
 
PfFlushCreateVar(); 
if ( apiError ==OK) 
   printf ( "All variables successively created\n"); 
  return apiError; 
} 
 
 
extern "C" 
RESD  Class_conversion(float* rsd) 
{  
/* 
  reds.level_SG1=-(double)rsd[0]; //SG1 water level; 
  reds.level_SG2=-(double)rsd[1]; //SG2 water level; 
  reds.flow_FCV1=-(double)rsd[2]; //FCV1 flow rate; 
  reds.flow_FCV2=-(double)rsd[3]; //FCV2 flow rate; 
  reds.flow_TCV1=-(double)rsd[4]; //TCV1 flow rate; 
  reds.flow_TCV2=-(double)rsd[5]; //TCV2 flow rate; 
  reds.flow_TCV3=-(double)rsd[6];  //TCV3 flow rate; 
  reds.flow_TCV4=-(double)rsd[7]; // TCV4 flow rate; 
  reds.T_hl=(double)rsd[8];        // hot leg temperature; 
  reds.T_cl=(double)rsd[9];        //cold leg temperature; 
  reds.T_FCV1=(double)rsd[10];  //feed water temperature; 
  reds.T_FCV2=(double)rsd[11];  //feed water temperature(lumped loop); 
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  reds.T_PRZ=(double)rsd[12];   //pressurizer temperature; 
  reds.L_PRZ=(double)rsd[13];   //presurizer level; 
  reds.set_power=(double)rsd[14]; // power load demand; 
  reds.set_level=(double)rsd[15];   //SG water level setpoint; 
  reds.ctl_level=(double)rsd[16];  //  SG level controller output 
  return reds; 
*/ 
  reds.level_SG1=(double)rsd[0]; //SG1 water level; 
  reds.level_SG2=0.0;            //SG2 water level; 
  reds.flow_FCV1=(double)rsd[1]; //FCV1 flow rate; 
  reds.flow_FCV2=0.0; //FCV2 flow rate; 
  reds.flow_steam=(double)rsd[3]; //steam flow rate; 
  reds.flow_TCV1=(double)rsd[4]; //TCV1 flow rate; 
  reds.flow_TCV2=(double)rsd[5]; //TCV2 flow rate; 
  reds.flow_TCV3=(double)rsd[6];  //TCV3 flow rate; 
  reds.flow_TCV4=(double)rsd[7]; // TCV4 flow rate; 
  reds.T_hl=0.0;        // hot leg temperature; 
  reds.T_cl=0.0;        //cold leg temperature; 
  reds.FCV1pos=(double)rsd[2];  //FCV1 valve position; 
  reds.FCV2pos=0.0;            //FCV2 valve position; 
  reds.T_FCV=0.0;  //feed water temperature(lumped loop); 
  reds.T_PRZ=0.0;   //pressurizer temperature; 
  reds.L_PRZ=0.0;   //presurizer level; 
  reds.set_power=0.0; // power load demand; 
  reds.set_level=0.0;   //SG water level setpoint; 
  reds.ctl_level=0.0;  //  SG level controller output 
  return reds; 
} 
 
extern "C" 
 void FDIFData() 
{  
  a1=SSS.SSSSGLvl1NR; 
  b1=SSS.SSSSGLvl2NR; 
  c1=SSS.SSSFlowfd1; 
  d1=SSS.SSSFlowfd2; 
  e11=BBB.BBBFlowTCV1; 
  e12=BBB.BBBFlowTCV2; 
  e13=BBB.BBBFlowTCV3; 
  e14=BBB.BBBFlowTCV4; 
  f11=simulation.power=DDD.DDDQthnew; //reactor power 
  f12=simulation.load=DDD.DDDWturb; //reactor power output 
  g11=DDD.DDDTold5;        // hot leg temperature;? 
  g12=DDD.DDDTold14; //cold leg temperature;? 
  g13=TREND.FeedTemp;//feed water temperature; 
  g14=TREND.FeedTemp;//feed water temperature(lumped loop); 
  fdi.set_power=BOPLOAD.aload; // power load demand; 
  fdi.set_level=SSS.SSSSGRefNR;   //SG water level setpoint; 
  fdi.ctl_level=0.0;   //  SG level controller  
 
  fdi.level_SG1=(SSS.SSSSGLvl1NR-aa[0])/aa[0]; 
  fdi.level_SG2=(SSS.SSSSGLvl2NR-aa[1])/aa[1]; 
  fdi.flow_FCV1=(SSS.SSSFlowfd1-aa[2])/aa[2]; 
  fdi.flow_FCV2=(SSS.SSSFlowfd2-aa[3])/aa[3]; 
  fdi.flow_TCV1=(BBB.BBBFlowTCV1-aa[4])/aa[4]; 
  fdi.flow_TCV2=(BBB.BBBFlowTCV2-aa[5])/aa[5]; 
  fdi.flow_TCV3=(BBB.BBBFlowTCV3-aa[6])/aa[6]; 
  fdi.flow_TCV4=(BBB.BBBFlowTCV4-aa[7])/aa[7]; 
  fdi.T_hl=(DDD.DDDTold5-aa[9])/aa[9];         
  fdi.T_cl=(DDD.DDDTold14-aa[8])/aa[8];  
  fdi.T_PRZ=(PPP.PPPPprz-aa[10])/aa[10];    
  fdi.L_PRZ=(PPP.PPPPrzLvlP-aa[11])/aa[11]; 
  fdi.T_FCV1=0.0; 
  fdi.T_FCV2=0.0; 
} 
extern "C" 
 void simulationData() 
{ 
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  simulation.power=DDD.DDDQthnew; //reactor power 
  simulation.T_hl=DDD.DDDTold5; // hot leg temperature 
  simulation.T_cl=DDD.DDDTold14;// cold leg temperature 
  simulation.P_PRZ=PPP.PPPPprz;//  pressure in the pressurizer 
  simulation.L_PRZ=PPP.PPPPrzLvlP; //level in the pressurizer 
  simulation.L_SG=SSS.SSSSGLvl1NR; //steam generator water level 
  simulation.flow_FCV=SSS.SSSFlowfd1; //feed water flow rate to SG1 
  simulation.T_FCV=TREND.FeedTemp; //main feed water temperature 
  simulation.flow_TCV=SSS.SSSFlowSG1;//steam flow rate from SG1 
  simulation.speed_Turbine=0.0; 
//  simulation.load=BOPINIT.Wturb;// turbine output 
} 
extern "C" 
   void FCVData() 
{ 
 BOPINIT.FCV1=FCV1.stuck;  //valves stuck position 
 VALVEPROPERTIES.DeadBand[0][13]=FCV1.offset;   
 VALVEPROPERTIES.Tau[0][13]=FCV1.timeconst; //time constant 
 BOPINIT.FCV2=FCV2.stuck;  //valves stuck position 
 VALVEPROPERTIES.DeadBand[1][13]=FCV2.offset;  // offset fault  
 VALVEPROPERTIES.Tau[1][13]=FCV2.timeconst; //time constant 
} 
 
   void initialFCVData() 
{ 
 FCV1.stuck=BOPINIT.FCV1;  //valves stuck position 
 FCV1.offset=VALVEPROPERTIES.DeadBand[0][13];   
 FCV1.timeconst=VALVEPROPERTIES.Tau[0][13]; //time constant 
 FCV2.stuck=BOPINIT.FCV2;  //valves stuck position 
 FCV2.offset=VALVEPROPERTIES.DeadBand[1][13];  // offset fault  
 FCV2.timeconst=VALVEPROPERTIES.Tau[1][13]; //time constant 
} 
   void INITFDIData() 
{ 
 
 aa[0]=SSS.SSSSGLvl1NRInd; 
 aa[1]=SSS.SSSSGLvl2NRInd; 
 aa[2]=SSS.SSSFlowSG1Ind; 
 aa[3]=SSS.SSSFlowSG2Ind; 
 aa[4]=BBB.BBBFlowTCV1; 
 aa[5]=BBB.BBBFlowTCV2; 
 aa[6]=BBB.BBBFlowTCV3; 
 aa[7]=BBB.BBBFlowTCV4; 
 aa[8]=DDD.DDDTCL1Ind; 
 aa[9]=DDD.DDDTHL1Ind; 
 aa[10]=PPP.PPPPprz;; 
 aa[11]=PPP.PPPPrzLvlP; 
 return; 
} 
 
extern "C" 
    void TCVData() 
{ 
VALVEPROPERTIES.DeadBand[0][2]=TCV1.offset;  // offset fault  
 VALVEPROPERTIES.Tau[0][2]=TCV1.timeconst; //time constant 
VALVEPROPERTIES.DeadBand[1][2]=TCV2.offset;  // offset fault  
 VALVEPROPERTIES.Tau[1][2]=TCV2.timeconst; //time constant 
VALVEPROPERTIES.DeadBand[2][2]=TCV3.offset;  // offset fault  
 VALVEPROPERTIES.Tau[2][2]=TCV3.timeconst; //time constant 
VALVEPROPERTIES.DeadBand[3][2]=TCV4.offset;  // offset fault  
 VALVEPROPERTIES.Tau[3][2]=TCV4.timeconst; //time constant 
} 
extern "C" 
    void initialTCVData() 
{ 
TCV1.offset=VALVEPROPERTIES.DeadBand[0][2];  // offset fault  
 TCV1.timeconst=VALVEPROPERTIES.Tau[0][2]; //time constant 
TCV2.offset=VALVEPROPERTIES.DeadBand[1][2];  // offset fault  
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 TCV2.timeconst=VALVEPROPERTIES.Tau[1][2]; //time constant 
TCV3.offset=VALVEPROPERTIES.DeadBand[2][2];  // offset fault  
 TCV3.timeconst=VALVEPROPERTIES.Tau[2][2]; //time constant 
TCV4.offset=VALVEPROPERTIES.DeadBand[3][2];  // offset fault  
 TCV4.timeconst=VALVEPROPERTIES.Tau[3][2]; //time constant 
} 
 
extern "C" 
 void ControllerData() 
{ 
FEEDCONTROL.FeedGain[0][0]=controller1.offset;       // main feed water control valve 1 controller offset fault 
 FEEDCONTROL.FeedGain[1][0]=controller1.Kp;  //main feed water control valve 1   controller proportional gain 
 FEEDCONTROL.FeedGain[2][0]=controller1.Ki;       //main feed water control valve 1  controller integral gain fault 
 FEEDCONTROL.FeedGain[0][1]=controller2.offset;       // main feed water control valve 1 controller offset fault 
 FEEDCONTROL.FeedGain[1][1]=controller2.Kp;  //main feed water control valve 1   controller proportional gain 
 FEEDCONTROL.FeedGain[2][1]=controller2.Ki;       //main feed water control valve 1  controller integral gain fault 
} 
 
extern "C" 
 void initialControllerData() 
{ 
 fdi.set_power=BOPLOAD.aload; 
 controller1.offset=FEEDCONTROL.FeedGain[0][0];       // main feed water control valve 1 controller offset fault 
 controller1.Kp=FEEDCONTROL.FeedGain[1][0];  //main feed water control valve 1   controller proportional gain 
 controller1.Ki=FEEDCONTROL.FeedGain[2][0];       //main feed water control valve 1  controller integral gain fault 
 controller2.offset=FEEDCONTROL.FeedGain[0][1];       // main feed water control valve 1 controller offset fault 
 controller2.Kp=FEEDCONTROL.FeedGain[1][1];  //main feed water control valve 1   controller proportional gain 
 controller2.Ki=FEEDCONTROL.FeedGain[2][1];       //main feed water control valve 1  controller integral gain fault 
} 
 
extern "C" 
 void initPower() 
{ 
G_aload=BOPLOAD.aload;  
 G_bload=BOPLOAD.bload;   
 G_Duration=BOPLOAD.Duration;  
} 
 
extern "C" 
 void PowerChange() 
{ 
BOPLOAD.aload=G_aload;   
 BOPLOAD.bload=G_bload;   
 BOPLOAD.Duration=G_Duration; 
} 
 
extern "C" 
  void sensorData() 
{ 
SENSORPROPERTIES.SensorDrift[1]=SG1.drift; 
SENSORPROPERTIES.SensorDrift[6]=SG2.drift; 
SENSORPROPERTIES.SensorDrift[2]=Flowmeter1.drift; 
SENSORPROPERTIES.SensorDrift[7]=Flowmeter2.drift; 
} 
 
extern "C" 
  void initialsensorData() 
{ 
SG1.drift=SENSORPROPERTIES.SensorDrift[1]; 
SG2.drift=SENSORPROPERTIES.SensorDrift[6]; 
Flowmeter1.drift=SENSORPROPERTIES.SensorDrift[2]; 
Flowmeter2.drift=SENSORPROPERTIES.SensorDrift[7]; 
}      
/*Function to be called from an RTM*/ 
extern "C" 
   int32 stopApplication(int32 numArgs,void* args) 
 { 
   quit(); 
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   return OK; 
} 
 
/*Function to be called from an RTM*/ 
extern "C" 
   int32 datMount(int32 numArgs, void* args) 
{ 
  
   void* data; 
   int32 type, size; 
   if (numArgs !=2) 
   return !OK; 
   data=PfGetFuncArg(&args,&type,&size); 
   if (type!=PfCInt||size!=1) 
   return !OK; 
   datPoint=*(int32*)data; 
   data=PfGetFuncArg(&args,&type,&size); 
   if (type!=PfCFloat||size!=1) 
   return !OK; 
   timeInterval=*(float*)data; 
   printf("data Points =%d,timeInterval=%5.2f\n",datPoint,timeInterval); 
   return OK; 
} 
 
extern "C" 
    void PushData(int rows,int cols,double pr_data[]) 
// This is a small program to push data into mxArray Data Structure; 
{ 
      double  *start_of_pr; 
//      mxArray *array_ptr; 
 
     /* Create a 2-by-4 real double matrix named "B". */  
     XX = mxCreateDoubleMatrix(rows, cols, mxREAL); 
     mxSetName(XX, "B"); 
 
     /* Populate the real part of the created array. */  
     start_of_pr = (double *)mxGetPr(XX); 
     memcpy(start_of_pr, pr_data, rows * cols * sizeof(double) ); 
} 
 
//   void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[]) 
   extern "C" 
   void ExtractData(const mxArray * XY) 
// This is a small program to push data into mxArray Data Structure);  
   { 
      int c, total_num_of_elements;  
      double *real_data_ptr; 
        
        if (mxIsDouble(XY))  {  
          /* Get starting address of real data in input array. */ 
            real_data_ptr = (double *)mxGetPr(XY); 
 
          /* Using pointer auto-increment, display every element in  
             the array. */ 
            total_num_of_elements = mxGetM(XY) * mxGetN(XY); 
           
          /* Display the contents of every real value. */ 
            for (c = 0; c < total_num_of_elements; c++) 
   {  
       diags[c]=*real_data_ptr;  
    printf("%g\n", *real_data_ptr++); 
 
   } 
        }  
        else 
           printf("First argument must be a double array."); 
} 
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extern "C" 
double * getData() 
{ 
double * VV1; 
double VV[38]; 
VV[0]=DDD.DDDQthnew; 
VV[1]=DDD.DDDTaveREF; 
VV[2]=DDD.DDDTold16; 
VV[3]=DDD.DDDTCL1Ind; 
VV[4]=DDD.DDDTCL2Ind; 
VV[5]=DDD.DDDTHL1Ind; 
VV[6]=DDD.DDDTsat; 
VV[7]=PPP.PPPQhtrKw; 
VV[8]=SSS.SSSPs10Ind; 
VV[9]=SSS.SSSPs20Ind; 
VV[10]=SSS.SSSTsat10; 
VV[11]=SSS.SSSTsat20; 
VV[12]=SSS.SSSFeedTemp; 
VV[13]=SSS.SSSFlowSG1Ind; 
VV[14]=SSS.SSSFlowfd1Ind; 
VV[15]=SSS.SSSFCV1P; 
VV[16]=SSS.SSSSGLvl1WR; 
VV[17]=SSS.SSSSGLvl1NR; 
VV[18]=SSS.SSSSGLvl1WRInd; 
VV[19]=SSS.SSSSGLvl1NRInd; 
VV[20]=SSS.SSSSG1Mass; 
VV[21]=SSS.SSSSGRefWR; 
VV[22]=SSS.SSSSGRefNR; 
VV[23]=SSS.SSSFlowSG2Ind; 
VV[24]=SSS.SSSFlowfd2Ind; 
VV[25]=SSS.SSSFCV2P; 
VV[26]=SSS.SSSSGLvl2WR; 
VV[27]=SSS.SSSSGLvl2NR; 
VV[28]=SSS.SSSSGLvl2WRInd; 
VV[29]=SSS.SSSSGLvl2NRInd; 
VV[30]=BBB.BBBTCVposP1; 
VV[31]=BBB.BBBFlowTCV1; 
VV[32]=BBB.BBBTCVposP2; 
VV[33]=BBB.BBBFlowTCV2; 
VV[34]=BBB.BBBTCVposP3; 
VV[35]=BBB.BBBFlowTCV3; 
VV[36]=BBB.BBBTCVposP4; 
VV[37]=BBB.BBBFlowTCV4; 
VV1=VV; 
return VV1; 
} 
extern "C"  
char* FaultType() 
{ 
char* faultDDD; 
char* FaultTable[9]; 
FaultTable[0]="No Error"; 
FaultTable[1]="NR drifting"; 
FaultTable[2]="NR deadband fault"; 
FaultTable[3]="FCV deadband"; 
FaultTable[4]="FCV stuck"; 
FaultTable[5]="Flowmeter drifting"; 
FaultTable[6]="Bypass valve error"; 
FaultTable[7]="TCV degradation"; 
FaultTable[8]="Unknown Fault"; 
if (diags[0]==0.0) faultDDD=FaultTable[0]; 
if (diags[0]==1.0) faultDDD=FaultTable[1];   
if (diags[0]==2.0) faultDDD=FaultTable[2]; 
if (diags[0]==3.0) faultDDD=FaultTable[3];   
if (diags[0]==4.0) faultDDD=FaultTable[4]; 
if (diags[0]==5.0) faultDDD=FaultTable[5];   
if (diags[0]==6.0) faultDDD=FaultTable[6]; 
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if (diags[0]==7.0) faultDDD=FaultTable[7];   
if (diags[0]==8.0) faultDDD=FaultTable[8];   
return faultDDD; 
} 
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