6,915 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    On Difference-of-SOS and Difference-of-Convex-SOS Decompositions for Polynomials

    Full text link
    In this paper, we are interested in developing polynomial decomposition techniques to reformulate real valued multivariate polynomials into difference-of-sums-of-squares (namely, D-SOS) and difference-of-convex-sums-of-squares (namely, DC-SOS). Firstly, we prove that the set of D-SOS and DC-SOS polynomials are vector spaces and equivalent to the set of real valued polynomials. Moreover, the problem of finding D-SOS and DC-SOS decompositions are equivalent to semidefinite programs (SDP) which can be solved to any desired precision in polynomial time. Some important algebraic properties and the relationships among the set of sums-of-squares (SOS) polynomials, positive semidefinite (PSD) polynomials, convex-sums-of-squares (CSOS) polynomials, SOS-convex polynomials, D-SOS and DC-SOS polynomials are discussed. Secondly, we focus on establishing several practical algorithms for constructing D-SOS and DC-SOS decompositions for any polynomial without solving SDP. Using DC-SOS decomposition, we can reformulate polynomial optimization problems in the realm of difference-of-convex (DC) programming, which can be handled by efficient DC programming approaches. Some examples illustrate how to use our methods for constructing D-SOS and DC-SOS decompositions. Numerical performance of D-SOS and DC-SOS decomposition algorithms and their parallelized methods are tested on a synthetic dataset with 1750 randomly generated large and small sized sparse and dense polynomials. Some real-world applications in higher order moment portfolio optimization problems, eigenvalue complementarity problems, Euclidean distance matrix completion problems, and Boolean polynomial programs are also presented.Comment: 47 pages, 19 figure

    Exploiting symmetries in SDP-relaxations for polynomial optimization

    Full text link
    In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization problems, show how the degree principle for the symmetric group can be computationally exploited and also propose some methods to efficiently compute in the geometric quotient.Comment: (v3) Minor revision. To appear in Math. of Operations Researc

    Sum-of-squares proofs and the quest toward optimal algorithms

    Full text link
    In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.Comment: Survey. To appear in proceedings of ICM 201

    Global optimization of polynomials using gradient tentacles and sums of squares

    Full text link
    In this work, the combine the theory of generalized critical values with the theory of iterated rings of bounded elements (real holomorphy rings). We consider the problem of computing the global infimum of a real polynomial in several variables. Every global minimizer lies on the gradient variety. If the polynomial attains a minimum, it is therefore equivalent to look for the greatest lower bound on its gradient variety. Nie, Demmel and Sturmfels proved recently a theorem about the existence of sums of squares certificates for such lower bounds. Based on these certificates, they find arbitrarily tight relaxations of the original problem that can be formulated as semidefinite programs and thus be solved efficiently. We deal here with the more general case when the polynomial is bounded from belo w but does not necessarily attain a minimum. In this case, the method of Nie, Demmel and Sturmfels might yield completely wrong results. In order to overcome this problem, we replace the gradient variety by larger semialgebraic sets which we call gradient tentacles. It now gets substantially harder to prove the existence of the necessary sums of squares certificates.Comment: 22 page
    • ā€¦
    corecore