51 research outputs found

    Design of an intelligent parking system using Wireless sensors and Multiprotocol Label Switching

    Get PDF
    The challenge of parking management has increasingly posed the need for smart solutions. Motorists in today’s busy world seek the best option in locating available parking points. The need for an efficient parking system stems from increased congestion, motor vehicle pollution, driver frustration and fatigue to mention but a few. This study was conducted at a time when the world was experiencing a financial crisis and more than ever motorists needed intelligent parking systems to reduce the cost of gas spent driving around to find parking. Indeed, the time spent driving around would be beneficial if used to do work that would put one at an advantage in the credit recession. The study was also conducted at a time when South Africa was preparing to host the 2010 soccer world cup. In the preparation to manage motor vehicle congestion, this study was a viable solution to manage the expected challenge of parking. This study presents the design and illustrates the performance of an intelligent parking system based on an integrated architecture where (1) Wireless Sensor networks (WSNs) using Small Programmable Object Technology (SPOT) motes are launched into parking places to monitor the activity of the parking area through light intensity sensing and (2) the sensed information is gathered and channeled through a gateway into databases used for parking space visualization and information dissemination over the World Wide Web technology and mobile devices via a Multi Protocol label Switching (MPLS) network. Using an illustrative simulation model of a small parking system built around a new generation of SUNspot motes, the study demonstrates how a real life smart parking system can be deployed to benefit motorists in today’s busy World and serves as a foundation to future work on how this emerging generation of motes can be used to provide better ways of finding parking

    The design of an intelligent parking system using wireless sensor networks and multi-protocol label switching

    Get PDF
    Includes bibliographical references (leaves 55-57).The challenge of parking management has increasingly posed the need for smart solutions. Motorists in today's busy world seek the best option in locating available parking points. The need for an efficient parking system stems from increased congestion, motor vehicle pollution, driver frustration and fatigue to mention but a few. This study was conducted at a time when the world was experiencing a financial crisis and more than ever motorists needed intelligent parking systems to reduce the cost of gas spent driving around to find parking. Indeed, the time spent driving around would be beneficial if used to do work that would put one at an advantage in the credit recession. The study was also conducted at a time when South Africa was preparing to host the 2010 soccer world cup. In the preparation to manage motor vehicle congestion, this study was a viable solution to manage the expected challenge of parking. This study presents the design and illustrates the performance of an intelligent parking system based on an integrated architecture where (1) Wireless Sensor networks (WSNs) using Small Programmable Object Technology (SPOT) motes are launched into parking places to monitor the activity of the parking area through light intensity sensing and (2) the sensed information is gathered and channeled through a gateway into databases used for parking space visualization and information dissemination over the World Wide Web technology and mobile devices via a Multi Protocol label Switching (MPLS) network. Using an illustrative simulation model of a small parking system built around a new generation of SUNspot motes, the study demonstrates how a real life smart parking iv system can be deployed to benefit motorists in today's busy World and serves as a foundation to future work on how this emerging generation of motes can be used to provide better ways of finding parking

    Development of a personalized wireless attender calling system for critical patient management

    Get PDF
    There is a need of a smart attender calling system for efficient patient care in modern hospitals. Such a system is needed in medical institutions in order to help certain critically disabled patients (temporarily disabled for vocal communication or mobility) to reach their health care givers or doctors by very simple means. Keeping the aforesaid perspective in mind, here we have developed a personalized wireless body–fixed attender calling system. The device is prepared by assembling a flex sensor and a Hall Effect sensor on hand glove platform effective through hand movement of the user. A trained finger movement and hand position change of the patient lead to flexion induced variation in output voltage and change in Hall sensitivity. The circuit consists of a flex-hall arrangement interfaced with Arduino UNO board loaded with suitable commands for desired analog read and wireless serial transmission of data. Above a preset threshold level the proposed device will get activated and start its play and display function. As a result, patient identification information accompanied with a message will be delivered to the concerned medical person. The sensitivity of the setup can be adjusted by manipulating the preset threshold value as per the requirement of the patient. It is believed that the aforesaid system could be useful for efficient patient management thereby reducing unfortunate situations in modern medical treatments

    Static Web content distribution and request routing in a P2P overlay

    Get PDF
    The significance of collaboration over the Internet has become a corner-stone of modern computing, as the essence of information processing and content management has shifted to networked and Webbased systems. As a result, the effective and reliable access to networked resources has become a critical commodity in any modern infrastructure. In order to cope with the limitations introduced by the traditional client-server networking model, most of the popular Web-based services have employed separate Content Delivery Networks (CDN) to distribute the server-side resource consumption. Since the Web applications are often latency-critical, the CDNs are additionally being adopted for optimizing the content delivery latencies perceived by the Web clients. Because of the prevalent connection model, the Web content delivery has grown to a notable industry. The rapid growth in the amount of mobile devices further contributes to the amount of resources required from the originating server, as the content is also accessible on the go. While the Web has become one of the most utilized sources of information and digital content, the openness of the Internet is simultaneously being reduced by organizations and governments preventing access to any undesired resources. The access to information may be regulated or altered to suit any political interests or organizational benefits, thus conflicting with the initial design principle of an unrestricted and independent information network. This thesis contributes to the development of more efficient and open Internet by combining a feasibility study and a preliminary design of a peer-to-peer based Web content distribution and request routing mechanism. The suggested design addresses both the challenges related to effectiveness of current client-server networking model and the openness of information distributed over the Internet. Based on the properties of existing peer-to-peer implementations, the suggested overlay design is intended to provide low-latency access to any Web content without sacrificing the end-user privacy. The overlay is additionally designed to increase the cost of censorship by forcing a successful blockade to isolate the censored network from the rest of the Internet

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Innovative energy-efficient wireless sensor network applications and MAC sub-layer protocols employing RTS-CTS with packet concatenation

    Get PDF
    of energy-efficiency as well as the number of available applications. As a consequence there are challenges that need to be tackled for the future generation of WSNs. The research work from this Ph.D. thesis has involved the actual development of innovative WSN applications contributing to different research projects. In the Smart-Clothing project contributions have been given in the development of a Wireless Body Area Network (WBAN) to monitor the foetal movements of a pregnant woman in the last four weeks of pregnancy. The creation of an automatic wireless measurement system for remotely monitoring concrete structures was an contribution for the INSYSM project. This was accomplished by using an IEEE 802.15.4 network enabling for remotely monitoring the temperature and humidity within civil engineering structures. In the framework of the PROENEGY-WSN project contributions have been given in the identification the spectrum opportunities for Radio Frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The design of the circuits to harvest RF energy and the requirements needed for creating a WBAN with electromagnetic energy harvesting and Cognitive Radio (CR) capabilities have also been addressed. A performance evaluation of the state-of-the art of the hardware WSN platforms has also been addressed. This is explained by the fact that, even by using optimized Medium Access Control (MAC) protocols, if the WSNs platforms do not allow for minimizing the energy consumption in the idle and sleeping states, energy efficiency and long network lifetime will not be achieved. The research also involved the development of new innovative mechanisms that tries and solves overhead, one of the fundamental reasons for the IEEE 802.15.4 standard MAC inefficiency. In particular, this Ph.D. thesis proposes an IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation. The results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. In addition, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol has been proposed that allows the aggregation of several acknowledgment responses in one special Block Acknowledgment (BACK) Response packet. Two different solutions are considered. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non ideal conditions (a channel environment with transmission errors). An analytical model is proposed, capable of taking into account the retransmission delays and the maximum number of backoff stages. The simulation results successfully validate our analytical model. For more than 7 TX (aggregated packets) all the MAC sub-layer protocols employing RTS/CTS with packet concatenation allows for the optimization of channel use in WSNs, v8-48 % improvement in the maximum average throughput and minimum average delay, and decrease energy consumption

    Overview of UMTS network evolution through radio and transmission feature validation

    Get PDF
    This project is based on several UMTS network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for HSPA data users and transport network evolution towards the All-IP era.Hardware and software validation is a key step in the relationship between the mobile network operator and the vendor. Through this verification process, while executing that functionality or testing a specific hardware, the difference between the actual result and expected result can be better understood and, in turn, this in-depth knowledge acquisition is translated into a tailored usage of the product in the operator’s live network. As a result, validation helps in building a better product as per the customer’s requirement and helps satisfying their needs, which positively impacts in the future evolution of the vendor product roadmap implementation process for a specific customer. This project is based on several Universal Mobile Telecommunication Services (UMTS) network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for High Speed Downlink Packet Access (HSPA) data users and transport network evolution towards the All-IP era.Las campañas de validación hardware y software son un paso clave en las relaciones comerciales establecidas entre un operador de telecomunicaciones y su proveedor de equipos de red. Durante los procesos de certificación, mientras se ejecuta una funcionalidad software o se valida un determinado hardware, se obtiene un conocimiento profundo de la diferencia entre el resultado obtenido y el esperado, repercutiendo directamente en un uso a medida de dicha funcionalidad o hardware en la propia red del cliente. Como consecuencia de lo anterior, podemos aseverar que los procesos de validación permiten en gran medida al proveedor adaptarse mejor a los requerimientos del cliente, ayudando a satisfacer realmente sus necesidades. Esto implica directamente un impacto positivo en la futura evolución del portfolio que el fabricante ofrece a un determinado cliente. Este proyecto está basado en la validación de diferentes funcionalidades de red UMTS, cuyo objetivo es proporcionar un conocimiento global de distintos aspectos que conforman el funcionamiento de una red de telecomunicaciones 3G, como son los procesos de movilidad de acceso radio (acampado de red y handover inter-sistema), las mejoras en la calidad de servicio para usuarios de datos HSPA y la convergencia de la red de transporte hacia la era IP.Els processos de validació hardware i software són un punt clau en les relacions comercials establertes entre un operador de telecomunicaciones i el proveïdor d'equipament de la xarxa. En el transcurs dels processos de certificació, a la mateixa vegada que s'executa una funcionalitat software o es valida un determinat hardware, s'obtenen grans coneixements respecte la diferència entre el resultat obtingut i l'esperat, que són d'aplicació directa a l'hora d'establir un ús adpatat a la xarxa del client. En conseqüència, podem asseverar que les campanyes de validació permeten en gran mesura al proveïdor adaptar-se millor als requeriments del client, ajudant a satisfer realment les seves necessitats. Això implica directament un impacte positiu en la futura evol.lució del portfoli que el fabricant ofereix a un determinat client. Aquest projecte es basa en la presentació d'un procès de validació de diferents funcionalitats relacionades amb la xarxa UMTS, amb l'objectiu de proporcionar un coneixement global de la varietat d'aspectes que conformen el funcionament d'una xarxa de telecomunicacions 3G, com són els processos de mobilitat en accès radio (acampat de l'usuari i handover inter-sistema), millores en la qualitat de servei per a usuaris de dades HSPA i la convergència de la xarxa de transport cap a l'era IP

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-configurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow configurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS definition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    corecore