244 research outputs found

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model

    Get PDF
    AbstractFrequent itemset mining from data streams is an important data mining problem with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. However, it is also a difficult problem due to the unbounded, high-speed and continuous characteristics of streaming data. Therefore, extracting frequent itemsets from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient algorithm, called Max-FISM (Maximal-Frequent Itemsets Mining), for mining recent maximal frequent itemsets from a high-speed stream of transactions within a sliding window. According to our algorithm, whenever a new transaction is inserted in the current window only its maximum itemset should be inserted into a prefix tree-based summary data structure called Max-Set for maintaining the number of independent appearance of each transaction in the current window. Finally, the set of recent maximal frequent itemsets is obtained from the current Max-Set. Experimental studies show that the proposed Max-FISM algorithm is highly efficient in terms of memory and time complexity for mining recent maximal frequent itemsets over high-speed data streams

    CICLAD: A Fast and Memory-efficient Closed Itemset Miner for Streams

    Full text link
    Mining association rules from data streams is a challenging task due to the (typically) limited resources available vs. the large size of the result. Frequent closed itemsets (FCI) enable an efficient first step, yet current FCI stream miners are not optimal on resource consumption, e.g. they store a large number of extra itemsets at an additional cost. In a search for a better storage-efficiency trade-off, we designed Ciclad,an intersection-based sliding-window FCI miner. Leveraging in-depth insights into FCI evolution, it combines minimal storage with quick access. Experimental results indicate Ciclad's memory imprint is much lower and its performances globally better than competitor methods.Comment: KDD2

    Data Stream Mining: A Review on Windowing Approach

    Get PDF
    In the data stream model the data arrive at high speed so that the algorithms used for mining the data streams must process them in very strict constraints of space and time. This raises new issues that need to be considered when developing association rule mining algorithms for data streams. So it is important to study the existing stream mining algorithms to open up the challenges and the research scope for the new researchers. In this paper we are discussing different type windowing techniques and the important algorithms available in this mining process

    Mining Recent Frequent Itemsets in Sliding Windows over Data Streams

    Get PDF
    This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when they are removed from the sliding window. It exploits a compact data structure to maintain potentially frequent itemsets so that it can output recent frequent itemsets at any time. Flexible queries for continuous transactions in the sliding window can be answered with an error bound guarantee
    • …
    corecore